51
|
Khazani Asforooshani M, Elikaei A, Abed S, Shafiei M, Barzi SM, Solgi H, Badmasti F, Sohrabi A. A novel Enterococcus faecium phage EF-M80: unveiling the effects of hydrogel-encapsulated phage on wound infection healing. Front Microbiol 2024; 15:1416971. [PMID: 39006751 PMCID: PMC11239553 DOI: 10.3389/fmicb.2024.1416971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Background Enterococcus faecium is one of the members of ESKAPE pathogens. Due to its resistance to antimicrobial agents, treating this bacterium has become challenging. The development of innovative approaches to combat antibiotic resistance is necessary. Phage therapy has emerged as a promising method for curing antibiotic-resistant bacteria. Methods In this study, E. faecium phages were isolated from wastewater. Phage properties were characterized through in vitro assays (e.g. morphological studies, and physicochemical properties). In addition, whole genome sequencing was performed. A hydrogel-based encapsulated phage was obtained and its structure characteristics were evaluated. Wound healing activity of the hydrogel-based phage was assessed in a wound mice model. Results The purified phage showed remarkable properties including broad host range, tolerance to high temperature and pH and biofilm degradation feature as a stable and reliable therapeutic agent. Whole genome sequencing revealed that the genome of the EF-M80 phage had a length of 40,434 bp and harbored 65 open reading frames (ORFs) with a GC content of 34.9% (GenBank accession number is OR767211). Hydrogel-based encapsulated phage represented an optimized structure. Phage-loaded hydrogel-treated mice showed that the counting of neutrophils, fibroblasts, blood vessels, hair follicles and percentage of collagen growth were in favor of the wound healing process in the mice model. Conclusion These findings collectively suggest the promising capability of this phage-based therapeutic strategy for the treatment of infections associated with the antibiotic-resistant E. faecium. In the near future, we hope to expect the presence of bacteriophages in the list of antibacterial compounds used in the clinical settings.
Collapse
Affiliation(s)
- Mahshid Khazani Asforooshani
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Aria Sohrabi
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
52
|
Pinto Y, Bhatt AS. Sequencing-based analysis of microbiomes. Nat Rev Genet 2024:10.1038/s41576-024-00746-6. [PMID: 38918544 DOI: 10.1038/s41576-024-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
Microbiomes occupy a range of niches and, in addition to having diverse compositions, they have varied functional roles that have an impact on agriculture, environmental sciences, and human health and disease. The study of microbiomes has been facilitated by recent technological and analytical advances, such as cheaper and higher-throughput DNA and RNA sequencing, improved long-read sequencing and innovative computational analysis methods. These advances are providing a deeper understanding of microbiomes at the genomic, transcriptional and translational level, generating insights into their function and composition at resolutions beyond the species level.
Collapse
Affiliation(s)
- Yishay Pinto
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA.
| |
Collapse
|
53
|
Chaudhari NM, Pérez-Carrascal OM, Overholt WA, Totsche KU, Küsel K. Genome streamlining in Parcubacteria transitioning from soil to groundwater. ENVIRONMENTAL MICROBIOME 2024; 19:41. [PMID: 38902796 PMCID: PMC11188291 DOI: 10.1186/s40793-024-00581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND To better understand the influence of habitat on the genetic content of bacteria, with a focus on members of Candidate Phyla Radiation (CPR) bacteria, we studied the effects of transitioning from soil via seepage waters to groundwater on genomic composition of ultra-small Parcubacteria, the dominating CPR class in seepage waters, using genome resolved metagenomics. RESULTS Bacterial metagenome-assembled genomes (MAGs), (318 total, 32 of Parcubacteria) were generated from seepage waters and compared directly to groundwater counterparts. The estimated average genome sizes of members of major phyla Proteobacteria, Bacteroidota and Cand. Patescibacteria (Candidate Phyla Radiation - CPR bacteria) were significantly higher in soil-seepage water as compared to their groundwater counterparts. Seepage water Parcubacteria (Paceibacteria) exhibited 1.18-fold greater mean genome size and 2-fold lower mean proportion of pseudogenes than those in groundwater. Bacteroidota and Proteobacteria also showed a similar trend of reduced genomes in groundwater compared to seepage. While exploring gene loss and adaptive gains in closely related CPR lineages in groundwater, we identified a membrane protein, and a lipoglycopeptide resistance gene unique to a seepage Parcubacterium genome. A nitrite reductase gene was also identified and was unique to the groundwater Parcubacteria genomes, likely acquired from other planktonic microbes via horizontal gene transfer. CONCLUSIONS Overall, our data suggest that bacteria in seepage waters, including ultra-small Parcubacteria, have significantly larger genomes and higher metabolic enrichment than their groundwater counterparts, highlighting possible genome streamlining of the latter in response to habitat selection in an oligotrophic environment.
Collapse
Affiliation(s)
- Narendrakumar M Chaudhari
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Friedrich-Schiller-Universität, Leipzig, Germany
| | - Olga M Pérez-Carrascal
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Will A Overholt
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Kai U Totsche
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Hydrogeology, Institute of Geowissenschaften, Friedrich-Schiller-Universität Jena, Burgweg 11, 07749, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Friedrich-Schiller-Universität, Leipzig, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
54
|
Sudo M, Osvatic J, Taylor JD, Dufour SC, Prathep A, Wilkins LGE, Rattei T, Yuen B, Petersen JM. SoxY gene family expansion underpins adaptation to diverse hosts and environments in symbiotic sulfide oxidizers. mSystems 2024; 9:e0113523. [PMID: 38747602 PMCID: PMC11237559 DOI: 10.1128/msystems.01135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/13/2024] [Indexed: 06/19/2024] Open
Abstract
Sulfur-oxidizing bacteria (SOB) have developed distinct ecological strategies to obtain reduced sulfur compounds for growth. These range from specialists that can only use a limited range of reduced sulfur compounds to generalists that can use many different forms as electron donors. Forming intimate symbioses with animal hosts is another highly successful ecological strategy for SOB, as animals, through their behavior and physiology, can enable access to sulfur compounds. Symbioses have evolved multiple times in a range of animal hosts and from several lineages of SOB. They have successfully colonized a wide range of habitats, from seagrass beds to hydrothermal vents, with varying availability of symbiont energy sources. Our extensive analyses of sulfur transformation pathways in 234 genomes of symbiotic and free-living SOB revealed widespread conservation in metabolic pathways for sulfur oxidation in symbionts from different host species and environments, raising the question of how they have adapted to such a wide range of distinct habitats. We discovered a gene family expansion of soxY in these genomes, with up to five distinct copies per genome. Symbionts harboring only the "canonical" soxY were typically ecological "specialists" that are associated with specific host subfamilies or environments (e.g., hydrothermal vents, mangroves). Conversely, symbionts with multiple divergent soxY genes formed versatile associations across diverse hosts in various marine environments. We hypothesize that expansion and diversification of the soxY gene family could be one genomic mechanism supporting the metabolic flexibility of symbiotic SOB enabling them and their hosts to thrive in a range of different and dynamic environments.IMPORTANCESulfur metabolism is thought to be one of the most ancient mechanisms for energy generation in microorganisms. A diverse range of microorganisms today rely on sulfur oxidation for their metabolism. They can be free-living, or they can live in symbiosis with animal hosts, where they power entire ecosystems in the absence of light, such as in the deep sea. In the millions of years since they evolved, sulfur-oxidizing bacteria have adopted several highly successful strategies; some are ecological "specialists," and some are "generalists," but which genetic features underpin these ecological strategies are not well understood. We discovered a gene family that has become expanded in those species that also seem to be "generalists," revealing that duplication, repurposing, and reshuffling existing genes can be a powerful mechanism driving ecological lifestyle shifts.
Collapse
Affiliation(s)
- Marta Sudo
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Jay Osvatic
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - John D. Taylor
- Life Sciences, The Natural History Museum, London, United Kingdom
| | - Suzanne C. Dufour
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Anchana Prathep
- Department of Biology, Faculty of Science, Prince of Songkla University, HatYai, Thailand
| | - Laetitia G. E. Wilkins
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Rattei
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Benedict Yuen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jillian M. Petersen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| |
Collapse
|
55
|
Bulka O, Picott K, Mahadevan R, Edwards EA. From mec cassette to rdhA: a key Dehalobacter genomic neighborhood in a chloroform and dichloromethane-transforming microbial consortium. Appl Environ Microbiol 2024; 90:e0073224. [PMID: 38819127 PMCID: PMC11218628 DOI: 10.1128/aem.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Chloroform (CF) and dichloromethane (DCM) are groundwater contaminants of concern due to their high toxicity and inhibition of important biogeochemical processes such as methanogenesis. Anaerobic biotransformation of CF and DCM has been well documented but typically independently of one another. CF is the electron acceptor for certain organohalide-respiring bacteria that use reductive dehalogenases (RDases) to dechlorinate CF to DCM. In contrast, known DCM degraders use DCM as their electron donor, which is oxidized using a series of methyltransferases and associated proteins encoded by the mec cassette to facilitate the entry of DCM to the Wood-Ljungdahl pathway. The SC05 culture is an enrichment culture sold commercially for bioaugmentation, which transforms CF via DCM to CO2. This culture has the unique ability to dechlorinate CF to DCM using electron equivalents provided by the oxidation of DCM to CO2. Here, we use metagenomic and metaproteomic analyses to identify the functional genes involved in each of these transformations. Though 91 metagenome-assembled genomes were assembled, the genes for an RDase-named acdA-and a complete mec cassette were found to be encoded on a single contig belonging to Dehalobacter. AcdA and critical Mec proteins were also highly expressed by the culture. Heterologously expressed AcdA dechlorinated CF and other chloroalkanes but had 100-fold lower activity on DCM. Overall, the high expression of Mec proteins and the activity of AcdA suggest a Dehalobacter capable of dechlorination of CF to DCM and subsequent mineralization of DCM using the mec cassette. IMPORTANCE Chloroform (CF) and dichloromethane (DCM) are regulated groundwater contaminants. A cost-effective approach to remove these pollutants from contaminated groundwater is to employ microbes that transform CF and DCM as part of their metabolism, thus depleting the contamination as the microbes continue to grow. In this work, we investigate bioaugmentation culture SC05, a mixed microbial consortium that effectively and simultaneously degrades both CF and DCM coupled to the growth of Dehalobacter. We identified the functional genes responsible for the transformation of CF and DCM in SC05. These genetic biomarkers provide a means to monitor the remediation process in the field.
Collapse
Affiliation(s)
- Olivia Bulka
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Picott
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
56
|
Quadri SR, Jin P, Wang K, Qiao H, Dhulappa A, Luo ZH, Wang S, Narsing Rao MP. Taxonomic Reframe of Some Species of the Genera Haloferax and Halobellus. Curr Microbiol 2024; 81:216. [PMID: 38850425 DOI: 10.1007/s00284-024-03695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 06/10/2024]
Abstract
Haloferax and Halobellus are the representatives of the family Haloferacaceae and they are dominant in hypersaline ecosystems. Some Haloferax and Halobellus species exhibit a close evolutionary relationship. Genomic, phylogenetic (based on 16S rRNA gene sequence), and phylogenomic analysis were performed to evaluate the taxonomic positions of the genera Haloferax and Halobellus. Based on the results we propose to reclassify Halobellus ramosii as a later heterotypic synonym of Halobellus inordinatus; Haloferax lucentense and Haloferax alexandrinum as later heterotypic synonyms of Haloferax volcanii.
Collapse
Affiliation(s)
- Syed Raziuddin Quadri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Northern Borders, Arar, 91431, Kingdom of Saudi Arabia
| | - Pinjiao Jin
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Kangkang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Hui Qiao
- Dengta City Development Reform Affairs Service Center, Dengta, 150499, China
| | - Awalagaway Dhulappa
- Department of Microbiology, Maharani's Science College for Women, Bangalore, 560001, India
| | - Zhen-Hao Luo
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030, Vienna, Austria
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Manik Prabhu Narsing Rao
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile.
| |
Collapse
|
57
|
Zavadska D, Henry N, Auladell A, Berney C, Richter DJ. Diverse patterns of correspondence between protist metabarcodes and protist metagenome-assembled genomes. PLoS One 2024; 19:e0303697. [PMID: 38843225 PMCID: PMC11156365 DOI: 10.1371/journal.pone.0303697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Two common approaches to study the composition of environmental protist communities are metabarcoding and metagenomics. Raw metabarcoding data are usually processed into Operational Taxonomic Units (OTUs) or amplicon sequence variants (ASVs) through clustering or denoising approaches, respectively. Analogous approaches are used to assemble metagenomic reads into metagenome-assembled genomes (MAGs). Understanding the correspondence between the data produced by these two approaches can help to integrate information between the datasets and to explain how metabarcoding OTUs and MAGs are related with the underlying biological entities they are hypothesised to represent. MAGs do not contain the commonly used barcoding loci, therefore sequence homology approaches cannot be used to match OTUs and MAGs. We made an attempt to match V9 metabarcoding OTUs from the 18S rRNA gene (V9 OTUs) and MAGs from the Tara Oceans expedition based on the correspondence of their relative abundances across the same set of samples. We evaluated several metrics for detecting correspondence between features in these two datasets and developed controls to filter artefacts of data structure and processing. After selecting the best-performing metrics, ranking the V9 OTU/MAG matches by their proportionality/correlation coefficients and applying a set of selection criteria, we identified candidate matches between V9 OTUs and MAGs. In some cases, V9 OTUs and MAGs could be matched with a one-to-one correspondence, implying that they likely represent the same underlying biological entity. More generally, matches we observed could be classified into 4 scenarios: one V9 OTU matches many MAGs; many V9 OTUs match many MAGs; many V9 OTUs match one MAG; one V9 OTU matches one MAG. Notably, we found some instances in which different OTU-MAG matches from the same taxonomic group were not classified in the same scenario, with all four scenarios possible even within the same taxonomic group, illustrating that factors beyond taxonomic lineage influence the relationship between OTUs and MAGs. Overall, each scenario produces a different interpretation of V9 OTUs, MAGs and how they compare in terms of the genomic and ecological diversity they represent.
Collapse
Affiliation(s)
- Daryna Zavadska
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Nicolas Henry
- CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Adrià Auladell
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Cédric Berney
- CNRS, UMR7144, AD2M, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
58
|
Suarez SA, Martiny AC. Intraspecific variation in antibiotic resistance potential within E. coli. Microbiol Spectr 2024; 12:e0316223. [PMID: 38661581 PMCID: PMC11237723 DOI: 10.1128/spectrum.03162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Intraspecific genomic diversity brings the potential for an unreported and diverse reservoir of cryptic antibiotic resistance genes in pathogens, as cryptic resistance can occur without major mutations and horizontal transmission. Here, we predicted the differences in the types of antibiotics and genes that induce cryptic and latent resistance between micro-diverse Escherichia coli strains. For example, we hypothesize that known resistance genes will be the culprit of latent resistance within clinical strains. We used a modified functional metagenomics method to induce expression in eight E. coli strains. We found a total of 66 individual genes conferring phenotypic resistance to 11 out of 16 antibiotics. A total of 14 known antibiotic resistance genes comprised 21% of total identified genes, whereas the majority (52 genes) were unclassified cryptic resistance genes. Between the eight strains, 1.2% of core orthologous genes were positive (conferred resistance in at least one strain). Sixty-four percent of positive orthologous genes conferred resistance to only one strain, demonstrating high intraspecific variability of latent resistance genes. Cryptic resistance genes comprised most resistance genes among laboratory and clinical strains as well as natural, semisynthetic, and synthetic antibiotics. Known antibiotic resistance genes primarily conferred resistance to multiple antibiotics from varying origins and within multiple strains. Hence, it is uncommon for E. coli to develop cross-cryptic resistance to antibiotics from multiple origins or within multiple strains. We have uncovered prospective and previously unknown resistance genes as well as antibiotics that have the potential to trigger latent antibiotic resistance in E. coli strains from varying origins.IMPORTANCEIntraspecific genomic diversity may be a driving force in the emergence of adaptive antibiotic resistance. Adaptive antibiotic resistance enables sensitive bacterial cells to acquire temporary antibiotic resistance, creating an optimal window for the development of permanent mutational resistance. In this study, we investigate cryptic resistance, an adaptive resistance mechanism, and unveil novel (cryptic) antibiotic resistance genes that confer resistance when amplified within eight E. coli strains derived from clinical and laboratory origins. We identify the potential of cryptic resistance genes to confer cross-resistance to antibiotics from varying origins and within multiple strains. We discern antibiotic characteristics that promote latent resistance in multiple strains, considering intraspecific diversity. This study may help detect novel resistance genes and functional genes that could become responsible for cryptic resistance among diverse strains and antibiotics, thus also identifying potential novel antibiotic targets and mechanisms.
Collapse
Affiliation(s)
- Stacy A. Suarez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Adam C. Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Department of Earth System Science, University of California, Irvine, California, USA
| |
Collapse
|
59
|
Pellegrinetti TA, de Cássia Mesquita da Cunha I, Chaves MGD, Freitas ASD, Passos GS, Silva AVRD, Cotta SR, Tsai SM, Mendes LW. Genomic insights of Fictibacillus terranigra sp. nov., a versatile metabolic bacterium from Amazonian Dark Earths. Braz J Microbiol 2024; 55:1817-1828. [PMID: 38358421 PMCID: PMC11153436 DOI: 10.1007/s42770-024-01268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
The Amazon rainforest, a hotspot for biodiversity, is a crucial research area for scientists seeking novel microorganisms with ecological and biotechnological significance. A key region within the Amazon rainforest is the Amazonian Dark Earths (ADE), noted for supporting diverse plant and microbial communities, and its potential as a blueprint for sustainable agriculture. This study delineates the isolation, morphological traits, carbon source utilization, and genomic features of Fictibacillus terranigra CENA-BCM004, a candidate novel species of the Fictibacillus genus isolated from ADE. The genome of Fictibacillus terranigra was sequenced, resulting in 16 assembled contigs, a total length of 4,967,627 bp, and a GC content of 43.65%. Genome annotation uncovered 3315 predicted genes, encompassing a wide range of genes linked to various metabolic pathways. Phylogenetic analysis indicated that CENA-BCM004 is a putative new species, closely affiliated with other unidentified Fictibacillus species and Bacillus sp. WQ 8-8. Moreover, this strain showcased a multifaceted metabolic profile, revealing its potential for diverse biotechnological applications. It exhibited capabilities to antagonize pathogens, metabolize multiple sugars, mineralize organic matter compounds, and solubilize several minerals. These insights substantially augment our comprehension of microbial diversity in ADE and underscore the potential of Fictibacillus terranigra as a precious resource for biotechnological endeavors. The genomic data generated from this study will serve as a foundational resource for subsequent research and exploration of the biotechnological capabilities of this newly identified species.
Collapse
Affiliation(s)
- Thierry Alexandre Pellegrinetti
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Izadora de Cássia Mesquita da Cunha
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
- Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba, Brazil
| | - Miriam Gonçalves de Chaves
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Anderson Santos de Freitas
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Gabriel Schimmelpfeng Passos
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Ana Vitória Reina da Silva
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Simone Raposo Cotta
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil.
| |
Collapse
|
60
|
Bomberg M, Miettinen H, Kinnunen P. Seasonal variation in metabolic profiles and microbial communities in a subarctic ore processing plant. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13284. [PMID: 38922785 PMCID: PMC11194043 DOI: 10.1111/1758-2229.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
The mining industry strives to reduce its water footprint by recycling water in ore processing. This leads to build-up of ions, flotation chemicals and microbial biomass, which may affect the process. The Boliden Kevitsa mine in Northern Finland is exposed to seasonal change and recycles up to 90% of the process water. We studied the variation in size, composition and putative functions of microbial communities in summer and winter in the ore processing plant. The raw water, Cu and Ni thickener overflow waters had statistically significantly higher bacterial numbers in winter compared to summer, and specific summer and winter communities were identified. Metagenomic analysis indicated that Cu and Hg resistance genes, sulphate/thiosulphate, molybdate, iron(III) and zinc ABC transporters, nitrate reduction, denitrification, thiosulphate oxidation and methylotrophy were more common in winter than in summer. Raw water drawn from the nearby river did not affect the microbial communities in the process samples, indicating that the microbial communities and metabolic capacities develop within the process over time in response to the conditions in the processing plant, water chemistry, used chemicals, ore properties and seasonal variation. We propose that the microbial community structures are unique to the Boliden Kevitsa mine and processing plant.
Collapse
Affiliation(s)
- Malin Bomberg
- VTT Technical Research Centre of Finland Ltd.EspooFinland
| | | | - Päivi Kinnunen
- VTT Technical Research Centre of Finland Ltd.TampereFinland
| |
Collapse
|
61
|
Fisher CR, Masters TL, Johnson S, Greenwood-Quaintance KE, Chia N, Abdel MP, Patel R. Comparative transcriptomic analysis of Staphylococcus epidermidis associated with periprosthetic joint infection under in vivo and in vitro conditions. Int J Med Microbiol 2024; 315:151620. [PMID: 38579524 PMCID: PMC11214590 DOI: 10.1016/j.ijmm.2024.151620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Staphylococcus epidermidis is part of the commensal microbiota of the skin and mucous membranes, though it can also act as a pathogen in certain scenarios, causing a range of infections, including periprosthetic joint infection (PJI). Transcriptomic profiling may provide insights into mechanisms by which S. epidermidis adapts while in a pathogenic compared to a commensal state. Here, a total RNA-sequencing approach was used to profile and compare the transcriptomes of 19 paired PJI-associated S. epidermidis samples from an in vivo clinical source and grown in in vitro laboratory culture. Genomic comparison of PJI-associated and publicly available commensal-state isolates were also compared. Of the 1919 total transcripts found, 145 were from differentially expressed genes (DEGs) when comparing in vivo or in vitro samples. Forty-two transcripts were upregulated and 103 downregulated in in vivo samples. Of note, metal sequestration-associated genes, specifically those related to staphylopine activity (cntA, cntK, cntL, and cntM), were upregulated in a subset of clinical in vivo compared to laboratory grown in vitro samples. About 70% of the total transcripts and almost 50% of the DEGs identified have not yet been annotated. There were no significant genomic differences between known commensal and PJI-associated S. epidermidis isolates, suggesting that differential genomics may not play a role in S. epidermidis pathogenicity. In conclusion, this study provides insights into phenotypic alterations employed by S epidermidis to adapt to infective and non-infected microenvironments, potentially informing future therapeutic targets for related infections.
Collapse
Affiliation(s)
- Cody R Fisher
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thao L Masters
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen Johnson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kerryl E Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
62
|
Tony-Odigie A, Dalpke AH, Boutin S, Yi B. Airway commensal bacteria in cystic fibrosis inhibit the growth of P. aeruginosa via a released metabolite. Microbiol Res 2024; 283:127680. [PMID: 38520837 DOI: 10.1016/j.micres.2024.127680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
In cystic fibrosis (CF), Pseudomonas aeruginosa infection plays a critical role in disease progression. Although multiple studies suggest that airway commensals might be able to interfere with pathogenic bacteria, the role of the distinct commensals in the polymicrobial lung infections is largely unknown. In this study, we aimed to identify airway commensal bacteria that may inhibit the growth of P. aeruginosa. Through a screening study with more than 80 CF commensal strains across 21 species, more than 30 commensal strains from various species have been identified to be able to inhibit the growth of P. aeruginosa. The underlying mechanisms were investigated via genomic, metabolic and functional analysis, revealing that the inhibitory commensals may affect the growth of P. aeruginosa by releasing a large amount of acetic acid. The data provide information about the distinct roles of airway commensals and provide insights into novel strategies for controlling airway infections.
Collapse
Affiliation(s)
- Andrew Tony-Odigie
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Alexander H Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany; University of Lübeck, Department of Infectious Diseases and Microbiology, Lübeck, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
63
|
Nazina TN, Tourova TP, Grouzdev DS, Bidzhieva SK, Poltaraus AB. A Novel View on the Taxonomy of Sulfate-Reducing Bacterium ' Desulfotomaculum salinum' and a Description of a New Species Desulfofundulus salinus sp. nov. Microorganisms 2024; 12:1115. [PMID: 38930497 PMCID: PMC11206085 DOI: 10.3390/microorganisms12061115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Two thermophilic spore-forming sulfate-reducing strains, 435T and 781, were isolated from oil and gas reservoirs in Western Siberia (Russia) about 50 years ago. Both strains were found to be neutrophilic, chemoorganotrophic, anaerobic bacteria, growing at 45-70 °C (optimum, 55-60 °C) and with 0-4.5% (w/v) NaCl (optimum, 0.5-1% NaCl). The major fatty acids were iso-C15:0, iso-C17:0, C16:0, and C18:0. In sulfate-reducing conditions, the strains utilized H2/CO2, formate, lactate, pyruvate, malate, fumarate, succinate, methanol, ethanol, propanol, butanol, butyrate, valerate, and palmitate. In 2005, based on phenotypic characteristics and a 16S rRNA gene sequence analysis, the strains were described as 'Desulfotomaculum salinum' sp. nov. However, this species was not validly published because the type strain was not deposited in two culture collections. In this study, a genomic analysis of strain 435T was carried out to determine its taxonomic affiliation. The genome size of strain 435T was 2.886 Mb with a 55.1% genomic G + C content. The average nucleotide identity and digital DNA-DNA hybridization values were highest between strain 435T and members of the genus Desulfofundulus, 78.7-93.3% and 25.0-52.2%, respectively; these values were below the species delineation cut-offs (<95-96% and <70%). The cumulative phenotypic and phylogenetic data indicate that two strains represent a novel species within the genus Desulfofundulus, for which the name Desulfofundulus salinus sp. nov. is proposed. The type strain is 435T (=VKM B-1492T = DSM 23196T). A genome analysis of strain 435T revealed the genes for dissimilatory sulfate reduction, autotrophic carbon fixation via the Wood-Ljungdahl pathway, hydrogen utilization, methanol and organic acids metabolism, and sporulation, which were confirmed by cultivation studies.
Collapse
Affiliation(s)
- Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (T.P.T.); (S.K.B.)
| | - Tatyana P. Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (T.P.T.); (S.K.B.)
| | | | - Salimat K. Bidzhieva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (T.P.T.); (S.K.B.)
| | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
64
|
Wang S, Dhulappa A, Quadri SR, Jin P, Wang K, Qiao H, Narsing Rao MP. Reclassification of Some Exiguobacterium Species Based on Genome Analysis. Curr Microbiol 2024; 81:186. [PMID: 38775831 DOI: 10.1007/s00284-024-03735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/08/2024] [Indexed: 06/29/2024]
Abstract
The Exiguobacterium genus comprises Gram-stain-positive and facultatively anaerobic bacteria. Some Exiguobacterium species have previously shown significant high 16S rRNA gene sequence similarities with each other. This study evaluates the taxonomic classification of those Exiguobacterium species through comprehensive genome analysis. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were determined for various Exiguobacterium species pairs. The ANI and dDDH values between Exiguobacterium enclense and Exiguobacterium indicum, Exiguobacterium aquaticum and Exiguobacterium mexicanum, Exiguobacterium soli and Exiguobacterium antarcticum, and Exiguobacterium sibiricum and Exiguobacterium artemiae were above the cut-off level (95-96% for ANI and 70% for dDDH) for species delineation. Based on the findings, we propose to reclassify Exiguobacterium enclense as a later heterotypic synonym of Exiguobacterium indicum, Exiguobacterium aquaticum as a later heterotypic synonym of Exiguobacterium mexicanum, Exiguobacterium soli as a later heterotypic synonym of Exiguobacterium antarcticum and Exiguobacterium sibiricum as a later heterotypic synonym of Exiguobacterium artemiae.
Collapse
Affiliation(s)
- Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Awalagaway Dhulappa
- Department of Microbiology, Maharani's Science College for Women, Bangalore, 560001, India
| | - Syed Raziuddin Quadri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, 91431, Kingdom of Saudi Arabia
| | - Pinjiao Jin
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Kangkang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Hui Qiao
- Dengta City Development Reform Affairs Service Center, Dengta, 150499, People's Republic of China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile.
| |
Collapse
|
65
|
Barno AR, Green K, Rohwer F, Silveira CB. Snow viruses and their implications on red snow algal blooms. mSystems 2024; 9:e0008324. [PMID: 38647296 PMCID: PMC11097641 DOI: 10.1128/msystems.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.
Collapse
Affiliation(s)
- Adam R. Barno
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kevin Green
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
66
|
Buysse M, Koual R, Binetruy F, de Thoisy B, Baudrimont X, Garnier S, Douine M, Chevillon C, Delsuc F, Catzeflis F, Bouchon D, Duron O. Detection of Anaplasma and Ehrlichia bacteria in humans, wildlife, and ticks in the Amazon rainforest. Nat Commun 2024; 15:3988. [PMID: 38734682 PMCID: PMC11088697 DOI: 10.1038/s41467-024-48459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.
Collapse
Affiliation(s)
- Marie Buysse
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Rachid Koual
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Florian Binetruy
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de Guyane, Cayenne, France
- Association Kwata 'Study and Conservation of Guianan Wildlife', Cayenne, France
| | - Xavier Baudrimont
- Direction Générale des Territoires et de la Mer (DGTM) - Direction de l'environnement, de l'agriculture, de l'alimentation et de la forêt (DEAAF), Cayenne, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 uB/CNRS/EPHE, Université Bourgogne Franche-Comté, Dijon, France
| | - Maylis Douine
- Centre d'Investigation Clinique Antilles-Guyane, INSERM 1424, Centre Hospitalier de Cayenne, Cayenne, France
| | | | - Frédéric Delsuc
- Institut des Sciences de l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - François Catzeflis
- Institut des Sciences de l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Didier Bouchon
- EBI, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Olivier Duron
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
67
|
Powell T, Sumner DY, Jungblut AD, Hawes I, Mackey T, Grettenberger C. Metagenome-assembled bacterial genomes from benthic microbial mats in ice-covered Lake Vanda, Antarctica. Microbiol Resour Announc 2024; 13:e0125023. [PMID: 38587419 PMCID: PMC11080526 DOI: 10.1128/mra.01250-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/10/2024] [Indexed: 04/09/2024] Open
Abstract
We recovered 57 bacterial metagenome-assembled genomes (MAGs) from benthic microbial mat pinnacles from Lake Vanda, Antarctica. These MAGs provide access to genomes from polar environments and can assist in culturing and utilizing these Antarctic bacteria.
Collapse
Affiliation(s)
- Tyler Powell
- Department of Earth and Planetary Sciences, University of California, Davis, USA
- Microbiology Graduate Group, University of California, Davis, USA
| | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, USA
| | - Anne D. Jungblut
- Department of Sciences, The Natural History Museum, London, United Kingdom
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand
| | - Tyler Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Christen Grettenberger
- Department of Earth and Planetary Sciences, University of California, Davis, USA
- Department of Environmental Toxicology, University of California, Davis, USA
| |
Collapse
|
68
|
Jin PJ, Sun L, Liu YH, Wang KK, Narsing Rao MP, Mohamad OAA, Fang BZ, Li L, Gao L, Li WJ, Wang S. Two Novel Alkaliphilic Species Isolated from Saline-Alkali Soil in China: Halalkalibacter flavus sp. nov., and Halalkalibacter lacteus sp. nov. Microorganisms 2024; 12:950. [PMID: 38792780 PMCID: PMC11123755 DOI: 10.3390/microorganisms12050950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The degradation of farmland in China underscores the need for developing and utilizing saline-alkali soil. Soil health relies on microbial activity, which aids in the restoration of the land's ecosystem, and hence it is important to understand microbial diversity. In the present study, two Gram-stain-positive strains HR 1-10T and J-A-003T were isolated from saline-alkali soil. Preliminary analysis suggested that these strains could be a novel species. Therefore, the taxonomic positions of these strains were evaluated using polyphasic analysis. Phylogenetic and 16S rRNA gene sequence analysis indicated that these strains should be assigned to the genus Halalkalibacter. Cell wall contained meso-2,6-diaminopimelic acid. The polar lipids present in both strains were diphosphatidyl-glycerol, phosphatidylglycerol, and an unidentified phospholipid. The major fatty acids (>10%) were anteiso-C15:0, C16:0 and iso-C15:0. Average nucleotide identity and digital DNA#x2013;DNA hybridization values were below the threshold values (95% and 70%, respectively) for species delineation. Based on the above results, the strains represent two novel species of the genus Halalkalibacter, for which the names Halalkalibacter flavus sp. nov., and Halalkalibacter lacteus sp. nov., are proposed. The type strains are HR 1-10T (=GDMCC 1.2946T = MCCC 1K08312T = JCM 36285T), and J-A-003T (=GDMCC 1.2949T = MCCC 1K08417T = JCM 36286T).
Collapse
Affiliation(s)
- Pin-Jiao Jin
- Heilongjiang Academy of Black Soil Conservation and Utilization, Postdoctoral Station of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (P.-J.J.); (L.S.); (K.-K.W.)
| | - Lei Sun
- Heilongjiang Academy of Black Soil Conservation and Utilization, Postdoctoral Station of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (P.-J.J.); (L.S.); (K.-K.W.)
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| | - Kang-Kang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Postdoctoral Station of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (P.-J.J.); (L.S.); (K.-K.W.)
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca 3460000, Chile;
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Postdoctoral Station of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (P.-J.J.); (L.S.); (K.-K.W.)
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| |
Collapse
|
69
|
Rey Redondo E, Xu Y, Yung CCM. Genomic characterisation and ecological distribution of Mantoniella tinhauana: a novel Mamiellophycean green alga from the Western Pacific. Front Microbiol 2024; 15:1358574. [PMID: 38774501 PMCID: PMC11106453 DOI: 10.3389/fmicb.2024.1358574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Mamiellophyceae are dominant marine algae in much of the ocean, the most prevalent genera belonging to the order Mamiellales: Micromonas, Ostreococcus and Bathycoccus, whose genetics and global distributions have been extensively studied. Conversely, the genus Mantoniella, despite its potential ecological importance, remains relatively under-characterised. In this study, we isolated and characterised a novel species of Mamiellophyceae, Mantoniella tinhauana, from subtropical coastal waters in the South China Sea. Morphologically, it resembles other Mantoniella species; however, a comparative analysis of the 18S and ITS2 marker genes revealed its genetic distinctiveness. Furthermore, we sequenced and assembled the first genome of Mantoniella tinhauana, uncovering significant differences from previously studied Mamiellophyceae species. Notably, the genome lacked any detectable outlier chromosomes and exhibited numerous unique orthogroups. We explored gene groups associated with meiosis, scale and flagella formation, shedding light on species divergence, yet further investigation is warranted. To elucidate the biogeography of Mantoniella tinhauana, we conducted a comprehensive analysis using global metagenomic read mapping to the newly sequenced genome. Our findings indicate this species exhibits a cosmopolitan distribution with a low-level prevalence worldwide. Understanding the intricate dynamics between Mamiellophyceae and the environment is crucial for comprehending their impact on the ocean ecosystem and accurately predicting their response to forthcoming environmental changes.
Collapse
Affiliation(s)
| | | | - Charmaine Cheuk Man Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
70
|
Geller-McGrath D, Konwar KM, Edgcomb VP, Pachiadaki M, Roddy JW, Wheeler TJ, McDermott JE. Predicting metabolic modules in incomplete bacterial genomes with MetaPathPredict. eLife 2024; 13:e85749. [PMID: 38696239 PMCID: PMC11065424 DOI: 10.7554/elife.85749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
The reconstruction of complete microbial metabolic pathways using 'omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.
Collapse
Affiliation(s)
| | | | - Virginia P Edgcomb
- Marine Geology and Geophysics Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - Jack W Roddy
- R. Ken Coit College of Pharmacy, University of ArizonaTucsonUnited States
| | - Travis J Wheeler
- R. Ken Coit College of Pharmacy, University of ArizonaTucsonUnited States
| | - Jason E McDermott
- Computational Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
- Department of Molecular Microbiology and Immunology, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
71
|
Nebauer DJ, Pearson LA, Neilan BA. Critical steps in an environmental metaproteomics workflow. Environ Microbiol 2024; 26:e16637. [PMID: 38760994 DOI: 10.1111/1462-2920.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Environmental metaproteomics is a rapidly advancing field that provides insights into the structure, dynamics, and metabolic activity of microbial communities. As the field is still maturing, it lacks consistent workflows, making it challenging for non-expert researchers to navigate. This review aims to introduce the workflow of environmental metaproteomics. It outlines the standard practices for sample collection, processing, and analysis, and offers strategies to overcome the unique challenges presented by common environmental matrices such as soil, freshwater, marine environments, biofilms, sludge, and symbionts. The review also highlights the bottlenecks in data analysis that are specific to metaproteomics samples and provides suggestions for researchers to obtain high-quality datasets. It includes recent benchmarking studies and descriptions of software packages specifically built for metaproteomics analysis. The article is written without assuming the reader's familiarity with single-organism proteomic workflows, making it accessible to those new to proteomics or mass spectrometry in general. This primer for environmental metaproteomics aims to improve accessibility to this exciting technology and empower researchers to tackle challenging and ambitious research questions. While it is primarily a resource for those new to the field, it should also be useful for established researchers looking to streamline or troubleshoot their metaproteomics experiments.
Collapse
Affiliation(s)
- Daniel J Nebauer
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| |
Collapse
|
72
|
Morel-Letelier I, Yuen B, Kück AC, Camacho-García YE, Petersen JM, Lara M, Leray M, Eisen JA, Osvatic JT, Gros O, Wilkins LGE. Adaptations to nitrogen availability drive ecological divergence of chemosynthetic symbionts. PLoS Genet 2024; 20:e1011295. [PMID: 38820540 PMCID: PMC11168628 DOI: 10.1371/journal.pgen.1011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/12/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024] Open
Abstract
Bacterial symbionts, with their shorter generation times and capacity for horizontal gene transfer (HGT), play a critical role in allowing marine organisms to cope with environmental change. The closure of the Isthmus of Panama created distinct environmental conditions in the Tropical Eastern Pacific (TEP) and Caribbean, offering a "natural experiment" for studying how closely related animals evolve and adapt under environmental change. However, the role of bacterial symbionts in this process is often overlooked. We sequenced the genomes of endosymbiotic bacteria in two sets of sister species of chemosymbiotic bivalves from the genera Codakia and Ctena (family Lucinidae) collected on either side of the Isthmus, to investigate how differing environmental conditions have influenced the selection of symbionts and their metabolic capabilities. The lucinid sister species hosted different Candidatus Thiodiazotropha symbionts and only those from the Caribbean had the genetic potential for nitrogen fixation, while those from the TEP did not. Interestingly, this nitrogen-fixing ability did not correspond to symbiont phylogeny, suggesting convergent evolution of nitrogen fixation potential under nutrient-poor conditions. Reconstructing the evolutionary history of the nifHDKT operon by including other lucinid symbiont genomes from around the world further revealed that the last common ancestor (LCA) of Ca. Thiodiazotropha lacked nif genes, and populations in oligotrophic habitats later re-acquired the nif operon through HGT from the Sedimenticola symbiont lineage. Our study suggests that HGT of the nif operon has facilitated niche diversification of the globally distributed Ca. Thiodiazotropha endolucinida species clade. It highlights the importance of nitrogen availability in driving the ecological diversification of chemosynthetic symbiont species and the role that bacterial symbionts may play in the adaptation of marine organisms to changing environmental conditions.
Collapse
Affiliation(s)
- Isidora Morel-Letelier
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - Benedict Yuen
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - A. Carlotta Kück
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - Yolanda E. Camacho-García
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José, Costa Rica
- Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San Pedro, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Jillian M. Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Minor Lara
- Diving Center Cuajiniquil, Provincia de Guanacaste, Cuajiniquil, Costa Rica
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panamá
| | - Jonathan A. Eisen
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Jay T. Osvatic
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, Université des Antilles, Pointe-à-Pitre, France
| | - Laetitia G. E. Wilkins
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| |
Collapse
|
73
|
Gago JF, Viver T, Urdiain M, Ferreira E, Robledo P, Rossello-Mora R. Metagenomics of two aquifers with thermal anomalies in Mallorca Island, and proposal of new uncultivated taxa named following the rules of SeqCode. Syst Appl Microbiol 2024; 47:126506. [PMID: 38640749 DOI: 10.1016/j.syapm.2024.126506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Groundwater offers an intriguing blend of distinctive physical and chemical conditions, constituting a challenge for microbial life. In Mallorca, the largest island of Balearic archipelago, harbours a variety of thermal anomalies (i.e., geothermal manifestation where surface aquifers exhibiting temperatures exceeding the regional average). The metagenomes of two aquifers in the centre and southern of the island showed Pseudomonadota to be the most represented phylum when using extracted 16S rRNA gene sequences. However, the microbial structures within and between aquifers were remarkably diverse but similar in their metabolic profiles as revealed by the metagenome-assembled genomes (MAGs) pointing to a prevalence of aerobic chemolithoautotrophic and heterotrophic metabolisms, especially in the Llucmajor aquifer. Also, some evidences of anaerobic lifestyles were detected, which would indicate that these environments either could suffer episodes of oxygen depletion or the anaerobes had been transported from deeper waters. We believe that the local environmental factors (temperature, external inputs or chemistry) seem to be more relevant than the connection and, eventually, transport of microbial cells within the aquifer in determining the highly divergent structures. Notably, most of the reconstructed genomes belonged to undescribed bacterial lineages and from them two high-quality MAGs could be classified as novel taxa named following the rules of the Code for Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Accordingly, we propose the new species and genus Costitxia debesea gen. nov., sp. nov., affiliated with the novel family Costitxiaceae fam. nov., order Costitxiales ord. nov. and class Costitxiia class. nov.; and the new new species and genus Lloretia debesea gen. nov. sp. nov. affiliated with the novel family Lloretiaceae fam. nov.
Collapse
Affiliation(s)
- Juan F Gago
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; The Deep Blue Sea Enterprise S.L., Barcelona, Spain; Lipotrue S.L., Barcelona, Spain.
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mercedes Urdiain
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Elaine Ferreira
- The Deep Blue Sea Enterprise S.L., Barcelona, Spain; Lipotrue S.L., Barcelona, Spain
| | - Pedro Robledo
- Unit of Geological and Mining Institute of Spain in Balearic Islands (IGME-CSIC), Palma de Mallorca, Spain
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
| |
Collapse
|
74
|
Duperron S, Halary S, Bouly JP, Roussel T, Hugoni M, Bruto M, Oger PM, Duval C, Woo A, Jézéquel D, Ader M, Leboulanger C, Agogué H, Grossi V, Troussellier M, Bernard C. Transcriptomic insights into the dominance of two phototrophs throughout the water column of a tropical hypersaline-alkaline crater lake (Dziani Dzaha, Mayotte). Front Microbiol 2024; 15:1368523. [PMID: 38741748 PMCID: PMC11089139 DOI: 10.3389/fmicb.2024.1368523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Saline-alkaline lakes often shelter high biomasses despite challenging conditions, owing to the occurrence of highly adapted phototrophs. Dziani Dzaha (Mayotte) is one such lake characterized by the stable co-dominance of the cyanobacterium Limnospira platensis and the picoeukaryote Picocystis salinarum throughout its water column. Despite light penetrating only into the uppermost meter, the prevailing co-dominance of these species persists even in light- and oxygen-deprived zones. Here, a depth profile of phototrophs metatranscriptomes, annotated using genomic data from isolated strains, is employed to identify expression patterns of genes related to carbon processing pathways including photosynthesis, transporters and fermentation. The findings indicate a prominence of gene expression associated with photosynthesis, with a peak of expression around 1 m below the surface, although the light intensity is very low and only red and dark red wavelengths can reach it, given the very high turbidity linked to the high biomass of L. platensis. Experiments on strains confirmed that both species do grow under these wavelengths, at rates comparable to those obtained under white light. A decrease in the expression of photosynthesis-related genes was observed in L. platensis with increasing depth, whereas P. salinarum maintained a very high pool of psbA transcripts down to the deepest point as a possible adaptation against photodamage, in the absence and/or very low levels of expression of genes involved in protection. In the aphotic/anoxic zone, expression of genes involved in fermentation pathways suggests active metabolism of reserve or available dissolved carbon compounds. Overall, L. platensis seems to be adapted to the uppermost water layer, where it is probably maintained thanks to gas vesicles, as evidenced by high expression of the gvpA gene. In contrast, P. salinarum occurs at similar densities throughout the water column, with a peak in abundance and gene expression levels which suggests a better adaptation to lower light intensities. These slight differences may contribute to limited inter-specific competition, favoring stable co-dominance of these two phototrophs.
Collapse
Affiliation(s)
- Sébastien Duperron
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Sébastien Halary
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Jean-Pierre Bouly
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Théotime Roussel
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Myléne Hugoni
- Université Claude Bernard Lyon 1, CNRS, INSA de Lyon, UMR 5240 Microbiologie Adaptation et Pathogénie, University of Lyon, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Maxime Bruto
- Anses, UMR Mycoplasmoses Animales, VetAgro Sup, Université de Lyon, Marcy-l’Étoile, France
| | - Philippe M. Oger
- Université Claude Bernard Lyon 1, CNRS, INSA de Lyon, UMR 5240 Microbiologie Adaptation et Pathogénie, University of Lyon, Villeurbanne, France
| | - Charlotte Duval
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Anthony Woo
- Pôle Analyse de Données UAR 2700 2AD, Muséum National d’Histoire Naturelle, Paris, France
| | - Didier Jézéquel
- Institut de Physique du Globe de Paris, Université de Paris Cité, CNRS, Paris, France
- UMR CARRTEL, INRAE-USMB, Thonon-les-Bains, France
| | - Magali Ader
- Institut de Physique du Globe de Paris, Université de Paris Cité, CNRS, Paris, France
- UMR CARRTEL, INRAE-USMB, Thonon-les-Bains, France
| | | | - Hélène Agogué
- Littoral Environnement et Sociétés, UMR 7266, CNRS La Rochelle Université, La Rochelle, France
| | - Vincent Grossi
- LGL-TPE, UMR 5276, CNRS, ENSL, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Cécile Bernard
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| |
Collapse
|
75
|
Knobloch S, Skirnisdóttir S, Dubois M, Mayolle L, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. The gut microbiome of farmed Arctic char ( Salvelinus alpinus) is shaped by feeding stage and nutrient presence. FEMS MICROBES 2024; 5:xtae011. [PMID: 38745980 PMCID: PMC11092275 DOI: 10.1093/femsmc/xtae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays an important role in maintaining health and productivity of farmed fish. However, the functional role of most gut microorganisms remains unknown. Identifying the stable members of the gut microbiota and understanding their functional roles could aid in the selection of positive traits or act as a proxy for fish health in aquaculture. Here, we analyse the gut microbial community of farmed juvenile Arctic char (Salvelinus alpinus) and reconstruct the metabolic potential of its main symbionts. The gut microbiota of Arctic char undergoes a succession in community composition during the first weeks post-hatch, with a decrease in Shannon diversity and the establishment of three dominant bacterial taxa. The genome of the most abundant bacterium, a Mycoplasma sp., shows adaptation to rapid growth in the nutrient-rich gut environment. The second most abundant taxon, a Brevinema sp., has versatile metabolic potential, including genes involved in host mucin degradation and utilization. However, during periods of absent gut content, a Ruminococcaceae bacterium becomes dominant, possibly outgrowing all other bacteria through the production of secondary metabolites involved in quorum sensing and cross-inhibition while benefiting the host through short-chain fatty acid production. Whereas Mycoplasma is often present as a symbiont in farmed salmonids, we show that the Ruminococcaceae species is also detected in wild Arctic char, suggesting a close evolutionary relationship between the host and this symbiotic bacterium.
Collapse
Affiliation(s)
- Stephen Knobloch
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Food Technology, University of Applied Sciences Fulda, Leipziger Strasse 123, 36037 Fulda, Germany
| | | | - Marianne Dubois
- ESBS/University of Strasbourg, 300 Bd Sébastien Brant, 67085 Strasbourg, France
| | - Lucie Mayolle
- University of Technology of Compiègne, Rue Roger Couttolenc, 60203 Compiègne, France
| | - Laetitia Kolypczuk
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Françoise Leroi
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Alexandra Leeper
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Arboretveien 6, 1430 Ås, Norway
- Iceland Ocean Cluster, Department of Research and Innovation, Grandagarður 16, 101 Reykjavík, Iceland
| | - Delphine Passerini
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Viggó Þ Marteinsson
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Sæmundargata 2, 101 Reykjavik, Iceland
| |
Collapse
|
76
|
Comba-González NB, Chaves-Moreno D, Santamaría-Vanegas J, Montoya-Castaño D. A pan-genomic assessment: Delving into the genome of the marine epiphyte Bacillus altitudinis strain 19_A and other very close Bacillus strains from multiple environments. Heliyon 2024; 10:e27820. [PMID: 38560215 PMCID: PMC10981035 DOI: 10.1016/j.heliyon.2024.e27820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Marine macroalgae are the habitat of epiphytic bacteria and provide several conditions for a beneficial biological interaction to thrive. Although Bacillus is one of the most abundant epiphytic genera, genomic information on marine macroalgae-associated Bacillus species remains scarce. In this study, we further investigated our previously published genome of the epiphytic strain Bacillus altitudinis 19_A to find features that could be translated to potential metabolites produced by this microorganism, as well as genes that play a role in its interaction with its macroalgal host. To achieve this goal, we performed a pan-genome analysis of Bacillus sp. and a codon bias assessment, including the genome of the strain Bacillus altitudinis 19_A and 29 complete genome sequences of closely related Bacillus strains isolated from soil, marine environments, plants, extreme environments, air, and food. This genomic analysis revealed that Bacillus altitudinis 19_A possessed unique genes encoding proteins involved in horizontal gene transfer, DNA repair, transcriptional regulation, and bacteriocin biosynthesis. In this comparative analysis, codon bias was not associated with the habitat of the strains studied. Some accessory genes were identified in the Bacillus altitudinis 19_A genome that could be related to its epiphytic lifestyle, as well as gene clusters for the biosynthesis of a sporulation-killing factor and a bacteriocin, showing their potential as a source of antimicrobial peptides. Our results provide a comprehensive view of the Bacillus altitudinis 19_A genome to understand its adaptation to the marine environment and its potential as a producer of bioactive compounds.
Collapse
Affiliation(s)
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Dolly Montoya-Castaño
- Bioprocesses and Bioprospecting Group, Biotechnology Institute, Universidad Nacional de Colombia, Colombia
| |
Collapse
|
77
|
Scilipoti S, Molari M. High-quality draft genome of Gammaproteobacterial SUP05 cluster from non-buoyant hydrothermal plumes of ultraslow spreading Gakkel Ridge (Central Arctic Ocean). Microbiol Resour Announc 2024; 13:e0012124. [PMID: 38456699 PMCID: PMC11008202 DOI: 10.1128/mra.00121-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Hydrothermal plumes are an important yet understudied component of deep-sea microbial ecosystems. We report metagenome-assembled genomes (MAGs) of three Bacteria belonging to the Gammaproteobacterial SUP05 cluster (family Thioglobaceae), assembled from the metagenomes of two non-buoyant hydrothermal plumes in the ultraslow spreading Gakkel Ridge.
Collapse
Affiliation(s)
- Stefano Scilipoti
- HGF MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Massimiliano Molari
- HGF MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
78
|
Krieger M, AbdelRahman YM, Choi D, Palmer EA, Yoo A, McGuire S, Kreth J, Merritt J. Stratification of Fusobacterium nucleatum by local health status in the oral cavity defines its subspecies disease association. Cell Host Microbe 2024; 32:479-488.e4. [PMID: 38479393 PMCID: PMC11018276 DOI: 10.1016/j.chom.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
The ubiquitous inflammophilic oral pathobiont Fusobacterium nucleatum (Fn) is widely recognized for its strong association with inflammatory dysbiotic diseases and cancer. Fn is subdivided into four subspecies, which are historically considered functionally interchangeable in the oral cavity. To test this assumption, we analyzed patient-matched dental plaque and odontogenic abscess clinical specimens and examined whether an inflammatory environment selects for/against particular Fn subspecies. Dental plaque harbored a greater diversity of fusobacteria, with Fn. polymorphum dominating, whereas odontogenic abscesses were exceptionally biased for the largely uncharacterized organism Fn. animalis. Comparative genomic analyses revealed significant genotypic distinctions among Fn subspecies that correlate with their preferred ecological niches and support a taxonomic reassignment of each as a distinct Fusobacterium species. Despite originating as a low-abundance organism in dental plaque, Fn. animalis typically outcompetes other oral fusobacteria within the inflammatory abscess environment, which may explain its prevalence in other oral and extraoral diseases.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Yasser M AbdelRahman
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Giza, Egypt; Predicine, Hayward, CA, USA
| | - Dongseok Choi
- Department of Community Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; School of Public Health, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Elizabeth A Palmer
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Anna Yoo
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Sean McGuire
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Jens Kreth
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
79
|
Siebers R, Schultz D, Farza MS, Brauer A, Zühlke D, Mücke PA, Wang F, Bernhardt J, Teeling H, Becher D, Riedel K, Kirstein IV, Wiltshire KH, Hoff KJ, Schweder T, Urich T, Bengtsson MM. Marine particle microbiomes during a spring diatom bloom contain active sulfate-reducing bacteria. FEMS Microbiol Ecol 2024; 100:fiae037. [PMID: 38490736 PMCID: PMC11008741 DOI: 10.1093/femsec/fiae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024] Open
Abstract
Phytoplankton blooms fuel marine food webs with labile dissolved carbon and also lead to the formation of particulate organic matter composed of living and dead algal cells. These particles contribute to carbon sequestration and are sites of intense algal-bacterial interactions, providing diverse niches for microbes to thrive. We analyzed 16S and 18S ribosomal RNA gene amplicon sequences obtained from 51 time points and metaproteomes from 3 time points during a spring phytoplankton bloom in a shallow location (6-10 m depth) in the North Sea. Particulate fractions larger than 10 µm diameter were collected at near daily intervals between early March and late May in 2018. Network analysis identified two major modules representing bacteria co-occurring with diatoms and with dinoflagellates, respectively. The diatom network module included known sulfate-reducing Desulfobacterota as well as potentially sulfur-oxidizing Ectothiorhodospiraceae. Metaproteome analyses confirmed presence of key enzymes involved in dissimilatory sulfate reduction, a process known to occur in sinking particles at greater depths and in sediments. Our results indicate the presence of sufficiently anoxic niches in the particle fraction of an active phytoplankton bloom to sustain sulfate reduction, and an important role of benthic-pelagic coupling for microbiomes in shallow environments. Our findings may have implications for the understanding of algal-bacterial interactions and carbon export during blooms in shallow-water coastal areas.
Collapse
Affiliation(s)
- Robin Siebers
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Doreen Schultz
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Mohamed S Farza
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Anne Brauer
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Pierre A Mücke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Fengqing Wang
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, 17489 Greifswald, Germany
| | - Inga V Kirstein
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, 27498 Helgoland, Germany
| | - Karen H Wiltshire
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, 27498 Helgoland, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, 17489 Greifswald, Germany
| | - Thomas Schweder
- Institute of Marine Biotechnology, 17489 Greifswald, Germany
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, 17489 Greifswald, Germany
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, 17489 Greifswald, Germany
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, 27498 Helgoland, Germany
| |
Collapse
|
80
|
Coskun ÖK, Gomez-Saez GV, Beren M, Özcan D, Günay SD, Elkin V, Hoşgörmez H, Einsiedl F, Eisenreich W, Orsi WD. Quantifying genome-specific carbon fixation in a 750-meter deep subsurface hydrothermal microbial community. FEMS Microbiol Ecol 2024; 100:fiae062. [PMID: 38632042 DOI: 10.1093/femsec/fiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
Dissolved inorganic carbon has been hypothesized to stimulate microbial chemoautotrophic activity as a biological sink in the carbon cycle of deep subsurface environments. Here, we tested this hypothesis using quantitative DNA stable isotope probing of metagenome-assembled genomes (MAGs) at multiple 13C-labeled bicarbonate concentrations in hydrothermal fluids from a 750-m deep subsurface aquifer in the Biga Peninsula (Turkey). The diversity of microbial populations assimilating 13C-labeled bicarbonate was significantly different at higher bicarbonate concentrations, and could be linked to four separate carbon-fixation pathways encoded within 13C-labeled MAGs. Microbial populations encoding the Calvin-Benson-Bassham cycle had the highest contribution to carbon fixation across all bicarbonate concentrations tested, spanning 1-10 mM. However, out of all the active carbon-fixation pathways detected, MAGs affiliated with the phylum Aquificae encoding the reverse tricarboxylic acid (rTCA) pathway were the only microbial populations that exhibited an increased 13C-bicarbonate assimilation under increasing bicarbonate concentrations. Our study provides the first experimental data supporting predictions that increased bicarbonate concentrations may promote chemoautotrophy via the rTCA cycle and its biological sink for deep subsurface inorganic carbon.
Collapse
Affiliation(s)
- Ömer K Coskun
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Gonzalo V Gomez-Saez
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Murat Beren
- Department of Geological Engineering, Istanbul University - Cerrahpasa, Büyükçekmece Campus, Block G, Floor 5, Istanbul, Turkey
| | - Doğacan Özcan
- Department of Geological Engineering, Istanbul University - Cerrahpasa, Büyükçekmece Campus, Block G, Floor 5, Istanbul, Turkey
| | - Suna D Günay
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Viktor Elkin
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Hakan Hoşgörmez
- Department of Geological Engineering, Istanbul University - Cerrahpasa, Büyükçekmece Campus, Block G, Floor 5, Istanbul, Turkey
| | - Florian Einsiedl
- Chair of Hydrogeology, School of Engineering and Design, Technical University Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Department Chemie, Technische Universität München, Lichtenbergstraße, 85748 Garching, Germany
| | - William D Orsi
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| |
Collapse
|
81
|
Yin X, Zhou G, Cai M, Richter-Heitmann T, Zhu QZ, Maeke M, Kulkarni AC, Nimzyk R, Elvert M, Friedrich MW. Physiological versatility of ANME-1 and Bathyarchaeotoa-8 archaea evidenced by inverse stable isotope labeling. MICROBIOME 2024; 12:68. [PMID: 38570877 PMCID: PMC10988981 DOI: 10.1186/s40168-024-01779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.
Collapse
Affiliation(s)
- Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Renmin Ave. No.58, Haikou, 570228, China.
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany.
| | - Guowei Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Renmin Ave. No.58, Haikou, 570228, China
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
| | - Qing-Zeng Zhu
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany
| | - Mara Maeke
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany
| | - Ajinkya C Kulkarni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
| | - Rolf Nimzyk
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
| | - Marcus Elvert
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen, D-28359, Germany
| |
Collapse
|
82
|
Narsing Rao MP, Singh RN, Sani RK, Banerjee A. Genome-based approach to evaluate the metabolic potentials and exopolysaccharides production of Bacillus paralicheniformis CamBx3 isolated from a Chilean hot spring. Front Microbiol 2024; 15:1377965. [PMID: 38628868 PMCID: PMC11018918 DOI: 10.3389/fmicb.2024.1377965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
In the present study, a thermophilic strain designated CamBx3 was isolated from the Campanario hot spring, Chile. Based on 16S rRNA gene sequence, phylogenomic, and average nucleotide identity analysis the strain CamBx3 was identified as Bacillus paralicheniformis. Genome analysis of B. paralicheniformis CamBx3 revealed the presence of genes related to heat tolerance, exopolysaccharides (EPS), dissimilatory nitrate reduction, and assimilatory sulfate reduction. The pangenome analysis of strain CamBx3 with eight Bacillus spp. resulted in 26,562 gene clusters, 7,002 shell genes, and 19,484 cloud genes. The EPS produced by B. paralicheniformis CamBx3 was extracted, partially purified, and evaluated for its functional activities. B. paralicheniformis CamBx3 EPS with concentration 5 mg mL-1 showed an optimum 92 mM ferrous equivalent FRAP activity, while the same concentration showed a maximum 91% of Fe2+ chelating activity. B. paralicheniformis CamBx3 EPS (0.2 mg mL-1) demonstrated β-glucosidase inhibition. The EPS formed a viscoelastic gel at 45°C with a maximum instantaneous viscosity of 315 Pa.s at acidic pH 5. The present study suggests that B. paralicheniformis CamBx3 could be a valuable resource for biopolymers and bioactive molecules for industrial applications.
Collapse
Affiliation(s)
- Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, Chile
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD, United States
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD, United States
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota Mines, Rapid City, SD, United States
- BioWRAP (Bioplastics With Regenerative Agricultural Properties), Rapid City, SD, United States
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, Chile
| |
Collapse
|
83
|
Zepeda-Rivera M, Minot SS, Bouzek H, Wu H, Blanco-Míguez A, Manghi P, Jones DS, LaCourse KD, Wu Y, McMahon EF, Park SN, Lim YK, Kempchinsky AG, Willis AD, Cotton SL, Yost SC, Sicinska E, Kook JK, Dewhirst FE, Segata N, Bullman S, Johnston CD. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 2024; 628:424-432. [PMID: 38509359 PMCID: PMC11006615 DOI: 10.1038/s41586-024-07182-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024]
Abstract
Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.
Collapse
Affiliation(s)
- Martha Zepeda-Rivera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Samuel S Minot
- Data Core, Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Heather Bouzek
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hanrui Wu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aitor Blanco-Míguez
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Dakota S Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Ying Wu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elsa F McMahon
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun K Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | | | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | - Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Floyd E Dewhirst
- Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
84
|
Guo XY, Zhang QM, Fu JC, Qiu LH. Terrirubrum flagellatum gen. nov., sp. nov. of Terrirubraceae fam. nov. and Lichenibacterium dinghuense sp. nov. from forest soil and proposal of Rhodoblastaceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38652005 DOI: 10.1099/ijsem.0.006348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Two Gram-negative, aerobic, rod-shaped bacterial strains, 7MK25T and 6Y81T, were isolated from forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain 7MK25T showed the highest similarity (93.6 %) to Methyloferula stellata AR4T, followed by Bosea thiooxidans DSM 9653T (93.3 %). Strain 6Y81T had the highest similarity of 97.9 % to Lichenibacterium minor RmlP026T, followed by Lichenibacterium ramalinae RmlP001T (97.2 %). Phylogenomic analysis using the UBCG and PhyloPhlAn methods consistently showed that strain 7MK25T formed a sister clade to Boseaceae, while strain 6Y81T formed an independent clade within the genus Lichenibacterium, both in the order Hyphomicrobiales. The digital DNA-DNA hybridization and average nucleotide identity values between strains 7MK25T, 6Y81T and their close relatives were in the ranges of 19.1-29.9 % and 72.5-85.5 %, respectively. The major fatty acids of 7MK25T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C19 : 0 cyclo ω8c, C16 : 0 and C17 : 0 cyclo, while those of 6Y81T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C16 : 0 and C16 : 0 3-OH. Strains 7MK25T and 6Y81T took diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as their dominant polar lipids, and Q-10 as their major respiratory quinone. On the basis of phenotypic and phylogenetic data, strain 7MK25T is proposed to represent a novel species of a novel genus with name Terrirubrum flagellatum gen. nov., sp. nov., within a novel family Terrirubraceae fam. nov., with 7MK25T (=KCTC 62738T=GDMCC 1.1452T) as its type strain. Strain 6Y81T represents a novel species in the genus Lichenibacterium, for which the name Lichenibacterium dinghuense sp. nov. (type strain 6Y81T=KACC 21 727T=GDMCC 1.2176T) is proposed. Rhodoblastaceae fam. nov. with Rhodoblastus as the type genus is also proposed to solve the non-monophylectic problem of the family Roseiarcaceae.
Collapse
Affiliation(s)
- Xiu-Yin Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiu-Mei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jia-Cheng Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Hong Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
85
|
Saati-Santamaría Z, Flores-Félix JD, Igual JM, Velázquez E, García-Fraile P, Martínez-Molina E. Speciation Features of Ferdinandcohnia quinoae sp. nov to Adapt to the Plant Host. J Mol Evol 2024; 92:169-180. [PMID: 38502221 PMCID: PMC10978704 DOI: 10.1007/s00239-024-10164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
The bacterial strain SECRCQ15T was isolated from seeds of Chenopodium quinoa in Spain. Phylogenetic, chemotaxonomic, and phenotypic analyses, as well as genome similarity indices, support the classification of the strain into a novel species of the genus Ferdinandcohnia, for which we propose the name Ferdinandcohnia quinoae sp. nov. To dig deep into the speciation features of the strain SECRCQ15T, we performed a comparative genomic analysis of the genome of this strain and those of the type strains of species from the genus Ferdinandcohnia. We found several genes related with plant growth-promoting mechanisms within the SECRCQ15T genome. We also found that singletons of F. quinoae SECRCQ15T are mainly related to the use of carbohydrates, which is a common trait of plant-associated bacteria. To further reveal speciation events in this strain, we revealed genes undergoing diversifying selection (e.g., genes encoding ribosomal proteins) and functions likely lost due to pseudogenization. Also, we found that this novel species contains 138 plant-associated gene-cluster functions that are unique within the genus Ferdinandcohnia. These features may explain both the ecological and taxonomical differentiation of this new taxon.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | | | - José M Igual
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain.
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain.
| | - Eustoquio Martínez-Molina
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| |
Collapse
|
86
|
Baker BA, Gutiérrez-Preciado A, Rodríguez Del Río Á, McCarthy CGP, López-García P, Huerta-Cepas J, Susko E, Roger AJ, Eme L, Moreira D. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments. Nat Microbiol 2024; 9:964-975. [PMID: 38519541 DOI: 10.1038/s41564-024-01647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Extremely halophilic archaea (Haloarchaea, Nanohaloarchaeota, Methanonatronarchaeia and Halarchaeoplasmatales) thrive in saturating salt concentrations where they must maintain osmotic equilibrium with their environment. The evolutionary history of adaptations enabling salt tolerance remains poorly understood, in particular because the phylogeny of several lineages is conflicting. Here we present a resolved phylogeny of extremely halophilic archaea obtained using improved taxon sampling and state-of-the-art phylogenetic approaches designed to cope with the strong compositional biases of their proteomes. We describe two uncultured lineages, Afararchaeaceae and Asbonarchaeaceae, which break the long branches at the base of Haloarchaea and Nanohaloarchaeota, respectively. We obtained 13 metagenome-assembled genomes (MAGs) of these archaea from metagenomes of hypersaline aquatic systems of the Danakil Depression (Ethiopia). Our phylogenomic analyses including these taxa show that at least four independent adaptations to extreme halophily occurred during archaeal evolution. Gene-tree/species-tree reconciliation suggests that gene duplication and horizontal gene transfer played an important role in this process, for example, by spreading key genes (such as those encoding potassium transporters) across extremely halophilic lineages.
Collapse
Affiliation(s)
- Brittany A Baker
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Ana Gutiérrez-Preciado
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Charley G P McCarthy
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Edward Susko
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J Roger
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
| |
Collapse
|
87
|
Biderre-Petit C, Courtine D, Hennequin C, Galand PE, Bertilsson S, Debroas D, Monjot A, Lepère C, Divne AM, Hochart C. A pan-genomic approach reveals novel Sulfurimonas clade in the ferruginous meromictic Lake Pavin. Mol Ecol Resour 2024; 24:e13923. [PMID: 38189173 DOI: 10.1111/1755-0998.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
The permanently anoxic waters in meromictic lakes create suitable niches for the growth of bacteria using sulphur metabolisms like sulphur oxidation. In Lake Pavin, the anoxic water mass hosts an active cryptic sulphur cycle that interacts narrowly with iron cycling, however the metabolisms of the microorganisms involved are poorly known. Here we combined metagenomics, single-cell genomics, and pan-genomics to further expand our understanding of the bacteria and the corresponding metabolisms involved in sulphur oxidation in this ferruginous sulphide- and sulphate-poor meromictic lake. We highlighted two new species within the genus Sulfurimonas that belong to a novel clade of chemotrophic sulphur oxidisers exclusive to freshwaters. We moreover conclude that this genus holds a key-role not only in limiting sulphide accumulation in the upper part of the anoxic layer but also constraining carbon, phosphate and iron cycling.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Courtine
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Claire Hennequin
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre E Galand
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, CNRS, Sorbonne Universités, Banyuls sur Mer, France
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences and Science for Life Laboratory, Uppsala, Sweden
| | - Didier Debroas
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Arthur Monjot
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Cécile Lepère
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Anna-Maria Divne
- Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Corentin Hochart
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, CNRS, Sorbonne Universités, Banyuls sur Mer, France
| |
Collapse
|
88
|
Roncero-Ramos B, Savaglia V, Durieu B, Van de Vreken I, Richel A, Wilmotte A. Ecophysiological and genomic approaches to cyanobacterial hardening for restoration. JOURNAL OF PHYCOLOGY 2024; 60:465-482. [PMID: 38373045 DOI: 10.1111/jpy.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/20/2024]
Abstract
Cyanobacteria inhabit extreme environments, including drylands, providing multiple benefits to the ecosystem. Soil degradation in warm drylands is increasing due to land use intensification. Restoration methods adapted to the extreme stress in drylands are being developed, such as cyanobacteria inoculation to recover biocrusts. For this type of restoration method to be a success, it is crucial to optimize the survival of inoculated cyanobacteria in the field. One strategy is to harden them to be acclimated to stressful conditions after laboratory culturing. Here, we analyzed the genome and ecophysiological response to osmotic desiccation and UVR stresses of an Antarctic cyanobacterium, Stenomitos frigidus ULC029, which is closely related to other cyanobacteria from warm and cold dryland soils. Chlorophyll a concentrations showed that preculturing ULC029 under moderate osmotic stress improved its survival during an assay of desiccation plus rehydration under UVR. Additionally, its sequential exposure to these stress factors increased the production of exopolysaccharides, carotenoids, and scytonemin. Desiccation, but not osmotic stress, increased the concentrations of the osmoprotectants trehalose and sucrose. However, osmotic stress might induce the production of other osmoprotectants, for which the complete pathways were observed in the ULC029 genome. In total, 140 genes known to be involved in stress resistance were annotated. Here, we confirm that the sequential application of moderate osmotic stress and dehydration could improve cyanobacterial hardening for soil restoration by inducing several resistance mechanisms. We provide a high-quality genome of ULC029 and a description of the main resistance mechanisms (i.e., production of exopolysaccharides, osmoprotectants, chlorophyll, and carotenoids; DNA repair; and oxidative stress protection).
Collapse
Affiliation(s)
- Beatriz Roncero-Ramos
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Valentina Savaglia
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Benoit Durieu
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| | | | - Aurore Richel
- TERRA-Biomass and Green Technologies, University of Liège, Gembloux, Belgium
| | - Annick Wilmotte
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| |
Collapse
|
89
|
Du J, Khemmani M, Halverson T, Ene A, Limeira R, Tinawi L, Hochstedler-Kramer BR, Noronha MF, Putonti C, Wolfe AJ. Cataloging the phylogenetic diversity of human bladder bacterial isolates. Genome Biol 2024; 25:75. [PMID: 38515176 PMCID: PMC10958879 DOI: 10.1186/s13059-024-03216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Although the human bladder is reported to harbor unique microbiota, our understanding of how these microbial communities interact with their human hosts is limited, mostly owing to the lack of isolates to test mechanistic hypotheses. Niche-specific bacterial collections and associated reference genome databases have been instrumental in expanding knowledge of the microbiota of other anatomical sites, such as the gut and oral cavity. RESULTS To facilitate genomic, functional, and experimental analyses of the human bladder microbiota, we present a bladder-specific bacterial isolate reference collection comprising 1134 genomes, primarily from adult females. These genomes were culled from bacterial isolates obtained by a metaculturomic method from bladder urine collected by transurethral catheterization. This bladder-specific bacterial isolate reference collection includes 196 different species, including representatives of major aerobes and facultative anaerobes, as well as some anaerobes. It captures 72.2% of the genera found when re-examining previously published 16S rRNA gene sequencing of 392 adult female bladder urine samples. Comparative genomic analysis finds that the taxonomies and functions of the bladder microbiota share more similarities with the vaginal microbiota than the gut microbiota. Whole-genome phylogenetic and functional analyses of 186 bladder Escherichia coli isolates and 387 gut Escherichia coli isolates support the hypothesis that phylogroup distribution and functions of Escherichia coli strains differ dramatically between these two very different niches. CONCLUSIONS This bladder-specific bacterial isolate reference collection is a unique resource that will enable bladder microbiota research and comparison to isolates from other anatomical sites.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
- Present address: Division of Nutritional Science, Cornell University, Ithaca, NY, 14850, USA
| | - Mark Khemmani
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Thomas Halverson
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Roberto Limeira
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Lana Tinawi
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Baylie R Hochstedler-Kramer
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Melline Fontes Noronha
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, 60660, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Alan J Wolfe
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
90
|
de Jesús Chavarín-Meza A, Gómez-Gil B, González-Castillo A. Phylogenomic analysis of the Ponticus clade: strains isolated from the spotted rose snapper (Lutjanus guttatus). Antonie Van Leeuwenhoek 2024; 117:59. [PMID: 38507089 DOI: 10.1007/s10482-024-01959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The family Vibrionaceae is classified into many clades based on their phylogenetic relationships. The Ponticus clade is one of its clades and consists of four species, Vibrio panuliri, V. ponticus, V. rhodolitus, and V. taketomensis. Two strains, CAIM 703 and CAIM 1902, were isolated from the diseased spotted rose snapper external lesion (Lutjanus guttatus), they were analyzed to determine their taxonomic position, a phylogenetic analysis was performed based on the 16S rRNA sequences proved that the two strains are members of the genus Vibrio and they belong to the Ponticus clade. Then, a phylogenomic analysis was performed with four type strains and four reference strains isolated from marine organisms and aquatic environments. Multilocus Sequence Analysis (MLSA) of 139 single-copy genes showed that CAIM 703 and CAIM 1902 belong to V. panuliri. The 16S rRNA sequence similarity value between CAIM 703 and CAIM 1902 was 99.61%. The Ponticus clade species showed Average Nucleotide Identity (ANI) values between 78 to 80% against the two strains for ANIb, except V. panuliri LBS2T (99% and 100% similarity). Finally, this analysis represents the first phylogenomic analysis of the Ponticus clade where V. panuliri strains are reported from Mexico.
Collapse
Affiliation(s)
- Alejandra de Jesús Chavarín-Meza
- Programa Académico de Ingeniería en Biotecnología, Laboratorio de Bioinformática Microbiana, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km.3 Mazatlán-Higueras, 82199, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- CIAD AC, Mazatlán Unit for Aquaculture. MX, Mazatlán, México
| | - Adrián González-Castillo
- Programa Académico de Ingeniería en Biotecnología, Laboratorio de Bioinformática Microbiana, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km.3 Mazatlán-Higueras, 82199, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
91
|
Røken M, Iakhno S, Haaland AH, Bjelland AM, Wasteson Y. The Home Environment Is a Reservoir for Methicillin-Resistant Coagulase-Negative Staphylococci and Mammaliicocci. Antibiotics (Basel) 2024; 13:279. [PMID: 38534714 DOI: 10.3390/antibiotics13030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Coagulase-negative staphylococci (CoNS) and mammaliicocci are opportunistic human and animal pathogens, often resistant to multiple antimicrobials, including methicillin. Methicillin-resistant CoNS (MRCoNS) have traditionally been linked to hospitals and healthcare facilities, where they are significant contributors to nosocomial infections. However, screenings of non-hospital environments have linked MRCoNS and methicillin-resistant mammaliicocci (MRM) to other ecological niches. The aim of this study was to explore the home environment as a reservoir for MRCoNS and MRM. A total of 33 households, including households with a dog with a methicillin-resistant staphylococcal infection, households with healthy dogs or cats and households without pets, were screened for MRCoNS and MRM by sampling one human, one pet (if present) and the environment. Samples were analyzed by a selective culture-based method, and bacterial species were identified by MALDI-TOF MS and tested for antibiotic susceptibility by the agar disk diffusion method. Following whole-genome sequencing, a large diversity of SCCmec elements and sequence types was revealed, which did not indicate any clonal dissemination of specific strains. Virulome and mobilome analyses indicated a high degree of species specificity. Altogether, this study documents that the home environment is a reservoir for a variety of MRCoNS and MRM regardless of the type of household.
Collapse
Affiliation(s)
- Mari Røken
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
- Institute of Microbiology, Norwegian Armed Forces Joint Medical Services, 2027 Kjeller, Norway
| | | | - Anita Haug Haaland
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
- Regulations and Control Department, Animal Health, 0304 Oslo, Norway
| | - Ane Mohn Bjelland
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
- Department of Bacteriology, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
92
|
Dindhoria K, Kumar R, Bhargava B, Kumar R. Metagenomic assembled genomes indicated the potential application of hypersaline microbiome for plant growth promotion and stress alleviation in salinized soils. mSystems 2024; 9:e0105023. [PMID: 38377278 PMCID: PMC10949518 DOI: 10.1128/msystems.01050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Climate change is causing unpredictable seasonal variations globally. Due to the continuously increasing earth's surface temperature, the rate of water evaporation is enhanced, conceiving a problem of soil salinization, especially in arid and semi-arid regions. The accumulation of salt degrades soil quality, impairs plant growth, and reduces agricultural yields. Salt-tolerant, plant-growth-promoting microorganisms may offer a solution, enhancing crop productivity and soil fertility in salinized areas. In the current study, genome-resolved metagenomic analysis has been performed to investigate the salt-tolerating and plant growth-promoting potential of two hypersaline ecosystems, Sambhar Lake and Drang Mine. The samples were co-assembled independently by Megahit, MetaSpades, and IDBA-UD tools. A total of 67 metagenomic assembled genomes (MAGs) were reconstructed following the binning process, including 15 from Megahit, 26 from MetaSpades, and 26 from IDBA_UD assembly tools. As compared to other assemblers, the MAGs obtained by MetaSpades were of superior quality, with a completeness range of 12.95%-96.56% and a contamination range of 0%-8.65%. The medium and high-quality MAGs from MetaSpades, upon functional annotation, revealed properties such as salt tolerance (91.3%), heavy metal tolerance (95.6%), exopolysaccharide (95.6%), and antioxidant (60.86%) biosynthesis. Several plant growth-promoting attributes, including phosphate solubilization and indole-3-acetic acid (IAA) production, were consistently identified across all obtained MAGs. Conversely, characteristics such as iron acquisition and potassium solubilization were observed in a substantial majority, specifically 91.3%, of the MAGs. The present study indicates that hypersaline microflora can be used as bio-fertilizing agents for agricultural practices in salinized areas by alleviating prevalent stresses. IMPORTANCE The strategic implementation of metagenomic assembled genomes (MAGs) in exploring the properties and harnessing microorganisms from ecosystems like hypersaline niches has transformative potential in agriculture. This approach promises to redefine our comprehension of microbial diversity and its ecosystem roles. Recovery and decoding of MAGs unlock genetic resources, enabling the development of new solutions for agricultural challenges. Enhanced understanding of these microbial communities can lead to more efficient nutrient cycling, pest control, and soil health maintenance. Consequently, traditional agricultural practices can be improved, resulting in increased yields, reduced environmental impacts, and heightened sustainability. MAGs offer a promising avenue for sustainable agriculture, bridging the gap between cutting-edge genomics and practical field applications.
Collapse
Affiliation(s)
- Kiran Dindhoria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raghawendra Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Bhavya Bhargava
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
93
|
Nikulin SL, Hesketh-Best PJ, Mckeown DA, Spivak M, Schroeder DC. A semi-automated and high-throughput approach for the detection of honey bee viruses in bee samples. PLoS One 2024; 19:e0297623. [PMID: 38483922 PMCID: PMC10939240 DOI: 10.1371/journal.pone.0297623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/10/2024] [Indexed: 03/17/2024] Open
Abstract
Deformed wing virus (DWV) was first detected in dead honey bees in 1982 but has been in honey bees for at least 300 years. Due to its high prevalence and virulence, they have been linked with the ongoing decline in honey bee populations worldwide. A rapid, simple, semi-automated, high-throughput, and cost-effective method of screening colonies for viruses would benefit bee research and the beekeeping industry. Here we describe a semi-automated approach that combines an RNA-grade liquid homogenizer followed by magnetic bead capture for total virus nucleic acid extraction. We compare it to the more commonly applied nucleic acid column-based purification method and use qPCR plus Oxford Nanopore Technologies sequencing to evaluate the accuracy of analytical results for both methods. Our results showed high reproducibility and accuracy for both approaches. The semi-automated method described here allows for faster screening of viral loads in units of 96 samples at a time. We developed this method to monitor viral loads in honey bee colonies, but it could be easily applied for any PCR or genomic-based screening assays.
Collapse
Affiliation(s)
- Sofia Levin Nikulin
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Poppy J. Hesketh-Best
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Dean A. Mckeown
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Marla Spivak
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
94
|
Espinoza JL, Phillips A, Prentice MB, Tan GS, Kamath PL, Lloyd KG, Dupont CL. Unveiling the Microbial Realm with VEBA 2.0: A modular bioinformatics suite for end-to-end genome-resolved prokaryotic, (micro)eukaryotic, and viral multi-omics from either short- or long-read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583560. [PMID: 38559265 PMCID: PMC10979853 DOI: 10.1101/2024.03.08.583560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The microbiome is a complex community of microorganisms, encompassing prokaryotic (bacterial and archaeal), eukaryotic, and viral entities. This microbial ensemble plays a pivotal role in influencing the health and productivity of diverse ecosystems while shaping the web of life. However, many software suites developed to study microbiomes analyze only the prokaryotic community and provide limited to no support for viruses and microeukaryotes. Previously, we introduced the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite to address this critical gap in microbiome research by extending genome-resolved analysis beyond prokaryotes to encompass the understudied realms of eukaryotes and viruses. Here we present VEBA 2.0 with key updates including a comprehensive clustered microeukaryotic protein database, rapid genome/protein-level clustering, bioprospecting, non-coding/organelle gene modeling, genome-resolved taxonomic/pathway profiling, long-read support, and containerization. We demonstrate VEBA's versatile application through the analysis of diverse case studies including marine water, Siberian permafrost, and white-tailed deer lung tissues with the latter showcasing how to identify integrated viruses. VEBA represents a crucial advancement in microbiome research, offering a powerful and accessible platform that bridges the gap between genomics and biotechnological solutions.
Collapse
Affiliation(s)
- Josh L. Espinoza
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Allan Phillips
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Gene S. Tan
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Karen G. Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN 37917, USA
| | - Chris L. Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| |
Collapse
|
95
|
Bulseco AN, Murphy AE, Giblin AE, Tucker J, Sanderman J, Bowen JL. Marsh sediments chronically exposed to nitrogen enrichment contain degraded organic matter that is less vulnerable to decomposition via nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169681. [PMID: 38163591 DOI: 10.1016/j.scitotenv.2023.169681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Blue carbon habitats, including salt marshes, can sequester carbon at rates that are an order of magnitude greater than terrestrial forests. This ecosystem service may be under threat from nitrate (NO3-) enrichment, which can shift the microbial community and stimulate decomposition of organic matter. Despite efforts to mitigate nitrogen loading, salt marshes continue to experience chronic NO3- enrichment, however, the long-term consequence of this enrichment on carbon storage remains unclear. To investigate the effect of chronic NO3- exposure on salt marsh organic matter decomposition, we collected sediments from three sites across a range of prior NO3- exposure: a relatively pristine marsh, a marsh enriched to ~70 μmol L-1 NO3- in the flooding seawater for 13 years, and a marsh enriched between 100 and 1000 μmol L-1 for 40 years from wastewater treatment effluent. We collected sediments from 20 to 25 cm depth and determined that sediments from the most chronically enriched site had less bioavailable organic matter and a distinct assemblage of active microbial taxa compared to the other two sites. We also performed a controlled anaerobic decomposition experiment to test whether the legacy of NO3- exposure influenced the functional response to additional NO3-. We found significant changes to microbial community composition resulting from experimental NO3- addition. Experimental NO3- addition also increased microbial respiration in sediments collected from all sites. However, sediments from the most chronically enriched site exhibited the smallest increase, the lowest rates of total NO3- reduction by dissimilatory nitrate reduction to ammonium (DNRA), and the highest DNF:DNRA ratios. Our results suggest that chronic exposure to elevated NO3- may lead to residual pools of organic matter that are less biologically available for decomposition. Thus, it is important to consider the legacy of nutrient exposure when examining the carbon cycle of salt marsh sediments.
Collapse
Affiliation(s)
- Ashley N Bulseco
- Marine Science Center, Northeastern University, Nahant, MA, USA; Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Anna E Murphy
- Marine Science Center, Northeastern University, Nahant, MA, USA; INSPIRE Environmental, Newport, RI, USA
| | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Jane Tucker
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Jennifer L Bowen
- Marine Science Center, Northeastern University, Nahant, MA, USA.
| |
Collapse
|
96
|
Wahl A, Fischer MA, Klaper K, Müller A, Borgmann S, Friesen J, Hunfeld KP, Ilmberger A, Kolbe-Busch S, Kresken M, Lippmann N, Lübbert C, Marschner M, Neumann B, Pfennigwerth N, Probst-Kepper M, Rödel J, Schulze MH, Zautner AE, Werner G, Pfeifer Y. Presence of hypervirulence-associated determinants in Klebsiella pneumoniae from hospitalised patients in Germany. Int J Med Microbiol 2024; 314:151601. [PMID: 38359735 DOI: 10.1016/j.ijmm.2024.151601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Klebsiella (K.) pneumoniae is a ubiquitous Gram-negative bacterium and a common coloniser of animals and humans. Today, K. pneumoniae is one of the most persistent nosocomial pathogens worldwide and poses a severe threat/burden to public health by causing urinary tract infections, pneumonia and bloodstream infections. Infections mainly affect immunocompromised individuals and hospitalised patients. In recent years, a new type of K. pneumoniae has emerged associated with community-acquired infections such as pyogenic liver abscess in otherwise healthy individuals and is therefore termed hypervirulent K. pneumoniae (hvKp). The aim of this study was the characterisation of K. pneumoniae isolates with properties of hypervirulence from Germany. METHODS A set of 62 potentially hypervirulent K. pneumoniae isolates from human patients was compiled. Inclusion criteria were the presence of at least one determinant that has been previously associated with hypervirulence: (I) clinical manifestation, (II) a positive string test as a marker for hypermucoviscosity, and (III) presence of virulence associated genes rmpA and/or rmpA2 and/or magA. Phenotypic characterisation of the isolates included antimicrobial resistance testing by broth microdilution. Whole genome sequencing (WGS) was performed using Illumina® MiSeq/NextSeq to investigate the genetic repertoire such as multi-locus sequence types (ST), capsule types (K), further virulence associated genes and resistance genes of the collected isolates. For selected isolates long-read sequencing was applied and plasmid sequences with resistance and virulence determinants were compared. RESULTS WGS analyses confirmed presence of several signature genes for hvKp. Among them, the most prevalent were the siderophore loci iuc and ybt and the capsule regulator genes rmpA and rmpA2. The most dominant ST among the hvKp isolates were ST395 capsule type K2 and ST395 capsule type K5; both have been described previously and were confirmed by our data as multidrug-resistant (MDR) isolates. ST23 capsule type K1 was the second most abundant ST in this study; this ST has been described as commonly associated with hypervirulence. In general, resistance to beta-lactams caused by the production of extended-spectrum beta-lactamases (ESBL) and carbapenemases was observed frequently in our isolates, confirming the threatening rise of MDR-hvKp strains. CONCLUSIONS Our study results show that K. pneumoniae strains that carry several determinants of hypervirulence are present for many years in Germany. The detection of carbapenemase genes and hypervirulence associated genes on the same plasmid is highly problematic and requires intensified screening and molecular surveillance. However, the non-uniform definition of hvKp complicates their detection. Testing for hypermucoviscosity alone is not specific enough to identify hvKp. Thus, we suggest that the classification of hvKp should be applied to isolates that not only fulfil phenotypical criteria (severe clinical manifestations, hypermucoviscosity) but also (I) the presence of at least two virulence loci e.g. iuc and ybt, and (II) the presence of rmpA and/or rmpA2.
Collapse
Affiliation(s)
- Anika Wahl
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Martin A Fischer
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Kathleen Klaper
- Robert Koch Institute, Department of Sexually transmitted bacterial Pathogens (STI) and HIV, Berlin, Germany
| | - Annelie Müller
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Stefan Borgmann
- Klinikum Ingolstadt, Department of Infectious Diseases and Infection Control, Ingolstadt, Germany
| | | | - Klaus-Peter Hunfeld
- Institute for Laboratory Medicine, Microbiology & Infection Control, Northwest Medical Centre, Medical Faculty, Goethe University, Frankfurt am Main, Germany
| | | | - Susanne Kolbe-Busch
- Institute of Hygiene, Hospital Epidemiology and Environmental Medicine, Leipzig University Medical Center, Leipzig, Germany; Interdisciplinary Center for Infectious Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Michael Kresken
- Paul-Ehrlich-Gesellschaft für Infektionstherapie e. V., Cologne, Germany
| | - Norman Lippmann
- Institute for Medical Microbiology and Virology, University Hospital of Leipzig, Leipzig, Germany
| | - Christoph Lübbert
- Interdisciplinary Center for Infectious Diseases, Leipzig University Medical Center, Leipzig, Germany; Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Leipzig University Medical Center, Leipzig, Germany
| | | | - Bernd Neumann
- Institute of Clinical Microbiology, Infectious Diseases and Infection Control, Paracelsus Medical University, Nuremberg General Hospital, Nuremberg, Germany
| | - Niels Pfennigwerth
- German National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Marco H Schulze
- Department for Infection Control and Infectious Diseases, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas E Zautner
- Institute of Medical Microbiology and Hospital Hygiene, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Guido Werner
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Yvonne Pfeifer
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany.
| |
Collapse
|
97
|
Batista M, Langendijk-Genevaux P, Kwapisz M, Canal I, Phung DK, Plassart L, Capeyrou R, Moalic Y, Jebbar M, Flament D, Fichant G, Bouvier M, Clouet-d'Orval B. Evolutionary and functional insights into the Ski2-like helicase family in Archaea: a comparison of Thermococcales ASH-Ski2 and Hel308 activities. NAR Genom Bioinform 2024; 6:lqae026. [PMID: 38500564 PMCID: PMC10946056 DOI: 10.1093/nargab/lqae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
RNA helicases perform essential housekeeping and regulatory functions in all domains of life by binding and unwinding RNA molecules. The Ski2-like proteins are primordial helicases that play an active role in eukaryotic RNA homeostasis pathways, with multiple homologs having specialized functions. The significance of the expansion and diversity of Ski2-like proteins in Archaea, the third domain of life, has not yet been established. Here, by studying the phylogenetic diversity of Ski2-like helicases among archaeal genomes and the enzymatic activities of those in Thermococcales, we provide further evidence of the function of this protein family in archaeal metabolism of nucleic acids. We show that, in the course of evolution, ASH-Ski2 and Hel308-Ski2, the two main groups of Ski2-like proteins, have diverged in their biological functions. Whereas Hel308 has been shown to mainly act on DNA, we show that ASH-Ski2, previously described to be associated with the 5'-3' aRNase J exonuclease, acts on RNA by supporting an efficient annealing activity, but also an RNA unwinding with a 3'-5' polarity. To gain insights into the function of Ski2, we also analyse the transcriptome of Thermococcus barophilus ΔASH-Ski2 mutant strain and provide evidence of the importance of ASH-Ski2 in cellular metabolism pathways related to translation.
Collapse
Affiliation(s)
- Manon Batista
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | | | - Marta Kwapisz
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Isabelle Canal
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Duy Khanh Phung
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Laura Plassart
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Régine Capeyrou
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Yann Moalic
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Didier Flament
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Gwennaele Fichant
- LMGM, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Marie Bouvier
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Béatrice Clouet-d'Orval
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| |
Collapse
|
98
|
Woodhouse JN, Burford MA, Neilan BA, Jex A, Tichkule S, Sivonen K, Fewer DP, Grossart HP, Willis A. Long-term stability of the genome structure of the cyanobacterium, Dolichospermum in a deep German lake. HARMFUL ALGAE 2024; 133:102600. [PMID: 38485438 DOI: 10.1016/j.hal.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Dolichospermum is a cyanobacterial genus commonly associated with toxic blooms in lakes and brackish water bodies worldwide, and is a long-term resident of Lake Stechlin, northeastern Germany. In recent decades, shifts in the phosphorus loading and phytoplankton species composition have seen increased biomass of Dolichospermum during summer blooms from 1998, peaking around 2005, and declining after 2020. Cyanobacteria are known to rapidly adapt to new environments, facilitated by genome adaptation. To investigate the changes in genomic features that may have occurred in Lake Stechlin Dolichospermum during this time of increased phosphorus loading and higher biomass, whole genome sequence analysis was performed on samples of ten akinetes isolated from ten, 1 cm segments of a sediment core, representing a ∼45-year period from 1970 to 2017. Comparison of these genomes with genomes of extant isolates revealed a clade of Dolichospermum that clustered with the ADA-6 genus complex, with remarkable genome stability, without gene gain or loss events in response to recent environmental changes. The genome characteristics indicate that this species is suited to a deep-chlorophyll maximum, including additional light-harvesting and phosphorus scavenging genes. Population SNP analysis revealed two sub-populations that shifted in dominance as the lake transitioned between oligotrophic and eutrophic conditions. Overall, the results show little change within the population, despite diversity between extant populations from different geographic locations and the in-lake changes in phosphorus concentrations.
Collapse
Affiliation(s)
- J N Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
| | - M A Burford
- Australian Rivers Institute, and School of Environment and Science, Griffith University, Brisbane, Australia
| | - B A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan 2308, NSW, Australia
| | - A Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - S Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - K Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - D P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - H-P Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany; Department of Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
| | - A Willis
- Australian Rivers Institute, and School of Environment and Science, Griffith University, Brisbane, Australia.
| |
Collapse
|
99
|
Maruyama R, Yasumoto K, Mizusawa N, Iijima M, Yasumoto-Hirose M, Iguchi A, Hermawan OR, Hosono T, Takada R, Song KH, Shinjo R, Watabe S, Yasumoto J. Metagenomic analysis of the microbial communities and associated network of nitrogen metabolism genes in the Ryukyu limestone aquifer. Sci Rep 2024; 14:4356. [PMID: 38388732 PMCID: PMC10883930 DOI: 10.1038/s41598-024-54614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
While microbial biogeochemical activities such as those involving denitrification and sulfate reduction have been considered to play important roles in material cycling in various aquatic ecosystems, our current understanding of the microbial community in groundwater ecosystems is remarkably insufficient. To assess the groundwater in the Ryukyu limestone aquifer of Okinawa Island, which is located in the southernmost region of Japan, we performed metagenomic analysis on the microbial communities at the three sites and screened for functional genes associated with nitrogen metabolism. 16S rRNA amplicon analysis showed that bacteria accounted for 94-98% of the microbial communities, which included archaea at all three sites. The bacterial communities associated with nitrogen metabolism shifted by month at each site, indicating that this metabolism was accomplished by the bacterial community as a whole. Interestingly, site 3 contained much higher levels of the denitrification genes such as narG and napA than the other two sites. This site was thought to have undergone denitrification that was driven by high quantities of dissolved organic carbon (DOC). In contrast, site 2 was characterized by a high nitrate-nitrogen (NO3-N) content and a low amount of DOC, and this site yielded a moderate amount of denitrification genes. Site 1 showed markedly low amounts of all nitrogen metabolism genes. Overall, nitrogen metabolism in the Ryukyu limestone aquifer was found to change based on environmental factors.
Collapse
Affiliation(s)
- Rio Maruyama
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ko Yasumoto
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Nanami Mizusawa
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mariko Iijima
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | | | - Akira Iguchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Oktanius Richard Hermawan
- Department of Earth and Environmental Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Takahiro Hosono
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Ryogo Takada
- Center for Strategic Research Project, University of the Ryukyus, Nishihara, Senbaru, Okinawa, 903-0213, Japan
| | - Ke-Han Song
- Department of Physics and Earth Sciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Ryuichi Shinjo
- Department of Physics and Earth Sciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Yasumoto
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Nakagami, Okinawa, 903-0213, Japan.
| |
Collapse
|
100
|
Liu N, Kivenson V, Peng X, Cui Z, Lankiewicz TS, Gosselin KM, English CJ, Blair EM, O'Malley MA, Valentine DL. Pontiella agarivorans sp. nov., a novel marine anaerobic bacterium capable of degrading macroalgal polysaccharides and fixing nitrogen. Appl Environ Microbiol 2024; 90:e0091423. [PMID: 38265213 PMCID: PMC10880615 DOI: 10.1128/aem.00914-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2T from microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2T represents a novel species within the Pontiella genus in the Kiritimatiellota phylum (within the PVC superphylum). Strain NLcol2T is able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and ɩ-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T (= DSM 113125T = MCCC 1K08672T) is proposed to be the type strain of a novel species in the Pontiella genus, and the name Pontiella agarivorans sp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of the Kiritimatiellota phylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2T expands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal.
Collapse
Affiliation(s)
- Na Liu
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Xuefeng Peng
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, China
| | - Thomas S. Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kelsey M. Gosselin
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chance J. English
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Ecology Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Elaina M. Blair
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
- Biological Engineering Program, University of California, Santa Barbara, California, USA
| | - David L. Valentine
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|