51
|
Wang J, Li Q, Wang W, Wang Q, Fu Y. Fluorescent probes based on N-CQDs: For direct detection of food additives STPP and Al 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:125036. [PMID: 39197210 DOI: 10.1016/j.saa.2024.125036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Sodium tripolyphosphate (STPP), as one of the many food additives, can cause gastrointestinal discomfort and a variety of adverse reactions when ingested by the human body, which is a great potential threat to human health. Therefore, it is necessary to develop a fast, sensitive and simple method to detect STPP in food. In this study, we synthesized a kind of nitrogen-doped carbon quantum dots (N-CQDs), and were surprised to find that the addition of STPP led to the gradual enhancement of the emission peaks of the N-CQDs, with a good linearity in the range of 0.067-1.96 μM and a low detection limit as low as 0.024 μM. Up to now, there is no report on the use of carbon quantum dots for the direct detection of STPP. Meanwhile, we found that the addition of Al3+ effectively bursts the fluorescence intensity of N-CQDs@STPP solution and has a good linear relationship in the range of 0.33-6.25 μM with a lower detection limit of 0.24 μM. To this end, we developed a fluorescent probe to detect STPP and Al3+. In addition, the probe was successfully applied to the detection of bread samples, which has great potential for practical application.
Collapse
Affiliation(s)
- Jianghua Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China
| | - Qing Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China
| | - Weijie Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China
| | - Qian Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China
| | - Yingqiang Fu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
52
|
Zöller K, To D, Bernkop-Schnürch A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025; 312:122718. [PMID: 39084097 DOI: 10.1016/j.biomaterials.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.
Collapse
Affiliation(s)
- Katrin Zöller
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
53
|
Tan H, Wu X, Zhao M, Li H, Wu W. Formation of self-assembled fibril aggregates of trypsin-controllably hydrolyzed soy protein and its regulation on stability of high internal phase Pickering emulsions. Food Chem 2025; 462:140996. [PMID: 39213962 DOI: 10.1016/j.foodchem.2024.140996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The mechanisms of trypsin hydrolysis time on the structure of soy protein hydrolysate fibril aggregates (SPHFAs) and the stability of SPHFAs-high internal phase Pickering emulsions (HIPPEs) were investigated. SPHFAs were prepared using soy protein hydrolysate (SPH) with different trypsin hydrolysis time (0 min-120 min) to stabilize SPHFAs-HIPPEs. The results showed that moderate trypsin hydrolysis (30 min, hydrolysis degree of 2.31 %) induced SPH unfolding and increased the surface hydrophobicity of SPH, thereby promoting the formation of flexible SPHFAs with maximal thioflavin T intensity and ζ-potential. Moreover, moderate trypsin hydrolysis improved the viscoelasticity of SPHFAs-HIPPEs, and SPHFAs-HIPPEs remained stable after storage at 25 °C for 80 d and heating at 100 °C for 1 h. Excessive trypsin hydrolysis (> 30 min) decreased the stability of SPHFAs-HIPPEs. In conclusion, moderate trypsin hydrolysis promoted the formation of flexible SPHFAs with high surface charge by inducing SPH unfolding, thereby promoting the stability of SPHFAs-HIPPEs.
Collapse
Affiliation(s)
- Haitong Tan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Mengmeng Zhao
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
54
|
Liu Y, Meng Z, Miao S, Huang H, Ren J, Han Y, Wu S. Ethanol-responsive structural colors with multi-level information encryption based on the patterned three-layer inverse opal photonic crystal. J Colloid Interface Sci 2025; 677:99-107. [PMID: 39083896 DOI: 10.1016/j.jcis.2024.07.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Stimulus-responsive inverse opal photonic crystals (IOPCs) with tunable structural colors show significant promise in information security. To improve upon the traditional bilayer structure with limited color information and single decoding mode, this work developed an ethanol-responsive structure with multi-level information encryption ability by inserting a functional layer into two shielding layers (red Layer A with a photonic stop band (PSB) at 640 nm and green Layer C with a PSB at 530 nm). The functional layer was composed of colorless Layer B, a quick response (QR) code pattern made of TiO2 nanoparticles, and a dense polymer. Due to the isolation of distinct layers, different reflectance values, and different PSB positions of the three-layer IOPC, the structural color of Layer B could only be "turned on" by wetting the entire structure when its PSB redshifted from 360 nm to 460 nm. Specifically, when either side was individually wetted, the PSB of Layer A or C redshifted to 825 nm or 685 nm, and the color of the QR code was dominated by the unwetted red or green layer. After the entire structure had been soaked, the blue QR code was decoded. Meanwhile, when the detecting angle increased from 5° to 60°, the PSBs of Layers B and C in the wetted three-layer IOPC blueshifted from 460 nm to 365 nm and from 685 nm to 540 nm, respectively, which resulted in a cascade decoding process with a single- or mixed-color output. This structure provides a good foundation for multi-level information encryption.
Collapse
Affiliation(s)
- Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Senlin Miao
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Jie Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Yaqun Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
55
|
Yang N, Wu T, Li M, Hu X, Ma R, Jiang W, Su Z, Yang R, Zhu C. Silver-quercetin-loaded honeycomb-like Ti-based interface combats infection-triggered excessive inflammation via specific bactericidal and macrophage reprogramming. Bioact Mater 2025; 43:48-66. [PMID: 39318638 PMCID: PMC11421951 DOI: 10.1016/j.bioactmat.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
Excessive inflammation caused by bacterial infection is the primary cause of implant failure. Antibiotic treatment often fails to prevent peri-implant infection and may induce unexpected drug resistance. Herein, a non-antibiotic strategy based on the synergy of silver ion release and macrophage reprogramming is proposed for preventing infection and bacteria-induced inflammation suppression by the organic-inorganic hybridization of silver nanoparticle (AgNP) and quercetin (Que) into a polydopamine (PDA)-based coating on the 3D framework of porous titanium (SQPdFT). Once the planktonic bacteria (e.g., Escherichia coli, Staphylococcus aureus) reach the surface of SQPdFT, released Que disrupts the bacterial membrane. Then, AgNP can penetrate the invading bacterium and kill them, which further inhibits the biofilm formation. Simultaneously, released Que can regulate macrophage polarization homeostasis via the peroxisome proliferators-activated receptors gamma (PPARγ)-mediated nuclear factor kappa-B (NF-κB) pathway, thereby terminating excessive inflammatory responses. These advantages facilitate the adhesion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), concomitantly suppressing osteoclast maturation, and eventually conferring superior mechanical stability to SQPdFT within the medullary cavity. In summary, owing to its excellent antibacterial effect, immune remodeling function, and pro-osteointegration ability, SQPdFT is a promising protective coating for titanium-based implants used in orthopedic replacement surgery.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ting Wu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianli Hu
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ruixiang Ma
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Zheng Su
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Zhu
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| |
Collapse
|
56
|
Mura M, Carucci C, Caddeo E, Sovová Š, Piludu M, Pekař M, Jachimska B, Parsons DF, Salis A. Specific buffer effects on the formation of BSA protein corona around amino-functionalized mesoporous silica nanoparticles. J Colloid Interface Sci 2025; 677:540-547. [PMID: 39106779 DOI: 10.1016/j.jcis.2024.07.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
The effect of buffer species on biomolecules and biomolecule-nanoparticle interactions is a phenomenon that has been either neglected, or not understood. Here, we study the formation of a BSA protein corona (PC) around amino-functionalized mesoporous silica nanoparticles (MSN-NH2) in the presence of different buffers (Tris, BES, cacodylate, phosphate, and citrate) at the same pH (7.15) and different concentrations (10, 50, and 100 mM). We find that BSA adsorption is buffer specific, with the adsorbed amount of BSA being 4.4 times higher in the presence of 100 mM Tris (184 ± 3 mg/g) than for 100 mM citrate (42 ± 2 mg/g). That is a considerable difference that cannot be explained by conventional theories. The results become clearer if the interaction energies between BSA and MSN-NH2, considering the electric double layer (EEDL) and the van der Waals (EvdW) terms, are evaluated. The buffer specific PC derives from buffer specific zeta potentials that, for MSN-NH2, are positive with Tris and negative with citrate buffers. A reversed sign of zeta potentials can be obtained by considering polarizability-dependent dispersion forces acting together with electrostatics to give the buffer specific outcome. These results are relevant not only to our understanding of the formation of the PC but may also apply to other bio- and nanosystems in biological media.
Collapse
Affiliation(s)
- Monica Mura
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Elena Caddeo
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Šárka Sovová
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Marco Piludu
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Miloslav Pekař
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Drew F Parsons
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| |
Collapse
|
57
|
Lee M, Ha DG, Lee HG, Lee J, Choi MJ. Plant-based protein emulsions with soy protein isolate and gluten improve freeze-thaw stability and shelf life of pork meatballs. Meat Sci 2025; 219:109680. [PMID: 39368176 DOI: 10.1016/j.meatsci.2024.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
This study investigated the effects of oil-in-water emulsions used as fat substitutes on the physicochemical properties of meatballs during frozen storage. Different formulations of fat replacers were prepared, including pork fat as the control (C), oil and water (OW), oil-in-water emulsion (E), emulsion with soy protein isolate (SE), emulsion with gluten (GE), and emulsion with soy protein isolate and gluten (SG). These fat substitutes were applied to a meatball paste. The samples were stored at -18 °C for 30 and 60 days, and their physicochemical properties were analyzed after thawing at 4 °C for 12 h. The SE formulation had the highest values for both water content and liquid holding capacity during frozen storage (P < 0.05). SE, GE, and SG showed significantly higher hardness, cohesiveness, springiness, gumminess, and chewiness than those of E during storage (P < 0.05). The vegetable protein addition treatments maintained a compact structure throughout storage. SE, GE, and SG prevented lipid and protein oxidation during frozen storage. These results demonstrated that SE, GE, and SG offer significant advantages in improving the freeze-thaw stability, liquid holding capacity, and oxidation stability of pork meatballs during long-term frozen storage. Therefore, our study suggest that plant-based protein emulsions can effectively replace animal fats while maintaining product quality, offering valuable implications for the meat processing industry.
Collapse
Affiliation(s)
- Minyeong Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Gyun Ha
- Department of Food Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyo-Gyeong Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiseon Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
58
|
Lorusso V, Orsi D, Vaccari M, Ravera F, Santini E, Chondrou AP, Kostoglou M, Karapantsios TD, McMillin R, Ferri JK, Vincent-Bonnieu S, Liggieri L, Cristofolini L. Intrinsic dynamics of emulsions: Experiments in microgravity on the International Space Station. J Colloid Interface Sci 2025; 677:231-243. [PMID: 39089129 DOI: 10.1016/j.jcis.2024.07.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
HYPOTHESIS In order to understand the basic mechanisms affecting emulsion stability, the intrinsic dynamics of the drop population must be investigated. We hypothesize that transient ballistic motion can serve as a marker of interactions between drops. In 1G conditions, buoyancy-induced drop motion obscures these interactions. The microgravity condition onboard the International Space Station enable this investigation. EXPERIMENTS We performed Diffusing Wave Spectroscopy (DWS) experiments in the ESA Soft Matter Dynamics (SMD) facility. We used Monte Carlo simulations of photon trajectory to support data analysis. The analysis framework was validated by ground-based characterizations of the initial drop size distribution (DSD) and the properties of the oil/water interface in the presence of surfactant. FINDINGS We characterized the drop size distribution and found to be bi-disperse. Drop dynamics shows transient ballistic features at early times, reaching a stationary regime of primarily diffusion-dominated motion. This suggests different ageing mechanisms: immediately after emulsification, the main mechanism is coalescence or aggregation between small drops. However at later times, ageing proceeds via coalescence or aggregation of small with large drops in some emulsions. Our results elucidate new processes relevant to emulsion stability with potential impact on industrial processes on Earth, as well as enabling technologies for space exploration.
Collapse
Affiliation(s)
- V Lorusso
- Department of Mathematics, Physics and Computer Sciences, University of Parma, 43123 Parma, Italy
| | - D Orsi
- Department of Mathematics, Physics and Computer Sciences, University of Parma, 43123 Parma, Italy
| | - M Vaccari
- Department of Mathematics, Physics and Computer Sciences, University of Parma, 43123 Parma, Italy
| | - F Ravera
- CNR- Institute of Condensed Matter Chemistry and Technologies for Energy, Unit of Genova, 16149 Genova, Italy
| | - E Santini
- CNR- Institute of Condensed Matter Chemistry and Technologies for Energy, Unit of Genova, 16149 Genova, Italy
| | - A P Chondrou
- Department of Chemical Technology and Industrial Chemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - M Kostoglou
- Department of Chemical Technology and Industrial Chemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - T D Karapantsios
- Department of Chemical Technology and Industrial Chemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - R McMillin
- Department of Chemical and Life Science Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States
| | - J K Ferri
- Department of Chemical and Life Science Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States
| | - S Vincent-Bonnieu
- ESA/ESTEC, European Space Research and Technology Centre, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
| | - L Liggieri
- CNR- Institute of Condensed Matter Chemistry and Technologies for Energy, Unit of Genova, 16149 Genova, Italy
| | - L Cristofolini
- Department of Mathematics, Physics and Computer Sciences, University of Parma, 43123 Parma, Italy.
| |
Collapse
|
59
|
Sheng Y, Zhang S, Ma W, Peng Y, Ma L, Wang Q, Hu D. Tuning stability, rheology, and fire-extinguishing performance of advanced firefighting foam material by inorganic nanoparticle flame retardants. J Colloid Interface Sci 2025; 677:378-389. [PMID: 39096706 DOI: 10.1016/j.jcis.2024.07.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
HYPOTHESIS Nanoparticle-stabilized foams are extremely stable, and flame retardant inorganic nanoparticles should be able to add sealing capacity of firefighting foams on flammable liquid fuels, and hence enhance fire extinguishment performance on liquid fuel fire. In practice, how do flame retardant nanoparticles resist the destructive effect of oil molecules on foam and tune foam properties? EXPERIMENTS We have prepared a nanoparticle-enhanced foam comprising of hydrocarbon surfactant, short-chain fluorocarbon surfactant, and nanoparticles. The interactions among nanoparticles and surfactant molecules were characterized by using dynamic surface tension and conductivity. Stability, rheology, and oil resistivity on liquid fuel of the nanoparticle-enhanced foam were evaluated systematically. Fire suppression effectiveness of the foams was verified based on a standard experiment. FINDINGS Foam stability and oil resistivity were enhanced due to self-assembled network structures formed by jammed aggregates composed by nanoparticles and surfactants in Plateau borders and bubble films, providing structural recoverability and enhanced viscoelasticity within foam. Foams containing nano-SiO2, nano-CaCO3, nano-Al(OH)3, and nano-Mg(OH)2 show difference in fire extinguishment due to different ability to enhance foam properties. Foam containing nano-Al(OH)3 shows the strongest adaptation and could shorten fire extinguishing time by 2 times and prolong burn-back time by 2.3 times compared with commercial product.
Collapse
Affiliation(s)
- Youjie Sheng
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China.
| | - Shanwen Zhang
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Wenzhi Ma
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Yunchuan Peng
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Li Ma
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Qiuhong Wang
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Die Hu
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| |
Collapse
|
60
|
Komarova TY, Zinn T, Narayanan T, Petukhov AV, Landman J. Microtube self-assembly leads to conformational freezing point depression. J Colloid Interface Sci 2025; 677:781-789. [PMID: 39121662 DOI: 10.1016/j.jcis.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
HYPOTHESIS Multi-walled tubular aggregates formed by hierarchical self-assembly of beta-cyclodextrin (β-CD) and sodium dodecylsulfate (SDS) hold a great potential as microcarriers. However, the underlying mechanism for this self-assembly is not well understood. To advance the application of these structures, it is essential to fine-tune the cavity size and comprehensively elucidate the energetic balance driving their formation: the bending modulus versus the microscopic line tension. EXPERIMENTS We investigated temperature-induced changes in the hierarchical tubular aggregates using synchrotron small-angle X-ray scattering across a broad concentration range. Detailed analysis of the scattering patterns enabled us to determine the structural parameters of the microtubes and to construct a phase diagram of the system. FINDINGS The microtubes grow from the outside in and melt from the inside out. We relate derived structural parameters to enthalpic changes driving the self-assembly process on the molecular level in terms of their bending modulus and microscopic line tension. We find that the conformation of the crystalline bilayer affects the saturation concentration, providing an example of a phenomenon we call conformational freezing point depression. Inspired by the colligative phenomenon of freezing point depression, well known from undergraduate physics, we model this system by including the membrane conformation, which can describe the energetics of this hierarchical system and give access to microscopic properties without free parameters.
Collapse
Affiliation(s)
- Tatiana Yu Komarova
- Van't Hoff Laboratory for Physical & Colloid Chemistry, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Thomas Zinn
- ESRF - The European Synchrotron, Grenoble, 38043, France
| | | | - Andrei V Petukhov
- Van't Hoff Laboratory for Physical & Colloid Chemistry, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Jasper Landman
- Physics & Physical Chemistry of Foods, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands.
| |
Collapse
|
61
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
62
|
Zhao KY, Sun C, Huang ML, Luo CL, Wang M. Constructing multi-layer heterogeneous interfaces in liquid metal graphite hybrid powder: Towards microwave absorption enhancement. J Colloid Interface Sci 2025; 677:79-89. [PMID: 39083894 DOI: 10.1016/j.jcis.2024.07.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Carbon based materials are widely used in the preparation of microwave absorption materials due to their low density, high attenuation loss and large specific surface area. However, their high conductivity usually leads to high reflection loss. In this study, multi-layer heterogeneous interfaces were constructed in liquid metal graphite hybrid powder to reduce reflection loss and enhance microwave absorption performance. Gallium oxide (Ga2O3) layer was formed in Ga coated graphite powder to improve impedance matching and attenuation constant via an annealing treatment. Specifically, the hybrid particles with 50 wt% Ga and being annealed at 120 °C for 2 h have a minimum reflection loss (RLmin) value of -42.68 dB and a maximum effective absorption bandwidth (EAB) of 4.11 GHz at a thickness of 3.3 mm. The hybrid particles not only have multi-layer structures with different electrical conductivity, but also form heterojunctions between different interfaces, which can further enhance dipole and interfacial polarization.
Collapse
Affiliation(s)
- Kun-Yan Zhao
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chang Sun
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming-Lu Huang
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cheng-Long Luo
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming Wang
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China.
| |
Collapse
|
63
|
Wei G, Deng S, Shao D, Xu D, Lei R, Li X. Gemini cationic surfactant of 1, 3-bis (dodecyl dimethyl ammonium chloride) propane as a novel excellent inhibitor for the corrosion of cold rolled steel in HCl solution. J Colloid Interface Sci 2025; 677:324-345. [PMID: 39096702 DOI: 10.1016/j.jcis.2024.07.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Gemini surfactants have become the research focus of novel excellent inhibitors because of their special structure (two amphiphilic moieties covalently connected at head group by a spacer) and excellent surface properties. It is proved by theoretical calculations that 1, 3-bis (dodecyl dimethyl ammonium chloride) propane (BDDACP) molecules can perform electron transfer with Fe (110). And it has a small fraction free volume, thus greatly reducing the diffusion and migration degree of corrosive particles. The potentiodynamic polarization curve showed that coefficients of cathodic and anodic reaction less than 1 and polarization resistance increased to 1602.9 Ω cm-2 after added BDDACP, confirming that BDDACP significantly inhibited the corrosion reaction by occupying the active site. The electrochemical impedance spectrum of imperfect semi-circle shows that the system resistance increases and double layer capacitance after added BDDACP. Weight loss tests also confirmed that BDDACP forms protective film by occupying the active sites on steel surface, and the maximum inhibition efficiency is 92 %. Comparison of the microscopic morphology showed that steel surface roughness was significantly reduced after added BDDACP. The results of time-of-flight secondary ion mass spectrometry show that steel surface contains some elements from BDDACP, which confirms the adsorption of BDDACP on steel surface.
Collapse
Affiliation(s)
- Gaofei Wei
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Shuduan Deng
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Dandan Shao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, PR China
| | - Ran Lei
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Xianghong Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
64
|
Li Y, Sung Min H, Chen C, Shan H, Lin Y, Yin F, Chen Y, Lu L, Yu X. A chitosan/gelatin/aldehyde hyaluronic acid hydrogel coating releasing calcium ions and vancomycin in pH response to prevent the formation of bacterial biofilm. Carbohydr Polym 2025; 347:122723. [PMID: 39486953 DOI: 10.1016/j.carbpol.2024.122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 11/04/2024]
Abstract
Osteomyelitis is a refractory disease of orthopedics, part of which is caused by medical implants. The main difficulties in treatment are the barrier effect after the formation of bacterial biofilm, and the difficulty in achieving sustained antibiotic intervention. In view of this situation, we studied a hydrogel coating that can release CaCl2 and vancomycin in pH-responsive manner. We used nano-TiO2 to modify Chitosan/ Gelatin/Aldehyde Hyaluronic Acid (CS/Gel/AHA) hydrogel, and combined with the dip-coating technique, prepared a coating with good mechanical strength. The hydrogel-loaded zeolitic imidazolate framework (ZIF) decomposes under acidic conditions, and the released Ca2+ act on the bacterial Bap protein to inhibit the formation of biofilm, and the released vancomycin kills free bacteria. The antibacterial coating achieved good bactericidal effect in both in vitro experiments and rat subcutaneous implant model. These results not only provide a new way to enhance the strength of hydrogels to prepare coatings, but also utilize a new approach to responsively inhibit the formation of biofilms, showing the promising application prospects of the coating in antibacterial treatment of medical implants.
Collapse
Affiliation(s)
- Yuange Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Hong Sung Min
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Chen Chen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Haojie Shan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yiwei Lin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Fuli Yin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yixian Chen
- Department of Surgery of Chinese Medicine, Jiangxi University of Chinese Medicine, Jiangxi 330004, PR China
| | - Liheng Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Xiaowei Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| |
Collapse
|
65
|
He T, Sun J, Deng L, Ming J, Hu C. Recycling Fe and improving organic pollutant removal via in situ forming magnetic core-shell Fe 3O 4@CaFe-LDH in Fe(II)-catalyzed oxidative wastewater treatment. J Environ Sci (China) 2025; 147:523-537. [PMID: 39003068 DOI: 10.1016/j.jes.2023.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 07/15/2024]
Abstract
Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.
Collapse
Affiliation(s)
- Ting He
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China; Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jie Sun
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China.
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
66
|
Silvera Batista CA, Wang K, Blake H, Nwosu-Madueke V, Marbach S. Artificial chemotaxis under electrodiffusiophoresis. J Colloid Interface Sci 2025; 677:171-180. [PMID: 39142158 DOI: 10.1016/j.jcis.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
HYPOTHESIS Through a large parameter space, electric fields can tune colloidal interactions and forces leading to diverse static and dynamical structures. So far, however, field-driven interactions have been limited to dipole-dipole and hydrodynamic contributions. Nonetheless, in this work, we propose that under the right conditions, electric fields can also induce interactions based on local chemical fields and diffusiophoretic flows. EXPERIMENTS Herein, we present a strategy to generate and measure 3D chemical gradients under electric fields. In this approach, faradaic reactions at electrodes induce global pH gradients that drive long-range transport through electrodiffusiophoresis. Simultaneously, the electric field induces local pH gradients by driving the particle's double layer far from equilibrium. FINDINGS As a result, while global pH gradients lead to 2D focusing away from electrodes, local pH gradients induce aggregation in the third dimension. Evidence points to a mechanism of interaction based on diffusiophoresis. Interparticle interactions display a strong dependence on surface chemistry, zeta potential and diameter of particles. Furthermore, pH gradients can be readily tuned by adjusting the voltage and frequency of the electric field. For large Péclet numbers, we observed a collective chemotactic-like collapse of particles. Remarkably, such collapse occurs without reactions at a particle's surface. By mixing particles with different sizes, we also demonstrate, through experiments and Brownian dynamics simulations, the emergence of non-reciprocal interactions, where small particles are more drawn towards large ones.
Collapse
Affiliation(s)
- Carlos A Silvera Batista
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States; Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, 37205, United States.
| | - Kun Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States
| | - Hannah Blake
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States
| | - Vivian Nwosu-Madueke
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States
| | - Sophie Marbach
- CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, Paris, F-75005, France.
| |
Collapse
|
67
|
Yan S, Jiang P, Zhang X, Dai Y, Sun B, Guo Y, Fang W. Advancing oil-water separation: Design and efficiency of amphiphilic hyperbranched demulsifiers. J Colloid Interface Sci 2025; 677:583-596. [PMID: 39154450 DOI: 10.1016/j.jcis.2024.08.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
HYPOTHESIS An innovative strategy for designing high-performance demulsifiers is proposed. It hypothesizes that integrating mesoscopic molecular simulations with macroscopic physicochemical experiments can enhance the understanding and effectiveness of demulsifiers. Specifically, it is suggested that amphiphilic hyperbranched polyethyleneimine (CHPEI) could act as an efficient demulsifier in oil-water systems, with its performance influenced by its adsorption behaviors at the oil-water interface and its ability to disrupt asphaltene-resin aggregates. EXPERIMENTS Several coarse-grained models of oil-water systems, with CHPEI, are constructed using dissipative particle dynamics (DPD) simulation. Following the insights gained from the simulations, a series of CHPEI-based demulsifiers are designed and synthesized. Demulsification experiments are conducted on both simulated and crude oil emulsions, with the process monitored using laser scanning confocal microscopy. Additionally, adsorption kinetics and small angle X-ray scattering are employed to reveal the inherent structural characteristics of CHPEI demulsifiers. FINDINGS CHPEI demonstrates over 96.7 % demulsification efficiency in high acid-alkali-salt systems and maintains its performance even after multiple reuse cycles. The simulations and macroscopic experiments collectively elucidate that the effectiveness of a demulsifier is largely dependent on its molecular weight and the balance of hydrophilic and hydrophobic groups. These factors are crucial in providing sufficient interfacial active functional groups while avoiding adsorption sites for other surfactants. Collaborative efforts between DPD simulation and macroscopic measurements deepen the understanding of how demulsifiers can improve oil-water separation efficiency in emulsion treatment.
Collapse
Affiliation(s)
- Shu Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Jiang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Xinghong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Yitong Dai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Bin Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yongsheng Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China.
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
68
|
Yang Z, Shi X, Qiu L. Tunable supramolecular self-assemblies based on cyclodextrin polymer as a loading platform for water-soluble drugs. Carbohydr Polym 2025; 347:122743. [PMID: 39486972 DOI: 10.1016/j.carbpol.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024]
Abstract
Drug loading capacity is a crucial character of nano-scaled drug carriers to achieve high quality pharmaceutical preparations. However, efficient encapsulation of water-soluble small molecular drugs still faces large obstacles in many cases. Herein, we designed a novel supramolecular delivery system constructed by poly(β-cyclodextrin) containing benzoic acid groups (PCD-PA) and adamantyl terminated poly(ethylene glycol) (PEG-AD) to provide multiple intermolecular interactions for competent loading of water-soluble small-molecular drugs. PCD-PA had multiple host molecules, and PEG-AD could be inserted via host-guest interaction in different proportion to adjust the composition of supramolecular carrier. Meanwhile, π-π stacking and electrostatic interaction furnished by benzoic acid groups served as binding force for drug entrapment, which led to considerable loading capacity for several water-soluble drugs. Among the drugs with different chemical structures, mitoxantrone hydrochloride and doxorubicin hydrochloride bearing anthraquinone rings and several protonable amino groups acquired the highest loading content as about 14 % in PCD-PA3/PEG-AD supramolecular self-assemblies. Further computational simulations investigated the mechanism of drug loading based on the interactions between the carrier materials and the payloads. In addition, the weakly acidic environment obviously accelerated the release of certain drugs. All in all, this self-assembled supramolecular nano-system displayed great potentials as a delivery platform for diverse water-soluble drugs.
Collapse
Affiliation(s)
- Zhuting Yang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuezhang Shi
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
69
|
Farkas E, Dóra Kovács K, Szekacs I, Peter B, Lagzi I, Kitahata H, Suematsu NJ, Horvath R. Kinetic monitoring of molecular interactions during surfactant-driven self-propelled droplet motion by high spatial resolution waveguide sensing. J Colloid Interface Sci 2025; 677:352-364. [PMID: 39151228 DOI: 10.1016/j.jcis.2024.07.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
HYPOTHESIS Self-driven actions, like motion, are fundamental characteristics of life. Today, intense research focuses on the kinetics of droplet motion. Quantifying macroscopic motion and exploring the underlying mechanisms are crucial in self-structuring and self-healing materials, advancements in soft robotics, innovations in self-cleaning environmental processes, and progress within the pharmaceutical industry. Usually, the driving forces inducing macroscopic motion act at the molecular scale, making their real-time and high-resolution investigation challenging. Label-free surface sensitive measurements with high lateral resolution could in situ measure both molecular-scale interactions and microscopic motion. EXPERIMENTS We employ surface-sensitive label-free sensors to investigate the kinetic changes in a self-assembled monolayer of the trimethyl(octadecyl)azanium chloride surfactant on a substrate surface during the self-propelled motion of nitrobenzene droplets. The adsorption-desorption of the surfactant at various concentrations, its removal due to the moving organic droplet, and rebuilding mechanisms at droplet-visited areas are all investigated with excellent time, spatial, and surface mass density resolution. FINDINGS We discovered concentration dependent velocity fluctuations, estimated the adsorbed amount of surfactant molecules, and revealed multilayer coverage at high concentrations. The desorption rate of surfactant (18.4 s-1) during the microscopic motion of oil droplets was determined by in situ differentiating between droplet visited and non-visited areas.
Collapse
Affiliation(s)
- Eniko Farkas
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - Kinga Dóra Kovács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - Beatrix Peter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - István Lagzi
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary; HUN-REN-BME Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary
| | - Hiroyuki Kitahata
- Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Nobuhiko J Suematsu
- Meiji Institute of Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan; Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan.
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Nanobiosensorics Laboratory, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
70
|
Fornasier M, Krautforst K, Kulbacka J, Jönsson P, Murgia S, Bazylińska U. Cubosomes and hexosomes stabilized by sorbitan monooleate as biocompatible nanoplatforms against skin metastatic human melanoma. J Colloid Interface Sci 2025; 677:842-852. [PMID: 39173516 DOI: 10.1016/j.jcis.2024.08.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Nanoparticles have become versatile assets in the medical field, providing notable benefits across diverse medical arenas including controlled drug delivery, imaging, and immunological assays. Among these, non-lamellar lipid nanoparticles, notably cubosomes and hexosomes, showcase remarkable biocompatibility and stability, rendering them as optimal choices for theranostic applications. Particularly, incorporating edge activators like sodium taurocholate enhances the potential of these nanoparticles for dermal and transdermal drug delivery, overcoming the stratum corneum, a first line of defense in our skin. This study reports on the formulation of monoolein-based cubosomes and hexosomes incorporating taurocholate and stabilized by Span 80 and co-encapsulating Chlorin e6 and coenzyme QH for photodynamic therapy in skin metastatic melanoma. The formulations were optimized using small-angle X-ray scattering, and cryo-transmission electron microscopy confirmed the presence of cubosomes or hexosomes, depending on the ratio between taurocholate and Span 80. Furthermore, the co-loaded nanoparticles exhibited high encapsulation efficiencies for both Ce6 and the coenzyme QH. In vitro studies on human melanoma cells (Me45) demonstrated the biocompatibility and photodynamic activity of the loaded formulations. These findings show the possibility of formulating more biocompatible cubosomes and hexosomes for photodynamic therapy in skin cancer treatment.
Collapse
Affiliation(s)
- Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Karolina Krautforst
- Department of Chemical and Geological Sciences, University of Cagliari, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy; Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Peter Jönsson
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Sergio Murgia
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
71
|
Huang B, Iasella SV, Rathi M, Hassler J, Ciutara CO, He Z, Morse DC, Zasadzinski JA. New experiments and models to describe soluble surfactant adsorption above and below the critical micelle concentration. J Colloid Interface Sci 2025; 677:557-568. [PMID: 39111091 PMCID: PMC11461105 DOI: 10.1016/j.jcis.2024.07.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 10/09/2024]
Abstract
HYPOTHESIS Lysopalmitoylphosphatidylcholine (LysoPC) is a soluble single-chain surfactant product of the innate immune system degradation of double-chain phospholipids. LysoPC adsorption to the air-water interface in lung alveoli can be modeled using alveolar-sized bubbles of constant surface area in a capillary pressure microtensiometer to show that adsorption is diffusion limited both below and above the critical micelle concentration (CMC). Above the CMC, a local equilibrium model is proposed in which depletion of the local monomer concentration drives dissociation of micelles in a region near the bubble surface. EXPERIMENTAL A capillary pressure microtensiometer in which a feedback loop maintains a constant bubble radius and surface area is used to measure dynamic surface tension during LysoPC adsorption. Direct numerical solution of the spherical diffusion equations, a new three parameter virial equation of state for interface thermodynamics, and a local equilibrium model of micellization above the CMC are used to accurately model the dynamic surface tension experiments both below and above the LysoPC CMC. FINDINGS LysoPC adsorption is shown to be diffusion-limited over concentrations ranging from below to well above the CMC, and to be well described by a local equilibrium model at concentrations above the CMC. Modelling the dynamic surface tension provides a reliable estimate of the micelle diffusivity near the CMC that is difficult to obtain by other methods in systems with low CMCs.
Collapse
Affiliation(s)
- Boxun Huang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven V Iasella
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Meenal Rathi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph Hassler
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clara O Ciutara
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ziwen He
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - David C Morse
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
72
|
Li Y, Gao Q, Qi L, Nian B. Supramolecular assembly strategy of modified starch chains for achieving recyclable emulsion biocatalysis within a narrow pH range. Carbohydr Polym 2025; 347:122760. [PMID: 39486986 DOI: 10.1016/j.carbpol.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 11/04/2024]
Abstract
Stimuli-responsive Pickering emulsions are promising in biocatalysis for their ease of product separation and emulsifier recovery. However, pH responsiveness, though simple and cost-effective, faces challenges in precise control and narrow transition ranges, limiting its use in enzymatic catalysis. Herein we introduced amorphous octenyl succinic anhydride-modified debranched starch chains (Am-OSA-St) to control emulsion properties within a pH range suitable for enzymatic catalysis. By adjusting the OSA group density and molecular weight, Am-OSA-St allowed emulsions to transition reversibly between pH 7.3 and 5.5 and enabled self-recycling through supramolecular self-assembly. Employing molecular dynamics simulations and physicochemical characterization, we elucidated the control mechanism of oil-water interfaces via the microstructure transformation of Am-OSA-St. The findings revealed that protonation of carboxylate groups disrupted the charge balance and polarity of starch chains, leading to strong electrostatic and van der Waals interactions that drove self-assembly. This entanglement caused starch chains in the aqueous phase to "drag" those at the oil-water interface, moving them into the aqueous phase and forming micelles. These micelles, with a hydrophobic interior and hydrophilic exterior, prevented re-adsorption. Testing with Candida antarctica Lipase B (CALB) and N-acetylneuraminic lyase showed that the pH-regulated emulsion system maintained excellent efficiency and cycling stability in mild conditions.
Collapse
Affiliation(s)
- Yang Li
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China.
| | - Liang Qi
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517500, PR China.
| | - BinBin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, PR China
| |
Collapse
|
73
|
Shan P, Geng K, Shen Y, Hao P, Zhang S, Hou J, Lu J, Guo F, Li C, Shi W. Facile synthesis of hierarchical core-shell carbon@ZnIn 2S 4 composite for boosted photothermal-assisted photocatalytic H 2 production. J Colloid Interface Sci 2025; 677:1098-1107. [PMID: 39142151 DOI: 10.1016/j.jcis.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Against the backdrop of energy shortage, hydrogen energy has attracted much attention as a green and clean energy source. In order to explore efficient hydrogen production pathways, we designed a composite photocatalyst with carbon-based core-shell photothermal-assisted photocatalytic system (Carbon@ZnIn2S4, denoted as C@ZIS). The well-designed catalyst C@ZIS composites demonstrated a photocatalytic hydrogen precipitation rate of 2.97 mmol g-1 h-1 even in the absence of the noble metal Pt co-catalyst. The incorporation of carbon-based core-shell photocatalysts into a photocatalytic reaction significantly affects the activity of the reaction by triggering a photothermal effect in the reaction solution. The results of the physicochemical experiments demonstrated that the carbon spheres in C@ZIS composite system could provide a greater number of active sites, thereby accelerating the electron transfer and separation efficiency, and thus enhancing the photocatalytic activity. The study presents an efficacious design concept for the development of efficacious carbon-based core-shell photothermal-assisted photocatalysts, which is anticipated to facilitate the efficient conversion of solar energy to hydrogen energy.
Collapse
Affiliation(s)
- Pengnian Shan
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Kun Geng
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yu Shen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Pengyu Hao
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Shunhong Zhang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jialin Lu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, PR China.
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| |
Collapse
|
74
|
Stanimirova RD, Danov KD, Georgiev MT, Petkov JT. Colloid, interface, and foam properties of water-soluble polyglycerol esters solutions. J Colloid Interface Sci 2025; 677:250-263. [PMID: 39094486 DOI: 10.1016/j.jcis.2024.07.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
HYPOTHESIS Polyglycerol esters of fatty acids are generated via the esterification of a polydisperse mixture of polyglycerol with naturally derived fatty acids. The polymerization process of polyglycerol results in the production of various oligomers, ranging from di-, tri-, and higher-order forms, which contribute to the complexity of final products. The combination of complementary experimental techniques and adequate theoretical interpretations can reveal the wide variety of their physicochemical properties. EXPERIMENTS The colloid and interface properties of polyglyceryl mono-laurate, mono-stearate, mono-oleate, and a mixture of mono-caprylate and mono-caprate esters solutions were characterized by measurements of the electrolytic conductivity, static and dynamic surface tension, aggregate and micelle sizes and distributions, thin liquid film stability and stratification, and solubility in aqueous and in oil phases. The formation, stability, and bubble size distribution of foams generated from polyglycerol esters aqueous solutions were systematically investigated. FINDINGS The low concentrations of double-tail molecules and fatty acids in polyglycerol esters affect considerably their micellar, aggregation, and vesicle formations in aqueous solutions. The theoretical data interpretation of polyglycerol esters isotherms and thin liquid films data provide information on the adsorption energies, excluded areas per molecule, interaction parameters of molecules at interfaces, surface electrostatic potential, and the size of micelles. Polyglyceryl mono-oleate exhibits spontaneous emulsification properties. Short chain length polyglycerol esters have excellent foaming ability but relatively low foam stability. The optimal weight fractions of the short-chain polyglyceryl esters and polyglyceryl mono-stearate mixtures with respect to good foaminess and foam stability upon Ostwald ripening are obtained. The reported physicochemical characterization of the water-soluble polyglycerol esters could be of interest to increase the range of their applicability in practice.
Collapse
Affiliation(s)
- Rumyana D Stanimirova
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria.
| | - Krassimir D Danov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Mihail T Georgiev
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Jordan T Petkov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria; Arxada, Hexagon Tower, Crumpsall Vale, Blackley, Greater Manchester, M9 8GQ, UK; Biological Physics, School of Physics and Astronomy, The University of Manchester, Schuster Building, Oxford Road, M13 9PL, UK
| |
Collapse
|
75
|
Ospina C, Ibáñez-Ibáñez PF, Tagliaro I, Stendardo L, Tosatti S, Antonini C. Low ice adhesion on soft surfaces: Elasticity or lubrication effects? J Colloid Interface Sci 2025; 677:494-503. [PMID: 39154442 DOI: 10.1016/j.jcis.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
HYPOTHESIS Soft materials are promising candidates for designing passive de-icing systems. It is unclear whether low adhesion on soft surfaces is due to elasticity or lubrication, and how these properties affect the ice detachment mechanism. This study presents a systematic analysis of ice adhesion on soft materials with different lubricant content to better understand the underpinning interaction. EXPERIMENTS The wetting and mechanical properties of soft polydimethylsiloxane with different lubricant content were thoroughly characterized by contact angle, AFM indentation, and rheology measurements. The collected information was used to understand the relationship with the ice adhesion results, obtained by using different ice block sizes. FINDINGS Three different de-icing mechanisms were identified: (i) single detachment occurs when small ice blocks are considered, and the ice completely detaches in a single event. In the case of larger ice blocks, the reattachment of the ice block is promoted by either: (ii) stick-slip or, (iii) interfacial slippage, depending on the lubricant content. It was confirmed that the ice adhesion strength not only depends on material properties but also on experimental conditions, such as the ice dimensions. Moreover, differently than on hard surfaces, where wetting primarily determines the icephobic performance, also elasticity and lubrication should be considered on soft surfaces.
Collapse
Affiliation(s)
- Catalina Ospina
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Pablo F Ibáñez-Ibáñez
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy; Department of Applied Physics, University of Granada, Av. de Fuente Nueva, s/n, 18071 Granada, Spain
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy.
| | - Luca Stendardo
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | | | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy.
| |
Collapse
|
76
|
Duan L, Li M, Liu J, Chen W. Soil colloids can significantly enhance spreading of polybromodiphenyl ethers in groundwater by serving as an effective carrier. J Environ Sci (China) 2025; 147:93-100. [PMID: 39003087 DOI: 10.1016/j.jes.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 07/15/2024]
Abstract
Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.
Collapse
Affiliation(s)
- Lin Duan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Min Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Jiameng Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
77
|
Liu C, Ma R, Shen W, Tian Y. Unraveling the impact of starch granule-associated proteins on the emulsifying ability of quinoa starch granules at multiple scales. Food Chem 2025; 462:140974. [PMID: 39197239 DOI: 10.1016/j.foodchem.2024.140974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Total starch granule-associated proteins (tGAP), including granule-channel (GCP) and granule-surface proteins (GSP), alter the physicochemical properties of starches. Quinoa starch (QS) acts as an effective emulsifier in Pickering emulsion. However, the correlation between the tGAP and the emulsifying capacity of QS at different scales remains unclear. Herein, GCP and tGAP were selectively removed from QS, namely QS-C and QS-A. Results indicated that the loss of tGAP increased the water permeability and hydrophilicity of the starch particles. Mesoscopically, removing tGAP decreased the diffusion rate and interfacial viscous modulus. Particularly, GSP had a more profound impact on the interfacial modulus than GCP. Microscopically and macroscopically, the loss of tGAP endowed QS with weakened emulsifying ability in terms of emulsions with larger droplet size and diminished rheological properties. Collectively, this work demonstrated that tGAP played an important role in the structural and interfacial properties of QS molecules and the stability of QS-stabilized emulsions.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Analysis and Testing Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
78
|
Yadav M, Mallappa RH, Ambatipudi K. Human milk fat globule delivers entrapped probiotics to the infant's gut and acts synergistically to ameliorate oxidative and pathogenic stress. Food Chem 2025; 462:141030. [PMID: 39241685 DOI: 10.1016/j.foodchem.2024.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, Indian Council of Agriculture Research-National Dairy Research Institute, Karnal 132001, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
79
|
Bian Y, Cai X, Zhou R, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Sun H, Zhao X, Feng B, Weng X. Advances in meniscus tissue engineering: Towards bridging the gaps from bench to bedside. Biomaterials 2025; 312:122716. [PMID: 39121731 DOI: 10.1016/j.biomaterials.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Meniscus is vital for maintaining the anatomical and functional integrity of knee. Injuries to meniscus, commonly caused by trauma or degenerative processes, can result in knee joint dysfunction and secondary osteoarthritis, while current conservative and surgical interventions for meniscus injuries bear suboptimal outcomes. In the past decade, there has been a significant focus on advancing meniscus tissue engineering, encompassing isolated scaffold strategies, biological augmentation, physical stimulus, and meniscus organoids, to improve the prognosis of meniscus injuries. Despite noteworthy promising preclinical results, translational gaps and inconsistencies in the therapeutic efficiency between preclinical and clinical studies exist. This review comprehensively outlines the developments in meniscus tissue engineering over the past decade (Scheme 1). Reasons for the discordant results between preclinical and clinical trials, as well as potential strategies to expedite the translation of bench-to-bedside approaches are analyzed and discussed.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xuejie Cai
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Runze Zhou
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yiming Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Wei Zhu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hanyang Sun
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Bin Feng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
80
|
Arellano H, Swebocki T, Le Coeur C, Prevost S, Abdallah M, Nardello-Rataj V, Fameau AL. Influence of critical micelle concentration of choline-based long chain fatty acid soaps on their antibacterial activity against Methicillin resistant Staphylococcus aureus. J Colloid Interface Sci 2025; 677:314-323. [PMID: 39096701 DOI: 10.1016/j.jcis.2024.07.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
HYPOTHESIS Antimicrobial resistance (AMR) is a pressing global health concern. ESKAPEE pathogens, such as Methicillin-resistant Staphylococcus aureus (MRSA) are notable of concern in healthcare settings due to their resistance to critical antibiotics. To combat AMR, the development of alternatives such as bacterial membrane-active agents is crucial. Fatty acids (FAs) have emerged as a sustainable, antibiotic-free solution with inherent antibacterial activity. However, long chain saturated fatty acids (LCFAs) sodium soaps exhibit poorly antibacterial properties in comparison to short chain FAs, believed to be linked to limited solubility in aqueous media. EXPERIMENTS We employed choline as a chaotropic organic counter-ion to enhance the solubility of LCFAs and investigated their antibacterial effects against MRSA. The optimal medium conditions for micelle formation for LCFAs was first investigated. Then, we determined the critical micelle concentration (CMC), micellar morphology, and aggregation number through surface tension measurements and small angle neutron scattering experiments. Antimicrobial activity was assessed using minimum bactericidal concentration (MBC) assays and time-kill experiments. FINDINGS We have identified conditions where LCFAs are effective against MRSA for the first time, providing valuable insights for developing new antibacterial agents to fight AMR. LCFAs need to be used above their Krafft temperatures and CMC to exhibit antibacterial efficacy.
Collapse
Affiliation(s)
- Helena Arellano
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, 59000 Lille, France
| | - Tomasz Swebocki
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Clémence Le Coeur
- Laboratoire Léon Brillouin, CEA, Saclay, France; CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Université Paris Est Creteil, 94320 Thiais, France
| | - Sylvain Prevost
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, Cedex 9, 38042 Grenoble, France
| | - Marwan Abdallah
- Laboratoire Départemental Public du Nord, 59370 Villeneuve d'Ascq, France
| | - Veronique Nardello-Rataj
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Anne-Laure Fameau
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, 59000 Lille, France.
| |
Collapse
|
81
|
Lombardi L, Tammaro D, Maffettone PL. Wimpled thin films via multiple motions of a bubble decorated with surface-active molecules. J Colloid Interface Sci 2025; 677:521-528. [PMID: 39106777 DOI: 10.1016/j.jcis.2024.07.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
HYPOTHESIS Thin liquid films play a crucial role in various systems and applications. Understanding the mechanisms that regulate their morphology is a scientific challenge with obvious implications for application optimization. Thin liquid films trapped between bubbles and air-liquid interface can show various configurations influenced by their deformation history and system characteristics. EXPERIMENTS The morphology of thin liquid films formed in the presence of surface-active molecules is here studied with interferometric techniques. Three different systems with varying interfacial properties are investigated to understand their influence on film morphology. Specific deformation histories are applied to the films to generate complex film structures. FINDINGS We achieve the creation of a rather stable wimple by implementing controlled bubble motions against the air-liquid interface. We provide a criterion for wimple formation based on lubrication theory. The long-term stability of the wimple is also investigated, and more complex multi-wimple structures are experimentally produced building upon the achieved wimple stability.
Collapse
Affiliation(s)
- Lorenzo Lombardi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples, 80125, Italy.
| | - Daniele Tammaro
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples, 80125, Italy
| | - Pier Luca Maffettone
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples, 80125, Italy
| |
Collapse
|
82
|
Hadjiefstathiou E, Terescenco D, Loisel V, Picard C, Malhiac C, Savary G. An innovative device for in vivo and in vitro study of fragrance evaporation after application on skin or model surfaces. Talanta 2025; 281:126851. [PMID: 39265418 DOI: 10.1016/j.talanta.2024.126851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
An original device has been developed to measure perfume release in the air above a surface. This device has proven its originality, effectiveness, and repeatability both in vitro on different types of model surfaces and in vivo directly on the skin of the forearm of volunteers. A perfume composed of eight fragrance molecules in ethanol was used to measure evaporation in the headspace with solid phase microextraction (SPME) and gas chromatography analysis. Temperature control, time effects, system dimensions, volume and seal integrity, and SPME optimizations were investigated for the measurement device and the analytical method setup. Finally, the system's effectiveness and modularity were demonstrated with evaporation studies carried out on four different surfaces: a chemically inert glass surface, the Strat-M® model, a perfume test strip, and the skin. This original device shows promising results in providing a better understanding of the evaporation phenomena of fragrance molecules and its link with the physicochemical properties of the skin.
Collapse
Affiliation(s)
- Elise Hadjiefstathiou
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, F-76600, Le Havre, France
| | - Daria Terescenco
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, F-76600, Le Havre, France
| | - Vincent Loisel
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, F-76600, Le Havre, France
| | - Céline Picard
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, F-76600, Le Havre, France
| | - Catherine Malhiac
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, F-76600, Le Havre, France
| | - Géraldine Savary
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, F-76600, Le Havre, France.
| |
Collapse
|
83
|
Sun M, Zhang R, Sun A, Jia X, Liu X, Yu X, Xing Y. Heteropoly blue-modified ultrathin bismuth oxychloride nanosheets with oxygen vacancies for efficient photocatalytic nitrogen fixation in pure water. J Colloid Interface Sci 2025; 677:610-619. [PMID: 39116559 DOI: 10.1016/j.jcis.2024.07.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Photocatalytic nitrogen reduction is a promising green technology for ammonia synthesis under mild conditions. However, the poor charge transfer efficiency and weak N2 adsorption/activation capability severely hamper the ammonia production efficiency. In this work, heteropoly blue (r-PW12) nanoparticles are loaded on the surface of ultrathin bismuth oxychloride nanosheets with oxygen vacancies (BiOCl-OVs) by electrostatic self-assembly method, and a series of xr-PW12/BiOCl-OVs heterojunction composites have been prepared. Acting as a robust support, ultrathin two-dimensional (2D) structure of BiOCl-OVs inhibits the aggregation of r-PW12 nanoparticles, enhancing the interfacial contact between r-PW12 and BiOCl. More importantly, the existence of oxygen vacancies (OVs) provides abundant active sites for efficient N2 adsorption and activation. In combination of the enhanced light absorption and promoted photogenerated carriers separation of xr-PW12/BiOCl-OVs heterojunction, under simulated solar light, the optimal 7r-PW12/BiOCl-OVs exhibits an excellent photocatalytic N2 fixation rate of 33.53 µmol g-1h-1 in pure water, without the need of sacrificial agents and co-catalysts. The reaction dynamics is also monitored by in situ FT-IR spectroscopy, and an associative distal pathway is identified. Our study demonstrates that construction of heteropoly blues-based heterojunction is a promising strategy for developing high-performance N2 reduction photocatalysts. It is anticipated that combining of different defects with heteropoly blues of different structures might provide more possibilities for designing highly efficient photocatalysis systems.
Collapse
Affiliation(s)
- Mingliang Sun
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Ruyu Zhang
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Ao Sun
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiaowei Jia
- College of Sciences, Hebei North University, Zhangjiakou 075000, PR China.
| | - Xianchun Liu
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| | - Xiaodan Yu
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yan Xing
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
84
|
Dey A, Roy K, Subba SH, Lee G, Park SY. MXene/polymer dot-decorated flexible sensor for cancer cell-responsive hydrogel with tunable elastic modulus, porosity, and conductivity. Talanta 2025; 281:126874. [PMID: 39277932 DOI: 10.1016/j.talanta.2024.126874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
This study reports a facile strategy for cancer cell modulated mechanically and electronically tunable hydrogel based on MXene-immobilized hyaluronic acid polymer dot (M-PD). Elevated levels of reactive oxygen species (ROS), such as H2O2 in cancer cells cleave MXene owing to the oxygen-titanium affinity of Ti3C2Tx, altering the physico-mechanical, electrochemical, and fluorescence (FL) properties of the sensor. The H2O2-induced cleavage of M-PD in the hydrogel causes the quenched FL intensity by the Forster resonance energy transfer effect (FRET) to recover, alongside an increase in pore size, influencing shifts in hydrogen bonding and inducing viscoelastic changes in the flexible sensor. This caused physico-mechanical alterations in the sensor, modified the viscosity (G' decreased by 98.7%), and enhanced the stretchability. Further, in vitro electrochemical impedance spectroscopy (EIS) highlighted the distinct results for cancer cells (B16F10: 8.10 kΩ, MDA-MB-231: 8.30 kΩ), and normal cells (CHO-K1: 3.40 kΩ), showcasing electrochemical differentiation between these cells. Additionally, the flexible M-PD hydrogel sensor exhibits high sensitivity, with detection limits of 2.58 cells/well (CHO-K1), 0.96 cells/well (B16F10), and 1.20 cells/well (MDA-MB-231). Finally, real-time cancer monitoring was achieved by integrating the M-PD hydrogel with a wireless setup on a smartphone.
Collapse
Affiliation(s)
- Anneshwa Dey
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Kaustuv Roy
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Sunu Hangma Subba
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - Sung Young Park
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
85
|
Ren L, Lu X, Yan J, Zhang A, Li W. Hierarchical assembly of thermoresponsive helical dendronized poly(phenylacetylene)s through photo-crosslinking of the thermal aggregates. J Colloid Interface Sci 2025; 677:928-940. [PMID: 39128287 DOI: 10.1016/j.jcis.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Supramolecular assembly of helical homopolymers to form stable chiral entities in water is highly valuable for creating chiral nanostructures and fabricating chiral biomaterials. Here we report on thermally induced supramolecular assembly of helical dendronized poly(phenylacetylene)s (PPAs) in aqueous solutions, and their in-situ photo-crosslinking at elevated temperatures to afford crosslinked nano-assemblies with hierarchical structures and stabilized helicities. These helical dendronized homopolymers carry cinnamate-cored dendritic oligoethylene glycol (OEG) pendants, which exhibit characteristic thermoresponsive behavior. Their thermal aggregation confers hexagonal packing of the polymer chains, and simultaneously resulting in enhancement of their chiralities. Assisted by radial amphiphilicity and worm-like molecular geometry, these dendronized PPAs form supramolecular twisted fibers, spheroid particles or toroids via thermal aggregation. Through UV photoirradiation above their cloud points (Tcps), cycloaddition of cinnamate moieties from the dendritic pendants promotes intermolecular crosslinking of dendronized PPA chains within the thermal aggregates, and simultaneously, the dynamic morphologies and supramolecular chirality from the dendronized PPAs through thermally induced aggregation can be fixed. In addition, photo-crosslinking can be occurred solely within individual aggregates due to the protection of densely packed dendritic OEGs. Therefore, various crosslinked assemblies from the dendronized homopolymers with tailorable morphologies and stabilized chirality are fabricated by tuning their thermally induced dynamic aggregations followed by in-situ photo-crosslinking. We believe that this work paves a convenient route to fabricate chiral assemblies with stabilized morphologies and fixed chiralities from dynamic helical homopolymers through intermolecular crosslinking, which can be promising for various chiral applications.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
86
|
Shokri S, Shariatifar N, Molaee-Aghaee E, Khaniki GJ, Sadighara P, Vali Zade S, Shoeibi S. Ponceau 4R elimination from fruit juice: An integrated optimization strategy utilizing artificial neural networks, least squares, and chitosan-nickel ferrite Nano Sorbent. Food Chem X 2024; 24:101856. [PMID: 39416305 PMCID: PMC11480246 DOI: 10.1016/j.fochx.2024.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The goal of present work is to examine the efficiency of aminated-chitosan/NiFe2O4 nanoparticles (AmCs/NiFe2O4 NPs) produced for removing Ponceau 4R (P4R) from fruit juice through an adsorption process. The resulting nanoparticles were characterized using various techniques. The modeling of results was done using least squares (LS) and Radial basis function-artificial neural network (RBF-ANN). The optimum removal of P4R (91.43 %) was obtained at the following optimum conditions: pH 4.47, adsorbent dosage 0.047 g/L, contact time approximately 57.78 min, and initial concentration P4R 26.89 mg/L. The highest adsorption capacity (qm) was found to be 208.33 mg g-1. The P4R adsorption mostly followed the Freundlich and pseudo-second-order isotherm kinetic models. Both LS-based models and RBF-ANN provided good predictions for independent variables. The dye elimination efficacy for juice samples were approximately 90.34 %. Therefore, based on the obtained results, it can be claimed that the prepared AmCs/NiFe2O4 NPs can be used to remove P4R.
Collapse
Affiliation(s)
- Samira Shokri
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Molaee-Aghaee
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Jahed Khaniki
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Vali Zade
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center, Food and Drug Administration, Iran Ministrily of Health and Medical Education, Iran
| |
Collapse
|
87
|
Liu Q, Chen A, Hong P, Zhou C, Li X, Xie M. pH-induced interface protein structure changes to adjust the stability of tilapia protein isolate emulsion prepared by high-pressure homogenization. Food Chem X 2024; 24:101841. [PMID: 39377085 PMCID: PMC11456911 DOI: 10.1016/j.fochx.2024.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
The pH is a crucial external factor affecting the structure and emulsification characteristics of proteins. The current study aimed to reveal the correlation between the secondary structure changes and tilapia protein isolate (TPI) emulsion stability under different pH (3.0-10.0) prepared by high-pressure homogenization. The results showed that TPI with significantly increased solubility and emulsifying properties when the pH keep away from the isoelectric point (pH 5.0). Meanwhile, TPI emulsions presented significantly enhanced stability (with decreased particle size, increased zeta potential, creaming index close to 0, and uniform dispersion of droplets) at pH 3.0 and 10.0. Interface-adsorbed protein mainly consists of a myosin-heavy chain and actin, and the secondary structure was significantly influenced by pH and high-pressure homogenization. The α-helix will be transformed into β-sheet and β-turn when pH is closer to pH 5.0. However, the high-pressure homogenization induced α-helix conversion to β-sheet. The correlation analysis revealed that emulsion stability is positively correlated with α-helix and negatively correlated with β-sheet. This work provides a deep insight into the correlation between secondary structure changes and the stability of TPI emulsion as affected by pH to offer an alternative way to enhance TPI emulsion stability.
Collapse
Affiliation(s)
- Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ailin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiang Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mengya Xie
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
88
|
Majumder D, Dey A, Ray S, Bhattacharya D, Nag M, Lahiri D. Use of genomics & proteomics in studying lipase producing microorganisms & its application. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100218. [PMID: 39281291 PMCID: PMC11402113 DOI: 10.1016/j.fochms.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024]
Abstract
In biotechnological applications, lipases are recognized as the most widely utilized and versatile enzymes, pivotal in biocatalytic processes, predominantly produced by various microbial species. Utilizing omics technology, natural sources can be meticulously screened to find microbial flora which are responsible for oil production. Lipases are versatile biocatalysts. They are used in a variety of bioconversion reactions and are receiving a lot of attention because of the quick development of enzyme technology and its usefulness in industrial operations. This article offers recent insights into microbial lipase sources, including fungi, bacteria, and yeast, alongside traditional and modern methods of purification such as precipitation, immunopurification and chromatographic separation. Additionally, it explores innovative methods like the reversed micellar system, aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF). The article deals with the use of microbial lipases in a variety of sectors, including the food, textile, leather, cosmetics, paper, detergent, while also critically analyzing lipase-producing microbes. Moreover, it highlights the role of lipases in biosensors, biodiesel production, tea processing, bioremediation, and racemization. This review provides the concept of the use of omics technique in the mechanism of screening of microbial species those are capable of producing lipase and also find the potential applications.
Collapse
Affiliation(s)
- Debashrita Majumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Ankita Dey
- Department of Chemical Engineering, National Institute of Technology, Agartala, India
| | - Srimanta Ray
- Department of Chemical Engineering, National Institute of Technology, Agartala, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| |
Collapse
|
89
|
Qiu D, Zhou J, Feng Q, Ren K, Zhang H, He Y, Li C, Liu J, Mai NTT. Functionality, physicochemical properties, and applications of chitosan/nano-hydroxyapatite-tea polyphenol films. Food Chem X 2024; 24:101762. [PMID: 39314538 PMCID: PMC11417202 DOI: 10.1016/j.fochx.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
An active chitosan (CS) film containing a nano-hydroxyapatite-tea polyphenol (HAP-TP) complex was designed and prepared. The effects of HAP-TP loading on the structural and physicochemical properties of the CS-based film were evaluated. The mechanical and thermal properties of the film were significantly improved by the resulting intermolecular interactions and formation of hydrogen bonds between HAP-TP and CS, which reduced the water vapor and oxygen permeabilities of the film by 29.78 and 35.59 %, respectively. The CS-HAP-TP film exhibited excellent slow-release behavior and antioxidant activity, with a cumulative release rate at 700 h 6.79 % lower than that of CS-TP films. The CS-HAP-TP film significantly inhibited the deterioration of semi-dried golden pompano, and thus helped to retain the taste of umami and sweet amino acids in fish samples, while reducing off-flavor generation. The film therefore shows considerable potential as an active packaging material for the preservation of semi-dried fish products.
Collapse
Affiliation(s)
- Dan Qiu
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Jingxuan Zhou
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Kun Ren
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Hongying Zhang
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Jing Liu
- School of Public Health, Hainan Medical University, Haikou 571199, Hainan, China
| | - Nga Thi Tuyet Mai
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu St., Nha Trang City, Viet Nam
| |
Collapse
|
90
|
Chen X, Zhu J, Tian D, Li Z. Preparation of soybean protein isolate-ester emulsifier oleogels and comparative study of their structure and properties. Food Chem 2024; 461:140927. [PMID: 39181049 DOI: 10.1016/j.foodchem.2024.140927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
In recent years, oleogel as a viscoelastic semi-solid to replace trans fatty acids and reduce saturated fatty acids in food has received more and more attention. Herein, an emulsion template method was used to produce soybean oil-based oleogels with seven different ester emulsifiers and soy protein isolate as oleogelators. The chemical and physical characteristics of oleogels produced via various crosslinking factors were comparatively examined. Results revealed that all oleogels generated β-type needle crystals and exhibited high oil-holding capacity (>80 %), among which glycerol monolaurate G2 and diacetyl tartaric acid ester of mono-diglycerides G6 exhibited the strongest oil-holding capacity (96.6 % and 96.2 %, respectively). Furthermore, all oleogels exhibited strong thixotropic recovery, high thermal stability, as well as high gel strength (G' > G''). Of these, G2 and G6 exhibited the highest thixotropic recovery rates at 74.54 % and 78.19 %, respectively. Additionally, in accelerated oxidation trials, the peroxide value and thiobarbituric acid reactive substances of all oleogels had low oxidation rates, indicating high oxidative stability. These results contribute to a better understanding of oleogels for formulating trans-free and low-saturated foodstuffs with desired physical and functional properties.
Collapse
Affiliation(s)
- Xi Chen
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jianfei Zhu
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro-Products, Chongqing 400067, China.
| | - Dongling Tian
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zongyang Li
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
91
|
Qi X, Xiong X, Cai H, Zhang X, Ma Q, Tan H, Guo X, Lv H. Carbon dots-loaded cellulose nanofibrils hydrogel incorporating Bi 2O 3/BiOCOOH for effective adsorption and photocatalytic degradation of lignin. Carbohydr Polym 2024; 346:122601. [PMID: 39245520 DOI: 10.1016/j.carbpol.2024.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
A novel photocatalytic adsorbent, a cellulose nanofibrils based hydrogel incorporating carbon dots and Bi2O3/BiOCOOH (designated as CCHBi), was developed to address lignin pollution. CCHBi exhibited an adsorption capacity of 435.0 mg/g, 8.9 times greater than that of commercial activated carbon. This enhanced adsorption performance was attributed to the 3D porous structure constructed using cellulose nanofibrils (CNs), which increased the specific surface area and provided additional sorption sites. Adsorption and photocatalytic experiments showed that CCHBi had a photocatalytic degradation rate constant of 0.0140 min-1, 3.1 times higher than that of Bi2O3/BiOCOOH. The superior photocatalytic performance of CCHBi was due to the Z-scheme photocatalytic system constructed by carbon dots-loaded cellulose nanofibrils and Bi2O3/BiOCOOH, which facilitated the separation of photoinduced charge carriers. Additionally, the stability of CCHBi was confirmed through consecutive cycles of adsorption and photocatalysis, maintaining a removal efficiency of 85 % after ten cycles. The enhanced stability was due to the 3D porous structure constructed by CNs, which safeguarded the Bi2O3/BiOCOOH. This study validates the potential of CCHBi for high-performance lignin removal and promotes the application of CNs in developing new photocatalytic adsorbents.
Collapse
Affiliation(s)
- Xinmiao Qi
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiang Xiong
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haoxuan Cai
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Ma
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xin Guo
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Huiying Lv
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
92
|
Zhang Y, Peng S, Liu D, Zhu F. Design and engineering of 3D plasmonic superstructure based on Pickering emulsion templates for surface-enhanced Raman spectroscopy applications in chemical and biomedical sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124921. [PMID: 39126866 DOI: 10.1016/j.saa.2024.124921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The integration of Pickering emulsion as a versatile template facilitates the assembly of nanoscale and microscale NPs, leading to the formation of intricate 3D superstructures. These superstructures exhibit collective properties, including optical, electric, and catalytic functionalities, surpassing individual building block. This review comprehensively explores the design and engineering principles behind the creation of these multifaceted superstructures. The exploration begins with the fundamental aspects of surface chemistry governing nanoparticles, a crucial factor in directing their assembly behavior at the curved liquid-liquid emulsion interface. Emphasis is placed on understanding emulsion stability, a pivotal element guiding the formation of stable 3D architectures. The discussion extends to unraveling the underlying mechanisms promoting the formation of these 3D superstructures. The focus lies in elucidating the optical functionalities of these superstructures, particularly in the context of surface-enhanced Raman spectroscopy application. The surveyed literature showcases diverse Pickering emulsion-based strategies employed in the assembly of plasmonic nanoparticles into intricate superstructures, offering controlled architectures and unlocking unique potentials for chemical and biochemical sensing.
Collapse
Affiliation(s)
- Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Sasa Peng
- College of Food Science and Technology, Northwest University, 229 Taibei North Road, Xi'an, Shanxi 710069, China
| | - Dongli Liu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK; College of Food Science and Technology, Northwest University, 229 Taibei North Road, Xi'an, Shanxi 710069, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China.
| |
Collapse
|
93
|
Jiang X, Liu D, Yang S, Cheng X, Xie Y. Evolution of self-assembled amphiphilic colloidal particles in strong-flavor Chinese baijiu. Food Chem 2024; 461:140883. [PMID: 39154460 DOI: 10.1016/j.foodchem.2024.140883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
This study proposed the evolution of self-assembled amphiphilic colloidal particles in Strong-Flavor (SF) Baijiu based on Ostwald ripening for the first time. The evolution process occurs in two stages: disordered amphiphilic molecules self-assemble into small colloidal particles and subsequently undergo Oswald ripening to form larger hydrophobic particles. Microscopic observations revealed the average size of oil-like spherical colloidal particles in Baijiu increased from 1.86 μm to 2.96 μm while the number of particles decreased by 39.50% during the 16-year cellaring process of SF Baijiu, consistent with the particle size trend observed via laser scattering. During fusion process, the charge-to-mass ratio of positively charged colloidal particles decreased, leading ζ-potential decreased from 23.7 mV to 4.66 mV within 16 years of storage. The electrochemical impedance spectroscopy approach tracked the unidirectional variation in the dielectric constant during evolution of SF Baijiu, reflecting the gradual expansion of colloidal particles, which aligns with the evolution trend observed in molecular dynamics simulations. By integrating direct microscopic observations of amphiphilic colloidal particles with electrochemical techniques, the evolution of Baijiu samples is capable to be evaluated in-situ, laying the foundation for intelligent Baijiu aging monitoring technology.
Collapse
Affiliation(s)
- Xinyue Jiang
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| | - Defu Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| | - Shengzhi Yang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co. Ltd., Daye, Hubei 435100, China.
| | - Xiang Cheng
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co. Ltd., Daye, Hubei 435100, China.
| | - Yuqun Xie
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
94
|
Bami Chatenet Y, Valette S. Elucidating the lotus and rose-petal effects on hierarchical surfaces: Study of the effect of topographical scales on the contact angle hysteresis. J Colloid Interface Sci 2024; 676:355-367. [PMID: 39032418 DOI: 10.1016/j.jcis.2024.07.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
In nature, superhydrophobicity is almost systematically associated with a multiscale topography. Nevertheless, multiscale-textured natural surfaces can either produce water-repellent properties such as on the sacred lotus leaf or high liquid-to-solid adhesion such as on the rose petal. To conceive bio-inspired surfaces with self-cleaning properties, the proper contributions of each topographical scale to the wetting behavior need to be investigated. Conditions for the equilibrium of menisci produced at a given topographical scale are derived, yielding a recursion relation between each topographical scale. We introduce the equilibrium anchorage depth to quantify the penetration of water at equilibrium. To study the contact angle hysteresis (CAH), we thoroughly describe the mechanisms driving the advancing and receding motions of the triple line. Both phenomena depend on what we define as precursor advancing and receding motions. Eventually, the equilibrium, advancing and receding anchorage depths are related to the CAH. Topographical heterogeneities at a topographical subscale i are always associated with a reduced equilibrium anchorage depth and an enhanced robustness at all topographical scales of higher orders of magnitude. Eventually, it is demonstrated that advancing and receding anchorage depths are bounded by the equilibrium anchorage depth, elucidating how rose-petal-like surfaces systematically produce a high CAH.
Collapse
Affiliation(s)
- Yann Bami Chatenet
- Univ Lyon, Ecole Centrale de Lyon, CNRS, ENTPE, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513, 69130 Ecully, France.
| | - Stéphane Valette
- Univ Lyon, Ecole Centrale de Lyon, CNRS, ENTPE, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513, 69130 Ecully, France.
| |
Collapse
|
95
|
Jia Y, Gao F, Wang P, Bai S, Li H, Li J. Supramolecular assembly of Polydopamine@Fe nanoparticles with near-infrared light-accelerated cascade catalysis applied for synergistic photothermal-enhanced chemodynamic therapy. J Colloid Interface Sci 2024; 676:626-635. [PMID: 39053410 DOI: 10.1016/j.jcis.2024.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Chemodynamic therapy (CDT) via Fenton-like reaction is greatly attractive owing to its capability to generate highly cytotoxic •OH radicals from tumoral hydrogen peroxide (H2O2). However, the antitumor efficacy of CDT is often challenged by the relatively low radical generation efficiency and the high levels of antioxidative glutathione (GSH) in tumor microenvironment. Herein, an innovative photothermal Fenton-like catalyst, Fe-chelated polydopamine (PDA@Fe) nanoparticle, with excellent GSH-depleting capability is constructed via one-step molecular assembly strategy for dual-modal imaging-guided synergetic photothermal-enhanced chemodynamic therapy. Fe(III) ions in PDA@Fe nanoparticles can consume the GSH overexpressed in tumor microenvironment to avoid the potential •OH consumption, while the as-produced Fe(II) ions subsequently convert tumoral H2O2 into cytotoxic •OH radicals through the Fenton reaction. Notably, PDA@Fe nanoparticles demonstrate excellent near-infrared light absorption that results in superior photothermal conversion ability, which further boosts above-mentioned cascade catalysis to yield more •OH radicals for enhanced CDT. Taken together with T1-weighted magnetic resonance imaging (MRI) contrast enhancement (r1 = 8.13 mM-1 s-1) and strong photoacoustic (PA) imaging signal of PDA@Fe nanoparticles, this design finally realizes the synergistic photothermal-chemodynamic therapy. Overall, this work offers a new promising paradigm to effectively accommodate both imaging and therapy functions in one well-defined framework for personalized precision disease treatment.
Collapse
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Gao
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Peizhi Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
96
|
Shah M, Hameed A, Kashif M, Majeed N, Muhammad J, Shah N, Rehan T, Khan A, Uddin J, Khan A, Kashtoh H. Advances in agar-based composites: A comprehensive review. Carbohydr Polym 2024; 346:122619. [PMID: 39245496 DOI: 10.1016/j.carbpol.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
This review article explores the developments and applications in agar-based composites (ABCs), emphasizing various constituents such as metals, clay/ceramic, graphene, and polymers across diversified fields like wastewater treatment, drug delivery, food packaging, the energy sector, biomedical engineering, bioplastics, agriculture, and cosmetics. The focus is on agar as a sustainable and versatile biodegradable polysaccharide, highlighting research that has advanced the technology of ABCs. A bibliometric analysis is conducted using the Web of Science database, covering publications from January 2020 to March 2024, processed through VOSviewer Software Version 1.6.2. This analysis assesses evolving trends and scopes in the literature, visualizing co-words and themes that underscore the growing importance and potential of ABCs in various applications. This review paper contributes by showcasing the existing state-of-the-art knowledge and motivating further development in this promising field.
Collapse
Affiliation(s)
- Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Muhammad Kashif
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Javariya Muhammad
- Department of Zoology Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan.
| | - Touseef Rehan
- department of Biochemistry, Women University Mardan, Mardan 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, 616 Birkat Al Mauz, Nizwa, Sultanate of Oman; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
97
|
Wang H, Waterhouse GIN, Xiang H, Sun-Waterhouse D, Zhao Y, Chen S, Wu Y, Wang Y. Mechanisms of slow-release antibacterial properties in chitosan‑titanium dioxide stabilized perilla essential oil Pickering emulsions: Focusing on oil-water interfacial behaviors. Carbohydr Polym 2024; 346:122613. [PMID: 39245524 DOI: 10.1016/j.carbpol.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Perilla essential oil (PLEO) offers benefits for food preservation and healthcare, yet its instability restricts its applications. In this study, chitosan (CS) and TiO2 used to prepare composite particles. TiO2, after being modified with sodium laurate (SL), was successfully introduced at 0.1 %-3 % into the CS matrix. The resulting CS-SL-TiO2 composite particles can be formed by intertwining and rearranging through intramolecular and intermolecular interactions, and form an O/W interface with stability and viscoelasticity. The Pickering emulsions stabilized by these particles exhibit non-Newtonian pseudoplastic behavior, shear-thinning properties, and slow-release characteristics, along with antibacterial activity. Emulsions with 0.5 % and 1 % CS-SL-TiO2 composites demonstrated superior antibacterial effects against Escherichia coli and Staphylococcus aureus. The study revealed that all emulsions undergo Fickian diffusion and a sustained release of PLEO, with the Ritger-Peppas model best describing this release mechanism. The slow-release behaviors positively correlates with interfacial pressure, composite particle size, composite particle potential, composite contact angle, emulsion particle size and emulsion potential, but negatively correlates with diffusion rate, penetration rate, release kinetics and release rate. The findings lay groundwork for developing slow-release antimicrobial emulsions within polysaccharide matrices, showcasing promise for antimicrobial packaging solutions and enhanced food preservation techniques.
Collapse
Affiliation(s)
- Hengheng Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China.
| |
Collapse
|
98
|
Li X, Jamali M, Fielding LA. Pyrene-functionalized poly(methacrylic acid) acts as an efficient stabilizer for graphene nanoplatelets and facilitates their use in waterborne latex formulations. J Colloid Interface Sci 2024; 676:396-407. [PMID: 39033674 DOI: 10.1016/j.jcis.2024.07.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
HYPOTHESIS Pyrene derivatives are effective motifs when designing graphene-philic surfactants, enabling the use of hydrophobic graphene-based nanomaterials in waterborne formulations. Hence, novel pyrene end-functionalized polymeric stabilizers show promise for stabilizing aqueous graphene nanomaterial dispersions, and offer benefits over traditional small molecule surfactants. EXPERIMENTS Pyrene end-functionalized poly(methacrylic acid) (Py-PMAAn, where n = 68 to 128) was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization of MAA using a pyrene-containing RAFT chain-transfer agent. These polymers were evaluated as aqueous graphene nanoplatelet (GNP) stabilizers. Subsequently, polymer-stabilized GNPs were formulated into film-forming polymer latex dispersions and the properties of the resulting GNP-containing films measured. FINDINGS Py-PMAAn homopolymers with well-defined molecular weights were prepared via RAFT solution polymerization. They served as efficient stabilizers for aqueous GNP dispersions and performed better than a traditional small molecule surfactant and non-functionalized PMAA, especially at higher pH and with higher molecular weight polymers. The use of Py-PMAAn allowed GNPs to be readily formulated into waterborne latex coatings. When compared to controls, the resulting films were significantly reinforced due to the improved homogeneity of dried nanocomposite films and chain entanglement between the polymer matrix and stabilizers. Thus, the ability to readily incorporate GNPs into aqueous formulations and enhance GNP/polymer matrix interfaces was demonstrated for these novel amphiphilic stabilizers.
Collapse
Affiliation(s)
- Xueyuan Li
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mohammed Jamali
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
99
|
Xie P, Zheng Y, Lee YY, Zou S, Wu Y, Lai J, Wang Y, Zhang Z. Effect of diacylglycerol on partial coalescence of aerated emulsions: Fat crystal-membrane interaction and air-liquid Interface interaction insights. Food Chem 2024; 461:140879. [PMID: 39154466 DOI: 10.1016/j.foodchem.2024.140879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Currently, the poor whipping capabilities of anhydrous milk fat (AMF) in aerated emulsion products are a major obstacle for their use in beverages like tea and coffee, as well as in cakes and desserts, presenting fresh hurdles for the food industry. In this study, the mechanism of action of diacylglycerols (DAGs) with different carbon chain lengths and degrees of saturation on the partial coalescence of aerated emulsions was systematically investigated from three fundamental perspectives: fat crystallization, air-liquid interface rheology, and fat globule interface properties. The optimized crystallization of long carbon chain length diacylglycerol (LCD) based on stearate enhances interactions between fat globules at the air-liquid interface (with an elastic modulus E' reaching 246.42 mN/m), leading to a significantly reduced interface membrane strength. This promotes fat crystal-membrane interactions during whipping, resulting in a thermally stable foam structure with excellent shaping capability due to enhanced partial coalescence of fat globules. Although Laurate based medium carbon chain length diacylglycerol (MCD) promoted fat crystallization and optimized interface properties, it showed weaker foam properties because it did not adequately encapsulate air bubbles during whipping. Conversely, oleate long carbon chain length diacylglycerol (OCD) proved to be ineffective in facilitating fat crystal-membrane interaction, causing foam to have a subpar appearance. Hence, drawing from the carefully examined fat crystal-membrane interaction findings, a proposed mechanism sheds light on how DAGs impact the whipping abilities of aerated emulsions. This mechanism serves as a blueprint for creating aerated emulsions with superior whipping capabilities and foam systems that are resistant to heat.
Collapse
Affiliation(s)
- Pengkai Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yilan Zheng
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shuo Zou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuxin Wu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junqi Lai
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China..
| |
Collapse
|
100
|
Bai Y, Jiang X, He B, Zhu Y, Zhang Y. Polydimethylsiloxane enabled triple-action water-resistant coating with desirable relaxation rate in clear aligner. J Colloid Interface Sci 2024; 676:701-714. [PMID: 39059277 DOI: 10.1016/j.jcis.2024.07.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Clear aligners undergo rapid stress relaxation in warm, moist oral environments, compromising therapeutic effectiveness and longevity of treatment. To develop an innovative multilayer composite material with improved stability and reduced stress release, we have engineered an innovative coating characterized by the surface aggregation of polydimethylsiloxane (PDMS), which imparts a pronounced hydrophobic effect. In addition, the chemically and physically cross-linked structure of the coating reduces the free volume created by molecular chain rearrangement owing to the presence of water molecules, thereby minimizing water penetration into the coating. Concurrently, the coating's internal structure is enriched with numerous polar functional groups to capture water molecules that penetrate into the inside of the coating. Through combination of these mechanisms, water molecules are effectively sequestered, thereby impeding their penetration into the polyethylene terephthalate glycol (PETG) substrate. The impact of the polydimethylsiloxane content on the triple-action water-resistance mechanisms was thoroughly examined using attenuated total reflection (ATR)-Fourier transform infrared (FTIR), water absorption rate, water swelling rate, and X-ray photoelectron spectroscopy. The low surface energy cross-linked polyurethane coating is applied to the polyethylene terephthalate glycol (PETG) substrate to create a novel composite material with specific mechanical properties and reduced stress relaxation. The composite material remains stable in simulated oral environment with linear swelling rate of 0.58 % upon water absorption. Additionally, the stress release rate of the composite material within 336 h is notably lower (23.64 %) than that of PETG (62.29 %).
Collapse
Affiliation(s)
- Yun Bai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Bin He
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yabin Zhu
- Biomedical Engineering Research Center, Medical School of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| |
Collapse
|