951
|
Lim B, Mun J, Kim SY. Intrinsic Molecular Processes: Impact on Mutagenesis. Trends Cancer 2017; 3:357-371. [PMID: 28718413 DOI: 10.1016/j.trecan.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
Mutations provide resources for genome evolution by generating genetic variability. In addition, mutations act as a driving force leading to disease pathogenesis, and thus have important implications for disease diagnosis, prognosis, and treatment. Understanding the mechanisms underlying how mutations occur is therefore of prime importance for elucidating evolutionary and pathogenic processes. Recent genomics studies have revealed that mutations occur non-randomly across the human genome. In particular, the distribution of mutations is highly associated with intrinsic molecular processes including transcription, chromatin organization, DNA replication timing, and DNA repair. Interplay between intrinsic processes and extrinsic mutagenic exposure may thus imprint a characteristic mutational landscape on tumors. We discuss the impact of intrinsic molecular processes on mutation acquisition in cancer.
Collapse
Affiliation(s)
- Byungho Lim
- Research Center for Drug Discovery Technology, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Jihyeob Mun
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
952
|
Yu B, Zhang K, Milner JJ, Toma C, Chen R, Scott-Browne JP, Pereira RM, Crotty S, Chang JT, Pipkin ME, Wang W, Goldrath AW. Epigenetic landscapes reveal transcription factors that regulate CD8 + T cell differentiation. Nat Immunol 2017; 18:573-582. [PMID: 28288100 PMCID: PMC5395420 DOI: 10.1038/ni.3706] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022]
Abstract
Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Kai Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - J Justin Milner
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Clara Toma
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Runqiang Chen
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, USA
| | - James P Scott-Browne
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Renata M Pereira
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
953
|
Achinger-Kawecka J, Taberlay PC, Clark SJ. Alterations in Three-Dimensional Organization of the Cancer Genome and Epigenome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:41-51. [PMID: 28424341 DOI: 10.1101/sqb.2016.81.031013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The structural and functional basis of the genome is provided by the three-dimensional (3D) chromatin state. To enable accurate gene regulation, enhancer elements and promoter regions are brought into close spatial proximity to ensure proper, cell type-specific gene expression. In cancer, genetic and epigenetic processes can deregulate the transcriptional program. To investigate whether the 3D chromatin state is also disrupted in cancer we performed Hi-C chromosome conformation sequencing in normal and prostate cancer cells and compared the chromatin interaction maps with changes to the genome and epigenome. Notably, we find that additional topologically associated domain (TAD) boundaries are formed in cancer cells resulting in smaller TADs and altered gene expression profiles. The new TAD boundaries are commonly associated with copy-number changes observed in the cancer genome. We also identified new cancer-specific chromatin loops within TADs that are enriched for enhancers and promoters. Finally, we find that many of the long-range epigenetically silenced (LRES) and long-range epigenetically active (LREA) regions in cancer are characterized by differential chromatin interactions. Together our data provide a new insight into charting alterations in higher-order structure and the relationship with genetic, epigenetic, and transcriptional changes across the cancer genome.
Collapse
Affiliation(s)
- Joanna Achinger-Kawecka
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Phillippa C Taberlay
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, New South Wales 2010, Australia.,School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
954
|
Chasman D, Roy S. Inference of cell type specific regulatory networks on mammalian lineages. ACTA ACUST UNITED AC 2017; 2:130-139. [PMID: 29082337 DOI: 10.1016/j.coisb.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcriptional regulatory networks are at the core of establishing cell type specific gene expression programs. In mammalian systems, such regulatory networks are determined by multiple levels of regulation, including by transcription factors, chromatin environment, and three-dimensional organization of the genome. Recent efforts to measure diverse regulatory genomic datasets across multiple cell types and tissues offer unprecedented opportunities to examine the context-specificity and dynamics of regulatory networks at a greater resolution and scale than before. In parallel, numerous computational approaches to analyze these data have emerged that serve as important tools for understanding mammalian cell type specific regulation. In this article, we review recent computational approaches to predict the expression and sequence-based regulators of a gene's expression level and examine long-range gene regulation. We highlight promising approaches, insights gained, and open challenges that need to be overcome to build a comprehensive picture of cell type specific transcriptional regulatory networks.
Collapse
Affiliation(s)
- Deborah Chasman
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI 53715
| | - Sushmita Roy
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI 53715.,Department of Biostatistics and Medical Informatics University of Wisconsin-Madison, Madison, WI 53792
| |
Collapse
|
955
|
A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nat Methods 2017; 14:629-635. [PMID: 28417999 PMCID: PMC5490986 DOI: 10.1038/nmeth.4264] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 12/20/2022]
Abstract
Millions of cis-regulatory elements are predicted in the human genome, but direct evidence for their biological function is still scarce. Here we report a high-throughput method, Cis-Regulatory Element Scan by Tiling-deletion and sequencing (CREST-seq), for unbiased discovery and functional assessment of cis regulatory sequences in the genome. We use it to interrogate the 2Mbp POU5F1 locus in the human embryonic stem cells and identify 45 cis-regulatory elements of POU5F1. A majority of these elements display active chromatin marks, DNase hypersensitivity and occupancy by multiple transcription factors, confirming the utility of chromatin signatures in cis elements mapping. Notably, 17 of them are previously annotated promoters of functionally unrelated genes, and like typical enhancers, they form extensive spatial contacts with the POU5F1 promoter. Taken together, these results support the utility of CREST-seq for large-scale cis regulatory element discovery and point to commonality of enhancer-like promoters in the human genome.
Collapse
|
956
|
Abstract
Gene expression changes, the driving forces for cellular diversity in multicellular organisms, are regulated by a diverse set of gene regulatory elements that direct transcription in specific cells. Mutations in these elements, ranging from chromosomal aberrations to single-nucleotide polymorphisms, are a major cause of human disease. However, we currently have a very limited understanding of how regulatory element genotypes lead to specific phenotypes. In this review, we discuss the various methods of regulatory element identification, the different types of mutations they harbor, and their impact on human disease. We highlight how these variations can affect transcription of multiple genes in gene regulatory networks. In addition, we describe how novel technologies, such as massively parallel reporter assays and CRISPR/Cas9 genome editing, are beginning to provide a better understanding of the functional roles that these elements have and how their alteration can lead to specific phenotypes.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California, San Francisco, California 94158;
| |
Collapse
|
957
|
Marco E, Meuleman W, Huang J, Glass K, Pinello L, Wang J, Kellis M, Yuan GC. Multi-scale chromatin state annotation using a hierarchical hidden Markov model. Nat Commun 2017; 8:15011. [PMID: 28387224 PMCID: PMC5385569 DOI: 10.1038/ncomms15011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
Chromatin-state analysis is widely applied in the studies of development and diseases. However, existing methods operate at a single length scale, and therefore cannot distinguish large domains from isolated elements of the same type. To overcome this limitation, we present a hierarchical hidden Markov model, diHMM, to systematically annotate chromatin states at multiple length scales. We apply diHMM to analyse a public ChIP-seq data set. diHMM not only accurately captures nucleosome-level information, but identifies domain-level states that vary in nucleosome-level state composition, spatial distribution and functionality. The domain-level states recapitulate known patterns such as super-enhancers, bivalent promoters and Polycomb repressed regions, and identify additional patterns whose biological functions are not yet characterized. By integrating chromatin-state information with gene expression and Hi-C data, we identify context-dependent functions of nucleosome-level states. Thus, diHMM provides a powerful tool for investigating the role of higher-order chromatin structure in gene regulation. The impact of chromatin structure on gene expression makes it integral to our understanding of developmental and disease processes. Here, the authors introduce a hierarchical hidden Markov model to systematically annotate chromatin states at multiple length scales, and demonstrate its utility for the elucidation of the role of chromatin structure in gene expression.
Collapse
Affiliation(s)
- Eugenio Marco
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Wouter Meuleman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology and Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Jialiang Huang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Jianrong Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology and Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology and Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| |
Collapse
|
958
|
Pgltools: a genomic arithmetic tool suite for manipulation of Hi-C peak and other chromatin interaction data. BMC Bioinformatics 2017; 18:207. [PMID: 28388874 PMCID: PMC5384132 DOI: 10.1186/s12859-017-1621-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
Background Genomic interaction studies use next-generation sequencing (NGS) to examine the interactions between two loci on the genome, with subsequent bioinformatics analyses typically including annotation, intersection, and merging of data from multiple experiments. While many file types and analysis tools exist for storing and manipulating single locus NGS data, there is currently no file standard or analysis tool suite for manipulating and storing paired-genomic-loci: the data type resulting from “genomic interaction” studies. As genomic interaction sequencing data are becoming prevalent, a standard file format and tools for working with these data conveniently and efficiently are needed. Results This article details a file standard and novel software tool suite for working with paired-genomic-loci data. We present the paired-genomic-loci (PGL) file standard for genomic-interactions data, and the accompanying analysis tool suite “pgltools”: a cross platform, pypy compatible python package available both as an easy-to-use UNIX package, and as a python module, for integration into pipelines of paired-genomic-loci analyses. Conclusions Pgltools is a freely available, open source tool suite for manipulating paired-genomic-loci data. Source code, an in-depth manual, and a tutorial are available publicly at www.github.com/billgreenwald/pgltools, and a python module of the operations can be installed from PyPI via the PyGLtools module.
Collapse
|
959
|
Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N, Razin SV, Mirny LA, Tachibana-Konwalski K. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 2017; 544:110-114. [PMID: 28355183 PMCID: PMC5639698 DOI: 10.1038/nature21711] [Citation(s) in RCA: 542] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022]
Abstract
Chromatin is reprogrammed after fertilization to produce a totipotent zygote with the potential to generate a new organism. The maternal genome inherited from the oocyte and the paternal genome provided by sperm coexist as separate haploid nuclei in the zygote. How these two epigenetically distinct genomes are spatially organized is poorly understood. Existing chromosome conformation capture-based methods are not applicable to oocytes and zygotes owing to a paucity of material. To study three-dimensional chromatin organization in rare cell types, we developed a single-nucleus Hi-C (high-resolution chromosome conformation capture) protocol that provides greater than tenfold more contacts per cell than the previous method. Here we show that chromatin architecture is uniquely reorganized during the oocyte-to-zygote transition in mice and is distinct in paternal and maternal nuclei within single-cell zygotes. Features of genomic organization including compartments, topologically associating domains (TADs) and loops are present in individual oocytes when averaged over the genome, but the presence of each feature at a locus varies between cells. At the sub-megabase level, we observed stochastic clusters of contacts that can occur across TAD boundaries but average into TADs. Notably, we found that TADs and loops, but not compartments, are present in zygotic maternal chromatin, suggesting that these are generated by different mechanisms. Our results demonstrate that the global chromatin organization of zygote nuclei is fundamentally different from that of other interphase cells. An understanding of this zygotic chromatin 'ground state' could potentially provide insights into reprogramming cells to a state of totipotency.
Collapse
Affiliation(s)
- Ilya M. Flyamer
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Present address: MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanna Gassler
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Maxim Imakaev
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Hugo B. Brandão
- Harvard Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nezar Abdennur
- Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Harvard Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
| | - Kikuë Tachibana-Konwalski
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
960
|
Linkages between changes in the 3D organization of the genome and transcription during myotube differentiation in vitro. Skelet Muscle 2017; 7:5. [PMID: 28381300 PMCID: PMC5382473 DOI: 10.1186/s13395-017-0122-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022] Open
Abstract
Background The spatial organization of eukaryotic genomes facilitates and reflects the underlying nuclear processes that are occurring in the cell. As such, the spatial organization of a genome represents a window on the genome biology that enables analysis of the nuclear regulatory processes that contribute to mammalian development. Methods In this study, Hi-C and RNA-seq were used to capture the genome organization and transcriptome in mouse muscle progenitor cells (C2C12 myoblasts) before and after differentiation to myotubes, in the presence or absence of the cytidine analogue AraC. Results We observed significant local and global developmental changes despite high levels of correlation between the myotubes and myoblast genomes. Notably, the genes that exhibited the greatest variation in transcript levels between the different developmental stages were predominately within the euchromatic compartment. There was significant re-structuring and changes in the expression of replication-dependent histone variants within the HIST1 locus. Finally, treating terminally differentiated myotubes with AraC resulted in additional changes to the transcriptome and 3D genome organization of sets of genes that were all involved in pyroptosis. Conclusions Collectively, our results provide evidence for muscle cell-specific responses to developmental and environmental stimuli mediated through a chromatin structure mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s13395-017-0122-1) contains supplementary material, which is available to authorized users.
Collapse
|
961
|
Ren R, Deng L, Xue Y, Suzuki K, Zhang W, Yu Y, Wu J, Sun L, Gong X, Luan H, Yang F, Ju Z, Ren X, Wang S, Tang H, Geng L, Zhang W, Li J, Qiao J, Xu T, Qu J, Liu GH. Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res 2017; 27:483-504. [PMID: 28139645 PMCID: PMC5385610 DOI: 10.1038/cr.2017.18] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
Visualization of specific genomic loci in live cells is a prerequisite for the investigation of dynamic changes in chromatin architecture during diverse biological processes, such as cellular aging. However, current precision genomic imaging methods are hampered by the lack of fluorescent probes with high specificity and signal-to-noise contrast. We find that conventional transcription activator-like effectors (TALEs) tend to form protein aggregates, thereby compromising their performance in imaging applications. Through screening, we found that fusing thioredoxin with TALEs prevented aggregate formation, unlocking the full power of TALE-based genomic imaging. Using thioredoxin-fused TALEs (TTALEs), we achieved high-quality imaging at various genomic loci and observed aging-associated (epi) genomic alterations at telomeres and centromeres in human and mouse premature aging models. Importantly, we identified attrition of ribosomal DNA repeats as a molecular marker for human aging. Our study establishes a simple and robust imaging method for precisely monitoring chromatin dynamics in vitro and in vivo.
Collapse
Affiliation(s)
- Ruotong Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Deng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Xiaojun Gong
- Department of Pediatrics, Beijing Shijitan Hospital Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing 100038, China
| | - Huiqin Luan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhenyu Ju
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China
| | - Xiaoqing Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Tang
- Department of Pediatrics, Beijing Shijitan Hospital Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing 100038, China
| | - Lingling Geng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weizhou Zhang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Jie Qiao
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
962
|
Potential energy landscapes identify the information-theoretic nature of the epigenome. Nat Genet 2017; 49:719-729. [PMID: 28346445 PMCID: PMC5565269 DOI: 10.1038/ng.3811] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Epigenetics is the study of biochemical modifications carrying information independent of DNA sequence, which are heritable through cell division. In 1940, Waddington coined the term "epigenetic landscape" as a metaphor for pluripotency and differentiation, but methylation landscapes have not yet been rigorously computed. Using principles from statistical physics and information theory, we derive epigenetic energy landscapes from whole-genome bisulfite sequencing (WGBS) data that enable us to quantify methylation stochasticity genome-wide using Shannon's entropy, associating it with chromatin structure. Moreover, we consider the Jensen-Shannon distance between sample-specific energy landscapes as a measure of epigenetic dissimilarity and demonstrate its effectiveness for discerning epigenetic differences. By viewing methylation maintenance as a communications system, we introduce methylation channels and show that higher-order chromatin organization can be predicted from their informational properties. Our results provide a fundamental understanding of the information-theoretic nature of the epigenome that leads to a powerful approach for studying its role in disease and aging.
Collapse
|
963
|
Freire-Pritchett P, Schoenfelder S, Várnai C, Wingett SW, Cairns J, Collier AJ, García-Vílchez R, Furlan-Magaril M, Osborne CS, Fraser P, Rugg-Gunn PJ, Spivakov M. Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells. eLife 2017; 6:e21926. [PMID: 28332981 PMCID: PMC5407860 DOI: 10.7554/elife.21926] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells.
Collapse
Affiliation(s)
| | | | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Steven W Wingett
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Cairns
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Amanda J Collier
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Cameron S Osborne
- Department of Genetics and Molecular Medicine, King's College London School of Medicine, London, United Kingdom
| | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
964
|
Huang WC, Ferris E, Cheng T, Hörndli CS, Gleason K, Tamminga C, Wagner JD, Boucher KM, Christian JL, Gregg C. Diverse Non-genetic, Allele-Specific Expression Effects Shape Genetic Architecture at the Cellular Level in the Mammalian Brain. Neuron 2017; 93:1094-1109.e7. [PMID: 28238550 PMCID: PMC5774018 DOI: 10.1016/j.neuron.2017.01.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/27/2016] [Accepted: 01/30/2017] [Indexed: 01/19/2023]
Abstract
Interactions between genetic and epigenetic effects shape brain function, behavior, and the risk for mental illness. Random X inactivation and genomic imprinting are epigenetic allelic effects that are well known to influence genetic architecture and disease risk. Less is known about the nature, prevalence, and conservation of other potential epigenetic allelic effects in vivo in the mouse and primate brain. Here we devise genomics, in situ hybridization, and mouse genetics strategies to uncover diverse allelic effects in the brain that are not caused by imprinting or genetic variation. We found allelic effects that are developmental stage and cell type specific, that are prevalent in the neonatal brain, and that cause mosaics of monoallelic brain cells that differentially express wild-type and mutant alleles for heterozygous mutations. Finally, we show that diverse non-genetic allelic effects that impact mental illness risk genes exist in the macaque and human brain. Our findings have potential implications for mammalian brain genetics. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Wei-Chao Huang
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Elliott Ferris
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tong Cheng
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Cornelia Stacher Hörndli
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kelly Gleason
- Department of Psychiatry, UT Southwestern, Dallas, TX 75390-9127, USA
| | - Carol Tamminga
- Department of Psychiatry, UT Southwestern, Dallas, TX 75390-9127, USA
| | - Janice D Wagner
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Kenneth M Boucher
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Cancer Biostatistics Shared Resource, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jan L Christian
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Christopher Gregg
- Robertson Neuroscience Investigator, New York Stem Cell Foundation, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
965
|
Acemel RD, Maeso I, Gómez-Skarmeta JL. Topologically associated domains: a successful scaffold for the evolution of gene regulation in animals. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.265] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/15/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Rafael D. Acemel
- Centro Andaluz de Biología del Desarrollo (CABD); Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide; Seville Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD); Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide; Seville Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD); Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide; Seville Spain
| |
Collapse
|
966
|
Kang Y, Kim YW, Kang J, Yun WJ, Kim A. Erythroid specific activator GATA-1-dependent interactions between CTCF sites around the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:416-426. [PMID: 28161276 DOI: 10.1016/j.bbagrm.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/22/2017] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
CTCF sites (binding motifs for CCCTC-binding factor, an insulator protein) are located considerable distances apart on genomes but are closely positioned in organized chromatin. The close positioning of CTCF sites is often cell type or tissue specific. Here we analyzed chromatin organization in eight CTCF sites around the β-globin locus by 3C assay and explored the roles of erythroid specific transcription activator GATA-1 and KLF1 in it. It was found five CTCF sites convergent to the locus interact with each other in erythroid K562 cells but not in non-erythroid 293 cells. The interaction was decreased by depletion of GATA-1 or KLF1. It accompanied reductions of CTCF and Rad21 occupancies and loss of active chromatin structure at the CTCF sites. Furthermore Rad21 occupancy was reduced in the β-globin locus control region (LCR) hypersensitive sites (HSs) by the depletion of GATA-1 or KLF1. The role of GATA-1 in interaction between CTCF sites was revealed by its ectopic expression in 293 cells and by deletion of a GATA-1 site in the LCR HS2. These findings indicate that erythroid specific activator GATA-1 acts at CTCF sites around the β-globin locus to establish tissue-specific chromatin organization.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Won Ju Yun
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
967
|
Ruiz-Velasco M, Zaugg JB. Structure meets function: How chromatin organisation conveys functionality. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
968
|
Paulsen J, Sekelja M, Oldenburg AR, Barateau A, Briand N, Delbarre E, Shah A, Sørensen AL, Vigouroux C, Buendia B, Collas P. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol 2017; 18:21. [PMID: 28137286 PMCID: PMC5278575 DOI: 10.1186/s13059-016-1146-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/23/2016] [Indexed: 01/09/2023] Open
Abstract
Current three-dimensional (3D) genome modeling platforms are limited by their inability to account for radial placement of loci in the nucleus. We present Chrom3D, a user-friendly whole-genome 3D computational modeling framework that simulates positions of topologically-associated domains (TADs) relative to each other and to the nuclear periphery. Chrom3D integrates chromosome conformation capture (Hi-C) and lamin-associated domain (LAD) datasets to generate structure ensembles that recapitulate radial distributions of TADs detected in single cells. Chrom3D reveals unexpected spatial features of LAD regulation in cells from patients with a laminopathy-causing lamin mutation. Chrom3D is freely available on github.
Collapse
Affiliation(s)
- Jonas Paulsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monika Sekelja
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anja R Oldenburg
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Nolwenn Briand
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erwan Delbarre
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Akshay Shah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anita L Sørensen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Corinne Vigouroux
- INSERM, UMR S938, Centre de Recherches Saint-Antoine, Paris, France.,UPMC Université Paris 6 UMR S938, Paris, France.,ICAN, Paris, France.,AP-HP Hôpital Tenon, Paris, France
| | | | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway. .,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
969
|
Quigley IK, Kintner C. Rfx2 Stabilizes Foxj1 Binding at Chromatin Loops to Enable Multiciliated Cell Gene Expression. PLoS Genet 2017; 13:e1006538. [PMID: 28103240 PMCID: PMC5245798 DOI: 10.1371/journal.pgen.1006538] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Cooperative transcription factor binding at cis-regulatory sites in the genome drives robust eukaryotic gene expression, and many such sites must be coordinated to produce coherent transcriptional programs. The transcriptional program leading to motile cilia formation requires members of the DNA-binding forkhead (Fox) and Rfx transcription factor families and these factors co-localize to cilia gene promoters, but it is not clear how many cilia genes are regulated by these two factors, whether these factors act directly or indirectly, or how these factors act with specificity in the context of a 3-dimensional genome. Here, we use genome-wide approaches to show that cilia genes reside at the boundaries of topological domains and that these areas have low enhancer density. We show that the transcription factors Foxj1 and Rfx2 binding occurs in the promoters of more cilia genes than other known cilia transcription factors and that while Rfx2 binds directly to promoters and enhancers equally, Foxj1 prefers direct binding to enhancers and is stabilized at promoters by Rfx2. Finally, we show that Rfx2 and Foxj1 lie at the anchor endpoints of chromatin loops, suggesting that target genes are activated when Foxj1 bound at distal sites is recruited via a loop created by Rfx2 binding at both sites. We speculate that the primary function of Rfx2 is to stabilize distal enhancers with proximal promoters by operating as a scaffolding factor, bringing key regulatory domains bound by Foxj1 into close physical proximity and enabling coordinated cilia gene expression. The multiciliated cell extends hundreds of motile cilia to produce fluid flow in the airways and other organ systems. The formation of this specialized cell type requires the coordinated expression of hundreds of genes in order to produce all the protein parts motile cilia require. While a relatively small number of transcription factors has been identified that promote gene expression during multiciliate cell differentiation, it is not clear how they work together to coordinate the expression of genes required for multiple motile ciliation. Here, we show that two transcription factors known to drive cilia formation, Foxj1 and Rfx2, play complementary roles wherein Foxj1 activates target genes but tends not to bind near them in the genome, whereas Rfx2 can’t activate target genes by itself but instead acts as a scaffold by localizing Foxj1 to the proper targets. These results suggest not only a mechanism by which complex gene expression is coordinated in multiciliated cells, but also how transcriptional programs in general could be modular and deployed across different cellular contexts with the same basic promoter configuration.
Collapse
Affiliation(s)
- Ian K. Quigley
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies La Jolla, California, United States of America
- * E-mail:
| | - Chris Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies La Jolla, California, United States of America
| |
Collapse
|
970
|
Zhu Y, Gong K, Denholtz M, Chandra V, Kamps MP, Alber F, Murre C. Comprehensive characterization of neutrophil genome topology. Genes Dev 2017; 31:141-153. [PMID: 28167501 PMCID: PMC5322729 DOI: 10.1101/gad.293910.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils are responsible for the first line of defense against invading pathogens. Their nuclei are uniquely structured as multiple lobes that establish a highly constrained nuclear environment. Here we found that neutrophil differentiation was not associated with large-scale changes in the number and sizes of topologically associating domains (TADs). However, neutrophil genomes were enriched for long-range genomic interactions that spanned multiple TADs. Population-based simulation of spherical and toroid genomes revealed declining radii of gyration for neutrophil chromosomes. We found that neutrophil genomes were highly enriched for heterochromatic genomic interactions across vast genomic distances, a process named supercontraction. Supercontraction involved genomic regions located in the heterochromatic compartment in both progenitors and neutrophils or genomic regions that switched from the euchromatic to the heterochromatic compartment during neutrophil differentiation. Supercontraction was accompanied by the repositioning of centromeres, pericentromeres, and long interspersed nuclear elements (LINEs) to the neutrophil nuclear lamina. We found that Lamin B receptor expression was required to attach centromeric and pericentromeric repeats but not LINE-1 elements to the lamina. Differentiating neutrophils also repositioned ribosomal DNA and mininucleoli to the lamina-a process that was closely associated with sharply reduced ribosomal RNA expression. We propose that large-scale chromatin reorganization involving supercontraction and recruitment of heterochromatin and nucleoli to the nuclear lamina facilitates the folding of the neutrophil genome into a confined geometry imposed by a multilobed nuclear architecture.
Collapse
Affiliation(s)
- Yina Zhu
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Ke Gong
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Matthew Denholtz
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Vivek Chandra
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Mark P Kamps
- Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA
| | - Frank Alber
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Cornelis Murre
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
971
|
Haddad N, Jost D, Vaillant C. Perspectives: using polymer modeling to understand the formation and function of nuclear compartments. Chromosome Res 2017; 25:35-50. [PMID: 28091870 PMCID: PMC5346151 DOI: 10.1007/s10577-016-9548-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Compartmentalization is a ubiquitous feature of cellular function. In the nucleus, early observations revealed a non-random spatial organization of the genome with a large-scale segregation between transcriptionally active—euchromatin—and silenced—heterochromatin—parts of the genome. Recent advances in genome-wide mapping and imaging techniques have strikingly improved the resolution at which nuclear genome folding can be analyzed and have revealed a multiscale spatial compartmentalization with increasing evidences that such compartment may indeed result from and participate to genome function. Understanding the underlying mechanisms of genome folding and in particular the link to gene regulation requires a cross-disciplinary approach that combines the new high-resolution techniques with computational modeling of chromatin and chromosomes. In this perspective article, we first present how the copolymer theoretical framework can account for the genome compartmentalization. We then suggest, in a second part, that compartments may act as a “nanoreactor,” increasing the robustness of either activation or repression by enhancing the local concentration of regulators. We conclude with the need to develop a new framework, namely the “living chromatin” model that will allow to explicitly investigate the coupling between spatial compartmentalization and gene regulation.
Collapse
Affiliation(s)
- N Haddad
- CNRS, Laboratoire de Physique, University of Lyon, ENS de Lyon, University of Claude Bernard, 69007, Lyon, France
| | - D Jost
- University Grenoble-Alpes, CNRS, TIMC-IMAG lab, UMR 5525, Grenoble, France.
| | - C Vaillant
- CNRS, Laboratoire de Physique, University of Lyon, ENS de Lyon, University of Claude Bernard, 69007, Lyon, France.
| |
Collapse
|
972
|
Joshi O, Wang SY, Kuznetsova T, Atlasi Y, Peng T, Fabre PJ, Habibi E, Shaik J, Saeed S, Handoko L, Richmond T, Spivakov M, Burgess D, Stunnenberg HG. Dynamic Reorganization of Extremely Long-Range Promoter-Promoter Interactions between Two States of Pluripotency. Cell Stem Cell 2017; 17:748-757. [PMID: 26637943 DOI: 10.1016/j.stem.2015.11.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/11/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022]
Abstract
Serum-to-2i interconversion of mouse embryonic stem cells (mESCs) is a valuable in vitro model for early embryonic development. To assess whether 3D chromatin organization changes during this transition, we established Capture Hi-C with target-sequence enrichment of DNase I hypersensitive sites. We detected extremely long-range intra- and inter-chromosomal interactions between a small subset of H3K27me3 marked bivalent promoters involving the Hox clusters in serum-grown cells. Notably, these promoter-mediated interactions are not present in 2i ground-state pluripotent mESCs but appear upon their further development into primed-like serum mESCs. Reverting serum mESCs to ground-state 2i mESCs removes these promoter-promoter interactions in a spatiotemporal manner. H3K27me3, which is largely absent at bivalent promoters in ground-state 2i mESCs, is necessary, but not sufficient, to establish these interactions, as confirmed by Capture Hi-C on Eed(-/-) serum mESCs. Our results implicate H3K27me3 and PRC2 as critical players in chromatin alteration during priming of ESCs for differentiation.
Collapse
Affiliation(s)
- Onkar Joshi
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands
| | - Shuang-Yin Wang
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands
| | - Tatyana Kuznetsova
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands
| | - Yaser Atlasi
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands
| | - Tianran Peng
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands
| | - Pierre J Fabre
- School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland
| | - Ehsan Habibi
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands
| | - Jani Shaik
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands
| | - Sadia Saeed
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands
| | - Lusy Handoko
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands
| | - Todd Richmond
- Roche NimbleGen, Incorporated, 500 South Rosa Road, Madison, WI 53719, USA
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, Cambridgeshire CB22 3AT, UK
| | - Daniel Burgess
- Roche NimbleGen, Incorporated, 500 South Rosa Road, Madison, WI 53719, USA
| | - Hendrik G Stunnenberg
- Radboud University, Faculty of Science, Department of Molecular Biology, 6525GA Nijmegen, the Netherlands.
| |
Collapse
|
973
|
Lazaris C, Kelly S, Ntziachristos P, Aifantis I, Tsirigos A. HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking. BMC Genomics 2017; 18:22. [PMID: 28056762 PMCID: PMC5217551 DOI: 10.1186/s12864-016-3387-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/07/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Chromatin conformation capture techniques have evolved rapidly over the last few years and have provided new insights into genome organization at an unprecedented resolution. Analysis of Hi-C data is complex and computationally intensive involving multiple tasks and requiring robust quality assessment. This has led to the development of several tools and methods for processing Hi-C data. However, most of the existing tools do not cover all aspects of the analysis and only offer few quality assessment options. Additionally, availability of a multitude of tools makes scientists wonder how these tools and associated parameters can be optimally used, and how potential discrepancies can be interpreted and resolved. Most importantly, investigators need to be ensured that slight changes in parameters and/or methods do not affect the conclusions of their studies. RESULTS To address these issues (compare, explore and reproduce), we introduce HiC-bench, a configurable computational platform for comprehensive and reproducible analysis of Hi-C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as alignment, filtering, contact matrix generation and normalization, identification of topological domains, scoring and annotation of specific interactions using both published tools and our own. We have also embedded various tasks that perform quality assessment and visualization. HiC-bench is implemented as a data flow platform with an emphasis on analysis reproducibility. Additionally, the user can readily perform parameter exploration and comparison of different tools in a combinatorial manner that takes into account all desired parameter settings in each pipeline task. This unique feature facilitates the design and execution of complex benchmark studies that may involve combinations of multiple tool/parameter choices in each step of the analysis. To demonstrate the usefulness of our platform, we performed a comprehensive benchmark of existing and new TAD callers exploring different matrix correction methods, parameter settings and sequencing depths. Users can extend our pipeline by adding more tools as they become available. CONCLUSIONS HiC-bench consists an easy-to-use and extensible platform for comprehensive analysis of Hi-C datasets. We expect that it will facilitate current analyses and help scientists formulate and test new hypotheses in the field of three-dimensional genome organization.
Collapse
Affiliation(s)
- Charalampos Lazaris
- Department of Pathology, NYU School of Medicine, New York, NY 10016 USA
- Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | - Stephen Kelly
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU School of Medicine, New York, NY 10016 USA
- Genome Technology Center, Office of Science & Research, NYU School of Medicine, New York, NY 10016 USA
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY 10016 USA
- Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016 USA
- Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016 USA
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU School of Medicine, New York, NY 10016 USA
- Genome Technology Center, Office of Science & Research, NYU School of Medicine, New York, NY 10016 USA
| |
Collapse
|
974
|
Galupa R, Heard E. Topologically Associating Domains in Chromosome Architecture and Gene Regulatory Landscapes during Development, Disease, and Evolution. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:267-278. [DOI: 10.1101/sqb.2017.82.035030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
975
|
Handel AE, Gallone G, Zameel Cader M, Ponting CP. Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain. Hum Mol Genet 2017; 26:79-89. [PMID: 27798116 PMCID: PMC5351933 DOI: 10.1093/hmg/ddw369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 09/19/2016] [Accepted: 10/24/2016] [Indexed: 11/20/2022] Open
Abstract
Dense genotyping approaches have revealed much about the genetic architecture both of gene expression and disease susceptibility. However, assigning causality to genetic variants associated with a transcriptomic or phenotypic trait presents a far greater challenge. The development of epigenomic resources by ENCODE, the Epigenomic Roadmap and others has led to strategies that seek to infer the likely functional variants underlying these genome-wide association signals. It is known, for example, that such variants tend to be located within areas of open chromatin, as detected by techniques such as DNase-seq and FAIRE-seq. We aimed to assess what proportion of variants associated with phenotypic or transcriptomic traits in the human brain are located within transcription factor binding sites. The bioinformatic tools, Wellington and HINT, were used to infer transcription factor footprints from existing DNase-seq data derived from central nervous system tissues with high spatial resolution. This dataset was then employed to assess the likely contribution of altered transcription factor binding to both expression quantitative trait loci (eQTL) and genome-wide association study (GWAS) signals. Surprisingly, we show that most haplotypes associated with GWAS or eQTL phenotypes are located outside of DNase-seq footprints. This could imply that DNase-seq footprinting is too insensitive an approach to identify a large proportion of true transcription factor binding sites. Importantly, this suggests that prioritising variants for genome engineering studies to establish causality will continue to be frustrated by an inability of footprinting to identify the causative variant within a haplotype.
Collapse
Affiliation(s)
- Adam E. Handel
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Giuseppe Gallone
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics
| | - M. Zameel Cader
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Chris P. Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics
| |
Collapse
|
976
|
Abstract
Recent advances in chromosome conformation capture technologies are improving the current appreciation of how 3D genome architecture affects its function in different cell types and disease. Long-range chromatin interactions are organized into topologically associated domains, which are known to play a role in constraining gene expression patterns. However, in cancer cells there are alterations in the 3D genome structure, which impacts on gene regulation. Disruption of topologically associated domains architecture can result in alterations in chromatin interactions that bring new regulatory elements and genes together, leading to altered expression of oncogenes and tumor suppressor genes. Here, we discuss the impact of genetic and epigenetic changes in cancer and how this affects the spatial organization of chromatin. Understanding how disruptions to the 3D architecture contribute to the cancer genome will provide novel insights into the principles of epigenetic gene regulation in cancer and mechanisms responsible for cancer associated mutations and rearrangements.
Collapse
Affiliation(s)
- Joanna Achinger-Kawecka
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
977
|
Afanasieva K, Chopei M, Lozovik A, Semenova A, Lukash L, Sivolob A. DNA loop domain organization in nucleoids from cells of different types. Biochem Biophys Res Commun 2017; 483:142-146. [DOI: 10.1016/j.bbrc.2016.12.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022]
|
978
|
Jost D, Vaillant C, Meister P. Coupling 1D modifications and 3D nuclear organization: data, models and function. Curr Opin Cell Biol 2016; 44:20-27. [PMID: 28040646 DOI: 10.1016/j.ceb.2016.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
Over the past decade, advances in molecular methods have strikingly improved the resolution at which nuclear genome folding can be analyzed. This revealed a wealth of conserved features organizing the one dimensional DNA molecule into tridimensional nuclear domains. In this review, we briefly summarize the main findings and highlight how models based on polymer physics shed light on the principles underlying the formation of these domains. Finally, we discuss the mechanistic similarities allowing self-organization of these structures and the functional importance of these in the maintenance of transcriptional programs.
Collapse
Affiliation(s)
- Daniel Jost
- University Grenoble Alpes, CNRS, TIMC-IMAG lab, UMR 5525, Grenoble, F-38706 La Tronche, France
| | - Cédric Vaillant
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69007 Lyon, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
979
|
Rhee HS, Closser M, Guo Y, Bashkirova EV, Tan GC, Gifford DK, Wichterle H. Expression of Terminal Effector Genes in Mammalian Neurons Is Maintained by a Dynamic Relay of Transient Enhancers. Neuron 2016; 92:1252-1265. [PMID: 27939581 PMCID: PMC5193225 DOI: 10.1016/j.neuron.2016.11.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/31/2016] [Accepted: 11/17/2016] [Indexed: 11/22/2022]
Abstract
Generic spinal motor neuron identity is established by cooperative binding of programming transcription factors (TFs), Isl1 and Lhx3, to motor-neuron-specific enhancers. How expression of effector genes is maintained following downregulation of programming TFs in maturing neurons remains unknown. High-resolution exonuclease (ChIP-exo) mapping revealed that the majority of enhancers established by programming TFs are rapidly deactivated following Lhx3 downregulation in stem-cell-derived hypaxial motor neurons. Isl1 is released from nascent motor neuron enhancers and recruited to new enhancers bound by clusters of Onecut1 in maturing neurons. Synthetic enhancer reporter assays revealed that Isl1 operates as an integrator factor, translating the density of Lhx3 or Onecut1 binding sites into transient enhancer activity. Importantly, independent Isl1/Lhx3- and Isl1/Onecut1-bound enhancers contribute to sustained expression of motor neuron effector genes, demonstrating that outwardly stable expression of terminal effector genes in postmitotic neurons is controlled by a dynamic relay of stage-specific enhancers.
Collapse
Affiliation(s)
- Ho Sung Rhee
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Closser
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizaveta V Bashkirova
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - G Christopher Tan
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
980
|
Wu HJ, Michor F. A computational strategy to adjust for copy number in tumor Hi-C data. Bioinformatics 2016; 32:3695-3701. [PMID: 27531101 PMCID: PMC6078171 DOI: 10.1093/bioinformatics/btw540] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/28/2016] [Accepted: 08/11/2016] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The Hi-C technology was designed to decode the three-dimensional conformation of the genome. Despite progress towards more and more accurate contact maps, several systematic biases have been demonstrated to affect the resulting data matrix. Here we report a new source of bias that can arise in tumor Hi-C data, which is related to the copy number of genomic DNA. To address this bias, we designed a chromosome-adjusted iterative correction method called caICB. Our caICB correction method leads to significant improvements when compared with the original iterative correction in terms of eliminating copy number bias. AVAILABILITY AND IMPLEMENTATION The method is available at https://bitbucket.org/mthjwu/hicapp CONTACT: michor@jimmy.harvard.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hua-Jun Wu
- Department of Computational Biology and Biostatistics, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Franziska Michor
- Department of Computational Biology and Biostatistics, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| |
Collapse
|
981
|
Deplancke B, Alpern D, Gardeux V. The Genetics of Transcription Factor DNA Binding Variation. Cell 2016; 166:538-554. [PMID: 27471964 DOI: 10.1016/j.cell.2016.07.012] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 12/23/2022]
Abstract
Most complex trait-associated variants are located in non-coding regulatory regions of the genome, where they have been shown to disrupt transcription factor (TF)-DNA binding motifs. Variable TF-DNA interactions are therefore increasingly considered as key drivers of phenotypic variation. However, recent genome-wide studies revealed that the majority of variable TF-DNA binding events are not driven by sequence alterations in the motif of the studied TF. This observation implies that the molecular mechanisms underlying TF-DNA binding variation and, by extrapolation, inter-individual phenotypic variation are more complex than originally anticipated. Here, we summarize the findings that led to this important paradigm shift and review proposed mechanisms for local, proximal, or distal genetic variation-driven variable TF-DNA binding. In addition, we discuss the biomedical implications of these findings for our ability to dissect the molecular role(s) of non-coding genetic variants in complex traits, including disease susceptibility.
Collapse
Affiliation(s)
- Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Daniel Alpern
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
982
|
Vockley CM, Barrera A, Reddy TE. Decoding the role of regulatory element polymorphisms in complex disease. Curr Opin Genet Dev 2016; 43:38-45. [PMID: 27984826 DOI: 10.1016/j.gde.2016.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
Abstract
Genetic variation in gene regulatory elements contributes to diverse human diseases, ranging from rare and severe developmental defects to common and complex diseases such as obesity and diabetes. Early examples of regulatory mechanisms of human diseases involve large chromosomal rearrangements that change the regulatory connections within the genome. Single nucleotide variants in regulatory elements can also contribute to disease, potentially via demonstrated associations with changes in transcription factor binding, enhancer activity, post-translational histone modifications, long-range enhancer-promoter interactions, or RNA polymerase recruitment. Establishing causality between non-coding genetic variants, gene regulation, and disease has recently become more feasible with advances in genome-editing and epigenome-editing technologies. As establishing causal regulatory mechanisms of diseases becomes routine, functional annotation of target genes is likely to emerge as a major bottleneck for translation into patient benefits. In this review, we discuss the history and recent advances in understanding the regulatory mechanisms of human disease, and new challenges likely to be encountered once establishing those mechanisms becomes rote.
Collapse
Affiliation(s)
- Christopher M Vockley
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States; Department of Biostatistics & Bioinformatics, and Center for Genomic & Computational Biology, Duke University Medical Center, Durham, NC 27710, United States
| | - Alejandro Barrera
- Department of Biostatistics & Bioinformatics, and Center for Genomic & Computational Biology, Duke University Medical Center, Durham, NC 27710, United States
| | - Timothy E Reddy
- Department of Biostatistics & Bioinformatics, and Center for Genomic & Computational Biology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
983
|
Wang L, Xu X, Cao Y, Li Z, Cheng H, Zhu G, Duan F, Na J, Han JDJ, Chen YG. Activin/Smad2-induced Histone H3 Lys-27 Trimethylation (H3K27me3) Reduction Is Crucial to Initiate Mesendoderm Differentiation of Human Embryonic Stem Cells. J Biol Chem 2016; 292:1339-1350. [PMID: 27965357 DOI: 10.1074/jbc.m116.766949] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/10/2016] [Indexed: 01/10/2023] Open
Abstract
Differentiation of human embryonic stem cells into mesendoderm (ME) is directed by extrinsic signals and intrinsic epigenetic modifications. However, the dynamics of these epigenetic modifications and the mechanisms by which extrinsic signals regulate the epigenetic modifications during the initiation of ME differentiation remain elusive. In this study, we report that levels of histone H3 Lys-27 trimethylation (H3K27me3) decrease during ME initiation, which is essential for subsequent differentiation induced by the combined effects of activin and Wnt signaling. Furthermore, we demonstrate that activin mediates the H3K27me3 decrease via the Smad2-mediated reduction of EZH2 protein level. Our results suggest a two-step process of ME initiation: first, epigenetic priming via removal of H3K27me3 marks and, second, transcription activation. Our findings demonstrate a critical role of H3K27me3 priming and a direct interaction between extrinsic signals and epigenetic modifications during ME initiation.
Collapse
Affiliation(s)
- Lu Wang
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuanhao Xu
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaqiang Cao
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Zhongwei Li
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Cheng
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Gaoyang Zhu
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fuyu Duan
- the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Na
- the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Dong J Han
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Ye-Guang Chen
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
984
|
Andrey G, Schöpflin R, Jerković I, Heinrich V, Ibrahim DM, Paliou C, Hochradel M, Timmermann B, Haas S, Vingron M, Mundlos S. Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding. Genome Res 2016; 27:223-233. [PMID: 27923844 PMCID: PMC5287228 DOI: 10.1101/gr.213066.116] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 11/24/2022]
Abstract
Complex regulatory landscapes control the pleiotropic transcriptional activities of developmental genes. For most genes, the number, location, and dynamics of their associated regulatory elements are unknown. In this work, we characterized the three-dimensional chromatin microarchitecture and regulatory landscape of 446 limb-associated gene loci in mouse using Capture-C, ChIP-seq, and RNA-seq in forelimb, hindlimb at three developmental stages, and midbrain. The fine mapping of chromatin interactions revealed a strong preference for functional genomic regions such as repressed or active domains. By combining chromatin marks and interaction peaks, we annotated more than 1000 putative limb enhancers and their associated genes. Moreover, the analysis of chromatin interactions revealed two regimes of chromatin folding, one producing interactions stable across tissues and stages and another one associated with tissue and/or stage-specific interactions. Whereas stable interactions associate strongly with CTCF/RAD21 binding, the intensity of variable interactions correlates with changes in underlying chromatin modifications, specifically at the viewpoint and at the interaction site. In conclusion, this comprehensive data set provides a resource for the characterization of hundreds of limb-associated regulatory landscapes and a framework to interpret the chromatin folding dynamics observed during embryogenesis.
Collapse
Affiliation(s)
- Guillaume Andrey
- RG Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Robert Schöpflin
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ivana Jerković
- RG Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Verena Heinrich
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Daniel M Ibrahim
- RG Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christina Paliou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Myriam Hochradel
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195 Berlin, Germany
| | - Stefan Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
985
|
Han Y, He X. Integrating Epigenomics into the Understanding of Biomedical Insight. Bioinform Biol Insights 2016; 10:267-289. [PMID: 27980397 PMCID: PMC5138066 DOI: 10.4137/bbi.s38427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022] Open
Abstract
Epigenetics is one of the most rapidly expanding fields in biomedical research, and the popularity of the high-throughput next-generation sequencing (NGS) highlights the accelerating speed of epigenomics discovery over the past decade. Epigenetics studies the heritable phenotypes resulting from chromatin changes but without alteration on DNA sequence. Epigenetic factors and their interactive network regulate almost all of the fundamental biological procedures, and incorrect epigenetic information may lead to complex diseases. A comprehensive understanding of epigenetic mechanisms, their interactions, and alterations in health and diseases genome widely has become a priority in biological research. Bioinformatics is expected to make a remarkable contribution for this purpose, especially in processing and interpreting the large-scale NGS datasets. In this review, we introduce the epigenetics pioneering achievements in health status and complex diseases; next, we give a systematic review of the epigenomics data generation, summarize public resources and integrative analysis approaches, and finally outline the challenges and future directions in computational epigenomics.
Collapse
Affiliation(s)
- Yixing Han
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.; Present address: Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ximiao He
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.; Present address: Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
986
|
Abstract
Chromosomes of eukaryotes adopt highly dynamic and complex hierarchical structures in the nucleus. The three-dimensional (3D) organization of chromosomes profoundly affects DNA replication, transcription and the repair of DNA damage. Thus, a thorough understanding of nuclear architecture is fundamental to the study of nuclear processes in eukaryotic cells. Recent years have seen rapid proliferation of technologies to investigate genome organization and function. Here, we review experimental and computational methodologies for 3D genome analysis, with special focus on recent advances in high-throughput chromatin conformation capture (3C) techniques and data analysis.
Collapse
Affiliation(s)
- Anthony D Schmitt
- Ludwig Institute for Cancer Research and the University of California, San Diego (UCSD) Biomedical Sciences Graduate Program, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Ming Hu
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, 650 First Avenue, Room 540, New York, New York 10016, USA
- Present address: Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genomic Medicine, University of California, San Diego (UCSD) School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
987
|
Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc Natl Acad Sci U S A 2016; 113:14805-14810. [PMID: 27911843 DOI: 10.1073/pnas.1617793113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The gut microbiota impacts many aspects of host biology including immune function. One hypothesis is that microbial communities induce epigenetic changes with accompanying alterations in chromatin accessibility, providing a mechanism that allows a community to have sustained host effects even in the face of its structural or functional variation. We used Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to define chromatin accessibility in predicted enhancer regions of intestinal αβ+ and γδ+ intraepithelial lymphocytes purified from germ-free mice, their conventionally raised (CONV-R) counterparts, and mice reared germ free and then colonized with CONV-R gut microbiota at the end of the suckling-weaning transition. Characterizing genes adjacent to traditional enhancers and super-enhancers revealed signaling networks, metabolic pathways, and enhancer-associated transcription factors affected by the microbiota. Our results support the notion that epigenetic modifications help define microbial community-affiliated functional features of host immune cell lineages.
Collapse
|
988
|
Olivares-Chauvet P, Mukamel Z, Lifshitz A, Schwartzman O, Elkayam NO, Lubling Y, Deikus G, Sebra RP, Tanay A. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 2016; 540:296-300. [DOI: 10.1038/nature20158] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
|
989
|
Wang Q, Zou Y, Nowotschin S, Kim SY, Li QV, Soh CL, Su J, Zhang C, Shu W, Xi Q, Huangfu D, Hadjantonakis AK, Massagué J. The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells. Cell Stem Cell 2016; 20:70-86. [PMID: 27889317 DOI: 10.1016/j.stem.2016.10.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/07/2016] [Accepted: 10/02/2016] [Indexed: 01/01/2023]
Abstract
In this study, we outline a regulatory network that involves the p53 tumor suppressor family and the Wnt pathway acting together with the TGF-β pathway in mesendodermal differentiation of mouse and human embryonic stem cells. Knockout of all three members, p53, p63, and p73, shows that the p53 family is essential for mesendoderm specification during exit from pluripotency in embryos and in culture. Wnt3 and its receptor Fzd1 are direct p53 family target genes in this context, and induction of Wnt signaling by p53 is critical for activation of mesendodermal differentiation genes. Globally, Wnt3-activated Tcf3 and nodal-activated Smad2/3 transcription factors depend on each other for co-occupancy of target enhancers associated with key differentiation loci. Our results therefore highlight an unanticipated role for p53 family proteins in a regulatory network that integrates essential Wnt-Tcf and nodal-Smad inputs in a selective and interdependent way to drive mesendodermal differentiation of pluripotent cells.
Collapse
Affiliation(s)
- Qiong Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sang Yong Kim
- Rodent Genetic Engineering Core, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Qing V Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Chew-Li Soh
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chao Zhang
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Weiping Shu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qiaoran Xi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
990
|
Hnisz D, Day DS, Young RA. Insulated Neighborhoods: Structural and Functional Units of Mammalian Gene Control. Cell 2016; 167:1188-1200. [PMID: 27863240 PMCID: PMC5125522 DOI: 10.1016/j.cell.2016.10.024] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
Abstract
Understanding how transcriptional enhancers control over 20,000 protein-coding genes to maintain cell-type-specific gene expression programs in all human cells is a fundamental challenge in regulatory biology. Recent studies suggest that gene regulatory elements and their target genes generally occur within insulated neighborhoods, which are chromosomal loop structures formed by the interaction of two DNA sites bound by the CTCF protein and occupied by the cohesin complex. Here, we review evidence that insulated neighborhoods provide for specific enhancer-gene interactions, are essential for both normal gene activation and repression, form a chromosome scaffold that is largely preserved throughout development, and are perturbed by genetic and epigenetic factors in disease. Insulated neighborhoods are a powerful paradigm for gene control that provides new insights into development and disease.
Collapse
Affiliation(s)
- Denes Hnisz
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | - Daniel S Day
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
991
|
Symmons O, Pan L, Remeseiro S, Aktas T, Klein F, Huber W, Spitz F. The Shh Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of Genomic Distances. Dev Cell 2016; 39:529-543. [PMID: 27867070 PMCID: PMC5142843 DOI: 10.1016/j.devcel.2016.10.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/01/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022]
Abstract
Gene expression often requires interaction between promoters and distant enhancers, which occur within the context of highly organized topologically associating domains (TADs). Using a series of engineered chromosomal rearrangements at the Shh locus, we carried out an extensive fine-scale characterization of the factors that govern the long-range regulatory interactions controlling Shh expression. We show that Shh enhancers act pervasively, yet not uniformly, throughout the TAD. Importantly, changing intra-TAD distances had no impact on Shh expression. In contrast, inversions disrupting the TAD altered global folding of the region and prevented regulatory contacts in a distance-dependent manner. Our data indicate that the Shh TAD promotes distance-independent contacts between distant regions that would otherwise interact only sporadically, enabling functional communication between them. In large genomes where genomic distances per se can limit regulatory interactions, this function of TADs could be as essential for gene expression as the formation of insulated neighborhoods.
Collapse
Affiliation(s)
- Orsolya Symmons
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Leslie Pan
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Silvia Remeseiro
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Tugce Aktas
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Felix Klein
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
992
|
Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, Li Y, Lin S, Lin Y, Barr CL, Ren B. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep 2016; 17:2042-2059. [PMID: 27851967 PMCID: PMC5478386 DOI: 10.1016/j.celrep.2016.10.061] [Citation(s) in RCA: 583] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/02/2016] [Accepted: 10/18/2016] [Indexed: 01/19/2023] Open
Abstract
The three-dimensional configuration of DNA is integral to all nuclear processes in eukaryotes, yet our knowledge of the chromosome architecture is still limited. Genome-wide chromosome conformation capture studies have uncovered features of chromatin organization in cultured cells, but genome architecture in human tissues has yet to be explored. Here, we report the most comprehensive survey to date of chromatin organization in human tissues. Through integrative analysis of chromatin contact maps in 21 primary human tissues and cell types, we find topologically associating domains highly conserved in different tissues. We also discover genomic regions that exhibit unusually high levels of local chromatin interactions. These frequently interacting regions (FIREs) are enriched for super-enhancers and are near tissue-specifically expressed genes. They display strong tissue-specificity in local chromatin interactions. Additionally, FIRE formation is partially dependent on CTCF and the Cohesin complex. We further show that FIREs can help annotate the function of non-coding sequence variants.
Collapse
Affiliation(s)
- Anthony D Schmitt
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; UCSD Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ming Hu
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, 650 First Avenue, New York, NY 10016, USA.
| | - Inkyung Jung
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Zheng Xu
- Departments of Genetics, Biostatistics, and Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA; Quantitative Life Sciences Initiative, University of Nebraska, Lincoln, NE 68583, USA; Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; USCD Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Catherine L Tan
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Yun Li
- Departments of Genetics, Biostatistics, and Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shin Lin
- Division of Cardiology, Department of Medicine, University of Washington, 850 Republican Street, Seattle, WA 98108, USA
| | - Yiing Lin
- Department of Surgery, Washington University School of Medicine, 660 S Euclid Ave., Campus Box 8109, St. Louis, MO 63110, USA
| | - Cathy L Barr
- Krembil Research Institute University Health Network, The Hospital for Sick Children, The University of Toronto, Krembil Discovery Tower, 60 Leonard Ave. 8KD-412, Toronto, ON M5T 2S8, Canada
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
993
|
Abstract
Genetic variation associated with disease often appears in non-coding parts of the genome. Understanding the mechanisms by which this phenomenon leads to disease is necessary to translate results from genetic association studies to the clinic. Assigning function to this type of variation is notoriously difficult because the human genome harbours a complex regulatory landscape with a dizzying array of transcriptional regulatory sequences, such as enhancers that have unpredictable, promiscuous and context-dependent behaviour. In this Review, we discuss how technological advances have provided increasingly detailed information on genome folding; for example, genome folding forms loops that bring enhancers and target genes into close proximity. We also now know that enhancers function within topologically associated domains, which are structural and functional units of chromosomes. Studying disease-associated mutations and chromosomal rearrangements in the context of the 3D genome will enable the identification of dysregulated target genes and aid the progression from descriptive genetic association results to discovering molecular mechanisms underlying disease.
Collapse
|
994
|
Ramani V, Cusanovich DA, Hause RJ, Ma W, Qiu R, Deng X, Blau CA, Disteche CM, Noble WS, Shendure J, Duan Z. Mapping 3D genome architecture through in situ DNase Hi-C. Nat Protoc 2016; 11:2104-21. [PMID: 27685100 PMCID: PMC5547819 DOI: 10.1038/nprot.2016.126] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the advent of massively parallel sequencing, considerable work has gone into adapting chromosome conformation capture (3C) techniques to study chromosomal architecture at a genome-wide scale. We recently demonstrated that the inactive murine X chromosome adopts a bipartite structure using a novel 3C protocol, termed in situ DNase Hi-C. Like traditional Hi-C protocols, in situ DNase Hi-C requires that chromatin be chemically cross-linked, digested, end-repaired, and proximity-ligated with a biotinylated bridge adaptor. The resulting ligation products are optionally sheared, affinity-purified via streptavidin bead immobilization, and subjected to traditional next-generation library preparation for Illumina paired-end sequencing. Importantly, in situ DNase Hi-C obviates the dependence on a restriction enzyme to digest chromatin, instead relying on the endonuclease DNase I. Libraries generated by in situ DNase Hi-C have a higher effective resolution than traditional Hi-C libraries, which makes them valuable in cases in which high sequencing depth is allowed for, or when hybrid capture technologies are expected to be used. The protocol described here, which involves ∼4 d of bench work, is optimized for the study of mammalian cells, but it can be broadly applicable to any cell or tissue of interest, given experimental parameter optimization.
Collapse
Affiliation(s)
- Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Darren A Cusanovich
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ronald J Hause
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Wenxiu Ma
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Xinxian Deng
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - C. Anthony Blau
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Division of Hematology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
995
|
Barutcu AR, Hong D, Lajoie BR, McCord RP, van Wijnen AJ, Lian JB, Stein JL, Dekker J, Imbalzano AN, Stein GS. RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1389-1397. [PMID: 27514584 PMCID: PMC5071180 DOI: 10.1016/j.bbagrm.2016.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
RUNX1 is a transcription factor functioning both as an oncogene and a tumor suppressor in breast cancer. RUNX1 alters chromatin structure in cooperation with chromatin modifier and remodeling enzymes. In this study, we examined the relationship between RUNX1-mediated transcription and genome organization. We characterized genome-wide RUNX1 localization and performed RNA-seq and Hi-C in RUNX1-depleted and control MCF-7 breast cancer cells. RNA-seq analysis showed that RUNX1 depletion led to up-regulation of genes associated with chromatin structure and down-regulation of genes related to extracellular matrix biology, as well as NEAT1 and MALAT1 lncRNAs. Our ChIP-Seq analysis supports a prominent role for RUNX1 in transcriptional activation. About 30% of all RUNX1 binding sites were intergenic, indicating diverse roles in promoter and enhancer regulation and suggesting additional functions for RUNX1. Hi-C analysis of RUNX1-depleted cells demonstrated that overall three-dimensional genome organization is largely intact, but indicated enhanced association of RUNX1 near Topologically Associating Domain (TAD) boundaries and alterations in long-range interactions. These results suggest an architectural role for RUNX1 in fine-tuning local interactions rather than in global organization. Our results provide novel insight into RUNX1-mediated perturbations of higher-order genome organization that are functionally linked with RUNX1-dependent compromised gene expression in breast cancer cells.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Deli Hong
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Bryan R Lajoie
- Program in Systems Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Rachel Patton McCord
- Program in Systems Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jane B Lian
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | - Gary S Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
996
|
Gomez NC, Hepperla AJ, Dumitru R, Simon JM, Fang F, Davis IJ. Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Cancer. Cell Rep 2016; 17:1607-1620. [PMID: 27806299 PMCID: PMC5267842 DOI: 10.1016/j.celrep.2016.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/02/2016] [Accepted: 10/02/2016] [Indexed: 11/15/2022] Open
Abstract
Chromatin regulation is critical for differentiation and disease. However, features linking the chromatin environment of stem cells with disease remain largely unknown. We explored chromatin accessibility in embryonic and multipotent stem cells and unexpectedly identified widespread chromatin accessibility at repetitive elements. Integrating genomic and biochemical approaches, we demonstrate that these sites of increased accessibility are associated with well-positioned nucleosomes marked by distinct histone modifications. Differentiation is accompanied by chromatin remodeling at repetitive elements associated with altered expression of genes in relevant developmental pathways. Remarkably, we found that the chromatin environment of Ewing sarcoma, a mesenchymally derived tumor, is shared with primary mesenchymal stem cells (MSCs). Accessibility at repetitive elements in MSCs offers a permissive environment that is exploited by the critical oncogene responsible for this cancer. Our data demonstrate that stem cells harbor a unique chromatin landscape characterized by accessibility at repetitive elements, a feature associated with differentiation and oncogenesis.
Collapse
Affiliation(s)
- Nicholas C Gomez
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raluca Dumitru
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Human Pluripotent Stem Cell Core Facility, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fang Fang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
997
|
Genomic Alterations of Non-Coding Regions Underlie Human Cancer: Lessons from T-ALL. Trends Mol Med 2016; 22:1035-1046. [PMID: 28240214 DOI: 10.1016/j.molmed.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
It has been appreciated for decades that somatic genomic alterations that change coding sequences of proto-oncogenes, translocate enhancers/promoters near proto-oncogenes, or create fusion oncogenes can drive cancer by inducing oncogenic activities. An explosion of genome-wide technologies over the past decade has fueled discoveries of the roles of three-dimensional chromosome structure and powerful cis-acting elements (super-enhancers) in regulating gene transcription. In recent years, studies of human T cell acute lymphoblastic leukemia (T-ALL) using genome-wide technologies have provided paradigms for how non-coding genomic region alterations can disrupt 3D chromosome architecture or establish super-enhancers to activate oncogenic transcription of proto-oncogenes. These studies raise important issues to consider with the objective of leveraging basic knowledge into new diagnostic and therapeutic opportunities for cancer patients.
Collapse
|
998
|
Shi Y, Su XB, He KY, Wu BH, Zhang BY, Han ZG. Chromatin accessibility contributes to simultaneous mutations of cancer genes. Sci Rep 2016; 6:35270. [PMID: 27762310 PMCID: PMC5071887 DOI: 10.1038/srep35270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
Somatic mutations of many cancer genes tend to co-occur (termed co-mutations) in certain patterns during tumor initiation and progression. However, the genetic and epigenetic mechanisms that contribute to the co-mutations of these cancer genes have yet to be explored. Here, we systematically investigated the association between the somatic co-mutations of cancer genes and high-order chromatin conformation. Significantly, somatic point co-mutations in protein-coding genes were closely associated with high-order spatial chromatin folding. We propose that these regions be termed Spatial Co-mutation Hotspots (SCHs) and report their occurrence in different cancer types. The conserved mutational signatures and DNA sequences flanking these point co-mutations, as well as CTCF-binding sites, are also enriched within the SCH regions. The genetic alterations that are harboured in the same SCHs tend to disrupt cancer driver genes involved in multiple signalling pathways. The present work demonstrates that high-order spatial chromatin organisation may contribute to the somatic co-mutations of certain cancer genes during tumor development.
Collapse
Affiliation(s)
- Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Xian-Bin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Kun-Yan He
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing-Hao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Bo-Yu Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
999
|
Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK, Gandal MJ, Sutton GJ, Hormozdiari F, Lu D, Lee C, Eskin E, Voineagu I, Ernst J, Geschwind DH. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 2016; 538:523-527. [PMID: 27760116 DOI: 10.1038/nature19847] [Citation(s) in RCA: 405] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
Three-dimensional physical interactions within chromosomes dynamically regulate gene expression in a tissue-specific manner. However, the 3D organization of chromosomes during human brain development and its role in regulating gene networks dysregulated in neurodevelopmental disorders, such as autism or schizophrenia, are unknown. Here we generate high-resolution 3D maps of chromatin contacts during human corticogenesis, permitting large-scale annotation of previously uncharacterized regulatory relationships relevant to the evolution of human cognition and disease. Our analyses identify hundreds of genes that physically interact with enhancers gained on the human lineage, many of which are under purifying selection and associated with human cognitive function. We integrate chromatin contacts with non-coding variants identified in schizophrenia genome-wide association studies (GWAS), highlighting multiple candidate schizophrenia risk genes and pathways, including transcription factors involved in neurogenesis, and cholinergic signalling molecules, several of which are supported by independent expression quantitative trait loci and gene expression analyses. Genome editing in human neural progenitors suggests that one of these distal schizophrenia GWAS loci regulates FOXG1 expression, supporting its potential role as a schizophrenia risk gene. This work provides a framework for understanding the effect of non-coding regulatory elements on human brain development and the evolution of cognition, and highlights novel mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hyejung Won
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Luis de la Torre-Ubieta
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Jason L Stein
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Neelroop N Parikshak
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Jerry Huang
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Carli K Opland
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Michael J Gandal
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Gavin J Sutton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Farhad Hormozdiari
- Department of Computer Science, University of California Los Angeles, California 90095, USA
| | - Daning Lu
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Changhoon Lee
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Eleazar Eskin
- Department of Computer Science, University of California Los Angeles, California 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jason Ernst
- Department of Computer Science, University of California Los Angeles, California 90095, USA.,Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA.,Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| |
Collapse
|
1000
|
|