951
|
Tettamanti S, Marin V, Pizzitola I, Magnani CF, Giordano Attianese GMP, Cribioli E, Maltese F, Galimberti S, Lopez AF, Biondi A, Bonnet D, Biagi E. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol 2013; 161:389-401. [PMID: 23432359 DOI: 10.1111/bjh.12282] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022]
Abstract
Current therapeutic regimens for acute myeloid leukaemia (AML) are still associated with high rates of relapse. Immunotherapy with T-cells genetically modified to express chimeric antigen receptors (CARs) represents an innovative approach. Here we investigated the targeting of the interleukin three receptor alpha (IL3RA; CD123) molecule, which is overexpressed on AML bulk population, CD34(+) leukaemia progenitors, and leukaemia stem cells (LSC) compared to normal haematopoietic stem/progenitor cells (HSPCs), and whose overexpression is associated with poor prognosis. Cytokine-induced killer (CIK) cells were transduced with SFG-retroviral-vector encoding an anti-CD123 CAR. Transduced cells were able to strongly kill CD123(+) cell lines, as well as primary AML blasts. Interestingly, secondary colony experiments demonstrated that anti-CD123.CAR preserved in vitro HSPCs, in contrast to a previously generated anti-CD33.CAR, while keeping an identical cytotoxicity profile towards AML. Furthermore, limited killing of normal monocytes and CD123-low-expressing endothelial cells was noted, thus indicating a low toxicity profile of the anti-CD123.CAR. Taken together, our results indicate that CD123-specific CARs strongly enhance anti-AML CIK functions, while sparing HSPCs and normal low-expressing antigen cells, paving the way to develop novel immunotherapy approaches for AML treatment.
Collapse
Affiliation(s)
- Sarah Tettamanti
- Centro di Ricerca Matilde Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
952
|
Abstract
T-cell immunotherapy is a promising approach to treat disseminated cancer. However, it has been limited by the ability to isolate and expand T cells restricted to tumour-associated antigens. Using ex vivo gene transfer, T cells from patients can be genetically engineered to express a novel T cell receptor or chimeric antigen receptor to specifically recognize a tumour-associated antigen and thereby selectively kill tumour cells. Indeed, genetically engineered T cells have recently been successfully used for cancer treatment in a small number of patients. Here we review the recent progress in the field, and summarize the challenges that lie ahead and the strategies being used to overcome them.
Collapse
Affiliation(s)
- M Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
953
|
Fry TJ, Mackall CL. T-cell adoptive immunotherapy for acute lymphoblastic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:348-353. [PMID: 24319203 PMCID: PMC7569491 DOI: 10.1182/asheducation-2013.1.348] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Substantial progress has been made in the treatment of precursor B-cell acute lymphoblastic leukemia (B-ALL), but recurrent disease remains a leading cause of death in children due to cancer and outcomes for adults with B-ALL remain poor. Recently, complete clinical responses have been observed in small numbers of patients with B-ALL treated with adoptive immunotherapy using T cells genetically engineered to express chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule present in essentially all cases of B-ALL. Preclinical data suggest that CARs targeting CD22, another antigen present in the majority of B-ALL cases, are similarly potent. Several clinical studies already under way will soon more clearly define the rate of response to this novel therapy in B-ALL. Further work is needed to identify optimal platforms for CAR-based adoptive immunotherapy for leukemia, to establish guidelines for managing toxicity, and to determine whether the remissions induced by this approach can be rendered durable.
Collapse
Affiliation(s)
- Terry J Fry
- 1Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
954
|
Nonviral RNA transfection to transiently modify T cells with chimeric antigen receptors for adoptive therapy. Methods Mol Biol 2013; 969:187-201. [PMID: 23296935 DOI: 10.1007/978-1-62703-260-5_12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Redirecting T cells with a chimeric antigen receptor (CAR) of predefined specificity showed remarkable efficacy in the adoptive therapy trials of malignant diseases. The CAR consists of a single chain fragment of variable region (scFv) antibody targeting domain covalently linked to the CD3ζ signalling domain of the T cell receptor complex to mediate T cell activation upon antigen engagement. By using an antibody-derived targeting domain a CAR can potentially redirect T cells towards any target expressed on the cell surface as long as a binding domain is available. Antibody-mediated targeting moreover circumvents MHC restriction of the targeted antigen, thereby broadening the potential of applicability of adoptive T cell therapy. While T cells were so far genetically modified by viral transduction, transient modification with a CAR by RNA transfection gained increasing interest during the last years. This chapter focuses on methods to modify human T cells from peripheral blood with a CAR by electroporation of in vitro transcribed RNA and to test modified T cells for function for use in adoptive immunotherapy.
Collapse
|
955
|
Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med 2012; 14:405-15. [PMID: 22262649 DOI: 10.1002/jgm.2604] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The genetic engineering of T cells through the introduction of a chimeric antigen receptor (CAR) allows for generation of tumor-targeted T cells. Once expressed by T cells, CARs combine antigen-specificity with T cell activation in a single fusion molecule. Most CARs are comprised of an antigen-binding domain, an extracellular spacer/hinge region, a trans-membrane domain and an intracellular signaling domain resulting in T cell activation after antigen binding. METHODS We performed a search of the literature regarding tumor immunotherapy using CAR-modified T cells to provide a concise review of this topic. RESULTS This review aims to focus on the elements of CAR design required for successful application of this technology in cancer immunotherapy. Most notably, proper target antigen selection, co-stimulatory signaling, and the ability of CAR-modified T cells to traffic, persist and retain function after adoptive transfer are required for optimal tumor eradication. Furthermore, recent clinical trials have demonstrated tumor burden and chemotherapy conditioning before adoptive transfer as being critically important for this therapy. Future research into counteracting the suppressive tumor microenvironment and the ability to activate an endogenous anti-tumor response by CAR-modified T cells may enhance the therapeutic potential of this treatment. CONCLUSIONS In conclusion, CAR-modified T cell therapy is a highly promising treatment for cancer, having already demonstrated both promising preclinical and clinical results. However, further modification and additional clinical trials will need to be conducted to ultimately optimize the anti-tumor efficacy of this approach.
Collapse
Affiliation(s)
- Kevin J Curran
- Memorial Sloan-Kettering Cancer Center - Bone Marrow Transplant Service, Department of Pediatrics, New York, NY, USA
| | | | | |
Collapse
|
956
|
Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN ONCOLOGY 2012; 2012:278093. [PMID: 23304553 PMCID: PMC3523553 DOI: 10.5402/2012/278093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor- (CAR-) based immunotherapy has been under development for almost 25 years, over which period it has progressed from a new but cumbersome technology to an emerging therapeutic modality for malignant disease. The approach involves the genetic engineering of fusion receptors (CARs) that couple the HLA-independent binding of cell surface target molecules to the delivery of a tailored activating signal to host immune cells. Engineered CARs are delivered most commonly to peripheral blood T cells using a range of vector systems, most commonly integrating viral vectors. Preclinical refinement of this approach has proceeded over several years to the point that clinical testing is now being undertaken at several centres, using increasingly sophisticated and therapeutically successful genetic payloads. This paper considers several aspects of the pre-clinical and clinical development of CAR-based immunotherapy and how this technology is acquiring an increasing niche in the treatment of both solid and haematological malignancies.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Department of Research Oncology, King's Health Partners Integrated Cancer Centre, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Barnet and Chase Farm Hospitals NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
957
|
Lanitis E, Dangaj D, Hagemann IS, Song DG, Best A, Sandaltzopoulos R, Coukos G, Powell DJ. Primary human ovarian epithelial cancer cells broadly express HER2 at immunologically-detectable levels. PLoS One 2012; 7:e49829. [PMID: 23189165 PMCID: PMC3506636 DOI: 10.1371/journal.pone.0049829] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022] Open
Abstract
The breadth of HER2 expression by primary human ovarian cancers remains controversial, which questions its suitability as a universal antigen in this malignancy. To address these issues, we performed extensive HER2 expression analysis on a wide panel of primary tumors as well as established and short-term human ovarian cancer cell lines. Conventional immunohistochemical (IHC) analysis of multiple tumor sites in 50 cases of high-grade ovarian serous carcinomas revealed HER2 overexpression in 29% of evaluated sites. However, more sensitive detection methods including flow cytometry, western blot analysis and q-PCR revealed HER2 expression in all fresh tumor cells derived from primary ascites or solid tumors as well as all established and short-term cultured cancer cell lines. Cancer cells generally expressed HER2 at higher levels than that found in normal ovarian surface epithelial (OSE) cells. Accordingly, genetically-engineered human T cells expressing an HER2-specific chimeric antigen receptor (CAR) recognized and reacted against all established or primary ovarian cancer cells tested with minimal or no reactivity against normal OSE cells. In conclusion, all human ovarian cancers express immunologically-detectable levels of HER2, indicating that IHC measurement underestimates the true frequency of HER2-expressing ovarian cancers and may limit patient access to otherwise clinically meaningful HER2-targeted therapies.
Collapse
Affiliation(s)
- Evripidis Lanitis
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Denarda Dangaj
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ian S. Hagemann
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Best
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Coukos
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel J. Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
958
|
Abstract
Gene therapy and cell therapy have followed similar roller coaster paths of rising public expectations and disappointment over the past two decades. There is now reason to believe that momentum in the field has reached the point where the successes will be more frequent. The use of gene-modified cells has opened new avenues for engineering desired cell properties, for the use of cells as vehicles for gene delivery, and for tracking cells and controlling cell persistence after transplantation. Some notable recent clinical developments in cellular engineering by gene transfer offer lessons on how the field has emerged, and hint at additional future clinical applications.
Collapse
Affiliation(s)
- Alexey Bersenev
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
959
|
Tamada K, Geng D, Sakoda Y, Bansal N, Srivastava R, Li Z, Davila E. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin Cancer Res 2012; 18:6436-45. [PMID: 23032741 DOI: 10.1158/1078-0432.ccr-12-1449] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To develop an adaptable gene-based vector that will confer immune cell specificity to various cancer types. EXPERIMENTAL DESIGN Human and mouse T cells were genetically engineered to express a chimeric antigen receptor (CAR) that binds a fluorescein isothiocyanate (FITC) molecule, termed anti-FITC CAR T cells. Various antibodies (Ab) currently in clinical use including cetuximab (Ctx), trastuzumab (Her2), and rituximab (Rtx) were conjugated with FITC and tested for their ability to bind tumor cells, activate T cells, and induce antitumor effects in vitro and in vivo. RESULTS Anti-FITC CAR T cells recognize various cancer types when bound with FITC-labeled Abs resulting in efficient target lysis, T-cell proliferation, and cytokine/chemokine production. The treatment of immunocompromised mice with human anti-FITC CAR T cells plus FITC-labeled cetuximab (FITC-Ctx) delayed the growth of colon cancer but unexpectedly led to the outgrowth of EGF receptor (EGFR)-negative tumor cells. On the other hand, in a human pancreatic cancer cell line with uniform EGFR expression, anti-FITC CAR T cells plus FITC-Ctx eradicated preestablished late-stage tumors. In immunocompetent mice, anti-FITC CAR T cells exhibited potent antitumor activity against syngeneic mouse breast cancer expressing Her2 and B-cell lymphoma expressing CD20 by combining with FITC-Her2 and FITC-Rtx, respectively. In addition, the activity of anti-FITC CAR T cells could be attenuated by subsequent injections of nonspecific FITC-IgG. CONCLUSION These studies highlight an applicability of anti-tag CAR technology to treat patients with different types of cancers and a possibility to regulate CAR T-cell functions with competing FITC molecules.
Collapse
Affiliation(s)
- Koji Tamada
- Marlene and Stewart Greenebaum Cancer Center, Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
960
|
Rosenberg SA. Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med 2012; 4:127ps8. [PMID: 22461638 DOI: 10.1126/scitranslmed.3003634] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapy with interleukin-2 can cure 5 to 10% of patients with metastatic melanoma and renal cancer. Recent adoptive cell transfer (ACT) immunotherapies have improved cure rates in metastatic melanoma to 20 to 40%. Genetic engineering of T cells to express conventional alpha/beta T cell receptors or antibody-based chimeric antigen receptors provides an opportunity to extend ACT to patients with common epithelial cancers.
Collapse
Affiliation(s)
- Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
961
|
Ho M, Royston I, Beck A. 2nd PEGS Annual Symposium on Antibodies for Cancer Therapy: April 30-May 1, 2012, Boston, USA. MAbs 2012; 4:562-70. [PMID: 22864478 PMCID: PMC3499296 DOI: 10.4161/mabs.21521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The 2nd Annual Antibodies for Cancer Therapy symposium, organized again by Cambridge Healthtech Institute as part of the Protein Engineering Summit, was held in Boston, USA from April 30th to May 1st, 2012. Since the approval of the first cancer antibody therapeutic, rituximab, fifteen years ago, eleven have been approved for cancer therapy, although one, gemtuzumab ozogamicin, was withdrawn from the market. The first day of the symposium started with a historical review of early work for lymphomas and leukemias and the evolution from murine to human antibodies. The symposium discussed the current status and future perspectives of therapeutic antibodies in the biology of immunoglobulin, emerging research on biosimilars and biobetters, and engineering bispecific antibodies and antibody-drug conjugates. The tumor penetration session was focused on the understanding of antibody therapy using ex vivo tumor spheroids and the development of novel agents targeting epithelial junctions in solid tumors. The second day of the symposium discussed the development of new generation recombinant immunotoxins with low immunogenicity, construction of chimeric antigen receptors, and the proof-of-concept of 'photoimmunotherapy'. The preclinical and clinical session presented antibodies targeting Notch signaling and chemokine receptors. Finally, the symposium discussed emerging technologies and platforms for therapeutic antibody discovery.
Collapse
Affiliation(s)
- Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
962
|
Sahm C, Schönfeld K, Wels WS. Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol Immunother 2012; 61:1451-61. [PMID: 22310931 PMCID: PMC11029748 DOI: 10.1007/s00262-012-1212-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/22/2012] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells hold promise for adoptive cancer immunotherapy but are dependent on cytokines such as interleukin (IL)-2 for growth and cytotoxicity. Here, we investigated the consequences of ectopic expression of IL-15 in human NK cells. IL-2 and IL-15 belong to the common γ chain family of cytokines and have overlapping activities. Transduction of clinically applicable NK-92 cells with lentiviral vectors encoding human IL-15 resulted in predominantly intracellular expression of the cytokine, and STAT5 activation, proliferation and cytotoxicity of the producer cells in the absence of IL-2. Growth of non-transduced bystander cells was not supported, allowing rapid enrichment of gene-modified cells solely by IL-2 withdrawal. This was also the case upon transduction of NK-92 and NKL cells with a bicistronic lentiviral vector encoding IL-15 and a chimeric antigen receptor (CAR) targeting the pancarcinoma antigen EpCAM. Effector cells co-expressing CAR and IL-15 continued to proliferate in the absence of exogenous cytokines and displayed high and selective cell-killing activity against EpCAM-expressing breast carcinoma cells that were resistant to the natural cytotoxicity of unmodified NK cells. This strategy facilitates rapid isolation and continuous expansion of retargeted NK cells and may extend their potential clinical utility.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Breast Neoplasms/immunology
- Breast Neoplasms/therapy
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Line, Tumor
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytokines/immunology
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- DNA, Complementary/genetics
- Epithelial Cell Adhesion Molecule
- Humans
- Immunotherapy/methods
- Interleukin-15/biosynthesis
- Interleukin-15/genetics
- Interleukin-15/immunology
- Interleukin-2/immunology
- Interleukin-2/pharmacology
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/therapy
- Melanoma/immunology
- Melanoma/therapy
- Mice
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Antigen/biosynthesis
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
Collapse
Affiliation(s)
- Christiane Sahm
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
| | - Kurt Schönfeld
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
| | - Winfried S. Wels
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
| |
Collapse
|
963
|
|
964
|
Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR, Moghimi SM. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett 2012; 334:237-44. [PMID: 22902507 DOI: 10.1016/j.canlet.2012.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/27/2022]
Abstract
Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking capacity of soluble antigen still remain. Here, we address these issues using a novel CAR binding moiety based on the oligoclonal camelid single domain antibodies. A unique set of 13 single domain antibodies were selected from an immunized camel phage library based on their target specificity and binding affinity. A combination of these single domain antibodies was used to generate four tumor associated glycoprotein (TAG-72)-specific CARs harboring an identical antigen binding site, but with different signaling and spacer domains. Although all four CARs were functionally active against the TAG-72 expressing tumor cells, the combination of CD3ζ, OX40, CD28 as well as the CH3-CH2-hinge-hinge domains most efficiently triggered T cell activation. Importantly, CAR mediated functions were not blocked by the soluble TAG-72 antigen at a supraphysiological concentration. Our approach may have the potential to reverse multiple tumor immune evasion mechanisms, avoid CAR immunogenicity, and overcome problems in cancer gene therapy with engineered nanoconstructs.
Collapse
|
965
|
A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J Transl Med 2012; 10:157. [PMID: 22863016 PMCID: PMC3439340 DOI: 10.1186/1479-5876-10-157] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/18/2012] [Indexed: 11/10/2022] Open
Abstract
PURPOSE In spite of increased rates of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. RATIONALE Genetically reprogrammed, patient-derived chimeric antigen receptor (CAR)-T lymphocytes with the ability to recognize predefined surface antigens with high specificity in a non-MHC restricted manner have shown increasing anti-tumor efficacy in preclinical and clinical studies. Folate receptor-α (FRα) is an ovarian cancer-specific tumor target; however, it is expressed at low levels in certain organs with risk for toxicity. DESIGN Here we propose a phase I study testing the feasibility, safety and preliminary activity of FRα-redirected CAR-T cells bearing the CD137 (4-1BB) costimulatory domain, administered after lymphodepletion for the treatment of recurrent ovarian cancer. A novel trial design is proposed that maximizes safety features. INNOVATION This design involves an initial accelerated dose escalation phase of FR-α CAR-T cells followed by a standard 3 + 3 escalation phase. A split-dose approach is proposed to mitigate acute adverse events. Furthermore, infusion of bulk untransduced autologous peripheral blood lymphocytes (PBL) is proposed two days after CAR-T cell infusion at the lower dose levels of CAR-T cells, to suppress excessive expansion of CAR-T cells in vivo and mitigate toxicity.
Collapse
|
966
|
Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 2012; 61:953-62. [PMID: 22527245 PMCID: PMC11028843 DOI: 10.1007/s00262-012-1254-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/25/2012] [Indexed: 12/30/2022]
Abstract
The adoptive transfer of chimeric antigen receptor (CAR)-expressing T cells is a relatively new but promising approach in the field of cancer immunotherapy. This therapeutic strategy is based on the genetic reprogramming of T cells with an artificial immune receptor that redirects them against targets on malignant cells and enables their destruction by exerting T cell effector functions. There has been an explosion of interest in the use of CAR T cells as an immunotherapy for cancer. In the pre-clinical setting, there has been a considerable focus upon optimizing the structural and signaling potency of the CAR while advances in bio-processing technology now mean that the clinical testing of these gene-modified T cells has become a reality. This review will summarize the concept of CAR-based immunotherapy and recent clinical trial activity and will further discuss some of the likely future challenges facing CAR-modified T cell therapies.
Collapse
Affiliation(s)
- Grazyna Lipowska-Bhalla
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Clinical and Molecular Monitoring Laboratory, Clinical and Experimental Pharmacology Group, Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, University of Manchester, Manchester, UK
| | - David E. Gilham
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Clinical and Experimental Immunotherapy Group, Paterson Institute for Cancer Research, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Robert E. Hawkins
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Dominic G. Rothwell
- Clinical and Molecular Monitoring Laboratory, Clinical and Experimental Pharmacology Group, Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
967
|
Gilham DE, Debets R, Pule M, Hawkins RE, Abken H. CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med 2012; 18:377-84. [PMID: 22613370 DOI: 10.1016/j.molmed.2012.04.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Recent reports on the impressive efficacy of adoptively transferred T cells to challenge cancer in early phase clinical trials have significantly raised the profile of T cell therapy. Concomitantly, general expectations are also raised by these reports, with the natural aspiration to deliver this therapy over a wide range of tumor indications. Chimeric antigen receptors (CARs) endow T cell populations with defined antigen specificities that function independently of the natural T cell receptor and permit targeting of T cells towards virtually any tumor. Here, we review the current clinical application of CAR-T cells and relate clinical efficacy and safety of CAR-T cell trials to parameters considered critical for CAR engineering, classified as the three T's of CAR-T cell manipulation.
Collapse
Affiliation(s)
- David E Gilham
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, The University of Manchester, Withington, Manchester M20 4BX, UK.
| | | | | | | | | |
Collapse
|
968
|
Lee DW, Barrett DM, Mackall C, Orentas R, Grupp SA. The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer. Clin Cancer Res 2012; 18:2780-90. [PMID: 22589486 PMCID: PMC4119811 DOI: 10.1158/1078-0432.ccr-11-1920] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Improved outcomes for children with cancer hinge on the development of new targeted therapies with acceptable short-term and long-term toxicity. Progress in basic, preclinical, and clinical arenas spanning cellular immunology, gene therapy, and cell-processing technologies have paved the way for clinical applications of chimeric antigen receptor-based therapies. This is a new form of targeted immunotherapy that merges the exquisite targeting specificity of monoclonal antibodies with the potent cytotoxicity, potential for expansion, and long-term persistence provided by cytotoxic T cells. Although this field is still in its infancy, clinical trials have already shown clinically significant antitumor activity in neuroblastoma, chronic lymphocytic leukemia, and B-cell lymphoma, and trials targeting a variety of other adult and pediatric malignancies are under way. Ongoing work is focused on identifying optimal tumor targets and elucidating and manipulating both cell- and host-associated factors to support expansion and persistence of the genetically engineered cells in vivo. In pediatric oncology, CD19 and GD2 are compelling antigens that have already been identified for targeting pre-B acute lymphoblastic leukemia and neuroblastoma, respectively, with this approach, but it is likely that other antigens expressed in a variety of childhood cancers will also soon be targeted using this therapy. The potential to target essentially any tumor-associated cell-surface antigen for which a monoclonal antibody can be made opens up an entirely new arena for targeted therapy of childhood cancer.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Antigens, Surface/immunology
- Child
- Child, Preschool
- Galactosyltransferases/immunology
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Molecular Targeted Therapy/methods
- Neuroblastoma/immunology
- Neuroblastoma/therapy
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Daniel W Lee
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1104, USA
| | | | | | | | | |
Collapse
|
969
|
Boulassel MR. A new cellular weapon to kill leukaemic B-cells. Sultan Qaboos Univ Med J 2012; 12:137-9. [PMID: 22548131 DOI: 10.12816/0003105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/21/2012] [Accepted: 03/13/2012] [Indexed: 11/27/2022] Open
|
970
|
Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Adoptive cell transfer immunotherapy. Oncoimmunology 2012; 1:306-315. [PMID: 22737606 PMCID: PMC3382856 DOI: 10.4161/onci.19549] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During the last two decades, several approaches for the activation of the immune system against cancer have been developed. These include rather unselective maneuvers such as the systemic administration of immunostimulatory agents (e.g., interleukin-2) as well as targeted interventions, encompassing highly specific monoclonal antibodies, vaccines and cell-based therapies. Among the latter, adoptive cell transfer (ACT) involves the selection of autologous lymphocytes with antitumor activity, their expansion/activation ex vivo, and their reinfusion into the patient, often in the context of lymphodepleting regimens (to minimize endogenous immunosuppression). Such autologous cells can be isolated from tumor-infiltrating lymphocytes or generated by manipulating circulating lymphocytes for the expression of tumor-specific T-cell receptors. In addition, autologous lymphocytes can be genetically engineered to prolong their in vivo persistence, to boost antitumor responses and/or to minimize side effects. ACT has recently been shown to be associated with a consistent rate of durable regressions in melanoma and renal cell carcinoma patients and holds great promises in several other oncological settings. In this Trial Watch, we will briefly review the scientific rationale behind ACT and discuss the progress of recent clinical trials evaluating the safety and effectiveness of adoptive cell transfer as an anticancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM; U848; Villejuif, France
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Erika Vacchelli
- INSERM; U848; Villejuif, France
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
| | | | - Wolf Herve´ Fridman
- INSERM; U872; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Jerome Galon
- INSERM; U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM; U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes; Sorbonne Paris Cité; Paris, France
| | - Eric Tartour
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Université Paris Descartes; Sorbonne Paris Cité; Paris, France
- INSERM; U970; Paris, France
| | - Laurence Zitvogel
- Institut Gustave Roussy; Villejuif, France
- INSERM; U1015; Villejuif, France
| | - Guido Kroemer
- INSERM; U848; Villejuif, France
- Institut Gustave Roussy; Villejuif, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Université Paris Descartes; Sorbonne Paris Cité; Paris, France
- Metabolomics Platform; Institut Gustave Roussy; Villejuif, France
| |
Collapse
|
971
|
Mach JP. Introduction to monoclonal antibodies. CANCER IMMUNITY 2012; 12:11. [PMID: 22896756 PMCID: PMC3380352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Jean-Pierre Mach
- Address correspondence to: Jean-Pierre Mach, M.D., Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, CH-166 Epalinges, Switzerland, Tel.: + 41 21 692 57 33, E-mail:
| |
Collapse
|
972
|
Pham CD, Mitchell DA. Chasing cancer with chimeric antigen receptor therapy. Immunotherapy 2012; 4:365-7. [PMID: 22512629 DOI: 10.2217/imt.12.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many attempts to use genetically modified T cells to halt tumor progression have been met with disappointment and significant challenges in the successful application within human patients. Porter et al., however, describe the use of genetically modified lymphocytes bearing a chimeric antigen receptor that bypasses many of the common limitations of adoptive lymphocyte therapy. Through incorporation of a costimulatory domain within the chimeric antigen receptor, the investigators engineered lymphocytes with significantly higher tumor rejection activity and demonstrated significant expansion and prolonged survival after in vivo transfer to a single patient who showed a complete regression of refractory chronic lymphoid leukemia. This recent success in using genetically modified T cells to kill chronic lymphoid leukemia tumor cells is an encouraging advancement in the development of specific and targeted immune-based therapies against cancer.
Collapse
Affiliation(s)
- Christina D Pham
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
973
|
Cheng M, Zhang J, Jiang W, Chen Y, Tian Z. Natural killer cell lines in tumor immunotherapy. Front Med 2012; 6:56-66. [PMID: 22460449 DOI: 10.1007/s11684-012-0177-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/23/2011] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are considered to be critical players in anticancer immunity. However, cancers are able to develop mechanisms to escape NK cell attack or to induce defective NK cells. Current NK cell-based cancer immunotherapy is aimed at overcoming NK cell paralysis through several potential approaches, including activating autologous NK cells, expanding allogeneic NK cells, usage of stable allogeneic NK cell lines and genetically modifying fresh NK cells or NK cell lines. The stable allogeneic NK cell line approach is more practical for quality-control and large-scale production. Additionally, genetically modifying NK cell lines by increasing their expression of cytokines and engineering chimeric tumor antigen receptors could improve their specificity and cytotoxicity. In this review, NK cells in tumor immunotherapy are discussed, and a list of therapeutic NK cell lines currently undergoing preclinical and clinical trials of several kinds of tumors are reviewed.
Collapse
Affiliation(s)
- Min Cheng
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | |
Collapse
|
974
|
Personalized cell transfer immunotherapy for B-cell malignancies and solid cancers. Mol Ther 2012; 19:1928-30. [PMID: 22051601 DOI: 10.1038/mt.2011.223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
975
|
Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2012; 3:95ra73. [PMID: 21832238 DOI: 10.1126/scitranslmed.3002842] [Citation(s) in RCA: 1872] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor immunotherapy with T lymphocytes, which can recognize and destroy malignant cells, has been limited by the ability to isolate and expand T cells restricted to tumor-associated antigens. Chimeric antigen receptors (CARs) composed of antibody binding domains connected to domains that activate T cells could overcome tolerance by allowing T cells to respond to cell surface antigens; however, to date, lymphocytes engineered to express CARs have demonstrated minimal in vivo expansion and antitumor effects in clinical trials. We report that CAR T cells that target CD19 and contain a costimulatory domain from CD137 and the T cell receptor ζ chain have potent non-cross-resistant clinical activity after infusion in three of three patients treated with advanced chronic lymphocytic leukemia (CLL). The engineered T cells expanded >1000-fold in vivo, trafficked to bone marrow, and continued to express functional CARs at high levels for at least 6 months. Evidence for on-target toxicity included B cell aplasia as well as decreased numbers of plasma cells and hypogammaglobulinemia. On average, each infused CAR-expressing T cell was calculated to eradicate at least 1000 CLL cells. Furthermore, a CD19-specific immune response was demonstrated in the blood and bone marrow, accompanied by complete remission, in two of three patients. Moreover, a portion of these cells persisted as memory CAR(+) T cells and retained anti-CD19 effector functionality, indicating the potential of this major histocompatibility complex-independent approach for the effective treatment of B cell malignancies.
Collapse
Affiliation(s)
- Michael Kalos
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
976
|
Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2012. [PMID: 21832238 DOI: 3/95/95ra73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor immunotherapy with T lymphocytes, which can recognize and destroy malignant cells, has been limited by the ability to isolate and expand T cells restricted to tumor-associated antigens. Chimeric antigen receptors (CARs) composed of antibody binding domains connected to domains that activate T cells could overcome tolerance by allowing T cells to respond to cell surface antigens; however, to date, lymphocytes engineered to express CARs have demonstrated minimal in vivo expansion and antitumor effects in clinical trials. We report that CAR T cells that target CD19 and contain a costimulatory domain from CD137 and the T cell receptor ζ chain have potent non-cross-resistant clinical activity after infusion in three of three patients treated with advanced chronic lymphocytic leukemia (CLL). The engineered T cells expanded >1000-fold in vivo, trafficked to bone marrow, and continued to express functional CARs at high levels for at least 6 months. Evidence for on-target toxicity included B cell aplasia as well as decreased numbers of plasma cells and hypogammaglobulinemia. On average, each infused CAR-expressing T cell was calculated to eradicate at least 1000 CLL cells. Furthermore, a CD19-specific immune response was demonstrated in the blood and bone marrow, accompanied by complete remission, in two of three patients. Moreover, a portion of these cells persisted as memory CAR(+) T cells and retained anti-CD19 effector functionality, indicating the potential of this major histocompatibility complex-independent approach for the effective treatment of B cell malignancies.
Collapse
Affiliation(s)
- Michael Kalos
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
977
|
Protein L: a novel reagent for the detection of chimeric antigen receptor (CAR) expression by flow cytometry. J Transl Med 2012; 10:29. [PMID: 22330761 PMCID: PMC3299624 DOI: 10.1186/1479-5876-10-29] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/13/2012] [Indexed: 11/24/2022] Open
Abstract
Background There has been significant progress in the last two decades on the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. Structurally CARs consist of a single chain antibody fragment directed against a tumor-associated antigen fused to an extracellular spacer and transmembrane domain followed by T cell cytoplasmic signaling moieties. Currently several clinical trials are underway using gene modified peripheral blood lymphocytes (PBL) with CARs directed against a variety of tumor associated antigens. Despite the improvements in the design of CARs and expansion of the number of target antigens, there is no universal flow cytometric method available to detect the expression of CARs on the surface of transduced lymphocytes. Methods Currently anti-fragment antigen binding (Fab) conjugates are most widely used to determine the expression of CARs on gene-modified lymphocytes by flow cytometry. The limitations of these reagents are that many of them are not commercially available, generally they are polyclonal antibodies and often the results are inconsistent. In an effort to develop a simple universal flow cytometric method to detect the expression of CARs, we employed protein L to determine the expression of CARs on transduced lymphocytes. Protein L is an immunoglobulin (Ig)-binding protein that binds to the variable light chains (kappa chain) of Ig without interfering with antigen binding site. Protein L binds to most classes of Ig and also binds to single-chain antibody fragments (scFv) and Fab fragments. Results We used CARs derived from both human and murine antibodies to validate this novel protein L based flow cytometric method and the results correlated well with other established methods. Activated human PBLs were transduced with retroviral vectors expressing two human antibody based CARs (anti-EGFRvIII, and anti-VEGFR2), two murine antibody derived CARs (anti-CSPG4, and anti-CD19), and two humanized mouse antibody based CARs (anti-ERBB2, and anti-PSCA). Transduced cells were stained first with biotin labeled protein L followed by phycoerythrin (PE)-conjugated streptavidin (SA) and analyzed by flow cytometry. For comparison, cells were stained in parallel with biotin conjugated goat-anti-mouse Fab or CAR specific fusion proteins. Using protein L, all CAR transduced lymphocytes exhibited specific staining pattern ranging from 40 to 80% of positive cells (compared to untransduced cells) and staining was comparable to the pattern observed with anti-Fab antibodies. Conclusion Our data demonstrate the feasibility of employing Protein L as a general reagent for the detection of CAR expression on transduced lymphocytes by flow cytometry.
Collapse
|
978
|
Radic M. Armed and accurate: engineering cytotoxic T cells for eradication of leukemia. BMC Biotechnol 2012; 12:6. [PMID: 22316161 PMCID: PMC3306188 DOI: 10.1186/1472-6750-12-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/08/2012] [Indexed: 11/10/2022] Open
Abstract
Translational medicine depends on a rapid and efficient exchange of results between the bench and the bedside. A recent example from the field of cancer immunotherapy highlights the essential nature of this exchange. Methods have been developed to convert a patient's cytotoxic T cells into efficient and specific killers of cancer cells in patients with leukemia. By using recombinant DNA techniques, a lentiviral vector was constructed to express chimeric antigen receptors in cytotoxic T cells from patients with advanced chronic lymphocytic leukemia. The purpose of the chimeric receptors was to direct the cytotoxic T cell activity against cells causing the cancer. The effect of infusing the engineered T cells back into the cancer patients was tested in a Phase I trial at the University of Pennsylvania, and the initial results were described in two articles from the research team of Dr. Carl June. The remarkable success of this trial should energize further applications of biotechnology in the development of new cancer immunotherapies.
Collapse
Affiliation(s)
- Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
979
|
Kalos M. Muscle CARs and TcRs: turbo-charged technologies for the (T cell) masses. Cancer Immunol Immunother 2012; 61:127-35. [PMID: 22131062 PMCID: PMC11028859 DOI: 10.1007/s00262-011-1173-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
A central role for T cells in the control of cancer has been supported by both animal models and clinical observations. Accordingly, the development of potent anti-tumor T cell immunity has been a long-standing objective of immunotherapy. Emerging data from clinical trials that test T cell immune-modulatory agents and genetically engineered and re-targeted T cells have begun to realize the profound potential of T cell immunotherapy to target cancer. This review will focus on a description of recent conceptual and technological advances for the genetic engineering of T cells to enhance anti-tumor T cell immunity through the introduction of tumor-specific receptors, both Chimeric Antigen Receptors (CAR) and T cell receptors (TcR), as well as an overview of emerging data from ongoing clinical trials that highlight the potential of these approaches to effect dramatic and potent anti-tumor immunity.
Collapse
Affiliation(s)
- Michael Kalos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 422 Curie Boulevard, 409-C Stellar-Chance Laboratories, Philadelphia, PA 19104-4283, USA.
| |
Collapse
|
980
|
Abstract
The Chimeric Antigen Receptor (CAR) consists of an antibody-derived targeting domain fused with T-cell signaling domains that, when expressed by a T-cell, endows the T-cell with antigen specificity determined by the targeting domain of the CAR. CARs can potentially redirect the effector functions of a T-cell towards any protein and nonprotein target expressed on the cell surface as long as an antibody or similar targeting domain is available. This strategy thereby avoids the requirement of antigen processing and presentation by the target cell and is applicable to nonclassical T-cell targets like carbohydrates. This circumvention of HLA-restriction means that the CAR T-cell approach can be used as a generic tool broadening the potential of applicability of adoptive T-cell therapy. Proof-of-principle studies focusing upon the investigation of the potency of CAR T-cells have primarily focused upon the genetic modification of human and mouse T-cells for therapy. This chapter focuses upon methods to modify T-cells from both species to generate CAR T-cells for functional testing.
Collapse
|
981
|
Abstract
The development of therapeutic monoclonal antibodies over the last 35 years has led to the emergence of a new class of useful therapeutic molecules. These "first generation" antibodies have been obtained thanks to the conjugated and huge efforts of both academic and biotech researchers. About 30 monoclonal antibodies are currently approved for therapeutic use in Europe, USA, and China. Strikingly, only a restricted number of these antibodies are immunoglobulin fragments, single variable domains, or multiunit formats based on the engineering of immunoglobulin variable domains. In the present chapter, we will review the major steps of the therapeutic antibodies history and we will highlight the enormous potential of antibody fragments, either used as multiunits such as bispecific antibodies, single units, or as cell modifiers such as intrabodies or cell surface-expressed molecules.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Cordeliers Research Center/INSERM U.872, Paris Descartes University and Pierre et Marie Curie University (UPMC), Paris, France.
| |
Collapse
|
982
|
Merhavi-Shoham E, Haga-Friedman A, Cohen CJ. Genetically modulating T-cell function to target cancer. Semin Cancer Biol 2011; 22:14-22. [PMID: 22210183 DOI: 10.1016/j.semcancer.2011.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/15/2011] [Indexed: 12/14/2022]
Abstract
The adoptive transfer of tumor-specific T-lymphocytes holds promise for the treatment of metastatic cancer. Genetic modulation of T-lymphocytes using TCR transfer with tumor-specific TCR genes is an attractive strategy to generate anti-tumor response, especially against large solid tumors. Recently, several clinical trials have demonstrated the therapeutic potential of this approach which lead to impressive tumor regression in cancer patients. Still, several factors may hinder the clinical benefit of this approach, such as the type of cells to modulate, the vector configuration or the safety of the procedure. In the present review we will aim at giving an overview of the recent developments related to the immune modulation of the anti-tumor adaptive response using genetically engineered lymphocytes and will also elaborate the development of other genetic modifications to enhance their anti-tumor immune response.
Collapse
Affiliation(s)
- Efrat Merhavi-Shoham
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
983
|
Lanitis E, Poussin M, Hagemann IS, Coukos G, Sandaltzopoulos R, Scholler N, Powell DJ. Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol Ther 2011; 20:633-43. [PMID: 22127019 DOI: 10.1038/mt.2011.256] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer regression by gene-modified T cells bearing a chimeric antigen receptor (CAR) exodomain of mouse origin can be limited by the induction of transgene immunogenicity resulting in poor persistence and function in vivo. The development of functionally-active CAR of human origin can address this issue. Here, we constructed and evaluated fully human anti-mesothelin CARs comprised of a human mesothelin-specific single-chain antibody variable fragment (P4 scFv) coupled to T cell signaling domains. Primary human T cells expressing P4 CAR specifically produced proinflammatory cytokines, degranulated and exerted potent cytolytic functions when cultured with mesothelin-expressing tumors in vitro. P4 CAR T cells also mediated bystander killing of mesothelin-negative cancer cells during coculture. CAR reactivity was not abrogated by soluble tumor-secreted or recombinant mesothelin protein even at supraphysiological levels. Importantly, adoptive transfer of P4 CAR-expressing T cells mediated the regression of large, established tumor in the presence of soluble mesothelin in a xenogenic model of human ovarian cancer. Thus, primary human T cells expressing fully human anti-mesothelin CAR efficiently kill mesothelin-expressing tumors in vitro and in vivo and have the potential to overcome the issue of transgene immunogenicity that may limit CAR T cell trials that utilize scFvs of mouse origin.
Collapse
Affiliation(s)
- Evripidis Lanitis
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
984
|
CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 2011; 119:696-706. [PMID: 22117050 DOI: 10.1182/blood-2011-03-344275] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The costimulatory effects of CD27 on T lymphocyte effector function and memory formation has been confined to evaluations in mouse models, in vitro human cell culture systems, and clinical observations. Here, we tested whether CD27 costimulation actively enhances human T-cell function, expansion, and survival in vitro and in vivo. Human T cells transduced to express an antigen-specific chimeric antigen receptor (CAR-T) containing an intracellular CD3 zeta (CD3ζ) chain signaling module with the CD27 costimulatory motif in tandem exerted increased antigen-stimulated effector functions in vitro, including cytokine secretion and cytotoxicity, compared with CAR-T with CD3ζ alone. After antigen stimulation in vitro, CD27-bearing CAR-T cells also proliferated, up-regulated Bcl-X(L) protein expression, resisted apoptosis, and underwent increased numerical expansion. The greatest impact of CD27 was noted in vivo, where transferred CAR-T cells with CD27 demonstrated heightened persistence after infusion, facilitating improved regression of human cancer in a xenogeneic allograft model. This tumor regression was similar to that achieved with CD28- or 4-1BB-costimulated CARs, and heightened persistence was similar to 4-1BB but greater than CD28. Thus, CD27 costimulation enhances expansion, effector function, and survival of human CAR-T cells in vitro and augments human T-cell persistence and antitumor activity in vivo.
Collapse
|
985
|
Artzy-Schnirman A, Blat D, Talmon Y, Fishler R, Gertman D, Oren R, Wolchinsky R, Waks T, Benhar I, Eshhar Z, Sivan U, Reiter Y. Electrically controlled molecular recognition harnessed to activate a cellular response. NANO LETTERS 2011; 11:4997-5001. [PMID: 21985491 DOI: 10.1021/nl202971r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Seamless embedment of electronic devices in biological systems is expected to add the outstanding computing power, memory, and speed of electronics to the biochemical toolbox of nature. Such amalgamation requires transduction of electronic signals into biochemical cues that affect cells. Inspired by biology, where pathways are directed by molecular recognition, we propose and demonstrate a generic electrical-to-biological transducer comprising a two-state electronic antigen and a chimeric cell receptor engineered to bind the antigen exclusively in its "on" state. T-cells expressing these receptors remain inactivated with the antigen in its "off" state. Switching the antigen to its "on" state by an electrical signal leads to its recognition by the T-cells and correspondingly to cell activation.
Collapse
|
986
|
Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29:550-7. [PMID: 21663987 PMCID: PMC3193849 DOI: 10.1016/j.tibtech.2011.04.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/01/2023]
Abstract
Administration of ex vivo cultured, naturally occurring tumor-infiltrating lymphocytes (TILs) has been shown to mediate durable regression of melanoma tumors. However, the generation of TILs is not possible in all patients and there has been limited success in generating TIL in other cancers. Advances in genetic engineering have overcome these limitations by introducing tumor-antigen-targeting receptors into human T lymphocytes. Physicians can now genetically engineer lymphocytes to express highly active T-cell receptors (TCRs) or chimeric antigen receptors (CARs) targeting a variety of tumor antigens expressed in cancer patients. In this review, we discuss the development of TCR and CAR gene transfer technology and the expansion of these therapies into different cancers with the recent demonstration of the clinical efficacy of these treatments.
Collapse
Affiliation(s)
- Tristen S Park
- National Institutes of Health, National Cancer Institute, Surgery Branch, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
987
|
Abstract
Cancer immunotherapy comprises a variety of treatment approaches, incorporating the tremendous specificity of the adaptive immune system (T cells and antibodies) as well as the diverse and potent cytotoxic weaponry of both adaptive and innate immunity. Immunotherapy strategies include antitumor monoclonal antibodies, cancer vaccines, adoptive transfer of ex vivo activated T and natural killer cells, and administration of antibodies or recombinant proteins that either costimulate immune cells or block immune inhibitory pathways (so-called immune checkpoints). Although clear clinical efficacy has been demonstrated with antitumor antibodies since the late 1990s, other immunotherapies had not been shown to be effective until recently, when a spate of successes established the broad potential of this therapeutic modality. These successes are based on fundamental scientific advances demonstrating the toleragenic nature of cancer and the pivotal role of the tumor immune microenvironment in suppressing antitumor immunity. New therapies based on a sophisticated knowledge of immune-suppressive cells, soluble factors, and signaling pathways are designed to break tolerance and reactivate antitumor immunity to induce potent, long-lasting responses. Preclinical models indicate the importance of a complex integrated immune response in eliminating established tumors and validate the exploration of combinatorial treatment regimens, which are anticipated to be far more effective than monotherapies. Unlike conventional cancer therapies, most immunotherapies are active and dynamic, capable of inducing immune memory to propagate a successful rebalancing of the equilibrium between tumor and host.
Collapse
Affiliation(s)
- Suzanne L Topalian
- Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| | | | | |
Collapse
|
988
|
Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365:725-33. [PMID: 21830940 PMCID: PMC3387277 DOI: 10.1056/nejmoa1103849] [Citation(s) in RCA: 2769] [Impact Index Per Article: 197.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We designed a lentiviral vector expressing a chimeric antigen receptor with specificity for the B-cell antigen CD19, coupled with CD137 (a costimulatory receptor in T cells [4-1BB]) and CD3-zeta (a signal-transduction component of the T-cell antigen receptor) signaling domains. A low dose (approximately 1.5×10(5) cells per kilogram of body weight) of autologous chimeric antigen receptor-modified T cells reinfused into a patient with refractory chronic lymphocytic leukemia (CLL) expanded to a level that was more than 1000 times as high as the initial engraftment level in vivo, with delayed development of the tumor lysis syndrome and with complete remission. Apart from the tumor lysis syndrome, the only other grade 3/4 toxic effect related to chimeric antigen receptor T cells was lymphopenia. Engineered cells persisted at high levels for 6 months in the blood and bone marrow and continued to express the chimeric antigen receptor. A specific immune response was detected in the bone marrow, accompanied by loss of normal B cells and leukemia cells that express CD19. Remission was ongoing 10 months after treatment. Hypogammaglobulinemia was an expected chronic toxic effect.
Collapse
Affiliation(s)
- David L Porter
- Abramson Cancer Center, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | |
Collapse
|
989
|
Ertl HCJ, Zaia J, Rosenberg SA, June CH, Dotti G, Kahn J, Cooper LJN, Corrigan-Curay J, Strome SE. Considerations for the clinical application of chimeric antigen receptor T cells: observations from a recombinant DNA Advisory Committee Symposium held June 15, 2010. Cancer Res 2011; 71:3175-81. [PMID: 21531763 DOI: 10.1158/0008-5472.can-10-4035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
T cells that are genetically modified to express single-chain chimeric antigen receptors (CAR) have shown promise in early cancer immunotherapy clinical trials. Unfortunately, 2 recent deaths in cancer patients treated with CAR T cells have created some uncertainty on how to best mitigate patient risk, while continuing to advance this very promising therapeutic avenue. In order to address these concerns, the Recombinant DNA Advisory Committee (RAC) held a symposium, the objectives of which were to first review the reported treatment-associated toxicities and, second, to discuss methods for improving safety and efficacy. This report highlights the issues raised as part of this discussion, with a specific focus on protocols infusing CAR T cells. Because this was not a consensus conference, the opinions described should not be construed to represent those of any individual RAC member, the RAC as a body, conference participants, the National Institutes of Health, or the U.S. Food and Drug Administration.
Collapse
|
990
|
Koehler P, Schmidt P, Hombach AA, Hallek M, Abken H. Engineered T cells for the adoptive therapy of B-cell chronic lymphocytic leukaemia. Adv Hematol 2011; 2012:595060. [PMID: 21837241 PMCID: PMC3152962 DOI: 10.1155/2012/595060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/13/2011] [Accepted: 05/23/2011] [Indexed: 12/02/2022] Open
Abstract
B-cell chronic lymphocytic leukaemia (B-CLL) remains an incurable disease due to the high risk of relapse, even after complete remission, raising the need to control and eliminate residual tumor cells in long term. Adoptive T cell therapy with genetically engineered specificity is thought to fulfil expectations, and clinical trials for the treatment of CLL are initiated. Cytolytic T cells from patients are redirected towards CLL cells by ex vivo engineering with a chimeric antigen receptor (CAR) which binds to CD19 on CLL cells through an antibody-derived domain and triggers T cell activation through CD3ζ upon tumor cell engagement. Redirected T cells thereby target CLL cells in an MHC-unrestricted fashion, secret proinflammatory cytokines, and eliminate CD19(+) leukaemia cells with high efficiency. Cytolysis of autologous CLL cells by patient's engineered T cells is effective, however, accompanied by lasting elimination of healthy CD19(+) B-cells. In this paper we discuss the potential of the strategy in the treatment of CLL, the currently ongoing trials, and the future challenges in the adoptive therapy with CAR-engineered T cells.
Collapse
Affiliation(s)
- Philipp Koehler
- Department I of Internal Medicine, and Center for Molecular Medicine Cologne, University Hospital Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - Patrick Schmidt
- Department I of Internal Medicine, and Center for Molecular Medicine Cologne, University Hospital Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - Andreas A. Hombach
- Department I of Internal Medicine, and Center for Molecular Medicine Cologne, University Hospital Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, and Center for Molecular Medicine Cologne, University Hospital Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - Hinrich Abken
- Department I of Internal Medicine, and Center for Molecular Medicine Cologne, University Hospital Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| |
Collapse
|
991
|
Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer--what clinicians need to know. Nat Rev Clin Oncol 2011; 8:577-85. [PMID: 21808266 DOI: 10.1038/nrclinonc.2011.116] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer immunotherapy using the adoptive transfer of autologous tumor-infiltrating lymphocytes results in objective cancer regression in 49-72% of patients with metastatic melanoma. In a pilot trial combining cell transfer with a maximum lymphodepleting regimen, complete durable responses were seen in 40% of patients, with complete responses ongoing beyond 3 to 7 years. Current approaches to cell transfer therapy using autologous cells genetically engineered to express conventional or chimeric T-cell receptors have mediated cancer regression in patients with metastatic melanoma, synovial sarcoma, neuroblastoma and refractory lymphoma. Adoptive cell transfer immunotherapy is a rapidly developing new approach to the therapy of metastatic cancer in humans. This Review will emphasize the current available applications of cell transfer immunotherapy for patients with cancer.
Collapse
Affiliation(s)
- Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, CRC-Building 10, Room 3-3940, 10 Center Drive, Bethesda, MD 20892-1201, USA.
| |
Collapse
|
992
|
Moon EK, Carpenito C, Sun J, Wang LCS, Kapoor V, Predina J, Powell DJ, Riley JL, June CH, Albelda SM. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 2011; 17:4719-30. [PMID: 21610146 PMCID: PMC3612507 DOI: 10.1158/1078-0432.ccr-11-0351] [Citation(s) in RCA: 425] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Adoptive T-cell immunotherapy with tumor infiltrating lymphocytes or genetically-modified T cells has yielded dramatic results in some cancers. However, T cells need to traffic properly into tumors to adequately exert therapeutic effects. EXPERIMENTAL DESIGN The chemokine CCL2 was highly secreted by malignant pleural mesotheliomas (MPM; a planned tumor target), but the corresponding chemokine receptor (CCR2) was minimally expressed on activated human T cells transduced with a chimeric antibody receptor (CAR) directed to the MPM tumor antigen mesothelin (mesoCAR T cells). The chemokine receptor CCR2b was thus transduced into mesoCAR T cells using a lentiviral vector, and the modified T cells were used to treat established mesothelin-expressing tumors. RESULTS CCR2b transduction led to CCL2-induced calcium flux and increased transmigration, as well as augmentation of in vitro T-cell killing ability. A single intravenous injection of 20 million mesoCAR + CCR2b T cells into immunodeficient mice bearing large, established tumors (without any adjunct therapy) resulted in a 12.5-fold increase in T-cell tumor infiltration by day 5 compared with mesoCAR T cells. This was associated with significantly increased antitumor activity. CONCLUSIONS CAR T cells bearing a functional chemokine receptor can overcome the inadequate tumor localization that limits conventional CAR targeting strategies and can significantly improve antitumor efficacy in vivo.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/immunology
- Chemokines/biosynthesis
- Cytotoxicity, Immunologic/immunology
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mesothelin
- Mesothelioma/genetics
- Mesothelioma/immunology
- Mesothelioma/metabolism
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Pleural Neoplasms/genetics
- Pleural Neoplasms/immunology
- Pleural Neoplasms/metabolism
- Receptors, CCR2/genetics
- Receptors, CCR2/immunology
- Receptors, CCR2/metabolism
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- Single-Chain Antibodies/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
993
|
Casucci M, Bondanza A. Suicide gene therapy to increase the safety of chimeric antigen receptor-redirected T lymphocytes. J Cancer 2011; 2:378-82. [PMID: 21750689 PMCID: PMC3133962 DOI: 10.7150/jca.2.378] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/16/2023] Open
Abstract
Chimeric antigen receptors (CARs) are generated by fusing the antigen-binding motif of a monoclonal antibody (mAb) with the signal transduction machinery of the T-cell receptor (TCR). The genetic modification of T lymphocytes with chimeric receptors specific for tumor-associated antigens (TAAs) allows for the redirection towards tumor cells. Clinical experience with CAR-redirected T cells suggests that antitumor efficacy associates with some degree of toxicity, especially when TAA expression is shared with healthy tissues. This situation closely resembles the case of allogeneic hematopoietic stem cell transplantation (HSCT), wherein allorecognition causes both the graft-versus-leukemia (GVL) effect and graft-versus-host disease (GVHD). Suicide gene therapy, i.e. the genetic induction of a conditional suicide phenotype into donor T cells, enables dissociating the GVL effect from GVHD. Applying suicide gene modification to CAR-redirected T cells may therefore greatly increase their safety profile and facilitate their clinical development.
Collapse
Affiliation(s)
- Monica Casucci
- Experimental Hematology and Bone Marrow Transplantation Unit, San Raffaele Hospital, Milano, ITALY
| | | |
Collapse
|
994
|
Song DG, Ye Q, Carpenito C, Poussin M, Wang LP, Ji C, Figini M, June CH, Coukos G, Powell DJ. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res 2011; 71:4617-27. [PMID: 21546571 PMCID: PMC4140173 DOI: 10.1158/0008-5472.can-11-0422] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human T cells engineered to express a chimeric antigen receptor (CAR) specific for folate receptor-α (FRα) have shown robust antitumor activity against epithelial cancers in vitro but not in the clinic because of their inability to persist and home to tumor in vivo. In this study, CARs were constructed containing a FRα-specific scFv (MOv19) coupled to the T-cell receptor CD3ζ chain signaling module alone (MOv19-ζ) or in combination with the CD137 (4-1BB) costimulatory motif in tandem (MOv19-BBζ). Primary human T cells transduced to express conventional MOv19-ζ or costimulated MOv19-BBζ CARs secreted various proinflammatory cytokines, and exerted cytotoxic function when cocultured with FRα(+) tumor cells in vitro. However, only transfer of human T cells expressing the costimulated MOv19-BBζ CAR mediated tumor regression in immunodeficient mice bearing large, established FRα(+) human cancer. MOv19-BBζ CAR T-cell infusion mediated tumor regression in models of metastatic intraperitoneal, subcutaneous, and lung-involved human ovarian cancer. Importantly, tumor response was associated with the selective survival and tumor localization of human T cells in vivo and was only observed in mice receiving costimulated MOv19-BBζ CAR T cells. T-cell persistence and antitumor activity were primarily antigen-driven; however, antigen-independent CD137 signaling by CAR improved T-cell persistence but not antitumor activity in vivo. Our results show that anti-FRα CAR outfitted with CD137 costimulatory signaling in tandem overcome issues of T-cell persistence and tumor localization that limit the conventional FRα T-cell targeting strategy to provide potent antitumor activity in vivo.
Collapse
Affiliation(s)
- De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Qunrui Ye
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, United States
| | - Carmine Carpenito
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mathilde Poussin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-Ping Wang
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Mariangela Figini
- Department of Experimental Oncology and Molecular Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Carl H. June
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - George Coukos
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, United States
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, United States
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
995
|
Abstract
INTRODUCTION Chimeric antigen receptors (CARs) usually combine the antigen binding site of a monoclonal antibody with the signal activating machinery of a T cell, freeing antigen recognition from MHC restriction and thus breaking one of the barriers to more widespread application of cellular therapy. Similar to treatment strategies employing monoclonal antibodies, T cells expressing CARs are highly targeted, but additionally offer the potential benefits of active trafficking to tumor sites, in vivo expansion and long-term persistence. Furthermore, gene transfer allows the introduction of countermeasures to tumor immune evasion and of safety mechanisms. AREAS COVERED The basic structure of so-called first and later generation CARs and their potential advantages over other immune therapy systems. How these molecules can be grafted into immune cells (including retroviral and non-retroviral transduction methods) and strategies to improve the in vivo persistence and function of immune cells expressing CARs. Examples of tumor-associated antigens that have been targeted in preclinical models and clinical experience with these modified cells. Safety issues surrounding CAR gene transfer into T cells and potential solutions to them. EXPERT OPINION Because of recent advances in immunology, genetics and cell processing, CAR-modified T cells will likely play an increasing role in the cellular therapy of cancer, chronic infections and autoimmune disorders.
Collapse
Affiliation(s)
- Carlos A Ramos
- Center for Cell and Gene Therapy, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
996
|
Al-Khami AA, Mehrotra S, Nishimura MI. Adoptive immunotherapy of cancer: Gene transfer of T cell specificity. SELF NONSELF 2011; 2:80-84. [PMID: 22299059 DOI: 10.4161/self.2.2.15832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 01/13/2023]
Abstract
Adoptive transfer of tumor-reactive T cells has emerged as a promising advance in tumor immunotherapy. Specifically, infusion of tumor-infiltrating lymphocytes has led to long-term objective clinical responses for patients with metastatic melanoma. Donor lymphocyte infusion is also an effective treatment of post-transplant lymphoproliferative disease. However, adoptive T cell therapy has restrictions in the isolation and expansion of antigen-specific lymphocytes for a large group of patients. One approach to circumvent this limitation and extend adoptive immunotherapy to other cancer types is the genetic modification of T cells with antigen-specific receptors. In this article, we review strategies to redirect T cell specificity, including T cell receptor gene transfer and antibody receptor gene transfer.
Collapse
Affiliation(s)
- Amir A Al-Khami
- Division of General Surgery; Department of Surgery; Medical University of South Carolina; Charleston, SC USA
| | | | | |
Collapse
|
997
|
Sangiolo D, Leuci V, Gallo S, Aglietta M, Piacibello W. Gene-modified T lymphocytes in the setting of hematopoietic cell transplantation: potential benefits and possible risks. Expert Opin Biol Ther 2011; 11:655-66. [PMID: 21375466 DOI: 10.1517/14712598.2011.565325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Allogeneic hematopoietic cell transplantation (HCT) is a consolidated treatment for several hematologic malignancies. Donor T lymphocytes can mediate a graft versus tumor (GVT) effect and control opportunistic infections but can also cause severe graft versus host disease (GVHD). Gene-transfer strategies are appealing tools to modulate T cell functions when infused after HCT. AREAS COVERED The current and potential future applications of T cell gene-transfer approaches to HCT. This review is not limited to GVHD control but covers the issues of GVT and immune reconstitution. Clinical data are used to discuss more general issues, perspectives and concerns common to gene-modification of T cells. An overview of the results and limitations emerging from clinical trials with herpes simplex virus-thymidine kinase (HSV-TK) engineered lymphocytes is provided. The review provides perspectives on additional gene-transfer strategies, currently at preclinical level or that have just entered clinical trials, to increase the efficacy and safety of HCT. EXPERT OPINION Gene-transfer can positively interfere with T cell functions after HCT. TK-lymphocytes have proven effective in controlling GVHD while retaining an acceptable GVT effect. Strategies exploiting new suicide molecules or engineered T cell receptors (TCRs) should be further explored to address current limitations with TK-lymphocytes and augment the efficacy and specificity of GVT and antiviral activity.
Collapse
Affiliation(s)
- Dario Sangiolo
- IRCC Institute for Cancer Research and Treatment, Laboratory of Cell Therapy, Department of Oncological Sciences, Strada Provinciale 142, Km 3.95, 10060 Candiolo, Turin, Italy.
| | | | | | | | | |
Collapse
|
998
|
Focus on adoptive T cell transfer trials in melanoma. Clin Dev Immunol 2010; 2010:260267. [PMID: 21234353 PMCID: PMC3018069 DOI: 10.1155/2010/260267] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/08/2010] [Indexed: 11/17/2022]
Abstract
Adoptive Cell Transfer (ACT) of Tumor-Infiltrating Lymphocytes (TIL) in combination with lymphodepletion has proven to be an effective treatment for metastatic melanoma patients, with an objective response rate in 50%–70% of the patients. It is based on the ex vivo expansion and activation of tumor-specific T lymphocytes extracted from the tumor and their administration back to the patient. Various TIL-ACT trials, which differ in their TIL generation procedures and patient preconditioning, have been reported. In the latest clinical studies, genetically engineered peripheral T cells were utilized instead of TIL. Further improvement of adoptive T cell transfer depends on new investigations which seek higher TIL quality, increased durable response rates, and aim to treat more patients. Simplifying this therapy may encourage cancer centers worldwide to adopt this promising technology. This paper focuses on the latest progress regarding adoptive T cell transfer, comparing the currently available protocols and discussing their advantages, disadvantages, and implication in the future.
Collapse
|
999
|
Kandalaft LE, Powell DJ, Singh N, Coukos G. Immunotherapy for ovarian cancer: what's next? J Clin Oncol 2010; 29:925-33. [PMID: 21079136 DOI: 10.1200/jco.2009.27.2369] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the past decade, we have witnessed important gains in the treatment of ovarian cancer; however, additional advances are required to reduce mortality. With compelling evidence that ovarian cancers are immunogenic tumors, immunotherapy should be further pursued and optimized. The dramatic advances in laboratory and clinical procedures in cellular immunotherapy, along with the development of powerful immunomodulatory antibodies, create new opportunities in ovarian cancer therapeutics. Herein, we review current progress and future prospects in vaccine and adoptive T-cell therapy development as well as immunomodulatory therapy tools available for immediate clinical testing.
Collapse
Affiliation(s)
- Lana E Kandalaft
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
1000
|
Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 2010; 116:3875-86. [PMID: 20631379 PMCID: PMC2981541 DOI: 10.1182/blood-2010-01-265041] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 06/29/2010] [Indexed: 12/30/2022] Open
Abstract
Adoptive T-cell therapy with anti-CD19 chimeric antigen receptor (CAR)-expressing T cells is a new approach for treating advanced B-cell malignancies. To evaluate anti-CD19-CAR-transduced T cells in a murine model of adoptive T-cell therapy, we developed a CAR that specifically recognized murine CD19. We used T cells that were retrovirally transduced with this CAR to treat mice bearing a syngeneic lymphoma that naturally expressed the self-antigen murine CD19. One infusion of anti-CD19-CAR-transduced T cells completely eliminated normal B cells from mice for at least 143 days. Anti-CD19-CAR-transduced T cells eradicated intraperitoneally injected lymphoma cells and large subcutaneous lymphoma masses. The antilymphoma efficacy of anti-CD19-CAR-transduced T cells was critically dependent on irradiation of mice before anti-CD19-CAR-transduced T-cell infusion. Anti-CD19-CAR-transduced T cells had superior antilymphoma efficacy compared with the anti-CD19 monoclonal antibody from which the anti-CD19 CAR was derived. Our results demonstrated impressive antilymphoma activity and profound destruction of normal B cells caused by anti-CD19-CAR-transduced T cells in a clinically relevant murine model.
Collapse
Affiliation(s)
- James N Kochenderfer
- Surgery Branch of the National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|