951
|
Effenberger M, Bommert KS, Kunz V, Kruk J, Leich E, Rudelius M, Bargou R, Bommert K. Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation. Oncotarget 2017; 8:85858-85867. [PMID: 29156762 PMCID: PMC5689652 DOI: 10.18632/oncotarget.20691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/04/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple Myeloma (MM) is an incurable hematological malignancy affecting millions of people worldwide. As in all tumor cells both glucose and more recently glutamine have been identified as important for MM cellular metabolism, however there is some dispute as to the role of glutamine in MM cell survival. Here we show that the small molecule inhibitor compound 968 effectively inhibits glutaminase and that this inhibition induces apoptosis in both human multiple myeloma cell lines (HMCLs) and primary patient material. The HMCL U266 which does not express MYC was insensitive to both glutamine removal and compound 968, but ectopic expression of MYC imparted sensitivity. Finally, we show that glutamine depletion is reflected by rapid loss of MYC protein which is independent of MYC transcription and post translational modifications. However, MYC loss is dependent on proteasomal activity, and this loss was paralleled by an equally rapid induction of apoptosis. These findings are in contrast to those of glucose depletion which largely affected rates of proliferation in HMCLs, but had no effects on either MYC expression or viability. Therefore, inhibition of glutaminolysis is effective at inducing apoptosis and thus serves as a possible therapeutic target in MM.
Collapse
Affiliation(s)
- Madlen Effenberger
- Comprehensive Cancer Center Mainfranken University Hospital Würzburg, Würzburg, Germany
| | - Kathryn S Bommert
- Comprehensive Cancer Center Mainfranken University Hospital Würzburg, Würzburg, Germany
| | - Viktoria Kunz
- Comprehensive Cancer Center Mainfranken University Hospital Würzburg, Würzburg, Germany
| | - Jessica Kruk
- Comprehensive Cancer Center Mainfranken University Hospital Würzburg, Würzburg, Germany
| | - Ellen Leich
- Institute of Pathology and Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Martina Rudelius
- Institute of Pathology and Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken University Hospital Würzburg, Würzburg, Germany
| | - Kurt Bommert
- Comprehensive Cancer Center Mainfranken University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
952
|
Immune Dysfunction in Non-Hodgkin Lymphoma: Avenues for New Immunotherapy-Based Strategies. Curr Hematol Malig Rep 2017; 12:484-494. [DOI: 10.1007/s11899-017-0410-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
953
|
Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 2017; 549:106-110. [PMID: 28813410 PMCID: PMC6333292 DOI: 10.1038/nature23669] [Citation(s) in RCA: 522] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
The clinical benefit in patients with diverse types of metastatic cancers
that is observed upon blockade of the PD-1 – PD-L1 interaction has
highlighted the importance of this inhibitory axis in the suppression of
tumor-specific T cell responses1–9. In spite of the
key role of PD-L1 expression by cells within the tumor micro-environment, our
understanding of the regulation of the PD-L1 protein is limited10–15. Using a haploid genetic screen, we here identify CMTM6, a type 3
transmembrane protein of previously unknown function, as a regulator of the
PD-L1 protein. Interference with CMTM6 expression results in impaired PD-L1
protein expression in all tumor cell types tested and in primary human dendritic
cells. Furthermore, through both a haploid genetic modifier screen in CMTM6
deficient cells and genetic complementation experiments, we demonstrate that
this function is shared by its closest family member CMTM4, but not by all other
CMTM members tested. Notably, CMTM6 increases the PD-L1 protein pool without
affecting PD-L1 transcript levels. Rather, we demonstrate that CMTM6 is present
at the cell surface, associates with the PD-L1 protein, reduces its
ubiquitination and increases PD-L1 protein half-life. Consistent with its role
in PD-L1 protein regulation, T cell inhibitory capacity of PD-L1 expressing
tumor cells is enhanced by CMTM6. Collectively, our data reveal that PD-L1
relies on CMTM6/4 to efficiently carry out its inhibitory function, and suggest
potential new avenues to block this pathway.
Collapse
|
954
|
Castellanos EH, Feld E, Estrada MV, Sanders ME, Massion PP, Johnson DB, Balko JM, Horn L. Clinical Response to Anti-Programmed Death 1 After Response and Subsequent Progression on Anti-Programmed Death Ligand 1 Therapy. JCO Precis Oncol 2017; 1:1700049. [PMID: 32913978 PMCID: PMC7446533 DOI: 10.1200/po.17.00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
955
|
Evanno E, Godet J, Piccirilli N, Guilhot J, Milin S, Gombert JM, Fouchaq B, Roche J. Tri-methylation of H3K79 is decreased in TGF-β1-induced epithelial-to-mesenchymal transition in lung cancer. Clin Epigenetics 2017; 9:80. [PMID: 28804523 PMCID: PMC5549304 DOI: 10.1186/s13148-017-0380-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/31/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) enables epithelial cancer cells to acquire mesenchymal features and contributes to metastasis and resistance to treatment. This process involves epigenetic reprogramming for gene expression. We explored global histone modifications during TGF-β1-induced EMT in two non-small cell lung cancer (NSCLC) cell lines and tested different epigenetic treatment to modulate or partially reverse EMT. RESULTS Loss of classical epithelial markers and gain of mesenchymal markers were verified in A549 and H358 cell lines during TGF-β1-induced EMT. In addition, we noticed increased expression of the axonal guidance protein semaphorin 3C (SEMA3C) and PD-L1 (programmed death-ligand 1) involved in the inhibition of the immune system, suggesting that both SEMA3C and PD-L1 could be the new markers of TGF-β1-induced EMT. H3K79me3 and H2BK120me1 were decreased in A549 and H358 cell lines after a 48-h TGF-β1 treatment, as well as H2BK120ac in A549 cells. However, decreased H3K79me3 was not associated with expression of the histone methyltransferase DOT1L. Furthermore, H3K79me3 was decreased in tumors compared in normal tissues and not associated with cell proliferation. Associations of histone deacetylase inhibitor (SAHA) with DOT1L inhibitors (EPZ5676 or SGC0946) or BET bromodomain inhibitor (PFI-1) were efficient to partially reverse TGF-β1 effects by decreasing expression of PD-L1, SEMA3C, and its receptor neuropilin-2 (NRP2) and by increasing epithelial markers such as E-cadherin. CONCLUSION Histone methylation was modified during EMT, and combination of epigenetic compounds with conventional or targeted chemotherapy might contribute to reduce metastasis and to enhance clinical responses.
Collapse
Affiliation(s)
- Emilie Evanno
- Eurofins Cerep SA, Le Bois l’Evêque, F-86600 Celle L’Evescault, France
- Université de Poitiers, Laboratoire LNEC, F-86022 Poitiers, France
| | - Julie Godet
- CHU de Poitiers, Service d’Anatomie et de Cytologie Pathologiques, F-86021 Poitiers, France
| | | | - Joëlle Guilhot
- INSERM CIC 0802, CHU de Poitiers, F-86021 Poitiers, France
| | - Serge Milin
- CHU de Poitiers, Service d’Anatomie et de Cytologie Pathologiques, F-86021 Poitiers, France
| | - Jean Marc Gombert
- INSERM U1082, CHU de Poitiers, F-86021 Poitiers, France
- Service Immunologie, CHU de Poitiers, F-86021 Poitiers, France
| | - Benoit Fouchaq
- Eurofins Cerep SA, Le Bois l’Evêque, F-86600 Celle L’Evescault, France
| | - Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions (EBI), Université de Poitiers, UMR-CNRS 7267, F-86073 Poitiers, France
| |
Collapse
|
956
|
Smolle MA, Pichler M. Inflammation, phagocytosis and cancer: another step in the CD47 act. J Thorac Dis 2017; 9:2279-2282. [PMID: 28932524 DOI: 10.21037/jtd.2017.07.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Maria A Smolle
- Department of Orthopaedics and Trauma, Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Clinical Oncology, Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
957
|
Fiori ME, Villanova L, De Maria R. Cancer stem cells: at the forefront of personalized medicine and immunotherapy. Curr Opin Pharmacol 2017; 35:1-11. [DOI: 10.1016/j.coph.2017.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/05/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023]
|
958
|
Wang W, Liu J, He Y, McLeod HL. Prospect for immune checkpoint blockade: dynamic and comprehensive monitorings pave the way. Pharmacogenomics 2017; 18:1299-1304. [PMID: 28745931 DOI: 10.2217/pgs-2017-0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Immune checkpoint blockade, which releases the brake of the immune system to enhance anticancer immune response, stands out in the cancer immunotherapy field due to their remarkable and long-lasting effect. However, the overall response rate for currently approved immune checkpoint inhibitors is only about 10-40%. We have summarized three major components, which are the presence of checkpoints, the immune-activation mechanism and the immune-inhibitory mechanism, containing six factors to describe the cancer-immune interaction dynamically and comprehensively, which shed light on promising biomarkers in immune checkpoint therapy.
Collapse
Affiliation(s)
- Weili Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - Jie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA
| |
Collapse
|
959
|
Roles of Wnt Target Genes in the Journey of Cancer Stem Cells. Int J Mol Sci 2017; 18:ijms18081604. [PMID: 28757546 PMCID: PMC5577996 DOI: 10.3390/ijms18081604] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
The importance of Wnt/β-catenin signaling in cancer stem cells (CSCs) has been acknowledged; however, the mechanism through which it regulates the biological function of CSCs and promotes cancer progression remains elusive. Hence, to understand the intricate mechanism by which Wnt controls stemness, the specific downstream target genes of Wnt were established by analyzing the genetic signatures of multiple types of metastatic cancers based on gene set enrichment. By focusing on the molecular function of Wnt target genes, the biological roles of Wnt were interpreted in terms of CSC dynamics from initiation to metastasis. Wnt signaling participates in cancer initiation by generating CSCs from normal stem cells or non-CSCs and augmenting persistent growth at the primary region, which is resistant to anti-cancer therapy. Moreover, it assists CSCs in invading nearby tissues and in entering the blood stream, during which the negative feedback of the Wnt signaling pathway maintains CSCs in a dormant state that is suitable for survival. When CSCs arrive at distant organs, another burst of Wnt signaling induces CSCs to succeed in re-initiation and colonization. This comprehensive understanding of Wnt target genes provides a plausible explanation for how Wnt allows CSCs variation during cancer progression.
Collapse
|
960
|
Korpal M, Puyang X, Jeremy Wu Z, Seiler R, Furman C, Oo HZ, Seiler M, Irwin S, Subramanian V, Julie Joshi J, Wang CK, Rimkunas V, Tortora D, Yang H, Kumar N, Kuznetsov G, Matijevic M, Chow J, Kumar P, Zou J, Feala J, Corson L, Henry R, Selvaraj A, Davis A, Bloudoff K, Douglas J, Kiss B, Roberts M, Fazli L, Black PC, Fekkes P, Smith PG, Warmuth M, Yu L, Hao MH, Larsen N, Daugaard M, Zhu P. Evasion of immunosurveillance by genomic alterations of PPARγ/RXRα in bladder cancer. Nat Commun 2017; 8:103. [PMID: 28740126 PMCID: PMC5524640 DOI: 10.1038/s41467-017-00147-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is an aggressive disease with limited therapeutic options. Although immunotherapies are approved for MIBC, the majority of patients fail to respond, suggesting existence of complementary immune evasion mechanisms. Here, we report that the PPARγ/RXRα pathway constitutes a tumor-intrinsic mechanism underlying immune evasion in MIBC. Recurrent mutations in RXRα at serine 427 (S427F/Y), through conformational activation of the PPARγ/RXRα heterodimer, and focal amplification/overexpression of PPARγ converge to modulate PPARγ/RXRα-dependent transcription programs. Immune cell-infiltration is controlled by activated PPARγ/RXRα that inhibits expression/secretion of inflammatory cytokines. Clinical data sets and an in vivo tumor model indicate that PPARγHigh/RXRαS427F/Y impairs CD8+ T-cell infiltration and confers partial resistance to immunotherapies. Knockdown of PPARγ or RXRα and pharmacological inhibition of PPARγ significantly increase cytokine expression suggesting therapeutic approaches to reviving immunosurveillance and sensitivity to immunotherapies. Our study reveals a class of tumor cell-intrinsic "immuno-oncogenes" that modulate the immune microenvironment of cancer.Muscle-invasive bladder cancer (MIBC) is a potentially lethal disease. Here the authors characterize diverse genetic alterations in MIBC that convergently lead to constitutive activation of PPARgamma/RXRalpha and result in immunosurveillance escape by inhibiting CD8+ T-cell recruitment.
Collapse
Affiliation(s)
- Manav Korpal
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA.
| | - Xiaoling Puyang
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Zhenhua Jeremy Wu
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Roland Seiler
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9.,Vancouver Prostate Centre, Vancouver, BC, Canada, V6H 3Z6
| | - Craig Furman
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9.,Vancouver Prostate Centre, Vancouver, BC, Canada, V6H 3Z6
| | - Michael Seiler
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Sean Irwin
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | | | - Jaya Julie Joshi
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Chris K Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9.,Vancouver Prostate Centre, Vancouver, BC, Canada, V6H 3Z6
| | - Victoria Rimkunas
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Davide Tortora
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9.,Vancouver Prostate Centre, Vancouver, BC, Canada, V6H 3Z6
| | - Hua Yang
- Eisai Inc., 4 Corporate Drive, Andover, MA, 01810, USA
| | - Namita Kumar
- Eisai Inc., 4 Corporate Drive, Andover, MA, 01810, USA
| | | | | | - Jesse Chow
- Eisai Inc., 4 Corporate Drive, Andover, MA, 01810, USA
| | - Pavan Kumar
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Jian Zou
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Jacob Feala
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Laura Corson
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Ryan Henry
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Anand Selvaraj
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Allison Davis
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Kristjan Bloudoff
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - James Douglas
- Department of Urology, University Hospital of Southampton, Hampshire, SO16 6YD, UK
| | - Bernhard Kiss
- Department of Urology, University of Bern, Bern, CH-3010, Switzerland
| | - Morgan Roberts
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9.,Vancouver Prostate Centre, Vancouver, BC, Canada, V6H 3Z6
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9.,Vancouver Prostate Centre, Vancouver, BC, Canada, V6H 3Z6
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9.,Vancouver Prostate Centre, Vancouver, BC, Canada, V6H 3Z6
| | - Peter Fekkes
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Peter G Smith
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Markus Warmuth
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Lihua Yu
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Ming-Hong Hao
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Nicholas Larsen
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9.,Vancouver Prostate Centre, Vancouver, BC, Canada, V6H 3Z6
| | - Ping Zhu
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
961
|
Liu XJ, Li L, Liu XJ, Li Y, Zhao CY, Wang RQ, Zhen YS. Mithramycin-loaded mPEG-PLGA nanoparticles exert potent antitumor efficacy against pancreatic carcinoma. Int J Nanomedicine 2017; 12:5255-5269. [PMID: 28769562 PMCID: PMC5533565 DOI: 10.2147/ijn.s139507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies have shown that mithramycin A (MIT) is a promising candidate for the treatment of pancreatic carcinoma through inhibiting transcription factor Sp1. However, systemic toxicities may limit its clinical application. Here, we report a rationally designed formulation of MIT-loaded nanoparticles (MIT-NPs) with a small size and sustained release for improved passive targeting and enhanced therapeutic efficacy. Nearly spherical MIT-NPs with a mean particle size of 25.0±4.6 nm were prepared by encapsulating MIT into methoxy poly(ethylene glycol)-block-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (NPs) with drug loading of 2.11%±0.51%. The in vitro release of the MIT-NPs lasted for >48 h with a sustained-release pattern. The cytotoxicity of MIT-NPs to human pancreatic cancer BxPC-3 and MIA Paca-2 cells was comparable to that of free MIT. Determined by flow cytometry and confocal microscopy, the NPs internalized into the cells quickly and efficiently, reaching the peak level at 1-2 h. In vivo fluorescence imaging showed that the prepared NPs were gradually accumulated in BxPC-3 and MIA Paca-2 xenografts and retained for 168 h. The fluorescence intensity in both BxPC-3 and MIA Paca-2 tumors was much stronger than that of various tested organs. Therapeutic efficacy was evaluated with the poorly permeable BxPC-3 pancreatic carcinoma xenograft model. At a well-tolerated dose of 2 mg/kg, MIT-NPs suppressed BxPC-3 tumor growth by 96%. Compared at an equivalent dose, MIT-NPs exerted significantly higher therapeutic effect than free MIT (86% versus 51%, P<0.01). Moreover, the treatment of MIT and MIT-NPs reduced the expression level of oncogene c-Myc regulated by Sp1, and notably, both of them decreased the protein level of CD47. In summary, the novel formulation of MIT-NPs shows highly therapeutic efficacy against pancreatic carcinoma xenograft. In addition, MIT-NPs can downregulate CD47 expression, implying that it might play a positive role in cancer immunotherapy.
Collapse
Affiliation(s)
- Xu-Jie Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiu-Jun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chun-Yan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Rui-Qi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
962
|
Wang J, Jia Y, Zhao S, Zhang X, Wang X, Han X, Wang Y, Ma M, Shi J, Liu L. BIN1 reverses PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/MAPK signaling pathways in non-small cell lung cancer. Oncogene 2017; 36:6235-6243. [PMID: 28714960 DOI: 10.1038/onc.2017.217] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common and malignant carcinoma worldwide, and the incidence and mortality are increasing rapidly. Immunotherapy targeting programmed death 1/programmed death ligand 1 (PD-L1) signaling has shown prominent clinical effects in treating NSCLC; however, a poor understanding of the associated regulating molecular mechanisms of PD-L1 has become one of the biggest obstacles for further improving efficacy. Bridging integrator-1 (BIN1) can regulate numerous cancer-related molecules to exert multiple tumor-suppressing effects by either interacting or not interacting with c-MYC. In the present study, we observed that there exists a negative correlation between the expression of PD-L1 and BIN1 in NSCLC tissues. The expression levels of BIN1 and PD-L1 were significantly related to the tumor, lymph node and metastasis grade (TNM) stage, invasion range and lymph node metastasis. Simultaneously, for NSCLC patients, the expression statuses of BIN1 and PD-L1 might be independent prognostic factors. Furthermore, the expression of tumor-infiltrating lymphocytes was positively associated with BIN1 expression and negatively related to PD-L1 expression in NSCLC tissues. Importantly, we showed that PD-L1 was under the control of BIN1. In addition, the overexpression of BIN1 could inhibit the c-MYC and epithelial growth factor receptor (EGFR)-dependent PD-L1 expression and reverse the suppressive immuno-microenvironment in vivo. Taken together, our findings indicated that BIN1 restoration in NSCLC could reverse PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- J Wang
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Y Jia
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - S Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - X Zhang
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - X Wang
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - X Han
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Y Wang
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - M Ma
- Research Center, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - J Shi
- State Key Laboratory of Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - L Liu
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| |
Collapse
|
963
|
Alvi MA, Loughrey MB, Dunne P, McQuaid S, Turkington R, Fuchs MA, McGready C, Bingham V, Pang B, Moore W, Maxwell P, Lawler M, James JA, Murray GI, Wilson RH, Salto-Tellez M. Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies. Br J Cancer 2017; 117:203-209. [PMID: 28595259 PMCID: PMC5520517 DOI: 10.1038/bjc.2017.168] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Signet ring cell colorectal cancer (SRCCa) has a bleak prognosis. Employing molecular pathology techniques we investigated the potential of precision medicine in this disease. METHODS Using test (n=26) and validation (n=18) cohorts, analysis of mutations, DNA methylation and transcriptome was carried out. Microsatellite instability (MSI) status was established and immunohistochemistry (IHC) was used to test for adaptive immunity (CD3) and the immune checkpoint PDL1. RESULTS DNA methylation data split the cohorts into hypermethylated (n=18, 41%) and hypomethylated groups (n=26, 59%). The hypermethylated group predominant in the proximal colon was enriched for CpG island methylator phenotype (CIMP), BRAF V600E mutation and MSI (P<0.001). These cases also had a high CD3+ immune infiltrate (P<0.001) and expressed PDL1 (P=0.03 in intra-tumoural lymphoid cells). The hypomethylated group predominant in the distal colon did not show any characteristic molecular features. We also detected a common targetable KIT mutation (c.1621A>C) across both groups. No statistically significant difference in outcome was observed between the two groups. CONCLUSIONS Our data show that SRCCa phenotype comprises two distinct genotypes. The MSI+/CIMP+/BRAF V600E+/CD3+/PDL1+ hypermethylated genotype is an ideal candidate for immune checkpoint inhibitor therapy. In addition, one fourth of SRCCa cases can potentially be targeted by KIT inhibitors.
Collapse
Affiliation(s)
- Muhammad A Alvi
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Maurice B Loughrey
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
- Department of Histopathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Philip Dunne
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Stephen McQuaid
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Richard Turkington
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | - Marc-Aurel Fuchs
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Claire McGready
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Victoria Bingham
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Brendan Pang
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
| | - Wendy Moore
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Perry Maxwell
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | - Jacqueline A James
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Graeme I Murray
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Richard H Wilson
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | - Manuel Salto-Tellez
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, UK
- Department of Histopathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
964
|
Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev 2017; 276:145-164. [PMID: 28258703 DOI: 10.1111/imr.12527] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field.
Collapse
Affiliation(s)
- Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neil A Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cell Biology and Immunology, VU medical Center, Amsterdam, The Netherlands
| |
Collapse
|
965
|
Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine Growth Factor Rev 2017; 36:5-15. [PMID: 28693973 DOI: 10.1016/j.cytogfr.2017.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
With the widespread application of immune checkpoint blocking antibodies (ICBs) for the treatment of advanced cancer, immunotherapy has proven to be capable of yielding unparalleled clinical results. However, despite the initial success of ICB-treatment, still a minority of patients experience durable responses to ICB therapy. A plethora of mechanisms underlie ICB resistance ranging from low immunogenicity, inadequate generation or recruitment of tumor-specific T cells or local suppression by stromal cells to acquired genetic alterations leading to immune escape. Increasing the response rates to ICBs requires insight into the mechanisms underlying resistance and the subsequent design of rational therapeutic combinations on a per patient basis. In this review, we aim to establish order into the mechanisms governing primary and secondary ICB resistance, offer therapeutic options to circumvent different modes of resistance and plea for a personalized medicine approach to maximize immunotherapeutic benefit for all cancer patients.
Collapse
|
966
|
Abstract
The therapy of different advanced-stage malignancies with monoclonal antibodies blocking programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) signaling has had an impressive long-lasting effect in a portion of patients, but in most cases, this therapy was not successful, or a secondary resistance developed. To enhance its efficacy in treated patients, predictive biomarkers are searched for and various combination treatments are intensively investigated. As the downregulation of major histocompatibility complex (MHC) class I molecules is one of the most frequent mechanisms of tumor escape from the host’s immunity, it should be considered in PD-1/PD-L1 checkpoint inhibition. The potential for the use of a PD-1/PD-L1 blockade in the treatment of tumors with aberrant MHC class I expression is discussed, and some strategies of combination therapy are suggested.
Collapse
|
967
|
Balli D, Rech AJ, Stanger BZ, Vonderheide RH. Immune Cytolytic Activity Stratifies Molecular Subsets of Human Pancreatic Cancer. Clin Cancer Res 2017; 23:3129-3138. [PMID: 28007776 DOI: 10.1158/1078-0432.ccr-16-2128] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 01/13/2023]
Abstract
Purpose: Immunotherapy has the potential to improve the dismal prognosis in pancreatic ductal adenocarcinoma (PDA), but clinical trials, including those with single-agent PD-1 or PD-L1 inhibition, have been disappointing. Our aim was to examine the immune landscape of PDA as it relates to aspects of tumor biology, including neoepitope burden.Experimental Design: We used publicly available expression data from 134 primary resection PDA samples from The Cancer Genome Atlas to stratify patients according to a cytolytic T-cell activity expression index. We correlated cytolytic immune activity with mutational, structural, and neoepitope features of the tumor.Results: Human PDA displays a range of intratumoral cytolytic T-cell activity. PDA tumors with low cytolytic activity exhibited significantly increased copy number alterations, including recurrent amplifications of MYC and NOTCH2 and recurrent deletions and mutations of CDKN2A/B In sharp contrast to other tumor types, high cytolytic activity in PDA did not correlate with increased mutational burden or neoepitope load (MHC class I and class II). Cytolytic-high tumors exhibited increased expression of multiple immune checkpoint genes compared to cytolytic-low tumors, except for PD-L1 expression, which was uniformly low.Conclusions: These data identify a subset of human PDA with high cytolytic T-cell activity. Rather than being linked to mutation burden or neoepitope load, immune activation indices in PDA were inversely linked to genomic alterations, suggesting that intrinsic oncogenic processes drive immune inactivity in human PDA. Furthermore, these data highlight the potential importance of immune checkpoints other than PD-L1/PD-1 as therapeutic targets in this lethal disease. Clin Cancer Res; 23(12); 3129-38. ©2016 AACR.
Collapse
Affiliation(s)
- David Balli
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew J Rech
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
968
|
Kim EY, Kim A, Kim SK, Chang YS. MYC expression correlates with PD-L1 expression in non-small cell lung cancer. Lung Cancer 2017; 110:63-67. [PMID: 28676221 DOI: 10.1016/j.lungcan.2017.06.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/15/2017] [Accepted: 06/08/2017] [Indexed: 11/29/2022]
Abstract
Objectives Programmed death-ligand 1 (PD-L1) is a widely used biomarker for predicting immune checkpoint inhibitors, but is of limited usefulness in the prediction of drug response. MYC, a transcription factor that is overexpressed in cancers, is involved in preventing immune cells from attacking tumor cells through inducing PD-L1 expression. This study evaluated the relationship between MYC and PD-L1 expression in 84 non-small cell lung cancer (NSCLC) patients who underwent curative surgical resection. Materials and Methods The relationship between MYC and PD-L1 was investigated by introducing pcDNA3-cMYC into A549 and H1299 cells with low PD-L1 expression and siRNA against MYC into H60 and H2009 cells with high PD-L1 expression. Expression of PD-L1 in NSCLC tissues was analyzed by immunostaining using a PD-L1 (22C3) PharmDx protocol using the Dako Automated Link 48 platform and expression of MYC was determined using anti-c-MYC (Y69) (ab320720). Results Of 84 patients, PD-L1 was expressed in 14 (16.7%) and MYC was overexpressed in 30 (35.7%). We investigated the relationship between PD-L1 and MYC expression. There were 49 (58.3%) double-negative patients and 9 (10.7%) double-positive patients. Significant positive correlation was observed between PD-L1 and MYC expression (γ=0.210, P=0.029). Double-negative patients showed better disease free (31.1 vs. 7.1 months, P=0.011) and overall survival (56.1 vs. 14.4 months, P=0.032) than double-positive patients. Conclusion Taken together, MYC expression significantly correlated with PD-L1 expression in NSCLC. The usefulness of MYC expression as a surrogate marker of treatment response assessment is worth evaluating for immune checkpoint inhibitor therapy and special interest are required for the subgroup of NSCLC patients, whose tumor expresses PD-L1 and MYC double positive.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,Republic of Korea
| | - Arum Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,Republic of Korea
| | - Se Kyu Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,Republic of Korea.
| |
Collapse
|
969
|
Liu J, Liu Y, Meng L, Liu K, Ji B. Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncol Rep 2017. [PMID: 28627705 PMCID: PMC5561980 DOI: 10.3892/or.2017.5722] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Molecule-targeted therapy, such as sorafenib, is one of the effectively therapeutic options for advanced hepatocellular carcinoma (HCC). However, acquired resistance to sorafenib has been found in some HCC patients, resulting in poor prognosis. It is reported that PD-L1 and DNA methyltransferases (DNMTs) contribute to drug resistance. In this study, by inducing sorafenib-resistant HCC cell lines, we investigated their molecular and functional characteristics. Our data indicated that highly upregulated DNMT1 was positively correlated with PD-L1 overexpression in sorafenib-resistant HCC cells. We demonstrate that PD-L1 regulate DNMT1 through STAT3 signaling pathway. Knockdown of PD-L1 induced DNMT1-dependent DNA hypomethylation and restored the expression of methylation-silenced CDH1. Moreover, inactivation of NFκB blocked PD-L1/STAT3/DNMT1 pathway in sorafenib-resistant HCC cells. Functionally, genetic or pharmacological disruption of PD-L1 or/and DNMT1 sensitize HCC resistance to sorafenib. Importantly, dual inactivation of PD-L1 and DNMT1 by their inhibitor synergistically disrupts the colony formation of sorafenib-resistant HCC cells. These results demonstrate that targeting NFκB/PDL1/STAT3/DNMT1 axis is a new therapeutic strategy for preventing or overcoming the acquired resistance to sorafenib in HCC patients.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lingyu Meng
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
970
|
Gong Y, Zhang X, Chen R, Wei Y, Zou Z, Chen X. Cytoplasmic expression of C-MYC protein is associated with risk stratification of mantle cell lymphoma. PeerJ 2017. [PMID: 28626618 PMCID: PMC5472035 DOI: 10.7717/peerj.3457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim To investigate the association of C-MYC protein expression and risk stratification in mantle cell lymphoma (MCL), and to evaluate the utility of C-MYC protein as a prognostic biomarker in clinical practice. Methods We conducted immunohistochemical staining of C-MYC, Programmed cell death ligand 1 (PD-L1), CD8, Ki-67, p53 and SRY (sex determining region Y) -11 (SOX11) to investigate their expression in 64 patients with MCL. The staining results and other clinical data were evaluated for their roles in risk stratification of MCL cases using ANOVA, Chi-square, and Spearman’s Rank correlation coefficient analysis. Results Immunohistochemical staining in our study indicated that SOX11, Ki-67 and p53 presented nuclear positivity of tumor cells, CD8 showed membrane positivity in infiltrating T lymphocytes while PD-L1 showed membrane and cytoplasmic positivity mainly in macrophage cells and little in tumor cells. We observed positive staining of C-MYC either in the nucleus or cytoplasm or in both subcellular locations. There were significant differences in cytoplasmic C-MYC expression, Ki-67 proliferative index of tumor cells, and CD8 positive tumor infiltrating lymphocytes (CD8+TIL) among three risk groups (P = 0.000, P = 0.037 and P=0.020, respectively). However, no significant differences existed in the expression of nuclear C-MYC, SOX11, p53, and PD-L1 in MCL patients with low-, intermediate-, and high risks. In addition, patient age and serum LDH level were also significantly different among 3 groups of patients (P = 0.006 and P = 0.000, respectively). Spearman’s rank correlation coefficient analysis indicated that cytoplasmic C-MYC expression, Ki-67 index, age, WBC, as well as LDH level had significantly positive correlations with risk stratification (P = 0.000, 0.015, 0.000, 0.029 and 0.000, respectively), while CD8+TIL in tumor microenvironment negatively correlated with risk stratification of patients (P = 0.006). Patients with increased positive cytoplasmic expression of C-MYC protein and decreased CD8+TIL appeared to be associated with a poor response to chemotherapy, but the correlation was not statistically significant. Conclusion Our study suggested that assessment of cytoplasmic C-MYC overexpression and cytotoxic T lymphocytes (CTLs) by immunohistochemical staining might be helpful for MCL risk stratification and outcome prediction. However, large cohort studies of MCL patients with complete follow up are needed to validate our speculation.
Collapse
Affiliation(s)
- Yi Gong
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China.,Department of Hematology-oncology, Chongqing Cancer Institute/Hospital, Chongqing, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Rui Chen
- Department of Pathology, Chongqing Cancer Institute/Hospital, Chongqing, China
| | - Yan Wei
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Zhongmin Zou
- Institute of Toxicology, School of Preventive Medicine, The Third Military Medical University, Chongqing, China
| | - Xinghua Chen
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
971
|
Kim KM, Park SH, Bae JS, Noh SJ, Tao GZ, Kim JR, Kwon KS, Park HS, Park BH, Lee H, Chung MJ, Moon WS, Sylvester KG, Jang KY. FAM83H is involved in the progression of hepatocellular carcinoma and is regulated by MYC. Sci Rep 2017; 7:3274. [PMID: 28607447 PMCID: PMC5468291 DOI: 10.1038/s41598-017-03639-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/02/2017] [Indexed: 01/25/2023] Open
Abstract
Recently, the roles of FAM83H in tumorigenesis have been interested and increased expression of FAM83H and MYC in hepatocellular carcinoma (HCC) have been reported. Therefore, we investigated the expression and role of FAM83H in 163 human HCCs and further investigated the relationship between FAM83H and oncogene MYC. The expression of FAM83H is elevated in liver cancer cells, and nuclear expression of FAM83H predicted shorter survival of HCC patients. In HLE and HepG2 HCC cells, knock-down of FAM83H inhibited proliferation and invasive activity of HCC cells. FAM83H induced expression of cyclin-D1, cyclin-E1, snail and MMP2 and inhibited the expression of P53 and P27. In hepatic tumor cells derived from Tet-O-MYC mice, the expression of mRNA and protein of FAM83H were dependent on MYC expression. Moreover, a chromatin immunoprecipitation assay demonstrated that MYC binds to the promotor of FAM83H and that MYC promotes the transcription of FAM83H, which was supported by the results of a dual-luciferase reporter assay. In conclusion, we present an oncogenic role of FAM83H in liver cancer, which is closely associated with the oncogene MYC. In addition, our results suggest FAM83H expression as a poor prognostic indicator of HCC patients.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Sang Jae Noh
- Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Guo-Zhong Tao
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jung Ryul Kim
- Orthopedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Preventive Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Biochemistry, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Ho Lee
- Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Karl G Sylvester
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.
| |
Collapse
|
972
|
MYC and HIF in shaping immune response and immune metabolism. Cytokine Growth Factor Rev 2017; 35:63-70. [DOI: 10.1016/j.cytogfr.2017.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023]
|
973
|
Rodríguez-Ubreva J, Garcia-Gomez A, Ballestar E. Epigenetic mechanisms of myeloid differentiation in the tumor microenvironment. Curr Opin Pharmacol 2017; 35:20-29. [PMID: 28551408 DOI: 10.1016/j.coph.2017.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
Abstract
Myeloid cells are extremely plastic as they respond and terminally differentiate into a plethora of functional types, in the blood or tissues, in response to a variety of growth factors, cytokines and pathogenic molecules. This plasticity is also manifested by the subversion of normal differentiation into the aberrant generation of a variety of tolerogenic myeloid cells in the tumoral microenvironment, where a variety of factors are released. Epigenetic mechanisms are in great part responsible for the plasticity of myeloid cells both under physiological and tumoral conditions. The development of compounds that inhibit epigenetic enzymes provides novel therapeutic opportunities to intercept the crosstalk between cancer cells and host myeloid cells. Here, we summarize our current knowledge on the myeloid cell types generated in the cancer environment, the factors and epigenetic enzymes participating in these processes and propose a number of potential targets for future pharmacological use.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Garcia-Gomez
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
974
|
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017; 168:707-723. [PMID: 28187290 DOI: 10.1016/j.cell.2017.01.017] [Citation(s) in RCA: 3661] [Impact Index Per Article: 457.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy can induce long lasting responses in patients with metastatic cancers of a wide range of histologies. Broadening the clinical applicability of these treatments requires an improved understanding of the mechanisms limiting cancer immunotherapy. The interactions between the immune system and cancer cells are continuous, dynamic, and evolving from the initial establishment of a cancer cell to the development of metastatic disease, which is dependent on immune evasion. As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Padmanee Sharma
- Department of Genitourinary Medical Oncology and Immunology,The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Siwen Hu-Lieskovan
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jennifer A Wargo
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA.
| |
Collapse
|
975
|
Curran EK, Godfrey J, Kline J. Mechanisms of Immune Tolerance in Leukemia and Lymphoma. Trends Immunol 2017; 38:513-525. [PMID: 28511816 DOI: 10.1016/j.it.2017.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
Abstract
The mechanisms through which immune responses are generated against solid cancers are well characterized and knowledge of the immune evasion pathways exploited by these malignancies has grown considerably. However, for hematological cancers, which develop and disseminate quite differently than solid tumors, the pathways that regulate immune activation or tolerance are less clear. Growing evidence suggests that, while numerous immune escape pathways are shared between hematological and solid malignancies, several unique pathways are exploited by leukemia and lymphoma. Below we discuss immune evasion mechanisms in leukemia and lymphoma, highlighting key differences from solid tumors. A more complete characterization of the mechanisms of immune tolerance in hematological malignancies is critical to inform the development of future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Emily K Curran
- Department of Medicine, Section of Hematology, University of Chicago, Chicago, IL, USA; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA; University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - James Godfrey
- Department of Medicine, Section of Hematology, University of Chicago, Chicago, IL, USA
| | - Justin Kline
- Department of Medicine, Section of Hematology, University of Chicago, Chicago, IL, USA; University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
976
|
Liu F, Jiang CC, Yan XG, Tseng HY, Wang CY, Zhang YY, Yari H, La T, Farrelly M, Guo ST, Thorne RF, Jin L, Wang Q, Zhang XD. BRAF/MEK inhibitors promote CD47 expression that is reversible by ERK inhibition in melanoma. Oncotarget 2017; 8:69477-69492. [PMID: 29050218 PMCID: PMC5642493 DOI: 10.18632/oncotarget.17704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
The expression of CD47 on the cancer cell surface transmits "don't eat me" signalling that not only inhibits phagocytosis of cancer cells by phagocytes but also impairs anti-cancer T cell responses. Here we report that oncogenic activation of ERK plays an important role in transcriptional activation of CD47 through nuclear respiratory factor 1 (NRF-1) in melanoma cells. Treatment with BRAF/MEK inhibitors upregulated CD47 in cultured melanoma cells and fresh melanoma isolates. Similarly, melanoma cells selected for resistance to the BRAF inhibitor vemurafenib expressed higher levels of CD47. The increase in CD47 expression was mediated by ERK signalling, as it was associated with rebound activation of ERK and co-knockdown of ERK1/2 by siRNA diminished upregulation of CD47 in melanoma cells after exposure to BRAF/MEK inhibitors. Furthermore, ERK1/2 knockdown also reduced the constitutive expression of CD47 in melanoma cells. We identified a DNA fragment that was enriched with the consensus binding sites for NRF-1 and was transcriptionally responsive to BRAF/MEK inhibitor treatment. Knockdown of NRF-1 inhibited the increase in CD47, indicating that NRF-1 has a critical role in transcriptional activation of CD47 by ERK signalling. Functional studies showed that melanoma cells resistant to vemurafenib were more susceptible to macrophage phagocytosis when CD47 was blocked. So these results suggest that NRF-1-mediated regulation of CD47 expression is a novel mechanism by which ERK signalling promotes the pathogenesis of melanoma, and that the combination of CD47 blockade and BRAF/MEK inhibitors may be a useful approach for improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Fen Liu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.,School of Medicine and Public Health, The University of Newcastle, NSW, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, The University of Newcastle, NSW, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Hsin-Yi Tseng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Chun Yan Wang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Yuan Yuan Zhang
- School of Medicine and Public Health, The University of Newcastle, NSW, Australia
| | - Hamed Yari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Margaret Farrelly
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Su Tang Guo
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Rick F Thorne
- School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, NSW, Australia
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| |
Collapse
|
977
|
Flies AS, Blackburn NB, Lyons AB, Hayball JD, Woods GM. Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease. Front Immunol 2017; 8:513. [PMID: 28515726 PMCID: PMC5413580 DOI: 10.3389/fimmu.2017.00513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii) facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY) ligand-binding motif and the CTLA-4 (GVYVKM) inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based switch motifs (ITSMs) in genes and protein domains that have not been previously reported in any species. This checkpoint molecule analysis and review of salient features for each of the molecules presented here can serve as road map for the development of a Tasmanian devil facial tumor disease immunotherapy. Finally, the strategies can be used as a guide for veterinarians, ecologists, and other researchers willing to venture into the nascent field of wild immunology.
Collapse
Affiliation(s)
- Andrew S. Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Nicholas B. Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Alan Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - John D. Hayball
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Gregory M. Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
978
|
A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun 2017; 8:14802. [PMID: 28378740 PMCID: PMC5382276 DOI: 10.1038/ncomms14802] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
CD47 is a cell surface molecule that inhibits phagocytosis of cells that express it by binding to its receptor, SIRPα, on macrophages and other immune cells. CD47 is expressed at different levels by neoplastic and normal cells. Here, to reveal mechanisms by which different neoplastic cells generate this dominant 'don't eat me' signal, we analyse the CD47 regulatory genomic landscape. We identify two distinct super-enhancers (SEs) associated with CD47 in certain cancer cell types. We show that a set of active constituent enhancers, located within the two CD47 SEs, regulate CD47 expression in different cancer cell types and that disruption of CD47 SEs reduces CD47 gene expression. Finally we report that the TNF-NFKB1 signalling pathway directly regulates CD47 by interacting with a constituent enhancer located within a CD47-associated SE specific to breast cancer. These results suggest that cancers can evolve SE to drive CD47 overexpression to escape immune surveillance.
Collapse
|
979
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
980
|
Stambrook PJ, Maher J, Farzaneh F. Cancer Immunotherapy: Whence and Whither. Mol Cancer Res 2017; 15:635-650. [PMID: 28356330 DOI: 10.1158/1541-7786.mcr-16-0427] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 12/22/2022]
Abstract
The current concepts and practice of cancer immunotherapy evolved from classical experiments that distinguished "self" from "non-self" and the finding that humoral immunity is complemented by cellular immunity. Elucidation of the biology underlying immune checkpoints and interactions between ligands and ligand receptors that govern the immune system's ability to recognize tumor cells as foreign has led to the emergence of new strategies that mobilize the immune system to reverse this apparent tolerance. Some of these approaches have led to new therapies such as the use of mAbs to interfere with the immune checkpoint. Others have exploited molecular technologies to reengineer a subset of T cells to directly engage and kill tumor cells, particularly those of B-cell malignancies. However, before immunotherapy can become a more effective method of cancer care, there are many challenges that remain to be addressed and hurdles to overcome. Included are manipulation of tumor microenvironment (TME) to enhance T effector cell infiltration and access to the tumor, augmentation of tumor MHC expression for adequate presentation of tumor associated antigens, regulation of cytokines and their potential adverse effects, and reduced risk of secondary malignancies as a consequence of mutations generated by the various forms of genetic engineering of immune cells. Despite these challenges, the future of immunotherapy as a standard anticancer therapy is encouraging. Mol Cancer Res; 15(6); 635-50. ©2017 AACR.
Collapse
Affiliation(s)
- Peter J Stambrook
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - John Maher
- Kings College London, CAR Mechanics Group, Guy's Hospital, London, United Kingdom
| | - Farzin Farzaneh
- Division of Cancer Studies, Department of Haematological Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
981
|
Atsaves V, Tsesmetzis N, Chioureas D, Kis L, Leventaki V, Drakos E, Panaretakis T, Grander D, Medeiros LJ, Young KH, Rassidakis GZ. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 2017; 31:1633-1637. [PMID: 28344319 DOI: 10.1038/leu.2017.103] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- V Atsaves
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - N Tsesmetzis
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - D Chioureas
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - L Kis
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - V Leventaki
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN USA
| | - E Drakos
- Department of Pathology, University of Crete Medical School, Heraklion Crete, Greece
| | - T Panaretakis
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - D Grander
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - L J Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - K H Young
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - G Z Rassidakis
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.,Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
982
|
Toyokawa G, Takada K, Okamoto T, Kawanami S, Kozuma Y, Matsubara T, Haratake N, Takamori S, Akamine T, Katsura M, Yamada Y, Shoji F, Baba S, Kamitani T, Oda Y, Honda H, Maehara Y. Relevance Between Programmed Death Ligand 1 and Radiologic Invasiveness in Pathologic Stage I Lung Adenocarcinoma. Ann Thorac Surg 2017; 103:1750-1757. [PMID: 28347537 DOI: 10.1016/j.athoracsur.2016.12.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/07/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Programmed death ligand 1 (PD-L1) was reported to predict the response of immunotherapy; however, the association between PD-L1 expression and radiologic and pathologic features has yet to be elucidated. METHODS In all, 292 patients with resected pathologic stage I adenocarcinoma were analyzed for PD-L1 expression by immunohistochemistry and evaluated to determine the association between PD-L1 expression and the radiologic/pathologic invasiveness. Specifically, the radiologic invasiveness and noninvasiveness were determined based on the consolidation/tumor ratio, with a cutoff value of 0.25 by thin-section computed tomography. RESULTS Among 292 patients, 47 (16.1%) were positive for PD-L1 expression; the remaining 245 patients (83.9%) were negative for PD-L1 expression. Fisher's exact test demonstrated that PD-L1 expression was significantly associated with a higher consolidation/tumor ratio (p = 0.029) and higher maximum standardized uptake value (p = 0.004). The mean values of consolidation/tumor ratio and maximum standardized uptake in patients with and without PD-L1 expression were 0.845 ± 0.052 and 7.241 ± 0.795, and 0.607 ± 0.023 and 3.60 ± 0.364, respectively (p < 0.001 and p < 0.001, respectively). Among 47 adenocarcinomas harboring PD-L1 expression, the frequencies of PD-L1 expression for consolidation/tumor ratios of 0, 0.1 to 0.25, 0.26 to 0.5, and 0.51 or more were 6.4%, 2.1%, 4.3%, and 87.2%, respectively (p = 0.007). Pathologically, PD-L1 was identified exclusively only in more invasive subtypes, not in less invasive ones, such as atypical adenomatous hyperplasia, adenocarcinoma in situ, minimally invasive adenocarcinoma, and lepidic predominant ones (p < 0.001). CONCLUSIONS Expression of PD-L1 was significantly associated with radiologic/pathologic invasive adenocarcinomas. This study provides the first evidence of the radiologic and pathologic invasiveness in resected pathologic stage I adenocarcinoma with PD-L1 expression.
Collapse
Affiliation(s)
- Gouji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kazuki Takada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Kawanami
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Kozuma
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taichi Matsubara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masakazu Katsura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiro Shoji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Baba
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Kamitani
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
983
|
Hutter S, Bolin S, Weishaupt H, Swartling FJ. Modeling and Targeting MYC Genes in Childhood Brain Tumors. Genes (Basel) 2017; 8:genes8040107. [PMID: 28333115 PMCID: PMC5406854 DOI: 10.3390/genes8040107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 11/16/2022] Open
Abstract
Brain tumors are the second most common group of childhood cancers, accounting for about 20%–25% of all pediatric tumors. Deregulated expression of the MYC family of transcription factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic approaches for pharmacological inhibition of MYC activity in these tumors.
Collapse
Affiliation(s)
- Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| | - Sara Bolin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
984
|
Small molecule selectively suppresses MYC transcription in cancer cells. Proc Natl Acad Sci U S A 2017; 114:3497-3502. [PMID: 28292893 DOI: 10.1073/pnas.1702663114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stauprimide is a staurosporine analog that promotes embryonic stem cell (ESC) differentiation by inhibiting nuclear localization of the MYC transcription factor NME2, which in turn results in down-regulation of MYC transcription. Given the critical role the oncogene MYC plays in tumor initiation and maintenance, we explored the potential of stauprimide as an anticancer agent. Here we report that stauprimide suppresses MYC transcription in cancer cell lines derived from distinct tissues. Using renal cancer cells, we confirmed that stauprimide inhibits NME2 nuclear localization. Gene expression analysis also confirmed the selective down-regulation of MYC target genes by stauprimide. Consistent with this activity, administration of stauprimide inhibited tumor growth in rodent xenograft models. Our study provides a unique strategy for selectively targeting MYC transcription by pharmacological means as a potential treatment for MYC-dependent tumors.
Collapse
|
985
|
Bouillez A, Rajabi H, Jin C, Samur M, Tagde A, Alam M, Hiraki M, Maeda T, Hu X, Adeegbe D, Kharbanda S, Wong KK, Kufe D. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 2017; 36:4037-4046. [PMID: 28288138 PMCID: PMC5509481 DOI: 10.1038/onc.2017.47] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
Abstract
Immunotherapeutic approaches, particularly PD-1/PD-L1 blockade, have improved the treatment of non-small cell lung cancer (NSCLC), supporting the premise that evasion of immune destruction is of importance for NSCLC progression. However, the signals responsible for upregulation of PD-L1 in NSCLC cells and whether they are integrated with the regulation of other immune-related genes are not known. Mucin 1 (MUC1) is aberrantly overexpressed in NSCLC, activates the NF-κB p65→ZEB1 pathway and confers a poor prognosis. The present studies demonstrate that MUC1-C activates PD-L1 expression in NSCLC cells. We show that MUC1-C increases NF-κB p65 occupancy on the CD274/PD-L1 promoter and thereby drives CD274 transcription. Moreover, we demonstrate that MUC1-C-induced activation of NF-κB→ZEB1 signaling represses the TLR9, IFNG, MCP-1 and GM-CSF genes, and that this signature is associated with decreases in overall survival. In concert with these results, targeting MUC1-C in NSCLC tumors suppresses PD-L1 and induces these effectors of innate and adaptive immunity. These findings support a previously unrecognized central role for MUC1-C in integrating PD-L1 activation with suppression of immune effectors and poor clinical outcome.
Collapse
Affiliation(s)
- A Bouillez
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - H Rajabi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Jin
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Samur
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Tagde
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Alam
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Hiraki
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - T Maeda
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - X Hu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Adeegbe
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Kharbanda
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K-K Wong
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Kufe
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
986
|
PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig. PLoS One 2017; 12:e0171828. [PMID: 28278192 PMCID: PMC5344314 DOI: 10.1371/journal.pone.0171828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy.
Collapse
|
987
|
Melaiu O, Mina M, Chierici M, Boldrini R, Jurman G, Romania P, D'Alicandro V, Benedetti MC, Castellano A, Liu T, Furlanello C, Locatelli F, Fruci D. PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma. Clin Cancer Res 2017; 23:4462-4472. [PMID: 28270499 DOI: 10.1158/1078-0432.ccr-16-2601] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/21/2016] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
Purpose: This study sought to evaluate the expression of programmed cell death-ligand-1 (PD-L1) and HLA class I on neuroblastoma cells and programmed cell death-1 (PD-1) and lymphocyte activation gene 3 (LAG3) on tumor-infiltrating lymphocytes to better define patient risk stratification and understand whether this tumor may benefit from therapies targeting immune checkpoint molecules.Experimental Design:In situ IHC staining for PD-L1, HLA class I, PD-1, and LAG3 was assessed in 77 neuroblastoma specimens, previously characterized for tumor-infiltrating T-cell density and correlated with clinical outcome. Surface expression of PD-L1 was evaluated by flow cytometry and IHC in neuroblastoma cell lines and tumors genetically and/or pharmacologically inhibited for MYC and MYCN. A dataset of 477 human primary neuroblastomas from GEO and ArrayExpress databases was explored for PD-L1, MYC, and MYCN correlation.Results: Multivariate Cox regression analysis demonstrated that the combination of PD-L1 and HLA class I tumor cell density is a prognostic biomarker for predicting overall survival in neuroblastoma patients (P = 0.0448). MYC and MYCN control the expression of PD-L1 in neuroblastoma cells both in vitro and in vivo Consistently, abundance of PD-L1 transcript correlates with MYC expression in primary neuroblastoma.Conclusions: The combination of PD-L1 and HLA class I represents a novel prognostic biomarker for neuroblastoma. Pharmacologic inhibition of MYCN and MYC may be exploited to target PD-L1 and restore an efficient antitumor immunity in high-risk neuroblastoma. Clin Cancer Res; 23(15); 4462-72. ©2017 AACR.
Collapse
Affiliation(s)
- Ombretta Melaiu
- Immuno-Oncology Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Mina
- Fondazione Bruno Kessler, Trento, Italy.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Renata Boldrini
- Pathology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Paolo Romania
- Immuno-Oncology Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valerio D'Alicandro
- Immuno-Oncology Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria C Benedetti
- Pathology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Aurora Castellano
- Paediatric Haematology/Oncology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tao Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Center, University of New South Wales, Randwich, New South Wales, Australia
| | | | - Franco Locatelli
- Paediatric Haematology/Oncology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,University of Pavia, Pavia, Italy
| | - Doriana Fruci
- Immuno-Oncology Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
988
|
Tan P, He L, Han G, Zhou Y. Optogenetic Immunomodulation: Shedding Light on Antitumor Immunity. Trends Biotechnol 2017; 35:215-226. [PMID: 27692897 PMCID: PMC5316489 DOI: 10.1016/j.tibtech.2016.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/28/2022]
Abstract
Microbial opsin-based optogenetic tools have been transformative for neuroscience. To extend optogenetic approaches to the immune system to remotely control immune responses with superior spatiotemporal precision, pioneering tools have recently been crafted to modulate lymphocyte trafficking, inflammasome activation, dendritic cell (DC) maturation, and antitumor immunity through the photoactivation of engineered chemokine receptors and calcium release-activated calcium channels. We highlight herein some conceptual design strategies for installing light sensitivities into the immune signaling network and, in parallel, we propose potential solutions for in vivo optogenetic applications in living organisms with near-infrared light-responsive upconversion nanomaterials. Moreover, to move beyond proof-of-concept into translational applications, we discuss future prospects for integrating personalized immunoengineering with optogenetics to overcome critical hurdles in cancer immunotherapy.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA.
| |
Collapse
|
989
|
Li X, Huang Y, Bi C, Yuan J, He H, Zhang H, Yu Q, Fu K, Li D. Primary central nervous system diffuse large B-cell lymphoma shows an activated B-cell-like phenotype with co-expression of C-MYC, BCL-2, and BCL-6. Pathol Res Pract 2017; 213:659-665. [PMID: 28552541 DOI: 10.1016/j.prp.2017.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 11/28/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, whose main prognostic factor is closely related to germinal center B-cell-like subtype (GCB- DLBCL) or activated B-cell-like type (non-GCB-DLBCL). The most common type of primary central nervous system lymphoma is diffuse large B-cell type with poor prognosis and the reason is unclear. This study aims to stratify primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL) according to the cell-of-origin (COO) and to investigate the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53, further to elucidate the reason why primary central nervous system diffuse large B-cell lymphoma possesses a poor clinical outcome as well. Nineteen cases of primary central nervous system DLBCL were stratified according to immunostaining algorithms of Hans, Choi and Meyer (Tally) and we investigated the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53. The Epstein-Barr virus and Borna disease virus infection were also detected. Among nineteen cases, most (15-17 cases) were assigned to the activated B-cell-like subtype, highly expression of C-MYC (15 cases, 78.9%), BCL-2 (10 cases, 52.6%), BCL-6 (15 cases, 78.9%). Unfortunately, two cases were positive for PD-L1 while PD-L2 was not expressed in any case. Two cases infected with BDV but no one infected with EBV. In conclusion, most primary central nervous system DLBCLs show an activated B-cell-like subtype characteristic and have multiple expressions of C-MYC, BCL-2, BCL-6 protein, these features might be significant factor to predict the outcome and guide treatment of PCNS-DLBCLs.
Collapse
Affiliation(s)
- Xiaomei Li
- Department of Pathology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ying Huang
- Department of Pathology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chengfeng Bi
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha 68198, USA
| | - Ji Yuan
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha 68198, USA
| | - Hong He
- Department of Internal Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Hong Zhang
- Department of Pathology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - QiuBo Yu
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Kai Fu
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha 68198, USA
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
990
|
Whitfield JR, Beaulieu ME, Soucek L. Strategies to Inhibit Myc and Their Clinical Applicability. Front Cell Dev Biol 2017; 5:10. [PMID: 28280720 PMCID: PMC5322154 DOI: 10.3389/fcell.2017.00010] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Myc is an oncogene deregulated in most-perhaps all-human cancers. Each Myc family member, c-, L-, and N-Myc, has been connected to tumor progression and maintenance. Myc is recognized as a "most wanted" target for cancer therapy, but has for many years been considered undruggable, mainly due to its nuclear localization, lack of a defined ligand binding site, and physiological function essential to the maintenance of normal tissues. The challenge of identifying a pharmacophore capable of overcoming these hurdles is reflected in the current absence of a clinically-viable Myc inhibitor. The first attempts to inhibit Myc used antisense technology some three decades ago, followed by small molecule inhibitors discovered through "classical" compound library screens. Notable breakthroughs proving the feasibility of systemic Myc inhibition were made with the Myc dominant negative mutant Omomyc, showing both the great promise in targeting this infamous oncogene for cancer treatment as well as allaying fears about the deleterious side effects that Myc inhibition might have on normal proliferating tissues. During this time many other strategies have appeared in an attempt to drug the undruggable, including direct and indirect targeting, knockdown, protein/protein and DNA interaction inhibitors, and translation and expression regulation. The inhibitors range from traditional small molecules to natural chemicals, to RNA and antisense, to peptides and miniproteins. Here, we briefly describe the many approaches taken so far, with a particular focus on their potential clinical applicability.
Collapse
Affiliation(s)
- Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Hospital Vall d'Hebron Barcelona, Spain
| | | | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Hospital Vall d'HebronBarcelona, Spain; Peptomyc, Edifici Cellex, Hospital Vall d'HebronBarcelona, Spain; Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de BarcelonaBellaterra, Spain
| |
Collapse
|
991
|
MYC: Master Regulator of Immune Privilege. Trends Immunol 2017; 38:298-305. [PMID: 28233639 DOI: 10.1016/j.it.2017.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022]
Abstract
Cancers are often initiated by genetic events that activate proto-oncogenes or inactivate tumor-suppressor genes. These events are also crucial for sustained tumor cell proliferation and survival, a phenomenon described as oncogene addiction. In addition to this cell-intrinsic role, recent evidence indicates that oncogenes also directly regulate immune responses, leading to immunosuppression. Expression of many oncogenes or loss of tumor suppressors induces the expression of immune checkpoints that regulate the immune response, such as PD-L1. We discuss here how oncogenes, and in particular MYC, suppress immune surveillance, and how oncogene-targeted therapies may restore the immune response against tumors.
Collapse
|
992
|
Hendrickx W, Simeone I, Anjum S, Mokrab Y, Bertucci F, Finetti P, Curigliano G, Seliger B, Cerulo L, Tomei S, Delogu LG, Maccalli C, Wang E, Miller LD, Marincola FM, Ceccarelli M, Bedognetti D. Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology 2017; 6:e1253654. [PMID: 28344865 PMCID: PMC5353940 DOI: 10.1080/2162402x.2016.1253654] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy is revolutionizing the clinical management of several tumors, but has demonstrated limited activity in breast cancer. The development of more effective treatments is hindered by incomplete knowledge of the genetic determinant of immune responsiveness. To fill this gap, we mined copy number alteration, somatic mutation, and expression data from The Cancer Genome Atlas (TCGA). By using RNA-sequencing data from 1,004 breast cancers, we defined distinct immune phenotypes characterized by progressive expression of transcripts previously associated with immune-mediated rejection. The T helper 1 (Th-1) phenotype (ICR4), which also displays upregulation of immune-regulatory transcripts such as PDL1, PD1, FOXP3, IDO1, and CTLA4, was associated with prolonged patients' survival. We validated these findings in an independent meta-cohort of 1,954 breast cancer gene expression data. Chromosome segment 4q21, which includes genes encoding for the Th-1 chemokines CXCL9-11, was significantly amplified only in the immune favorable phenotype (ICR4). The mutation and neoantigen load progressively decreased from ICR4 to ICR1 but could not fully explain immune phenotypic differences. Mutations of TP53 were enriched in the immune favorable phenotype (ICR4). Conversely, the presence of MAP3K1 and MAP2K4 mutations were tightly associated with an immune-unfavorable phenotype (ICR1). Using both the TCGA and the validation dataset, the degree of MAPK deregulation segregates breast tumors according to their immune disposition. These findings suggest that mutation-driven perturbations of MAPK pathways are linked to the negative regulation of intratumoral immune response in breast cancer. Modulations of MAPK pathways could be experimentally tested to enhance breast cancer immune sensitivity.
Collapse
Affiliation(s)
- Wouter Hendrickx
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Ines Simeone
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Samreen Anjum
- Qatar Computing Research Institute, Hamad Bin Khalifa University , Doha, Qatar
| | - Younes Mokrab
- Division of Biomedical Informatics, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - François Bertucci
- Département d'Oncologie Moléculaire, Center de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Marseille, France; Département d'Oncologie Médicale, CRCM, Institut Paoli-Calmettes, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Center de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes , INSERM UMR1068, CNRS UMR725 , Marseille, France
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, Division of Medical Oncology, European Institute of Oncology , Milan, Italy
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg , Halle, Germany
| | - Luigi Cerulo
- Department of Science and Technology, University of Sannio, Benevento, Italy; BIOGEM Research Center, Ariano Irpino, Italy
| | - Sara Tomei
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy, University of Sassari , Sassari, Italy
| | - Cristina Maccalli
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Ena Wang
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Francesco M Marincola
- Office of the Chief Research Officer (CRO), Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Michele Ceccarelli
- Qatar Computing Research Institute, Hamad Bin Khalifa University , Doha, Qatar
| | - Davide Bedognetti
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| |
Collapse
|
993
|
Zhao X, Subramanian S. Intrinsic Resistance of Solid Tumors to Immune Checkpoint Blockade Therapy. Cancer Res 2017; 77:817-822. [PMID: 28159861 DOI: 10.1158/0008-5472.can-16-2379] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022]
Abstract
Immune checkpoint blockade therapy (ICBT), which blocks negative immune-activating signals and maintains the antitumor response, has elicited a remarkable clinical response in certain cancer patients. However, intrinsic resistance (i.e., insensitivity of the tumors to therapy) remains a daunting challenge. The efficacy of ICBT is tightly modulated by the function of each step in the antitumor immunity cycle. Mechanistically, the number of mutations determines tumor immunogenicity. The properties of the tumor microenvironment control T-cell infiltration, distribution, and function in tumor tissues. Low tumor immunogenicity and a strong immunosuppressive tumor microenvironment cause significant intrinsic resistance to ICBT. With our evolving understanding of intrinsic resistance, people have successfully tested, in preclinical models, treatments targeting specific resistance mechanisms to sensitize ICBT-resistant tumors. Translation of those preclinical findings to the clinical arena will help generate personalized ICBT strategies that target tumor-specific resistance mechanisms. Progress in the new personalized ICBT strategies will expand the reach of immunotherapy to more cancer types, thus enabling more patients to benefit. Cancer Res; 77(4); 817-22. ©2017 AACR.
Collapse
Affiliation(s)
- Xianda Zhao
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota. .,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
994
|
78495111110.1038/nrclinonc.2016.217" />
|
995
|
Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017; 14:399-416. [PMID: 28117416 DOI: 10.1038/nrclinonc.2016.217] [Citation(s) in RCA: 2747] [Impact Index Per Article: 343.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are crucial drivers of tumour-promoting inflammation. Tumour-associated macrophages (TAMs) contribute to tumour progression at different levels: by promoting genetic instability, nurturing cancer stem cells, supporting metastasis, and taming protective adaptive immunity. TAMs can exert a dual, yin-yang influence on the effectiveness of cytoreductive therapies (chemotherapy and radiotherapy), either antagonizing the antitumour activity of these treatments by orchestrating a tumour-promoting, tissue-repair response or, instead, enhancing the overall antineoplastic effect. TAMs express molecular triggers of checkpoint proteins that regulate T-cell activation, and are targets of certain checkpoint-blockade immunotherapies. Other macrophage-centred approaches to anticancer therapy are under investigation, and include: inhibition of macrophage recruitment to, and/or survival in, tumours; functional re-education of TAMs to an antitumour, 'M1-like' mode; and tumour-targeting monoclonal antibodies that elicit macrophage-mediated extracellular killing, or phagocytosis and intracellular destruction of cancer cells. The evidence supporting these strategies is reviewed herein. We surmise that TAMs can provide tools to tailor the use of cytoreductive therapies and immunotherapy in a personalized medicine approach, and that TAM-focused therapeutic strategies have the potential to complement and synergize with both chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Alberto Mantovani
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy.,Humanitas University, Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Federica Marchesi
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133 Milan, Italy
| | - Alberto Malesci
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133 Milan, Italy
| | - Luigi Laghi
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Paola Allavena
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy.,Humanitas University, Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| |
Collapse
|
996
|
Shu S, Polyak K. BET Bromodomain Proteins as Cancer Therapeutic Targets. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:123-129. [PMID: 28062533 DOI: 10.1101/sqb.2016.81.030908] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Epigenetic regulators are emerging therapeutic targets in a wide variety of human cancers. BET bromodomain proteins have been identified as key regulators of oncogenic transcription factors including MYC; therefore, their inhibition might provide a way to block these "undruggable" targets. Several BET bromodomain inhibitors are in clinical development with promising preliminary findings. However, tumors acquire resistance to these agents in several different ways. In this review, we summarize the role that BET bromodomain proteins play in tumorigenesis as well as the molecular mechanisms underlying therapeutic responses and resistance to their inhibition with emphasis on BRD4 and breast cancer.
Collapse
Affiliation(s)
- Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
997
|
Breazzano MP, Milam RW, Batson SA, Johnson DB, Daniels AB. Immunotherapy for Uveal Melanoma. Int Ophthalmol Clin 2017; 57:29-39. [PMID: 27898611 DOI: 10.1097/iio.0000000000000148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
998
|
Tumor Associated Macrophages as Therapeutic Targets for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:331-370. [PMID: 29282692 DOI: 10.1007/978-981-10-6020-5_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant inflammatory infiltrates in the tumor stroma. TAMs promote tumor growth by suppressing immunocompetent cells, including neovascularization and supporting cancer stem cells. In the chapter, we discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and developing potential strategies to increase the efficacy of breast cancer treatment.
Collapse
|
999
|
Corrales L, Matson V, Flood B, Spranger S, Gajewski TF. Innate immune signaling and regulation in cancer immunotherapy. Cell Res 2017; 27:96-108. [PMID: 27981969 PMCID: PMC5223230 DOI: 10.1038/cr.2016.149] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A pre-existing T cell-inflamed tumor microenvironment has prognostic utility and also can be predictive for response to contemporary cancer immunotherapies. The generation of a spontaneous T cell response against tumor-associated antigens depends on innate immune activation, which drives type I interferon (IFN) production. Recent work has revealed a major role for the STING pathway of cytosolic DNA sensing in this process. This cascade of events contributes to the activation of Batf3-lineage dendritic cells (DCs), which appear to be central to anti-tumor immunity. Non-T cell-inflamed tumors lack chemokines for Batf3 DC recruitment, have few Batf3 DCs, and lack a type I IFN gene signature, suggesting that failed innate immune activation may be the ultimate cause for lack of spontaneous T cell activation and accumulation. With this information in hand, new strategies for triggering innate immune activation and Batf3 DC recruitment are being developed, including novel STING agonists for de novo immune priming. Ultimately, the successful development of effective innate immune activators should expand the fraction of patients that can respond to immunotherapies, such as with checkpoint blockade antibodies.
Collapse
Affiliation(s)
- Leticia Corrales
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL 60637, USA
| | - Vyara Matson
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL 60637, USA
| | - Blake Flood
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL 60637, USA
| | - Stefani Spranger
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL 60637, USA
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL 60637, USA
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
1000
|
Toyokawa G, Takada K, Okamoto T, Kozuma Y, Matsubara T, Haratake N, Takamori S, Akamine T, Katsura M, Shoji F, Oda Y, Maehara Y. High Frequency of Programmed Death-ligand 1 Expression in Emphysematous Bullae-associated Lung Adenocarcinomas. Clin Lung Cancer 2016; 18:504-511.e1. [PMID: 28038981 DOI: 10.1016/j.cllc.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Emphysematous bullae (EB) are known to be associated with a high incidence of lung cancer; however, the reason for this has yet to be elucidated. The objective of the present study was to clarify the prevalence of programmed death-ligand-1 (PD-L1) expression in EB-associated lung adenocarcinomas. PATIENTS AND METHODS A total of 369 patients with resected lung adenocarcinoma whose preoperative computed tomography findings were available for the examination of EB were analyzed for PD-L1 expression by immunohistochemistry and evaluated to determine the association between PD-L1 expression and EB-related adenocarcinomas. RESULTS Among 369 patients, EB and cancer adjoining EB (Ca-ADJ) were identified in 81 (22.0%) and 50 (13.6%) patients, respectively. EB and Ca-ADJ were significantly associated with male gender, a smoking habit, a decreased forced expiratory volume in 1 second, a relatively higher tumor grade, advanced T status and stage, the presence of pleural and vessel invasion, invasive pathologic subtypes, and wild-type epidermal growth factor receptor. Seventy patients (19.0%) were positive for PD-L1 expression, whereas the remaining 299 patients (81.0%) were negative. Thirty-six (44.4%) and 29 (58.0%) of 81 and 50 patients with EB and Ca-ADJ, respectively, were positive for PD-L1 expression, which was shown to be significant by the Fisher exact test (P < .001 and P < .001, respectively). Among the 81 lung adenocarcinomas with EB, Ca-ADJ was significantly associated with PD-L1 expression (P = .021). In a multivariate analysis, the presence of Ca-ADJ was found to be an independent predictor of PD-L1 expression. CONCLUSIONS EB-associated lung adenocarcinomas express PD-L1 protein more frequently than those without EB.
Collapse
Affiliation(s)
- Gouji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kazuki Takada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Kozuma
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taichi Matsubara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masakazu Katsura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiro Shoji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|