1001
|
Liu Q, Tong D, Liu G, Yi Y, Zhang D, Zhang J, Zhang Y, Huang Z, Li Y, Chen R, Guan Y, Yi X, Jiang J. HIF2A germline-mutation-induced polycythemia in a patient with VHL-associated renal-cell carcinoma. Cancer Biol Ther 2017; 18:944-947. [PMID: 29172931 PMCID: PMC5718818 DOI: 10.1080/15384047.2017.1394553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 11/02/2022] Open
Abstract
In this study, we report here a rare case of polycythemia and cRCC in the same patient, which may be helpful in understanding clinical features and molecular mechanisms underlying VHL-mutation-associated cRCC and polycythemia induced by germline mutation of HIF2A. Firstly, we identified a rare but well studied germline mutation resulting in polycythemia in HIF2A (c.1609G>A, p.Gly537Arg) in the blood of the patient and his daughter. Meanwhile, we identified an inactivating VHL mutation (c.391A>T, p.N131Y), as well as TP53 mutation(c.977A>T, p.E326V) and mTOR mutation(c.7498A>T, p.I2500F) in renal cancer tissue. Moreover, protein levels of VHL, HIF1A, HIF2A, EPO, and VEGF estimated by immunohistochemical staining substantiated hyperactivation of the oxygen-sensing pathway. In addition, we identified 158 somatic SNP/indel mutations, including 90 missense/nonsense/splice/stop-loss mutations by whole-exome sequencing (WES) of the tumor specimen and matched normal DNA.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yuting Yi
- Department of Medical Center, Geneplus-Beijing Institute, Beijing, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, USA
| | - Jun Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yao Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Zaoming Huang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yaoming Li
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Rongrong Chen
- Department of Medical Center, Geneplus-Beijing Institute, Beijing, PR China
| | - Yanfang Guan
- Department of Medical Center, Geneplus-Beijing Institute, Beijing, PR China
| | - Xin Yi
- Department of Medical Center, Geneplus-Beijing Institute, Beijing, PR China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
1002
|
Mathiesen JS, Kroustrup JP, Vestergaard P, Stochholm K, Poulsen PL, Rasmussen ÅK, Feldt-Rasmussen U, Gaustadnes M, Ørntoft TF, Rossing M, Nielsen FC, Albrechtsen A, Brixen K, Godballe C, Frederiksen AL. Founder Effect of the RET C611Y Mutation in Multiple Endocrine Neoplasia 2A in Denmark: A Nationwide Study. Thyroid 2017; 27:1505-1510. [PMID: 29020875 DOI: 10.1089/thy.2017.0404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Multiple endocrine neoplasia (MEN) 2A and 2B are caused by REarranged during Transfection (RET) germline mutations. In a recent nationwide study, an unusually high prevalence (33%) of families with the C611Y mutation was reported, and it was hypothesized that this might be due to a founder effect. The first nationwide study of haplotypes in MEN2A families was conducted, with the aim of investigating the relatedness and occurrence of de novo mutations among Danish families carrying similar mutations. METHODS The study included 21 apparently unrelated MEN2A families identified from a nationwide Danish RET cohort from 1994 to 2014. Twelve, two, two, three, and two families carried the C611Y, C618F, C618Y, C620R, and C634R mutations, respectively. Single nucleotide polymorphism chip data and identity by descent analysis were used to assess relatedness. RESULTS A common founder mutation was found among all 12 C611Y families and between both C618Y families. No relatedness was identified in the remaining families. CONCLUSION The data suggest that all families with the C611Y germline mutation in Denmark originate from a recent common ancestor, probably explaining the unusually high prevalence of this mutation. Additionally, the results indicate that the C611Y mutation rarely arises de novo, thus underlining the need for thorough multigenerational genetic work up in carriers of this mutation.
Collapse
Affiliation(s)
- Jes Sloth Mathiesen
- 1 Department of ORL Head and Neck Surgery, Odense University Hospital , Odense, Denmark
- 2 Department of Clinical Research, University of Southern Denmark , Odense, Denmark
| | - Jens Peter Kroustrup
- 3 Department of Clinical Medicine and Endocrinology, Aalborg University Hospital , Aalborg, Denmark
| | - Peter Vestergaard
- 3 Department of Clinical Medicine and Endocrinology, Aalborg University Hospital , Aalborg, Denmark
| | - Kirstine Stochholm
- 4 Department of Internal Medicine and Endocrinology, Aarhus University Hospital , Aarhus, Denmark
| | - Per Løgstrup Poulsen
- 4 Department of Internal Medicine and Endocrinology, Aarhus University Hospital , Aarhus, Denmark
| | - Åse Krogh Rasmussen
- 5 Department of Medical Endocrinology, Copenhagen University Hospital , Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- 5 Department of Medical Endocrinology, Copenhagen University Hospital , Copenhagen, Denmark
| | - Mette Gaustadnes
- 6 Department of Molecular Medicine, Aarhus University Hospital , Aarhus, Denmark
| | - Torben Falck Ørntoft
- 6 Department of Molecular Medicine, Aarhus University Hospital , Aarhus, Denmark
| | - Maria Rossing
- 7 Center for Genomic Medicine, Copenhagen University Hospital , Copenhagen, Denmark
| | - Finn Cilius Nielsen
- 7 Center for Genomic Medicine, Copenhagen University Hospital , Copenhagen, Denmark
| | - Anders Albrechtsen
- 8 Bioinformatics Center, Department of Biology, University of Copenhagen , Copenhagen, Denmark
| | - Kim Brixen
- 2 Department of Clinical Research, University of Southern Denmark , Odense, Denmark
| | - Christian Godballe
- 1 Department of ORL Head and Neck Surgery, Odense University Hospital , Odense, Denmark
| | - Anja Lisbeth Frederiksen
- 2 Department of Clinical Research, University of Southern Denmark , Odense, Denmark
- 9 Department of Clinical Genetics, Odense University Hospital , Odense, Denmark
| |
Collapse
|
1003
|
Zhou X, Chen J, Chen L, Feng X, Liu Z, Hu L, Zeng Z, Jia X, Liang M, Shi B, Yi G, Liu J. Negative regulation of Sirtuin 1 by AMP-activated protein kinase promotes metformin-induced senescence in hepatocellular carcinoma xenografts. Cancer Lett 2017; 411:1-11. [DOI: 10.1016/j.canlet.2017.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
1004
|
Truntipakorn A, Makeudom A, Sastraruji T, Pavasant P, Pattamapun K, Krisanaprakornkit S. Effects of prostaglandin E 2 on clonogenicity, proliferation and expression of pluripotent markers in human periodontal ligament cells. Arch Oral Biol 2017; 83:130-135. [DOI: 10.1016/j.archoralbio.2017.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
|
1005
|
Zingales V, Distefano A, Raffaele M, Zanghi A, Barbagallo I, Vanella L. Metformin: A Bridge between Diabetes and Prostate Cancer. Front Oncol 2017; 7:243. [PMID: 29075616 PMCID: PMC5641539 DOI: 10.3389/fonc.2017.00243] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) has become the most frequent type of cancer in men. Recent data suggest that diabetic patients taking metformin have a lower incidence of certain cancer, including PCa. Metformin is the most common drug used in type II diabetes mellitus; its use has been shown to lower the incidence of several cancers, although there are ambiguous data about the anticancer activity of metformin. A large number of studies examined the potential antineoplastic mechanism of metformin although it is not still completely understood. This review summarizes the literature concerning the effects of metformin on PCa cells, highlighting its numerous mechanisms of action through which it can act. We analyze the possible causes of the discordances regarding the impact of metformin on risk of PCa; we discuss the latest findings in this field, suggesting that metformin may have a future role in the management of PCa both as monotherapy and in combination with other drugs.
Collapse
Affiliation(s)
- Veronica Zingales
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Alfio Distefano
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Antonio Zanghi
- Department of Surgery, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele, Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| |
Collapse
|
1006
|
Liu Q, Tong D, Liu G, Xu J, Do K, Geary K, Zhang D, Zhang J, Zhang Y, Li Y, Bi G, Lan W, Jiang J. Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death Dis 2017; 8:e3007. [PMID: 28837141 PMCID: PMC5596596 DOI: 10.1038/cddis.2017.417] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Although the newly developed second-generation anti-androgen drug enzalutamide can repress prostate cancer progression significantly, it only extends the survival of prostate cancer patients by 4-6 months mainly due to the occurrence of enzalutamide resistance. Most of the previous studies on AR antagonist resistance have been focused on AR signaling. Therefore, the non-AR pathways on enzalutamide resistance remain largely unknown. By using C4-2, CWR22Rv1 and LNCaP cell lines, as well as mice bearing CWR22Rv1 xenografts treated with either enzalutamide or metformin alone or in combination, we demonstrated that metformin is capable of reversing enzalutamide resistance and restores sensitivity of CWR22Rv1 xenografts to enzalutamide. We showed that metformin alleviated resistance to enzalutamide by inhibiting EMT. Furthermore, based on the effect of metformin on the activation of STAT3 and expression of TGF-β1, we propose that metformin exerts its effects by targeting the TGF-β1/STAT3 axis. These findings suggest that combination of metformin with enzalutamide could be a more efficacious therapeutic strategy for the treatment of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jing Xu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Khang Do
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA
| | - Kyla Geary
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA
| | - Jun Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yao Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yaoming Li
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Gang Bi
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
1007
|
Maina PK, Shao P, Jia X, Liu Q, Umesalma S, Marin M, Long D, Concepción-Román S, Qi HH. Histone demethylase PHF8 regulates hypoxia signaling through HIF1α and H3K4me3. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1002-1012. [PMID: 28734980 PMCID: PMC5776039 DOI: 10.1016/j.bbagrm.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022]
Abstract
Hypoxia through transcription factor HIF1α plays a critical role in cancer development. In prostate cancer, HIF1α interplays with androgen receptor (AR) to contribute to the progression of this disease to its lethal form—castration-resistant prostate cancer (CRPC). Hypoxia upregulates several epigenetic factors including histone demethylase KDM3A which is a critical co-factor of HIF1α. However, how histone demethylases regulate hypoxia signaling is not fully understood. Here, we report that histone demethylase PHF8 plays an essential role in hypoxia signaling. Knockdown or knockout of PHF8 by RNAi or CRISPR-Cas9 system reduced the activation of HIF1α and the induction of HIF1α target genes including KDM3A. Mechanistically, PHF8 regulates hypoxia inducible genes mainly through sustaining the level of trimethylated histone 3 lysine 4 (H3K4me3), an active mark in transcriptional regulation. The positive role of PHF8 in hypoxia signaling extended to hypoxia-induced neuroendocrine differentiation (NED), wherein PHF8 cooperates with KDM3A to regulate the expression of NED genes. Moreover, we discovered that the role of PHF8 in hypoxia signaling is associated with the presence of full-length AR in CRPC cells. Collectively, our study identified PHF8 as a novel epigenetic factor in hypoxia signaling, and the underlying regulatory mechanisms likely apply to general cancer development involving HIF1α. Therefore, targeting PHF8 can potentially be a novel therapeutic strategy in cancer therapy.
Collapse
Affiliation(s)
- Peterson Kariuki Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Peng Shao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Xiongfei Jia
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Qi Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Shaikamjad Umesalma
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Maximo Marin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Donald Long
- Department of Biology, Southern Utah University, Cedar City, UT 84720, USA
| | | | - Hank Heng Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
1008
|
Thompson MD, Lubet RA, Mccormick DL, Clapper ML, Bode AM, Juliana MM, Moeinpour F, Grubbs CJ. Lack of chemopreventive efficacy of metformin in rodent models of urinary bladder, head and neck, and colon/intestine cancer. Oncol Lett 2017; 14:3480-3486. [PMID: 28927103 PMCID: PMC5587978 DOI: 10.3892/ol.2017.6632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
Metformin is a biguanide employed in treating type II diabetes. Its potential efficacy for treating cancer has been demonstrated epidemiologically (lower cancer incidence in metformin users compared with users of sulfonylureas or insulin) and mechanistically, primarily in cell culture. Metformin decreases the levels of insulin-like growth factor 1 and secondarily inhibits the mammalian target of rapamycin pathway to exhibit anticancer effects. The current study examined its cancer preventive efficacy in multiple standard in situ arising cancer models. Metformin was administered orally by gavage or in the diet, at human equivalent doses, in numerous cancer models. In the hydroxybutyl(butyl)nitrosamine-induced model of invasive urinary bladder cancer, metformin (50 or 150 mg/kg body weight/day, intragastric) was ineffective despite high urinary concentrations of metformin. Metformin (250 or 500 ppm in diet) failed to decrease the incidence or invasiveness of squamous cell cancer of the tongue in a 4-nitroquinoline-1-(4NQO)-induced model. Finally, in the Min mouse model of gastrointestinal cancer, metformin (400 or 1,200 ppm in diet) was ineffective. Notably, a slight increase in intestinal tumor multiplicity was observed at the higher dose. Therefore, metformin lacked efficacy in multiple standard cancer models in non-diabetic rodents. This lack of efficacy may discourage any large phase clinical cancer trials in non-diabetic individuals in the absence of clear phase-II studies.
Collapse
Affiliation(s)
- Matthew D Thompson
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ronald A Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Margie L Clapper
- Division of Population Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ann M Bode
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - M Margaret Juliana
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fariba Moeinpour
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
1009
|
Fang D, Kitamura H. Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Urol 2017; 25:7-17. [PMID: 28697535 DOI: 10.1111/iju.13404] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
There is growing evidence of the presence of cancer stem cells in urothelial carcinoma. Cancer stem cells have the ability to self-renew and to differentiate into all cell types of the original heterogeneous tumor. A panel of diverse cancer stem cell markers might be suitable for simulation studies of urothelial cancer stem cells and for the development of optimized treatment protocols. The present review focuses on the advances in recognizing the markers of urothelial cancer stem cells and possible therapeutic targets. The commonly reported markers and pathways that were evaluated include CD44, CD133, ALDH1, SOX2 & SOX4, BMI1, EZH1, PD-L1, MAGE-A3, COX2/PGE2/STAT3, AR, and autophagy. Studies on the epithelial-mesenchymal transition-related pathways (Shh, Wnt/β-catenin, Notch, PI3K/Akt, TGF-β, miRNA) are also reviewed. Most of these markers were recognized through the expression patterns of cancer stem cell-rich side populations. Their regulative role in the development and differentiation of urothelial cancer stem cells was confirmed in vitro by functional analyses (e.g. cell migration, colony formation, sphere formation), and in vivo in xenograft experiments. Although a small number of these pathways are targeted by currently available drugs or drugs that are the currently being tested in clinical trials, a clear treatment approach has not been developed for most pathways. A greater understanding of the mechanisms that control the proliferation and differentiation of cancer stem cells is expected to lead to improvements in targeted therapy.
Collapse
Affiliation(s)
- Dong Fang
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan.,Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Hiroshi Kitamura
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| |
Collapse
|
1010
|
Li B, Li X, Xiong H, Zhou P, Ni Z, Yang T, Zhang Y, Zeng Y, He J, Yang F, Zhang N, Wang Y, Zheng Y, He F. Inhibition of COX2 enhances the chemosensitivity of dichloroacetate in cervical cancer cells. Oncotarget 2017; 8:51748-51757. [PMID: 28881683 PMCID: PMC5584284 DOI: 10.18632/oncotarget.18518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022] Open
Abstract
Dichloroacetate (DCA), a traditional mitochondria-targeting agent, has shown promising prospect as a sensitizer in fighting against malignancies including cervical cancer. But it is unclear about the effect of DCA alone on cervical tumor. Moreover, previous reports have demonstrated that the increased cyclooxygenase-2 (COX2) expression is associated with chemoresistance and poor prognosis of cervical cancer. However, it is still unknown whether COX2 can affect the sensitivity of DCA in cervical cancer cells. In this study, we found that cervical cancer cells were insensitive to DCA. Furthermore, we for the first time revealed that DCA could upregulate COX2 which impeded the chemosensitivity of DCA in cervical cancer cells. Mechanistic study showed that DCA reduced the level of RNA binding protein quaking (QKI), leading to the decay suppression of COX2 mRNA and the subsequent elevation of COX2 protein. Inhibition of COX2 using celecoxib could sensitize DCA in repressing the growth of cervical cancer cells both in vitro and in vivo. These results indicate that COX2 is a novel resistance factor of DCA, and combination of celecoxib with DCA may be beneficial to the treatment of cervical cancer.
Collapse
Affiliation(s)
- Bo Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xinzhe Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Haojun Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Peng Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Zhenhong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yijun Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Jintao He
- Battalion 17 of Students, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Fan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yuting Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yingru Zheng
- Department of Obstetrics and Gynecology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
1011
|
Liu Y, Wang Z, Li M, Ye Y, Xu Y, Zhang Y, Yuan R, Jin Y, Hao Y, Jiang L, Hu Y, Chen S, Liu F, Zhang Y, Wu W, Liu Y. Chloride intracellular channel 1 regulates the antineoplastic effects of metformin in gallbladder cancer cells. Cancer Sci 2017; 108:1240-1252. [PMID: 28378944 PMCID: PMC5480064 DOI: 10.1111/cas.13248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Metformin is the most commonly used drug for type 2 diabetes and has potential benefit in treating and preventing cancer. Previous studies indicated that membrane proteins can affect the antineoplastic effects of metformin and may be crucial in the field of cancer research. However, the antineoplastic effects of metformin and its mechanism in gallbladder cancer (GBC) remain largely unknown. In this study, the effects of metformin on GBC cell proliferation and viability were evaluated using the Cell Counting Kit-8 (CCK-8) assay and an apoptosis assay. Western blotting was performed to investigate related signaling pathways. Of note, inhibition, knockdown and upregulation of the membrane protein Chloride intracellular channel 1 (CLIC1) can affect GBC resistance in the presence of metformin. Our data demonstrated that metformin apparently inhibits the proliferation and viability of GBC cells. Metformin promoted cell apoptosis and increased the number of early apoptotic cells. We found that metformin can exert growth-suppressive effects on these cell lines via inhibition of p-Akt activity and the Bcl-2 family. Notably, either dysfunction or downregulation of CLIC1 can partially decrease the antineoplastic effects of metformin while upregulation of CLIC1 can increase drug sensitivity. Our findings provide experimental evidence for using metformin as an antitumor treatment for gallbladder carcinoma.
Collapse
Affiliation(s)
- Yongchen Liu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheng Wang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Maolan Li
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanyuan Ye
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Xu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yichi Zhang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ruiyan Yuan
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunpeng Jin
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yajuan Hao
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lin Jiang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunping Hu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shili Chen
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fatao Liu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yijian Zhang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguang Wu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingbin Liu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
1012
|
Rasool RU, Nayak D, Chakraborty S, Faheem MM, Rah B, Mahajan P, Gopinath V, Katoch A, Iqra Z, Yousuf SK, Mukherjee D, Kumar LD, Nargotra A, Goswami A. AKT is indispensable for coordinating Par-4/JNK cross talk in p21 downmodulation during ER stress. Oncogenesis 2017; 6:e341. [PMID: 28530706 PMCID: PMC5523074 DOI: 10.1038/oncsis.2017.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/22/2017] [Accepted: 04/17/2017] [Indexed: 12/25/2022] Open
Abstract
The double-edged role of p21 to command survival and apoptosis is emerging. The current investigation highlights ER stress-mediated JNK activation that plausibly triggers cell death by attenuating endogenous p21 level. Here, we demonstrated that ER stress activator 3-AWA diminishes the p21 levels in cancer cells by averting the senescent phenotype to commence G2/M arrest. In essence, the deceleration in p21 level occurs through ER stress/JNK/Caspase-3 axis via activation/induction of proapoptotic Par-4 and inhibition of AKT. The molecular dynamics studies identified important interactions, which may be responsible for the AKT inhibition and efficacy of 3-AWA towards AKT binding pocket. Interestingly, the p21 deceleration was rescued by incubating the cells with 3-AWA in the presence of an ER stress inhibitor, Salubrinal. Furthermore, we demonstrated that p21 expression decreases solitarily in Par-4+/+ MEFs; albeit, ER stress-induced JNK activation was observed in both Par-4+/+ and Par-4−/− MEFs. Par-4 knockdown or overexpression studies established that ectopic Par-4 along with ER stress are not sufficient to downregulate p21 in PC-3 cells but are adequate for DU-145 cells and that the ER stress inflicted activation of JNK, inhibition of AKT and Par-4 induction are all crucial to p21 downmodulation by 3-AWA. By using isogenic cell lines, such as HCT-116 p53+/+ and HCT-116 p53−/−, we found that deceleration in p21 expression due to ER stress is p53 independent. Moreover, in orthotopic carcinogen-induced rat colorectal carcinoma model, we found that 3-AWA inhibits colorectal tumor growth and formation of colorectal polyps at a tolerable dose, similar to the first-line drug for colorectal cancer-5-fluorouracil.
Collapse
Affiliation(s)
- R U Rasool
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - D Nayak
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - S Chakraborty
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - M M Faheem
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - B Rah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - P Mahajan
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - V Gopinath
- Cancer Biology Division, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - A Katoch
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Z Iqra
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - S K Yousuf
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - D Mukherjee
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - L D Kumar
- Cancer Biology Division, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - A Nargotra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - A Goswami
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
1013
|
Baumgart SJ, Haendler B. Exploiting Epigenetic Alterations in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18051017. [PMID: 28486411 PMCID: PMC5454930 DOI: 10.3390/ijms18051017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.
Collapse
Affiliation(s)
- Simon J Baumgart
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
1014
|
Chen CH, Tsai HT, Chuang HC, Shiu LY, Su LJ, Chiu TJ, Luo SD, Fang FM, Huang CC, Chien CY. Metformin disrupts malignant behavior of oral squamous cell carcinoma via a novel signaling involving Late SV40 factor/Aurora-A. Sci Rep 2017; 7:1358. [PMID: 28465536 PMCID: PMC5430965 DOI: 10.1038/s41598-017-01353-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Conventional therapeutic processes in patient with OSCC are associated with several unfavorable effects leading to patients with poor survival rate. Metformin has been shown to protect against a variety of specific diseases, including cancer. However, the precise roles and mechanisms underlying the therapeutic effects of metformin on OSCC remain elusive. In the current study, in vitro and xenograft model experiments revealed that metformin inhibited growth and metastasis of oral cancer cells. Importantly, metformin-restrained tumorigenesis of oral cancer was accompanied with strong decrease of both Aurora-A and Late SV40 Factor (LSF) expressions. Furthermore, LSF contributed to Aurora-A-elicited malignancy behaviors of oral cancer via binding to the promoter region of Aurora-A. A significant correlation was observed between LSF and Aurora-A levels in a cohort of specimens of oral cancer. These findings showed that a novel LSF/Aurora-A-signaling inhibition supports the rationale of using metformin as potential OSCC therapeutics.
Collapse
Affiliation(s)
- Chang-Han Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Ting Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Yen Shiu
- Department of Medical Research, E-Da Hospital, I-SHOW University, Kaohsiung, Taiwan
- Cell Therapy and Research Center, Department of Medical Research, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Li-Jen Su
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | - Tai-Jan Chiu
- Departments of Hematology-Oncology, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
1015
|
Tong D, Liu Q, Liu G, Xu J, Lan W, Jiang Y, Xiao H, Zhang D, Jiang J. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett 2017; 389:23-32. [PMID: 28043910 DOI: 10.1016/j.canlet.2016.12.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022]
Abstract
Castration is the standard therapeutic treatment for advanced prostate cancer but with limited benefit due to the profound relapse and metastasis. Activation of inflammatory signaling pathway and initiation of epithelial-mesenchymal transition (EMT) are closely related to drug resistance, tumor relapseas well as metastasis. In this study, we demonstrated that metformin is capable of inhibiting prostate cancer cell migration and invasion by repressing EMT evidenced by downregulating the mesenchymal markers N-cadherin, Vimentin, and Twist and upregulating the epithelium E-cadherin. These effects have also been observed in our animal model as well as prostate cancer patients. In addition, we showed the effects of metformin on the expression of genes involved in EMT through repressing the levels of COX2, PGE2 and phosphorylated STAT3. Furthermore, inactivating COX2 abolishes metformin's regulatory effects and exogenously administered PGE2 is capable of enhancing STAT3 phosphorylation and expression of EMT biomarker. We propose that metformin represses prostate cancer EMT and metastasis through targeting the COX2/PGE2/STAT3 axis. These findings suggest that metformin by itself or in combination with other anticancer drugs could be used as an anti-metastasis therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Jing Xu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Yao Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Hualiang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China.
| |
Collapse
|
1016
|
Mittal K, Donthamsetty S, Kaur R, Yang C, Gupta MV, Reid MD, Choi DH, Rida PCG, Aneja R. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br J Cancer 2017; 116:1186-1194. [PMID: 28334734 PMCID: PMC5418452 DOI: 10.1038/bjc.2017.78] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Docetaxel is the only FDA-approved first-line treatment for castration-resistant prostate cancer (CRPC) patients. Docetaxel treatment inevitably leads to tumour recurrence after an initial therapeutic response with generation of multinucleated polyploid (MP) cells. Here we investigated role of MP cells in clinical relapse of CRPC. METHODS Prostate cancer (PC-3) cells were treated with docetaxel (5 nM) for 3 days followed by a washout and samples were collected at close intervals over 35 days post drug washout. The tumorigenic potential of the giant MP cells was studied by implanting MP cells subcutaneously as tumour xenografts in nude mice. RESULTS Docetaxel-induced polyploid cells undergo mitotic slippage and eventually spawn mononucleated cells via asymmetric cell division or neosis. Both MP and cells derived from polyploid cells had increased survival signals, were positive for CD44 and were resistant to docetaxel chemotherapy. Although MP cells were tumorigenic in nude mice, these cells took a significantly longer time to form tumours compared with parent PC-3 cells. CONCLUSIONS Generation of MP cells upon docetaxel therapy is an adaptive response of apoptosis-reluctant cells. These giant cells ultimately contribute to the generation of mononucleated aneuploid cells via neosis and may have a fundamental role precipitating clinical relapse and chemoresistance in CRPC.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | | | - Ramneet Kaur
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | - Chunhua Yang
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | | | - Michelle D Reid
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Da Hoon Choi
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | - Padmashree C G Rida
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA.,Novazoi Theranostics, Inc., Rolling Hills Estates, CA 90274, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| |
Collapse
|
1017
|
Li S, Sun A, Liang X, Ma L, Shen L, Li T, Zheng L, Shang W, Zhao W, Jia J. Histone demethylase PHF8 promotes progression and metastasis of gastric cancer. Am J Cancer Res 2017; 7:448-461. [PMID: 28401003 PMCID: PMC5385635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/15/2017] [Indexed: 06/07/2023] Open
Abstract
Histone demethylase plant homeodomain (PHD) finger protein 8 (PHF8) has been implicated in tumor development and malignant progression in various types of cancers. However, its potential roles in gastric cancer (GC) have not been explored. In this report, we show that PHF8 expression is upregulated in GC tissues, and the enhanced PHF8 level indicates a poor prognosis of GC patients. PHF8 knockdown reduces proliferation and metastasis of GC cells, while PHF8 overexpression has the opposite effects. Mechanistically, PHF8 interacts with β-catenin, and binds to the promoter region of vimentin, leading to the promotion of vimentin transcription. In addition, we show that H. pylori, the single most important risk factor for GC, markedly induce PHF8 expression. Our results suggest that H. pylori-induced PHF8-β-catenin-vimentin axis activation is a novel mechanism for GC malignant progression. Thus, we identify PHF8 as an oncogenic factor of GC, and suggest PHF8 might be a potential molecular target for therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shuyan Li
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Ao Sun
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Xiuming Liang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Lin Ma
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Li Shen
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Tongyu Li
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Lixin Zheng
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Wenjing Shang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Wei Zhao
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| | - Jihui Jia
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong UniversityJinan 250012, Shandong, PR China
| |
Collapse
|
1018
|
Müller S, Cañeque T, Acevedo V, Rodriguez R. Targeting Cancer Stem Cells with Small Molecules. Isr J Chem 2017. [DOI: 10.1002/ijch.201600109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sebastian Müller
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| | - Tatiana Cañeque
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| | - Verónica Acevedo
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| | - Raphaël Rodriguez
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| |
Collapse
|
1019
|
Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy. Stem Cells Int 2016; 2016:2048731. [PMID: 27882058 PMCID: PMC5108861 DOI: 10.1155/2016/2048731] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2), a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.
Collapse
|
1020
|
Sun R, Ma X, Cai X, Pan X, Liu D. The effect and mechanism of action of metformin on in vitro FaDu cell proliferation. J Int Med Res 2016; 44:1049-1054. [PMID: 27688683 PMCID: PMC5536548 DOI: 10.1177/0300060516642645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the effect and mechanism of action of metformin on proliferation of a human hypopharyngeal carcinoma cell line (FaDu). Methods FaDu cells were treated with metformin (25–125 mmol/l). Cell proliferation was evaluated via CCK-8 assay. Real-time quantitative reverse transcription–polymerase chain reaction was used to evaluate microRNA (miR)-21-5p and PDCD4 (programmed cell death 4) expression. PDCD4 protein was quantified by Western blot. Results Metformin significantly inhibited FaDu cell proliferation in a dose- (25–100 mmol/l) and time-dependent manner (12 h–36 h), significantly downregulated miR-21-5p, and upregulated PDCD4 mRNA and protein expression. Conclusions Metformin significantly inhibited FaDu cell proliferation, possibly via downregulation of miR-21-5p and upregulation of PDCD4.
Collapse
Affiliation(s)
- Ruijie Sun
- 1 Department of Otorhinolaryngology, Qilu Hospital of Shandong University, China
| | - Xiaojie Ma
- 2 Department of Otorhinolaryngology, Qilu Hospital (Qingdao) of Shandong University, China
| | - Xiaolan Cai
- 2 Department of Otorhinolaryngology, Qilu Hospital (Qingdao) of Shandong University, China
| | - Xinliang Pan
- 1 Department of Otorhinolaryngology, Qilu Hospital of Shandong University, China.,2 Department of Otorhinolaryngology, Qilu Hospital (Qingdao) of Shandong University, China
| | - Dayu Liu
- 1 Department of Otorhinolaryngology, Qilu Hospital of Shandong University, China.,2 Department of Otorhinolaryngology, Qilu Hospital (Qingdao) of Shandong University, China
| |
Collapse
|
1021
|
Tseng CH. Metformin use and cervical cancer risk in female patients with type 2 diabetes. Oncotarget 2016; 7:59548-59555. [PMID: 27486978 PMCID: PMC5312330 DOI: 10.18632/oncotarget.10934] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022] Open
Abstract
This study evaluated whether metformin may affect the risk of cervical cancer. The reimbursement databases of the Taiwan's National Health Insurance were used. Female patients with type 2 diabetes at an onset age of 25-74 years during 1999-2005 and newly treated with metformin (n=132971, "ever users of metformin") or other antidiabetic drugs (n=6940, "never users of metformin") were followed for at least 6 months until December 31, 2011. The treatment effect of metformin (for ever versus never users, and for tertiles of cumulative duration of therapy) was estimated by Cox regression incorporated with the inverse probability of treatment weighting using propensity score. Analyses were also conducted in a 1:1 matched pair cohort based on 8 digits of propensity score. Results showed that the respective numbers of incident cervical cancer in ever users and never users were 438 (0.33%) and 38 (0.55%), with respective incidences of 68.29 and 121.38 per 100,000 person-years. The overall hazard ratio suggested a significantly lower risk in metformin users (0.558, 95% confidence intervals: 0.401-0.778). In tertile analyses, the hazard ratios (95% confidence intervals) for the first (<23.0 months), second (23.0-47.9 months) and third (>47.9 months) tertile of cumulative duration were 1.272 (0.904-1.790), 0.523 (0.366-0.747) and 0.109 (0.070-0.172), respectively. Findings were supported by the analyses in the matched cohort. In conclusion, metformin may significantly reduce the risk of cervical cancer, especially when the cumulative duration is more than 2 years.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
1022
|
López-Gómez M, Casado E, Muñoz M, Alcalá S, Moreno-Rubio J, D'Errico G, Jiménez-Gordo AM, Salinas S, Sainz B. Current evidence for cancer stem cells in gastrointestinal tumors and future research perspectives. Crit Rev Oncol Hematol 2016; 107:54-71. [PMID: 27823652 DOI: 10.1016/j.critrevonc.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/22/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a very heterogeneous subpopulation of "stem-like" cancer cells that have been identified in many cancers, including leukemias and solid tumors. It is believed that CSCs drive tumor growth, malignant behavior and are responsible for the initiation of metastatic spread. In addition, CSCs have been implicated in chemotherapy and radiotherapy resistance. Current evidence supports the theory that CSCs share at least two main features of normal stem cells: self-renewal and differentiation, properties that contribute to tumor survival even in the presence of aggressive chemotherapy; however, the mechanism(s) governing the unique biology of CSCs remain unclear. In the field of gastrointestinal cancer, where we face very low survival rates across different tumor types, unraveling the role of CSCs in gastrointestinal tumors should improve our knowledge of cancer biology and chemoresistance, ultimately benefiting patient survival. Towards this end, much effort is being invested in the characterization of CSCs as a means of overcoming drug resistance and controlling metastatic spread. In this review we will cover the concept of CSCs, the current evidence for CSCs in gastrointestinal tumors and future research directions.
Collapse
Affiliation(s)
- Miriam López-Gómez
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain.
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Marta Muñoz
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Moreno-Rubio
- Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Gabriele D'Errico
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain
| | - Ana María Jiménez-Gordo
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Silvia Salinas
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Bruno Sainz
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
1023
|
Tseng CH. Metformin reduces gastric cancer risk in patients with type 2 diabetes mellitus. Aging (Albany NY) 2016; 8:1636-1649. [PMID: 27587088 PMCID: PMC5032687 DOI: 10.18632/aging.101019] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/19/2016] [Indexed: 04/15/2023]
Abstract
This retrospective cohort study investigated whether metformin may reduce gastric cancer risk by using the reimbursement databases of the Taiwan's National Health Insurance. Patients with type 2 diabetes diagnosed during 1999-2005 and newly treated with metformin (n=287971, "ever users of metformin") or other antidiabetic drugs (n=16217, "never users of metformin") were followed until December 31, 2011. The effect of metformin (for ever versus never users, and for tertiles of cumulative duration of therapy) was estimated by Cox regression incorporated with the inverse probability of treatment weighting using propensity score. Results showed that the respective numbers of incident gastric cancer in ever and never users were 759 (0.26%) and 89 (0.55%), with respective incidences of 55.26 and 122.53 per 100,000 person-years. The overall hazard ratio (95% confidence intervals) of 0.448 (0.359-0.558) suggested a significantly lower risk among ever users. In tertile analyses, hazard ratios (95% confidence intervals) for the first (<21.47 months), second (21.47-45.97 months) and third (>45.97 months) tertile of cumulative duration was 0.973 (0.773-1.224), 0.422 (0.331-0.537) and 0.120 (0.090-0.161), respectively, while compared to never users. In conclusion, metformin significantly reduces gastric cancer risk, especially when the cumulative duration is more than approximately 2 years.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|