1001
|
Mühlner U, Möhle-Steinlein U, Wizigmann-Voos S, Christofori G, Risau W, Wagner EF. Formation of transformed endothelial cells in the absence of VEGFR-2/Flk-1 by Polyoma middle T oncogene. Oncogene 1999; 18:4200-10. [PMID: 10435633 DOI: 10.1038/sj.onc.1203014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The middle T antigen of murine Polyomavirus (PymT) rapidly transforms endothelial cells leading to vascular malformations reminiscent of endothelial tumors or hemangiomas. Flk-1, a receptor tyrosine kinase which is activated upon binding of its ligand VEGF, is predominantly expressed in endothelial cells and essential for the formation of blood vessels since absence of Flk-1 prevents the development of mature endothelial cells in mice and in ES-cell differentiation experiments. To investigate the role of Flk-1 in PymT-induced vascular tumor formation, we studied the expression of Flk-1 and VEGF in PymT-transformed endothelial cells (Endothelioma cells, END. cells). The receptor and its ligand were both expressed in END. cells suggesting that a VEGF/Flk-1 autocrine loop might be causally involved in the formation of vascular tumors. To test this hypothesis, ES cells lacking Flk-1 were generated and the transforming potential of PymT was analysed after in vitro differentiation. Flk-1(-/-) END. cell lines were established which are morphologically identical to flk-1(+/+) END. cells and which express several markers characteristic for endothelial cells. This result suggests that PymT functionally replaces the requirement of Flk-1 in expansion and/or survival of endothelial progenitor cells. Therefore, flk-1(-/-) END. cells provide a powerful tool to dissect the downstream signaling pathways of Flk-1.
Collapse
Affiliation(s)
- U Mühlner
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
1002
|
Parry TJ, Cushman C, Gallegos AM, Agrawal AB, Richardson M, Andrews LE, Maloney L, Mokler VR, Wincott FE, Pavco PA. Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA. Nucleic Acids Res 1999; 27:2569-77. [PMID: 10373571 PMCID: PMC148463 DOI: 10.1093/nar/27.13.2569] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR play important roles in physiological and pathological angiogenesis. Ribozymes that target the VEGF receptor mRNAs were developed and their biological activities in cell culture and an animal model were assessed. Ribozymes targeting Flt-1 or KDR mRNA sites reduced VEGF-induced proliferation of cultured human vascular endothelial cells and specifically lowered the level of Flt-1 or KDR mRNA present in the cells. Anti- Flt-1 and KDR ribozymes also exhibited anti-angiogenic activity in a rat corneal pocket assay of VEGF-induced angiogenesis. This report illustrates the anti-angiogenic potential of these ribozymes as well as their value in studying VEGF receptor function in normal and pathophysiologic states.
Collapse
Affiliation(s)
- T J Parry
- Ribozyme Pharmaceuticals, Inc., 2950 Wilderness Place, Boulder, CO 80301, USA and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1003
|
Abstract
The complex process of lung formation is determined by the action of numerous genes that influence cell commitment, differentiation, and proliferation. This review summarizes current knowledge of various factors involved in lung morphogenesis correlating their temporal and spatial expression with their proposed functions at various times during the developmental process. Rapid progress in understanding the pathways involved in lung morphogenesis will likely provide the framework with which to elucidate the mechanisms contributing to lung malformations and the pathogenesis of genetic and acquired lung diseases.
Collapse
Affiliation(s)
- A K Perl
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
1004
|
Fong GH, Zhang L, Bryce DM, Peng J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 1999; 126:3015-25. [PMID: 10357944 DOI: 10.1242/dev.126.13.3015] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously demonstrated the essential role of the flt-1 gene in regulating the development of the cardiovascular system. While the inactivation of the flt-1 gene leads to a very severe disorganization of the vascular system, the primary defect at the cellular level was unknown. Here we report a surprising finding that it is an increase in the number of endothelial progenitors that leads to the vascular disorganization in flt-1(−/−) mice. At the early primitive streak stage (prior to the formation of blood islands), hemangioblasts are formed much more abundantly in flt-1(−/−) embryos. This increase is primarily due to an alteration in cell fate determination among mesenchymal cells, rather than to increased proliferation, migration or reduced apoptosis of flt-1(−/−) hemangioblasts. We further show that the increased population density of hemangioblasts is responsible for the observed vascular disorganization, based on the following observations: (1) both flt-1(−/−) and flt-1(+/+) endothelial cells formed normal vascular channels in chimaeric embryos; (2) wild-type endothelial cells formed abnormal vascular channels when their population density was significantly increased; and (3) in the absence of wild-type endothelial cells, flt-1(−/−) endothelial cells alone could form normal vascular channels when sufficiently diluted in a developing embryo. These results define the primary defect in flt-1(−/−) embryos at the cellular level and demonstrate the importance of population density of progenitor cells in pattern formation.
Collapse
Affiliation(s)
- G H Fong
- Lawson Research Institute, St Joseph's Health Centre, Departments of Paediatrics and Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 4V2.
| | | | | | | |
Collapse
|
1005
|
Identification of Vascular Endothelial Growth Factor (VEGF) Receptor-2 (Flk-1) Promoter/Enhancer Sequences Sufficient for Angioblast and Endothelial Cell-Specific Transcription in Transgenic Mice. Blood 1999. [DOI: 10.1182/blood.v93.12.4284] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) is the first endothelial receptor tyrosine kinase to be expressed in angioblast precursors, and its function is essential for the differentiation of endothelial cells and hematopoietic precursors. We have identified cis-acting regulatory elements of the murineFlk-1 gene that mediate endothelium-specific expression of a LacZ reporter gene in transgenic mice. Sequences within the 5′-flanking region of the Flk-1 gene, in combination with sequences located in the first intron, specifically targeted transgene expression to angioblasts and endothelial cells of transgenic mice. The intronic regulatory sequences functioned as an autonomous endothelium-specific enhancer. Sequences of the 5′-flanking region contributed to a strong, uniform, and reproducible transgene expression and were stimulated by the transcription factor HIF-2. The Flk-1 gene regulatory elements described in this study should allow the elucidation of the molecular mechanisms involved in endothelial cell differentiation and angiogenesis.
Collapse
|
1006
|
Identification of Vascular Endothelial Growth Factor (VEGF) Receptor-2 (Flk-1) Promoter/Enhancer Sequences Sufficient for Angioblast and Endothelial Cell-Specific Transcription in Transgenic Mice. Blood 1999. [DOI: 10.1182/blood.v93.12.4284.412k25_4284_4292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) is the first endothelial receptor tyrosine kinase to be expressed in angioblast precursors, and its function is essential for the differentiation of endothelial cells and hematopoietic precursors. We have identified cis-acting regulatory elements of the murineFlk-1 gene that mediate endothelium-specific expression of a LacZ reporter gene in transgenic mice. Sequences within the 5′-flanking region of the Flk-1 gene, in combination with sequences located in the first intron, specifically targeted transgene expression to angioblasts and endothelial cells of transgenic mice. The intronic regulatory sequences functioned as an autonomous endothelium-specific enhancer. Sequences of the 5′-flanking region contributed to a strong, uniform, and reproducible transgene expression and were stimulated by the transcription factor HIF-2. The Flk-1 gene regulatory elements described in this study should allow the elucidation of the molecular mechanisms involved in endothelial cell differentiation and angiogenesis.
Collapse
|
1007
|
Fujio Y, Walsh K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 1999; 274:16349-54. [PMID: 10347193 PMCID: PMC3624707 DOI: 10.1074/jbc.274.23.16349] [Citation(s) in RCA: 450] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulation of endothelial cell apoptosis is a critical modulator of normal and pathological angiogenesis. In this study, we examined the role of the protein kinase Akt/PKB in endothelial cell survival in response to growth factor and matrix attachment signals. Vascular endothelial growth factor(VEGF)-induced cytoprotection of endothelial cell monolayers correlated with the wortmannin-sensitive induction of Akt activity. Transfection of an adenovirus expressing a dominant-negative Akt mutant decreased endothelial cell viability in the presence of VEGF. Conversely, adenoviral transduction of wild-type Akt facilitated the cell survival effects of VEGF, whereas transduction of constitutively active Akt conferred endothelial cell survival in the absence of VEGF. Constitutively active Akt also conferred survival to endothelial cells in suspension culture, whereas stimulation with VEGF did not. In suspension cultures, VEGF stimulation was unable to activate Akt, and Akt protein levels were repressed in cells undergoing anoikis. These data suggest that cross-talk between growth factor- and anchorage-dependent signaling pathways are essential for Akt activation and endothelial cell survival.
Collapse
Affiliation(s)
| | - Kenneth Walsh
- To whom correspondence should be addressed: Div. of Cardiovascular Research, St. Elizabeth’s Medical Center, 736 Cambridge St., Boston, MA 02135. Tel.: 617-562-7501; Fax: 617-562-7506;
| |
Collapse
|
1008
|
Moreira AL, Friedlander DR, Shif B, Kaplan G, Zagzag D. Thalidomide and a thalidomide analogue inhibit endothelial cell proliferation in vitro. J Neurooncol 1999; 43:109-14. [PMID: 10533722 DOI: 10.1023/a:1006202700039] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Angiogenesis is a crucial process in inflammatory reactions as well as in tumor implantation and growth. Tumors with high rates of invasion and recurrence such as gliomas, are specially dependent on neovascularization. This suggests that inhibition of angiogenesis might reduce the growth of these tumors. Thalidomide has been previously shown to inhibit angiogenesis induced by basic fibroblast growth factor in vivo, using the rabbit corneal micropocket assay. Therefore, the effect of thalidomide and a thalidomide analogue (cc-1069) on the proliferation in vitro of endothelial and glioma cells was tested. We observed a decrease in endothelial cell proliferation in cultures treated with thalidomide or the thalidomide analogue cc-1069. The analogue inhibited endothelial cell proliferation more efficiently than thalidomide. The inhibition occurred in association with a marked decrease in the activity of the nuclear factor SP1 and a moderate inhibition of NF-kappaB activation in nuclear extracts of endothelial cells. The drugs did not impair cell viability. There was no effect of thalidomide or the thalidomide analogue on the proliferation of the glioma cell line (U251) in vitro.
Collapse
Affiliation(s)
- A L Moreira
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, NY, USA
| | | | | | | | | |
Collapse
|
1009
|
Jones MK, Itani RM, Wang H, Tomikawa M, Sarfeh IJ, Szabo S, Tarnawski AS. Activation of VEGF and Ras genes in gastric mucosa during angiogenic response to ethanol injury. Am J Physiol Gastrointest Liver Physiol 1999; 276:G1345-G1355. [PMID: 10362637 DOI: 10.1152/ajpgi.1999.276.6.g1345] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Our previous studies demonstrated that ethanol injury triggers the angiogenic response in gastric mucosa bordering necrosis. The present study was aimed to determine whether vascular endothelial growth factor (VEGF) (a potent angiogenic peptide selectively acting on endothelial cells) and Ras (a mediator of cell proliferation and a putative regulator of VEGF expression) are involved in gastric angiogenesis after ethanol injury. We studied the angiogenic response and expression of VEGF and Ras in gastric mucosa after ethanol injury. Ethanol damage triggered 1) angiogenesis in the gastric mucosa bordering necrosis, 2) significant increases in VEGF mRNA and protein expression, and 3) significant increases in the expression of Ki-ras mRNA and Ras proteins. Neutralizing anti-VEGF antibody significantly reduced (by greater than threefold) the angiogenic response to ethanol-induced injury. Moreover, mevastatin, an inhibitor of Ras activation, completely blocked the induction of VEGF expression in cultured primary endothelial cells. Because, in other tissues, VEGF is one of the most potent angiogenic factors and VEGF expression is dependent on Ras, our data indicate that Ras and VEGF are involved in gastric mucosal angiogenesis after ethanol injury.
Collapse
Affiliation(s)
- M K Jones
- Veterans Affairs Medical Center, Long Beach, CA, 90822, USA
| | | | | | | | | | | | | |
Collapse
|
1010
|
IRUELA-ARISPE MLUISA, RODRIGUEZ-MANZANEQUE JUANCARLOS, ABU-JAWDEH GRAZIELLA. Endometrial Endothelial Cells Express Estrogen and Progesterone Receptors and Exhibit a Tissue Specific Response to Angiogenic Growth Factors. Microcirculation 1999. [DOI: 10.1111/j.1549-8719.1999.tb00095.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
1011
|
Devic E, Rizzoti K, Bodin S, Knibiehler B, Audigier Y. Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev 1999; 84:199-203. [PMID: 10473142 DOI: 10.1016/s0925-4773(99)00081-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have recently identified a new G protein-coupled receptor, X-msr, whose expression is associated with the endothelial lineage in Xenopus laevis (Devic, E., Paquereau, L., Vernier, P., Knibiehler, B., Audigier, Y., 1996. Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech. Dev. 59, 129-140). Based on its structural analogy to the human orphan receptor APJ, we cloned the murine msr/apj receptor and analyzed its expression in developing tissues. As observed for X-msr, msr/apj transcripts are detected in the endothelium of the primary blood vessels and the forming heart. In addition, they are expressed in somites, limb bud and branchial arches. This expression pattern is distinct from that of the Flk1 gene and suggests that the msr/apj gene is expressed in a subpopulation of endothelial precursors and a mesenchymal population derived from paraaxial mesoderm.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apelin Receptors
- Blood Vessels/embryology
- Blood Vessels/metabolism
- Cardiovascular System/embryology
- Cloning, Molecular
- Endothelium, Vascular/embryology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Developmental
- Humans
- In Situ Hybridization
- Limb Buds/metabolism
- Mice
- Molecular Sequence Data
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, G-Protein-Coupled
- Receptors, Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Xenopus Proteins
Collapse
Affiliation(s)
- E Devic
- Unité INSERM U-397, CHU Rangueil, Toulouse, France
| | | | | | | | | |
Collapse
|
1012
|
Takahashi N, Seko Y, Noiri E, Tobe K, Kadowaki T, Sabe H, Yazaki Y. Vascular endothelial growth factor induces activation and subcellular translocation of focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. Circ Res 1999; 84:1194-202. [PMID: 10347094 DOI: 10.1161/01.res.84.10.1194] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) has been proposed to be among the candidate factors with the most potential to play a role in ischemia-induced collateral vessel formation. Recently, we found that VEGF activated the mitogen-activated protein kinase cascade in cultured rat cardiac myocytes. To elucidate how VEGF affects adhesive interaction of cardiac myocytes with the extracellular matrix (ECM), one of the important cell functions, we investigated the molecular mechanism of activation of focal adhesion-related proteins, especially focal adhesion kinase (p125(FAK)), in cultured rat cardiac myocytes. We found that the 2 VEGF receptors, KDR/Flk-1 and Flt-1, were expressed in cardiac myocytes and that KDR/Flk-1 was significantly tyrosine phosphorylated on VEGF stimulation. VEGF induced tyrosine phosphorylation and activation of p125(FAK) as well as tyrosine phosphorylation of paxillin; this was accompanied by subcellular translocation of p125(FAK) from perinuclear sites to the focal adhesions. This VEGF-induced activation of p125(FAK) was inhibited partially by the tyrosine kinase inhibitors genistein and tyrphostin. Activation of p125(FAK) was accompanied by its increased association with adapter proteins GRB2, Shc, and nonreceptor type tyrosine kinase p60(c-src). Furthermore, we confirmed that VEGF induced a significant increase in adhesive interaction between cardiac myocytes and ECM using an electric cell-substrate impedance sensor. These results strongly suggest that p125(FAK) is one of the most important components in VEGF-induced signaling in cardiac myocytes, playing a critical role in adhesive interaction between cardiac myocytes and ECM.
Collapse
Affiliation(s)
- N Takahashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo.
| | | | | | | | | | | | | |
Collapse
|
1013
|
Takahama M, Tsutsumi M, Tsujiuchi T, Kido A, Sakitani H, Iki K, Taniguchi S, Kitamura S, Konishi Y. Expression of vascular endothelial growth factor and its receptors during lung carcinogenesis by N-nitrosobis(2-hydroxypropyl)amine in rats. Mol Carcinog 1999. [PMID: 10326865 DOI: 10.1002/(sici)1098-2744(199904)24:4%3c287::aid-mc6%3e3.0.co;2-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), VEGFR-1/Flt-1 and VEGFR-2/Flk-1, was investigated by immunohistochemical and northern blot analysis during lung carcinogenesis by N-nitrosobis(2-hydroxypropyl)amine (BHP) in male Wistar rats. After BHP was given in the drinking water for 12 wk, the rats were maintained without further treatment until they were killed at 20-28 wk. Immunohistochemical studies revealed VEGF expression in almost all malignancies, the reaction being strongly positive in most adenocarcinomas (15 of 18; 83.3%) and squamous cell carcinomas (four of five; 80.0%), but less so in a total of 120 adenomas and 136 alveolar hyperplasias. In addition, VEGF mRNA and VEGFR mRNAs were found to be overexpressed in most adenocarcinomas and squamous cell carcinomas as well as in one to three of the five adenomas tested. The results indicated that VEGF and VEGFRs play important roles in the acquisition of malignant potential by preneoplastic lung lesions induced by BHP in rats. Moreover, overexpression of VEGF was related to upregulation of VEGFR-1/Flt-1 and VEGFR-2/Flk-1 expression in malignant and premalignant lung lesions.
Collapse
MESH Headings
- Adenocarcinoma/chemically induced
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenoma/chemically induced
- Adenoma/genetics
- Adenoma/metabolism
- Animals
- Blotting, Northern
- Carcinogens/toxicity
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Disease Progression
- Endothelial Growth Factors/biosynthesis
- Endothelial Growth Factors/genetics
- Gene Expression Regulation, Neoplastic
- Genes, ras
- Hyperplasia
- Lung Diseases/chemically induced
- Lung Diseases/genetics
- Lung Diseases/metabolism
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lymphokines/biosynthesis
- Lymphokines/genetics
- Male
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neovascularization, Pathologic/genetics
- Nitrosamines/toxicity
- Precancerous Conditions/chemically induced
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Rats
- Rats, Wistar
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Growth Factor/biosynthesis
- Receptors, Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factor Receptor-1
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- M Takahama
- Department of Oncological Pathology, Cancer Center, Nara Medical University, Kashihara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1014
|
Silverman WF, Krum JM, Mani N, Rosenstein JM. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 1999; 90:1529-41. [PMID: 10338318 DOI: 10.1016/s0306-4522(98)00540-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vascular endothelial growth factor is a highly conserved, heparin-binding protein which mediates a number of critical developmental processes in both vertebrates and invertebrates, including angiogenesis, vasculogenesis and hematopoiesis. We employed an organotypic rat explant model (produced from embryonic day 17 fetuses) to assess the effects of vascular endothelial growth factor on brain microvasculature in general and the ventral midbrain specifically. Immunohistochemistry using antisera to rat endothelial cell antigen and laminin demonstrated a robust, dose-dependent effect of vascular endothelial growth factor, resulting in increased vessel neogenesis, branching and lumen size by three days in vitro. This effect was blocked by addition of an anti-vascular endothelial growth factor antibody. At higher doses of vascular endothelial growth factor, the effect was attenuated, though a statistically significant increase in both astrocyte, and neuronal density was observed using antisera to glial and neuronal markers. Tyrosine hydroxylase-immunoreactive (i.e. dopaminergic) neurons, particularly, exhibited increased survival in response to vascular endothelial growth factor application. Vascular endothelial growth factor had a mitogenic effect on endothelial cells and astrocytes, but not dopaminergic neurons, as demonstrated by the addition of [3H]thymidine to the cultures 2 h after the cultures were established. Similarly, results of a radioreceptor assay indicated that specific vascular endothelial growth factor binding sites were present on blood vessels and astrocytes, and were up-regulated by exposure to vascular endothelial growth factor. We conclude that, in explants of the ventral mesencephalon, exogenously applied vascular endothelial growth factor is mitogenic for endothelial cells and astrocytes, and promotes growth/survival of neurons in general and dopaminergic neurons in particular.
Collapse
Affiliation(s)
- W F Silverman
- Department of Morphology, Zlotowski Center of Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
1015
|
Wen Y, Edelman JL, Kang T, Sachs G. Lipocortin V may function as a signaling protein for vascular endothelial growth factor receptor-2/Flk-1. Biochem Biophys Res Commun 1999; 258:713-21. [PMID: 10329451 DOI: 10.1006/bbrc.1999.0678] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Binding of vascular endothelial growth factor (VEGF) to its receptor, VEGFR-2 (Flk-1/KDR), induces dimerization and activation of the tyrosine kinase domain of the receptor, resulting in autophosphorylation of cytoplasmic tyrosine residues used as docking sites for signaling proteins that relay the signals for cell proliferation, migration, and permeability enhancement. We explored the VEGF/receptor signaling pathway by performing a two-hybrid screen of a rat lung cDNA library in yeast using the intracellular domain of rat VEGFR-2 as bait. Two clones encoding lipocortin V were isolated. Subsequent studies with the yeast two-hybrid assay showed that the complete intracellular domain of VEGFR-2 was required for the interaction. Co-immunoprecipitation of translated proteins confirmed the interaction between the VEGF receptor and lipocortin V. VEGF induced a rapid tyrosine phosphorylation of lipocortin V in human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with antisense oligodeoxyribonucleotide (ODN) for lipocortin V significantly inhibited VEGF-induced cell proliferation, which was accompanied by a decrease in protein synthesis and tyrosine phosphorylation of lipocortin V. Our results indicate that lipocortin V may function as a signaling protein for VEGFR-2 by directly interacting with the intracellular domain of the receptor and appears to be involved in regulation of vascular endothelial cell proliferation mediated by VEGFR-2.
Collapse
Affiliation(s)
- Y Wen
- Membrane Biology Laboratory, Department of Medicine, West, Los Angeles VA Medical Center and UCLA, Los Angeles, California, 90073, USA
| | | | | | | |
Collapse
|
1016
|
Affiliation(s)
- G Keller
- National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | |
Collapse
|
1017
|
Aase K, Lymboussaki A, Kaipainen A, Olofsson B, Alitalo K, Eriksson U. Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature. Dev Dyn 1999; 215:12-25. [PMID: 10340753 DOI: 10.1002/(sici)1097-0177(199905)215:1<12::aid-dvdy3>3.0.co;2-n] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor B (VEGF-B) is structurally closely related to VEGF and binds one of its receptors, VEGFR-1. In situ hybridization and immunohistochemistry were used to localize VEGF-B mRNA and protein in embryonic mouse tissues. In 8.5-17.5 day embryos, VEGF-B was most prominently expressed in the developing myocardium, but not in the cardiac cushion tissue. The strong expression in the heart persisted at later developmental stages, while weaker signals were obtained from several other tissues, including developing muscle, bone, pancreas, adrenal gland, and from the smooth muscle cell layer of several larger vessels, but not from endothelial cells. VEGF-B is likely to act in a paracrine fashion, as its receptor is almost exclusively present in endothelial cells. VEGF-B may have a role in vascularization of the heart, skeletal muscles and developing bones, and in paracrine interactions between endothelial and surrounding muscle cells.
Collapse
Affiliation(s)
- K Aase
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| | | | | | | | | | | |
Collapse
|
1018
|
Machein MR, Risau W, Plate KH. Antiangiogenic gene therapy in a rat glioma model using a dominant-negative vascular endothelial growth factor receptor 2. Hum Gene Ther 1999; 10:1117-28. [PMID: 10340544 DOI: 10.1089/10430349950018111] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Malignant gliomas are a prominent target for cancer gene therapy approaches because of their poor prognosis despite all currently available therapies. Gene therapy strategies developed to interfere with the normal function of vascular endothelial growth factor receptors have been successfully used in different experimental models to block tumor angiogenesis and to inhibit tumor growth. In this study we examined whether retroviruses encoding a mutant VEGF receptor 2 (VEGFR-2) could suppress tumor angiogenesis and thereby prolong the survival of rats bearing syngeneic intracerebral glioma tumors. Survival time of rats with intracerebral tumors was significantly prolonged in a dose-dependent manner when retroviruses carrying a VEGFR-2 mutant were cotransplanted with tumor cells. No effect on survival was observed in rats that received virus-producing cells or virus supernatant intracerebrally after 5 days of tumor injection. In established subcutaneous tumors treatment with multiple injections of virus-producing cells also inhibited tumor growth in a dose-dependent manner. After implantation of tumor cells stably transfected with a truncated form of VEGFR-2, rats exhibited a rate of survival similar to that of animals treated with high numbers of virus-producing cells encoding the truncated form of VEGFR-2. Morphologically, tumors showed signs of impaired angiogenesis, such as extensive necrosis and reduced tumor vascular density. These results suggest a dual mode of function of truncated VEGFR-2, namely dominant-negative inhibition of VEGFR-2 function and VEGF depletion by receptor binding. We further explored the safety of retrovirus-mediated gene transfer. Although virus sequences were found in different tissues after intracerebral injection of virus-producing cells, no morphological changes were observed in any tissue after a follow-up time of 6 months. Our results indicate that VEGFR-2 inhibition is useful for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- M R Machein
- Department of Neuropathology, Freiburg University Medical School, Germany
| | | | | |
Collapse
|
1019
|
Cortés F, Debacker C, Péault B, Labastie MC. Differential expression of KDR/VEGFR-2 and CD34 during mesoderm development of the early human embryo. Mech Dev 1999; 83:161-4. [PMID: 10381576 DOI: 10.1016/s0925-4773(99)00030-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent findings on vertebrate embryos have provided compelling evidence for the existence of hemangioblasts, i.e. common precursors for endothelial and hematopoietic cells, characterized by expression of the VEGFR2/Flk1 receptor. We describe here a population of KDR+ CD34- mesoderm cells that emerges in early-somitic human embryos, by the beginning of the 4th week of gestation. In the developing blood vessels, KDR-expressing CD34- cells gradually coexpress increasing levels of CD34 antigen. Remarkably, as development proceeds, a KDR+ CD34- contingent persists in the paraaortic splanchnopleura until just prior to the emergence of aorta-associated hematopoietic cell clusters. These observations suggest that KDR+ CD34- mesodermal cells might represent the putative hemangioblastic precursor of human hematopoietic and endothelial lineages.
Collapse
Affiliation(s)
- F Cortés
- Institut d'Embryologie Cellulaire et Moléculaire, CNRS UPR 9064, 49bis, avenue de la Belle Gabrielle, 94736, Nogent-sur-Marne Cedex, France
| | | | | | | |
Collapse
|
1020
|
Abstract
Hematopoiesis develops initially as discrete blood islands in the extraembryonic yolk sac of the embryo. These blood islands consist of clusters of primitive erythrocytes surrounded by developing angioblasts that ultimately form the yolk sac vasculature. The close developmental association of these early hematopoietic and endothelial cells has led to the hypothesis that they develop from a common precursor, a cell known as the hemangioblast. Using a developmental model system based on the in vitro differentiation capacity of embyronic stem (ES) cells, we have identified a precursor with the capacity to generate endothelial as well as primitive and definitive hematopoietic progeny. The developmental potential of this precursor population suggests that it represents the in vitro equivalent of the hemangioblast.
Collapse
Affiliation(s)
- S Robertson
- National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | |
Collapse
|
1021
|
Wolburg H, Liebner S, Reichenbach A, Gerhardt H. The pecten oculi of the chicken: a model system for vascular differentiation and barrier maturation. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 187:111-59. [PMID: 10212979 DOI: 10.1016/s0074-7696(08)62417-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pecten oculi is a convolute of blood vessels in the vitreous body of the avian eye. This structure is well known for more than a century, but its functions are still a matter of controversies. One of these functions must be the formation of a blood-retina barrier because there is no diffusion barrier for blood-borne compounds available between the pecten and the retina. Surprisingly, the blood-retina barrier characteristics of this organ have not been studied so far, although the pecten oculi may constitute a fascinating model of vascular differentiation and barrier maturation: Pectinate endothelial cells grow by angiogenesis from the ophthalmotemporal artery into the pecten primordium and consecutively gain barrier properties. The pectinate pigmented cells arise during development from retinal pigment epithelial cells and subsequently lose barrier properties. These inverse transdifferentiation processes may be triggered by the peculiar microenvironment in the vitreous body. In addition, the question is discussed whether the avascularity of the avian retina may be due to the specific metabolic activity of the pecten.
Collapse
Affiliation(s)
- H Wolburg
- Institute of Pathology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
1022
|
Human Erythropoietin Induces a Pro-Angiogenic Phenotype in Cultured Endothelial Cells and Stimulates Neovascularization In Vivo. Blood 1999. [DOI: 10.1182/blood.v93.8.2627.408k21_2627_2636] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic and endothelial cell lineages share common progenitors. Accordingly, cytokines formerly thought to be specific for the hematopoietic system have been shown to affect several functions in endothelial cells, including angiogenesis. In this study, we investigated the angiogenic potential of erythropoietin (Epo), the main hormone regulating proliferation, differentiation, and survival of erythroid cells. Epo receptors (EpoRs) have been identified in the human EA.hy926 endothelial cell line by Western blot analysis. Also, recombinant human Epo (rHuEpo) stimulates Janus Kinase-2 (JAK-2) phosphorylation, cell proliferation, and matrix metalloproteinase-2 (MMP-2) production in EA.hy926 cells and significantly enhances their differentiation into vascular structures when seeded on Matrigel. In vivo, rHuEpo induces a potent angiogenic response in the chick embryo chorioallantoic membrane (CAM). Accordingly, endothelial cells of the CAM vasculature express EpoRs, as shown by immunostaining with an anti-EpoR antibody. The angiogenic response of CAM blood vessels to rHuEpo was comparable to that elicited by the prototypic angiogenic cytokine basic fibroblast growth factor (FGF2), it occurred in the absence of a significant mononuclear cell infiltrate, and it was not mimicked by endothelin-1 (ET-1) treatment. Taken together, these data demonstrate the ability of Epo to interact directly with endothelial cells and to elicit an angiogenic response in vitro and in vivo and thus act as a bona fide direct angiogenic factor.
Collapse
|
1023
|
Kalka C, Takahashi T, Masuda H, Asahara T, Isner JM. [Vascular endothelial factor (VEGF): therapeutic angiogenesis and vasculogenesis in the treatment of cardiovascular disease]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1999; 94:193-201. [PMID: 10373754 DOI: 10.1007/bf03044854] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The formation of new blood vessel is essential for a variety of physiological processes like embryogenesis and the female reproduction as well as pathological processes like tumor growth, wound healing and neovascularization of ischemic tissue. Vasculogenesis and angiogenesis are the mechanisms responsible for the development of the blood vessels. While angiogenesis refers to the formation of capillaries from pre-existing vessels in the embryo and adult organism, vasculogenesis, the development of new blood vessels from in situ differentiating endothelial cells, has been previously considered restricted to embryogenesis. Recent investigations, however, show the existence of endothelial progenitor cells (EPCs) in the peripheral blood of the adult and their participation in ongoing neovascularization. Molecular and cell-biological experiments suggest that different cytokines and growth factors have a stimulatory effect on these bone-marrow derived EPCs. Results with GM-CSF (granulocyte macrophage-colony stimulating factor) and VEGF (vascular endothelial growth factor) open a new insight into the clinical use of cytokines and in particular the use of growth factors in gene therapy. The administration via protein or plasmid-DNA for neovascularization seems to enhance both pathways, angiogenesis and vasculogenesis.
Collapse
Affiliation(s)
- C Kalka
- Department of Vascular Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
1024
|
Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A. Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 1999; 126:1631-42. [PMID: 10079226 DOI: 10.1242/dev.126.8.1631] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Smad5 has been implicated as a downstream signal mediator for several bone morphogenetic proteins (BMPs). To understand the in vivo function of Smad5, we generated mice deficient in Smad5 using embryonic stem (ES) cell technology. Homozygous mutant embryos die between E9.5 and E11.5, and display variable phenotypes. Morphological defects are first detected at E8.0 in the developing amnion, gut and heart (the latter defect being similar to BMP-2 knockout mice). At later stages, mutant embryos fail to undergo proper turning, have craniofacial and neural tube abnormalities, and are edematous. In addition, several extraembryonic lesions are observed. After E9.0, the yolk sacs of the mutants contain red blood cells but lack a well-organized vasculature, which is reminiscent of BMP-4, TGF-beta1 and TGF-beta type II receptor knockout mice. In addition, the allantois of many Smad5 mutants is fused to the chorion, but is not well-elongated. A unique feature of the Smad5 mutant embryos is that ectopic vasculogenesis and hematopoiesis is observed in the amnion, likely due to mislocation of allantois tissue. Despite the expression of Smad5 from gastrulation onwards, and in contrast to knockouts of Smad2 and Smad4, Smad5 only becomes essential later in extraembryonic and embryonic development.
Collapse
Affiliation(s)
- H Chang
- Departments of Pathology, Cell Biology and Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|
1025
|
Human Erythropoietin Induces a Pro-Angiogenic Phenotype in Cultured Endothelial Cells and Stimulates Neovascularization In Vivo. Blood 1999. [DOI: 10.1182/blood.v93.8.2627] [Citation(s) in RCA: 379] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hematopoietic and endothelial cell lineages share common progenitors. Accordingly, cytokines formerly thought to be specific for the hematopoietic system have been shown to affect several functions in endothelial cells, including angiogenesis. In this study, we investigated the angiogenic potential of erythropoietin (Epo), the main hormone regulating proliferation, differentiation, and survival of erythroid cells. Epo receptors (EpoRs) have been identified in the human EA.hy926 endothelial cell line by Western blot analysis. Also, recombinant human Epo (rHuEpo) stimulates Janus Kinase-2 (JAK-2) phosphorylation, cell proliferation, and matrix metalloproteinase-2 (MMP-2) production in EA.hy926 cells and significantly enhances their differentiation into vascular structures when seeded on Matrigel. In vivo, rHuEpo induces a potent angiogenic response in the chick embryo chorioallantoic membrane (CAM). Accordingly, endothelial cells of the CAM vasculature express EpoRs, as shown by immunostaining with an anti-EpoR antibody. The angiogenic response of CAM blood vessels to rHuEpo was comparable to that elicited by the prototypic angiogenic cytokine basic fibroblast growth factor (FGF2), it occurred in the absence of a significant mononuclear cell infiltrate, and it was not mimicked by endothelin-1 (ET-1) treatment. Taken together, these data demonstrate the ability of Epo to interact directly with endothelial cells and to elicit an angiogenic response in vitro and in vivo and thus act as a bona fide direct angiogenic factor.
Collapse
|
1026
|
|
1027
|
Perl AKT, Whitsett JA. Molecular mechanisms controlling lung morphogenesis. Clin Genet 1999. [DOI: 10.1034/j.1399-0004.2000.57si02.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
1028
|
Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 1999; 18:2221-30. [PMID: 10327068 DOI: 10.1038/sj.onc.1202527] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
KDR/FIk-1 tyrosine kinase, one of the two VEGF receptors induces mitogenesis and differentiation of vascular endothelial cells. We have previously reported that a major target molecule of KDR/Flk-1 kinase is PLC-gamma, and that VEGF induces activation of MAP kinase, mainly mediated by protein kinase C (PKC) in the NIH3T3 cells overexpressing KDR/FIk-1 (Takahashi and Shibuya, 1997). However, the signal transduction initiated from VEGF in endothelial cells remains to be elucidated. In primary sinusoidal endothelial cells which showed strictly VEGF-dependent growth, we found that VEGF stimulated the activation of Raf-1-MEK-MAP kinase cascade. To our surprise, an important regulator, Ras was not efficiently activated to a significant level in response to VEGF. Consistent with this, dominant-negative Ras did not block the VEGF-induced phosphorylation of MAP kinase. On the other hand, PKC-specific inhibitors severely reduced VEGF-dependent phosphorylation of MEK, activation of MAP kinase and subsequent DNA synthesis. A potent PI3 kinase inhibitor, Wortmannin, could not inhibit either of them. These results suggest that in primary endothelial cells, VEGF-induced activation of Raf-MEK-MAP kinase and DNA synthesis are mainly mediated by PKC-dependent pathway, much more than by Ras-dependent or PI3 kinase-dependent pathway.
Collapse
Affiliation(s)
- T Takahashi
- Department of Genetics, Institute of Medical Science, University of Tokyo, Japan
| | | | | |
Collapse
|
1029
|
Vajkoczy P, Menger MD, Vollmar B, Schilling L, Schmiedek P, Hirth KP, Ullrich A, Fong TA. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1999; 1:31-41. [PMID: 10935468 PMCID: PMC1716058 DOI: 10.1038/sj.neo.7900006] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a fundamental role in mediating tumor angiogenesis and tumor growth. Here we investigate the direct effect of a novel small molecule inhibitor of the Flk-1-mediated signal transduction pathway of VEGF, SU5416, on tumor angiogenesis and microhemodynamics of an experimental glioblastoma by using intravital multifluorescence videomicroscopy. SU5416 treatment significantly suppressed tumor growth. In parallel, SU5416 demonstrated a potent antiangiogenic activity, resulting in a significant reduction of both the total and functional vascular density of the tumor microvasculature, which indicates an impaired vascularization as well as significant perfusion failure in treated tumors. This malperfusion was not compensated for by changes in vessel diameter or recruitment of nonperfused vessels. Analyses of the tumor microcirculation revealed significant microhemodynamic changes after angiogenesis blockage such as a higher red blood cell velocity and blood flow in remnant tumor vessels when compared with controls. Our results demonstrate that the novel antiangiogenic concept of targeting the tyrosine kinase of Flk-1/KDR by means of a small molecule inhibitor represents an efficient strategy to control growth and progression of angiogenesis-dependent tumors. This study provides insight into microvascular consequences of Flk-1/KDR targeting in vivo and may have important implications for the future treatment of angiogenesis-dependent neoplasms.
Collapse
Affiliation(s)
- P Vajkoczy
- Department of Neurosurgery, Klinikum Mannheim, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1030
|
Smith G, McLeod D, Foreman D, Boulton M. Immunolocalisation of the VEGF receptors FLT-1, KDR, and FLT-4 in diabetic retinopathy. Br J Ophthalmol 1999; 83:486-94. [PMID: 10434875 PMCID: PMC1722996 DOI: 10.1136/bjo.83.4.486] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM To determine the spatial and temporal changes in the staining pattern of the VEGF receptors FLT-1, KDR, and the putative receptor FLT-4 during the pathogenesis of diabetic retinopathy. METHODS Immunohistochemical localisation of VEGF receptors, using antibodies against FLT-1, FLT-4, and KDR, was carried out on specimens of normal human retina (n = 10), diabetic retinas (a) with no overt retinopathy (n = 12), (b) with intraretinal vascular abnormalities but no proliferative retinopathy (n = 5), (c) with active proliferative retinopathy (n = 6), and (d) with no residual proliferative retinopathy after scatter photocoagulation therapy (n = 14), and surgically excised diabetic fibrovascular membranes (n = 11). The degree and pattern of immunostaining was recorded. RESULTS FLT-1 staining was apparent in the retinas from both non-diabetic and diabetic retinas; weak to moderate staining was generally confined to the inner nuclear layer, the ganglion cell layer, and the retinal vessels during all stages of the disease process. Staining of the retinal vessels was raised in diabetic tissue compared with non-diabetic tissue. The preretinal vessels of the diabetic subjects stained moderately to intensely for FLT-1. In contrast with FLT-1 staining minimal immunostaining for KDR was demonstrated in the non-diabetic eyes and the unlasered eyes; however, weak staining for KDR was observed in the inner nuclear layer and the ganglion cell layer of the unlasered eyes with diabetic changes. In those retinas with preretinal neovascularisation KDR immunoreactivity was moderate to intense in the intra- and preretinal vessels. However, in the excised membranes, where the vessels may have been in a quiescent state, the levels of KDR were weak to moderate. After apparently successful laser treatment KDR staining was reduced in the intraretinal vessels. Minimal FLT-4 staining was observed throughout normal eyes while weak to moderate FLT-4 staining was generally confined to the inner nuclear layer and the ganglion cell layer of the unlasered diabetic eyes. Weak to moderate levels of FLT-4 staining were observed in the intraretinal vessels except after apparently successful laser treatment where reduced levels of staining were observed. Weak to moderate staining was observed in the preretinal vessels. CONCLUSIONS This study supports a role for FLT-1, KDR, and possibly FLT-4 in the pathogenesis of diabetic retinopathy; however, their specific roles in the progression of the disease may differ.
Collapse
Affiliation(s)
- G Smith
- University Department of Ophthalmology, Manchester Royal Eye Hospital
| | | | | | | |
Collapse
|
1031
|
Takahama M, Tsutsumi M, Tsujiuchi T, Kido A, Sakitani H, Iki K, Taniguchi S, Kitamura S, Konishi Y. Expression of vascular endothelial growth factor and its receptors during lung carcinogenesis byN-nitrosobis(2-hydroxypropyl)amine in rats. Mol Carcinog 1999. [DOI: 10.1002/(sici)1098-2744(199904)24:4<287::aid-mc6>3.0.co;2-t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1032
|
Kendall RL, Rutledge RZ, Mao X, Tebben AJ, Hungate RW, Thomas KA. Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tyrosine residues. J Biol Chem 1999; 274:6453-60. [PMID: 10037737 DOI: 10.1074/jbc.274.10.6453] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor is an important physiological regulator of angiogenesis. The function of this endothelial cell selective growth factor is mediated by two homologous tyrosine kinase receptors, fms-like tyrosine kinase 1 (Flt-1) and kinase domain receptor (KDR). Although the functional consequence of vascular endothelial growth factor binding to the Flt-1 receptor is not fully understood, it is well established that mitogenic signaling is mediated by KDR. Upon sequencing several independent cDNA clones spanning the cytoplasmic region of human KDR, we identified and confirmed the identity of a functionally required valine at position 848 in the ATP binding site, rather than the previously reported glutamic acid residue, which corresponds to an inactive tyrosine kinase. The cytoplasmic domain of recombinant native KDR, expressed as a glutathione S-transferase fusion protein, can undergo autophosphorylation in the presence of ATP. In addition, the kinase activity can be substantially increased by autophosphorylation at physiologic ATP concentrations. Mutation analysis indicates that both tyrosine residues 1054 and 1059 are required for activation, which is a consequence of an increased affinity for both ATP and the peptide substrate and has no effect on kcat, the intrinsic catalytic activity of the enzyme. KDR kinase catalyzes phosphotransfer by formation of a ternary complex with ATP and the peptide substrate. We demonstrate that tyrosine kinase antagonists can preferentially inhibit either the unactivated or activated form of the enzyme.
Collapse
Affiliation(s)
- R L Kendall
- Department of Cancer Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | |
Collapse
|
1033
|
Feng Y, Venema VJ, Venema RC, Tsai N, Caldwell RB. VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun 1999; 256:192-7. [PMID: 10066445 DOI: 10.1006/bbrc.1998.9790] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VEGF increases endothelial cell permeability and growth by a process requiring NOS activity. Because eNOS activity is regulated by its interaction with the caveolar structural protein caveolin-1, we analyzed VEGF effects on structural interactions between eNOS, caveolin-1 and the VEGF receptor Flk-1/KDR. Confocal immunolocalization analysis of the subcellular distribution of Flk-1/KDR, caveolin-1 and eNOS showed that VEGF stimulated the translocation of all three proteins into the nucleus. This result was confirmed by cell fractionation and immunoblotting studies showing that levels of all three proteins within the caveolar compartment declined progressively after 30 and 60 min of VEGF treatment. The pattern was reversed for nuclear fractions. Protein levels were lowest in the control cultures, but increased progressively after 30 and 60 min of treatment. Nuclear translocation of eNOS and Flk-1/KDR within caveolae may represent a mechanism for targeting NO production to the nuclear compartment where it could influence transcription factor activation.
Collapse
Affiliation(s)
- Y Feng
- The Vascular Biology Center, The Medical College of Georgia, Augusta, Georgia, 30912, USA
| | | | | | | | | |
Collapse
|
1034
|
Zhu Z, Lu D, Kotanides H, Santiago A, Jimenez X, Simcox T, Hicklin DJ, Bohlen P, Witte L. Inhibition of vascular endothelial growth factor induced mitogenesis of human endothelial cells by a chimeric anti-kinase insert domain-containing receptor antibody. Cancer Lett 1999; 136:203-13. [PMID: 10355750 DOI: 10.1016/s0304-3835(98)00324-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The kinase insert domain-containing receptor (KDR) is the human vascular endothelial growth factor (VEGF) receptor responsible for the mitogenic and angiogenic effects of VEGF. There is much experimental evidence to suggest that the VEGF/KDR pathway plays an important role in tumor angiogenesis, a process essential for tumor growth and metastasis. Here we produced a chimeric anti-KDR antibody (IgG1), c-p1C11, from a single chain (scFv) antibody isolated from a phage display library. C-p1C11 binds specifically to the extracellular domain of soluble as well as cell-surface expressed KDR. It effectively blocks VEGF-KDR interaction and inhibits VEGF-stimulated activation of KDR and MAP kinases p44/p42 of human endothelial cells. Furthermore, c-p1C11 efficiently neutralizes VEGF-induced mitogenesis of human endothelial cells. Our results suggest that antibodies against KDR have potential clinical applications in the treatment of cancer and other diseases where pathological angiogenesis is involved.
Collapse
Affiliation(s)
- Z Zhu
- Department of Molecular and Cell Biology, ImClone Systems Inc., New York, NY 10014, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1035
|
Armesilla AL, Lorenzo E, Gómez del Arco P, Martínez-Martínez S, Alfranca A, Redondo JM. Vascular endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: a role for tissue factor gene expression. Mol Cell Biol 1999; 19:2032-43. [PMID: 10022890 PMCID: PMC83996 DOI: 10.1128/mcb.19.3.2032] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent angiogenic inducer that stimulates the expression of tissue factor (TF), the major cellular initiator of blood coagulation. Here we show that signaling triggered by VEGF induced DNA-binding and transcriptional activities of nuclear factor of activated T cells (NFAT) and AP-1 in human umbilical vein endothelial cells (HUVECs). VEGF also induced TF mRNA expression and gene promoter activation by a cyclosporin A (CsA)-sensitive mechanism. As in lymphoid cells, NFAT was dephosphorylated and translocated to the nucleus upon activation of HUVECs, and these processes were blocked by CsA. NFAT was involved in the VEGF-mediated TF promoter activation as evidenced by cotransfection experiments with a dominant negative version of NFAT and site-directed mutagenesis of a newly identified NFAT site within the TF promoter that overlaps with a previously identified kappaB-like site. Strikingly, this site bound exclusively NFAT not only from nuclear extracts of HUVECs activated by VEGF, a stimulus that failed to induce NF-kappaB-binding activity, but also from extracts of cells activated with phorbol esters and calcium ionophore, a combination of stimuli that triggered the simultaneous activation of NFAT and NF-kappaB. These results implicate NFAT in the regulation of endothelial genes by physiological means and shed light on the mechanisms that switch on the gene expression program induced by VEGF and those regulating TF gene expression.
Collapse
Affiliation(s)
- A L Armesilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Facultad de Ciencias, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | |
Collapse
|
1036
|
Muñoz-Chápuli R, Pérez-Pomares JM, Macías D, García-Garrido L, Carmona R, González M. Differentiation of hemangioblasts from embryonic mesothelial cells? A model on the origin of the vertebrate cardiovascular system. Differentiation 1999; 64:133-41. [PMID: 10234810 DOI: 10.1046/j.1432-0436.1999.6430133.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The existence of the hemangioblast, a common progenitor of the endothelial and hematopoietic cell lineages, was proposed at the beginning of the century. Although recent findings seem to confirm its existence, it is still unknown when and how the hemangioblasts differentiate. We propose a hypothesis about the origin of hemangioblasts from the embryonic splanchnic mesothelium. The model is based on observations collected from the literature and from our own studies. These observations include: (1) the extensive population of the splanchnic mesoderm by mesothelial-derived cells coinciding with the emergence of the endothelial and hematopoietic progenitors; (2) the transient localization of cytokeratin, the main mesothelial intermediate filament protein, in some embryonic vessels and endothelial progenitors; (3) the possible origin of cardiac vessels from epicardial-derived cells; (4) the origin of endocardial cells from the splanchnic mesoderm when this mesoderm is an epithelium; (5) the evidence that mesothelial cells migrate to the hemogenic areas of the dorsal aorta. (6) Biochemical and antigenic similarities between mesothelial and endothelial cells. We suggest that the endothelium-lined vascular system arose as a specialization of the phylogenetically older coelomic cavities. The origin of the hematopoietic cells might be related to the differentiation, reported in some invertebrates, of coelomocytes from the coelomic epithelium. Some types of coelomocytes react against microbial invasion and other types transport respiratory pigments. We propose that this phylogenetic origin is recapitulated in the vertebrate ontogeny and explains the differentiation of endothelial and blood cells from a common mesothelial-derived progenitor.
Collapse
Affiliation(s)
- R Muñoz-Chápuli
- Departamento de Biología Animal, Facultad de Cienciás, Universidad de Málaga, Spain.
| | | | | | | | | | | |
Collapse
|
1037
|
Klekamp JG, Jarzecka K, Perkett EA. Exposure to hyperoxia decreases the expression of vascular endothelial growth factor and its receptors in adult rat lungs. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:823-31. [PMID: 10079260 PMCID: PMC1866417 DOI: 10.1016/s0002-9440(10)65329-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exposure to high levels of inspired oxygen leads to respiratory failure and death in many animal models. Endothelial cell death is an early finding, before the onset of respiratory failure. Vascular endothelial growth factor (VEGF) is highly expressed in the lungs of adult animals. In the present study, adult Sprague-Dawley rats were exposed to >95% FiO2 for 24 or 48 hours. Northern blot analysis revealed a marked reduction in VEGF mRNA abundance by 24 hours, which decreased to less than 50% of control by 48 hours. In situ hybridization revealed that VEGF was highly expressed in distal airway epithelial cells in controls but disappeared in the oxygen-exposed animals. Immunohistochemistry and Western blot analyses demonstrated that VEGF protein was decreased at 48 hours. TUNEL staining demonstrated the presence of apoptotic cells coincident with the decline in VEGF. Abundance of VEGF receptor mRNAs (Flt-1 and KDR/Flk) decreased in the late time points of the study (48 hours), possibly secondary to the loss of endothelial cells. We speculate that VEGF functions as a survival factor in the normal adult rat lung, and its loss during hyperoxia contributes to the pathophysiology of oxygen-induced lung damage.
Collapse
Affiliation(s)
- J G Klekamp
- Department of Critical Care Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
1038
|
Mori A, Arii S, Furutani M, Hanaki K, Takeda Y, Moriga T, Kondo Y, Gorrin Rivas MJ, Imamura M. Vascular endothelial growth factor-induced tumor angiogenesis and tumorigenicity in relation to metastasis in a HT1080 human fibrosarcoma cell model. Int J Cancer 1999; 80:738-43. [PMID: 10048976 DOI: 10.1002/(sici)1097-0215(19990301)80:5<738::aid-ijc18>3.0.co;2-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although vascular endothelial growth factor (VEGF) is well known to be a potent mitogen for vascular endothelial cells, the role of VEGF in a developmental process of tumor angiogenesis and metastatic potential remains poorly understood. The present study was designed to investigate VEGF-induced vascular formation from a spatiotemporal viewpoint and to analyze VEGF-enhanced metastatic potential using stable clones of HT1080 human fibrosarcoma cells transfected with VEGF cDNA (S) or with vector alone (V). Microangiography revealed massive angiogenesis in the S cell-derived tumors and demonstrated that the angiogenesis occurred not in the tumor itself, but rather around the S cell tumor early after inoculation into the thigh muscles of mice. Thereafter, the angiogenesis extended in and around the tumor. The tumorigenicity of the S cells was higher than the V cells in the subcutaneous (s.c.) space, intraperitoneal space, liver and spleen. However, neither S cells nor V cells metastasized to the liver after an intrasplenic injection. Few apoptotic cells were detected in the S cell tumor, but many apoptotic cells were scattered in the V cell tumor. Our results indicate that VEGF facilitates tumorigenicity in various organs, possibly due to inducing angiogenesis in and around the tumor and preventing tumor cells from undergoing apoptosis, and suggest that VEGF may augment metastatic potential, by accelerating proliferative activity after reaching the target organ. Furthermore, VEGF-induced angiogenesis occurred preferentially around the tumor at an early period of tumor development, followed by neovascularization into the tumor.
Collapse
Affiliation(s)
- A Mori
- Department of Surgery and Surgical Basic Science, Graduate School of Medicine, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1039
|
In Vitro Hematopoietic and Endothelial Cell Development From Cells Expressing TEK Receptor in Murine Aorta-Gonad-Mesonephros Region. Blood 1999. [DOI: 10.1182/blood.v93.5.1549.405k25_1549_1556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that long-term repopulating hematopoietic stem cells (HSCs) first appear in the aorta-gonad-mesonephros (AGM) region. Our immunohistochemistry study showed that TEK+cells existed in the AGM region. Approximately 5% of AGM cells were TEK+, and most of these were CD34+ and c-Kit+. We then established a coculture system of AGM cells using a stromal cell line, OP9, which is deficient in macrophage colony-stimulating factor (M-CSF). With this system, we showed that AGM cells at 10.5 days postcoitum (dpc) differentiated and proliferated into both hematopoietic and endothelial cells. Proliferating hematopoietic cells contained a significant number of colony-forming cells in culture (CFU-C) and in spleen (CFU-S). Among primary AGM cells at 10.5 dpc, sorted TEK+ AGM cells generated hematopoietic cells and platelet endothelial cell adhesion molecule (PECAM)-1+ endothelial cells on the OP9 stromal layer, while TEK− cells did not. When a ligand for TEK, angiopoietin-1, was added to the single-cell culture of AGM, endothelial cell growth was detected in the wells where hematopoietic colonies grew. Although the incidence was still low (1/135), we showed that single TEK+ cells generated hematopoietic cells and endothelial cells simultaneously, using a single-cell deposition system. This in vitro coculture system shows that the TEK+ fraction of primary AGM cells is a candidate for hemangioblasts, which can differentiate into both hematopoietic cells and endothelial cells.
Collapse
|
1040
|
In Vitro Hematopoietic and Endothelial Cell Development From Cells Expressing TEK Receptor in Murine Aorta-Gonad-Mesonephros Region. Blood 1999. [DOI: 10.1182/blood.v93.5.1549] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recent studies have shown that long-term repopulating hematopoietic stem cells (HSCs) first appear in the aorta-gonad-mesonephros (AGM) region. Our immunohistochemistry study showed that TEK+cells existed in the AGM region. Approximately 5% of AGM cells were TEK+, and most of these were CD34+ and c-Kit+. We then established a coculture system of AGM cells using a stromal cell line, OP9, which is deficient in macrophage colony-stimulating factor (M-CSF). With this system, we showed that AGM cells at 10.5 days postcoitum (dpc) differentiated and proliferated into both hematopoietic and endothelial cells. Proliferating hematopoietic cells contained a significant number of colony-forming cells in culture (CFU-C) and in spleen (CFU-S). Among primary AGM cells at 10.5 dpc, sorted TEK+ AGM cells generated hematopoietic cells and platelet endothelial cell adhesion molecule (PECAM)-1+ endothelial cells on the OP9 stromal layer, while TEK− cells did not. When a ligand for TEK, angiopoietin-1, was added to the single-cell culture of AGM, endothelial cell growth was detected in the wells where hematopoietic colonies grew. Although the incidence was still low (1/135), we showed that single TEK+ cells generated hematopoietic cells and endothelial cells simultaneously, using a single-cell deposition system. This in vitro coculture system shows that the TEK+ fraction of primary AGM cells is a candidate for hemangioblasts, which can differentiate into both hematopoietic cells and endothelial cells.
Collapse
|
1041
|
Piossek C, Schneider-Mergener J, Schirner M, Vakalopoulou E, Germeroth L, Thierauch KH. Vascular endothelial growth factor (VEGF) receptor II-derived peptides inhibit VEGF. J Biol Chem 1999; 274:5612-9. [PMID: 10026178 DOI: 10.1074/jbc.274.9.5612] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) directly stimulates endothelial cell proliferation and migration via tyrosine kinase receptors of the split kinase domain family. It mediates vascular growth and angiogenesis in the embryo but also in the adult in a variety of physiological and pathological conditions. The potential binding site of VEGF with its receptor was identified using cellulose-bound overlapping peptides of the extracytosolic part of the human vascular endothelial growth factor receptor II (VEGFR II). Thus, a peptide originating from the third globular domain of the VEGFR II comprising residues 247RTELNVGIDFNWEYP261 was revealed as contiguous sequence stretch, which bound 125I-VEGF165. A systematic replacement with L-amino acids within the peptide representing the putative VEGF-binding site on VEGFR II indicates Asp255 as the hydrophilic key residue for binding. The dimerized peptide (RTELNVGIDFNWEYPAS)2K inhibits VEGF165 binding with an IC50 of 0.5 microM on extracellular VEGFR II fragments and 30 microM on human umbilical vein cells. VEGF165-stimulated autophosphorylation of VEGFR II as well as proliferation and migration of microvascular endothelial cells was inhibited by the monomeric peptide RTELNVGIDFNWEYPASK at a half-maximal concentration of 3-10, 0.1, and 0.1 microM, respectively. We conclude that transduction of the VEGF165 signal can be interrupted with a peptide derived from the third Ig-like domain of VEGFR II by blockade of VEGF165 binding to its receptor.
Collapse
Affiliation(s)
- C Piossek
- JERINI BIO TOOLS GMBH, Rudower Chaussee 5, 12489 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
1042
|
Plate KH. Control of tumor growth via inhibition of tumor angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 451:57-61. [PMID: 10026850 DOI: 10.1007/978-1-4615-5357-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- K H Plate
- Neurocenter, Freiburg University Medical School, Germany.
| |
Collapse
|
1043
|
Xiong JW, Leahy A, Lee HH, Stuhlmann H. Vezf1: A Zn finger transcription factor restricted to endothelial cells and their precursors. Dev Biol 1999; 206:123-41. [PMID: 9986727 DOI: 10.1006/dbio.1998.9144] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using retroviral entrapment vectors, we identified a novel mouse gene whose expression is restricted to vascular endothelial cells and their precursors in the yolk sac blood islands. A 3.68-kb cDNA corresponding to the endogenous transcript was isolated using genomic DNA flanking the entrapment vector insertion as a probe. We have named this gene Vezf1 for vascular endothelial zinc finger 1. Vezf1 encodes a protein with a predicted molecular mass of 56 kDa and that contains six putative zinc finger domains and shows high homology to a previously identified human gene, DB1, that is believed to be involved in regulating expression of cytokine genes such as interleukin-3. In situ hybridization analysis revealed the onset of expression in advanced primitive streak-stage embryos being located in the extraembryonic mesodermal component of the visceral yolk sac and in the anteriormost mesoderm of the embryo proper. During head-fold and somite stages, expression was restricted to vascular endothelial cells that arise during both vasculogenesis and angiogenesis. Vezf1-related sequences were found to be highly conserved among higher vertebrate species that have acquired extraembryonic yolk sac membranes during evolution. The Vezf1 locus mapped to the proximal part of mouse chromosome 2, a region which has homology to human chromosome 9q. Vezf1 expression correlates temporally and spatially with the early differentiation of angioblasts into the endothelial cell lineage and the proliferation of endothelial cells of the embryonic vascular system. Thus, Vezf1 may play an important role in the endothelial lineage determination and may have an additional role during later stages of embryonic vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- J W Xiong
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York, New York, 10029, USA
| | | | | | | |
Collapse
|
1044
|
Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 1999; 18:882-92. [PMID: 10022831 PMCID: PMC1171181 DOI: 10.1093/emboj/18.4.882] [Citation(s) in RCA: 469] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.
Collapse
Affiliation(s)
- R Soldi
- Institute for Cancer Research and Treatment (IRCC), Biology and Biochemistry, School of Medicine, University of Torino, 10100 Torino, Italy
| | | | | | | | | | | |
Collapse
|
1045
|
Abstract
AbstractA primitive vascular plexus is formed through coordinated regulation of differentiation, proliferation, migration, and cell-cell adhesion of endothelial cell (EC) progenitors. In this study, a culture system was devised to investigate the behavior of purified EC progenitors in vitro. Because Flk-1+ cells derived from ES cells did not initially express other EC markers, they were sorted and used as EC progenitors. Their in vitro differentiation into ECs, via vascular endothelial-cadherin (VE-cadherin)+ platelet-endothelial cell adhesion molecule-1 (PECAM-1)+ CD34−to VE-cadherin+ PECAM-1+CD34+ stage, occurred without exogenous factors, whereas their proliferation, particularly at low cell density, required OP9 feeder cells. On OP9 feeder layer, EC progenitors gave rise to sheet-like clusters of Flk-1+ cells, with VE-cadherin concentrated at the cell-cell junction. The growth was suppressed by Flt-1-IgG1 chimeric protein and dependent on vascular endothelial growth factor (VEGF) but not placenta growth factor (PIGF). Further addition of VEGF resulted in cell dispersion, indicating the role of VEGF in the migration of ECs as well as their proliferation. Cell-cell adhesion of ECs in this culture system was mediated by VE-cadherin. Thus, the culture system described here is useful in dissecting the cellular events of EC progenitors that occur during vasculogenesis and in investigating the molecular mechanisms underlying these processes.
Collapse
|
1046
|
Pardanaud L, Dieterlen-Lièvre F. Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development 1999; 126:617-27. [PMID: 9895310 DOI: 10.1242/dev.126.4.617] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hypothesis that the endothelial and hemopoietic lineages have a common ontogenic origin is currently being revived. We have shown previously by means of quail/chick transplantations that two subsets of the mesoderm give rise to endothelial precursors: a dorsal one, the somite, produces pure angioblasts (angiopoietic potential), while a ventral one, the splanchnopleural mesoderm, gives rise to progenitors with a dual endothelial and hemopoietic potential (hemangiopoietic potential). To investigate the cellular and molecular controls of the angiopoietic/hemangiopoietic potential, we devised an in vivo assay based on the polarized homing of hemopoietic cell precursors to the floor of the aorta detectable in the quail/chick model. In the present work, quail mesoderm was grafted, after various pretreatments, onto the splanchnopleure of a chick host; the homing pattern and nature of graft-derived QH1(+) cells were analyzed thereafter. We report that transient contact with endoderm or ectoderm could change the behavior of cells derived from treated mesoderm, and that the effect of these germ layers could be mimicked by treatment with several growth factors VEGF, bFGF, TGFbeta1, EGF and TGF(α), known to be involved in endothelial commitment and proliferation, and/or hemopoietic processes. The endoderm induced a hemangiopoietic potential in the associated mesoderm. Indeed, the association of somatopleural mesoderm with endoderm promoted the ‘ventral homing’ and the production of hemopoietic cells from mesoderm not normally endowed with this potential. The hemangiopoietic induction by endoderm could be mimicked by VEGF, bFGF and TGFbeta1. In contrast, contact with ectoderm or EGF/TGF(α) treatments totally abrogated the hemangiopoietic capacity of the splanchnopleural mesoderm, which produced pure angioblasts with no ‘ventral homing’ behaviour. We postulate that two gradients, one positive and one negative, modulate the angiopoietic/hemangiopoietic potential of the mesoderm.
Collapse
Affiliation(s)
- L Pardanaud
- Institut d'Embryologie cellulaire et moléculaire du CNRS et du Collège de France, avenue de la Belle Gabrielle, France.
| | | |
Collapse
|
1047
|
Yoshioka H, Hama S, Taniguchi E, Sugiyama K, Arita K, Kurisu K. Peritumoral brain edema associated with meningioma: influence of vascular endothelial growth factor expression and vascular blood supply. Cancer 1999; 85:936-44. [PMID: 10091773 DOI: 10.1002/(sici)1097-0142(19990215)85:4<936::aid-cncr23>3.0.co;2-j] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The extent of peritumoral brain edema (PTBE) associated with meningiomas is very variable. Many causative factors have been investigated, but the mechanism of PTBE associated with meningioma has been unclear until now. Recently, the cerebral-pial blood supply and vascular endothelial growth factor (VEGF) have been implicated as causative factors of PTBE. METHODS Seventy-three supratentorial meningiomas were investigated to identify factors, including type of arterial blood supply and VEGF expression, that may influence the development of meningioma-associated PTBE. The type of arterial blood supply was defined by the selective angiography. Paraffin embedded tumor sections were stained with monoclonal VEGF antibody by an immunoperoxidase method. The extent of PTBE was estimated by using preoperative magnetic resonance imaging as an edema index (EI). RESULTS Forty-six meningiomas demonstrated PTBE, and the other 27 did not. Multiple regression analysis revealed close correlation between PTBE and type of arterial supply (P = 0.004), size of tumor (P = 0.021), vascular density (P = 0.028), and VEGF expression (P = 0.046). In meningiomas with cerebral-pial supply, the EI had increased significantly, just as VEGF was strongly expressed (P < 0.001). In contrast, meningiomas without a cerebral-pial supply developed little or no PTBE and less VEGF expression. CONCLUSIONS The current results suggest that VEGF expression contributes to PTBE formation in meningioma only when a cerebral-pial blood supply exists.
Collapse
Affiliation(s)
- H Yoshioka
- Department of Neurosurgery, Hiroshima University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
1048
|
Abstract
A primitive vascular plexus is formed through coordinated regulation of differentiation, proliferation, migration, and cell-cell adhesion of endothelial cell (EC) progenitors. In this study, a culture system was devised to investigate the behavior of purified EC progenitors in vitro. Because Flk-1+ cells derived from ES cells did not initially express other EC markers, they were sorted and used as EC progenitors. Their in vitro differentiation into ECs, via vascular endothelial-cadherin (VE-cadherin)+ platelet-endothelial cell adhesion molecule-1 (PECAM-1)+ CD34−to VE-cadherin+ PECAM-1+CD34+ stage, occurred without exogenous factors, whereas their proliferation, particularly at low cell density, required OP9 feeder cells. On OP9 feeder layer, EC progenitors gave rise to sheet-like clusters of Flk-1+ cells, with VE-cadherin concentrated at the cell-cell junction. The growth was suppressed by Flt-1-IgG1 chimeric protein and dependent on vascular endothelial growth factor (VEGF) but not placenta growth factor (PIGF). Further addition of VEGF resulted in cell dispersion, indicating the role of VEGF in the migration of ECs as well as their proliferation. Cell-cell adhesion of ECs in this culture system was mediated by VE-cadherin. Thus, the culture system described here is useful in dissecting the cellular events of EC progenitors that occur during vasculogenesis and in investigating the molecular mechanisms underlying these processes.
Collapse
|
1049
|
Zhang XJ, Tsung HC, Caen JP, Li XL, Yao Z, Han ZC. Vasculogenesis from embryonic bodies of murine embryonic stem cells transfected by Tgf-beta1 gene. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1999; 6:95-106. [PMID: 9930643 DOI: 10.3109/10623329809072196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mouse embryonic stem (ES) cells transfected with a 1.7 kb cDNA of porcine transforming growth factor type beta1 (TGFbeta1), known as ES-T cells, were found to be able to differentiate in vitro into cystic embryonic bodies (EBs) with outspread tubular structures. Morphological analysis using light, phase-contrast and electron microscopes revealed that in culture, the EBs of ES-T cells initially developed some flat endothelial-like cells which further proliferated and migrated to form thread structures. At 8-10 days after EB formation, these thread structures further developed into net-like and tubular structures connecting directly to EBs. Immunofluorescent assays using antibodies against Flk-1 and von Willebrand factor (vWF) indicated that these net-like and tubular structures of ES-T cells consisted of vascular endothelial cells. Further analysis by RT-PCR revealed that the EBs with tubular structures expressed the mRNA of other markers of vascular endothelial cells, including VE-cadherin and platelet-endothelial cell adhesion molecule (PECAM). Cells of hematopoietic origin were not detected on the outside of EBs by immunostaining using several antibodies specific for granulocytes, macrophages and lymphocytes as well as by benzidine staining for erythroid cells on the outside of EBs. Our data demonstrates that the transfer of TGFbeta1 into ES cells results in a significant vasculogenesis without concomitant hematopoiesis. ES-T cells could therefore provide an excellent model for studying blood vessel formation and vasculogenic and hematopoietic interactions.
Collapse
Affiliation(s)
- X J Zhang
- Shanghai Institute of Cell Biology, Chinese Academy of Sciences
| | | | | | | | | | | |
Collapse
|
1050
|
Mancardi S, Stanta G, Dusetti N, Bestagno M, Jussila L, Zweyer M, Lunazzi G, Dumont D, Alitalo K, Burrone OR. Lymphatic endothelial tumors induced by intraperitoneal injection of incomplete Freund's adjuvant. Exp Cell Res 1999; 246:368-75. [PMID: 9925752 DOI: 10.1006/excr.1998.4270] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cells form the inner lining of blood and lymphatic vessels. In mice, only tumors of the blood vessel endothelium (haemangiomas) have been thus far reported. Here we describe a highly reproducible method for the induction of benign tumors of the lymphatic endothelial cells (lymphangiomas) in mice by intraperitoneal injection of incomplete Freund's adjuvant. Morphological and histopathological studies of the lesions revealed the presence of cells at various levels of vascular development. The lymphangiomas developed in the peritoneal cavity and expressed the endothelial markers CD31/PECAM (platelet endothelial cell adhesion molecule), CD54/ICAM-1 (InterCellular Adhesion Molecule-1), and CD102/ICAM-2, as well as the vascular endothelial growth factor (VEGF) receptor Flk-1, the endothelial cell specific receptors Tie-1 and Tie-2 and the lymphatic endothelial cell specific Flt4 receptor as shown by in situ hybridization. The Flk-1 and Flt4 receptors were also identified in immunoblots of the tumors and in cells cultured from them. When induced in beta-galactosidase knock-in Flt4(+/-) mice, the tumor endothelia could be stained blue in a number of tumor cells although the staining was of lower intensity than in normal lymphatic vessels. The tumor-derived cells could be propagated in vitro and they spontaneously differentiated, forming vessel-like structures. Murine lymphangiomas thus represent a highly reproducible and convenient source of lymphatic endothelial cells.
Collapse
Affiliation(s)
- S Mancardi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano 99, Trieste, 34012, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|