1001
|
Chromatin structure-based prediction of recurrent noncoding mutations in cancer. Nat Genet 2016; 48:1321-1326. [PMID: 27723759 DOI: 10.1038/ng.3682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Recurrence is a hallmark of cancer-driving mutations. Recurrent mutations can arise at the same site or affect the same gene at different sites. Here we identified a set of mutations arising in individual samples and altering different cis-regulatory elements that converge on a common gene via chromatin interactions. The mutations and genes identified in this fashion showed strong relevance to cancer, in contrast to noncoding mutations with site-specific recurrence only. We developed a prediction method that identifies potentially recurrent mutations on the basis of the features shared by mutations whose recurrence is observed in a given cohort. Our method was capable of accurately predicting recurrent mutations at the level of target genes but not mutations recurring at the same site. We experimentally validated predicted mutations in distal regulatory regions of the TERT gene. In conclusion, we propose a novel approach to discovering potential cancer-driving mutations in noncoding regions.
Collapse
|
1002
|
Cico A, Andrieu-Soler C, Soler E. Enhancers and their dynamics during hematopoietic differentiation and emerging strategies for therapeutic action. FEBS Lett 2016; 590:4084-4104. [DOI: 10.1002/1873-3468.12424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alba Cico
- Inserm UMR967, CEA/DRF/iRCM; Fontenay-aux-Roses France
| | - Charlotte Andrieu-Soler
- Inserm UMR967, CEA/DRF/iRCM; Fontenay-aux-Roses France
- CNRS; Institute of Molecular Genetics (IGMM); Montpellier France
| | - Eric Soler
- Inserm UMR967, CEA/DRF/iRCM; Fontenay-aux-Roses France
- CNRS; Institute of Molecular Genetics (IGMM); Montpellier France
- Laboratory of Excellence GR-Ex; Paris France
| |
Collapse
|
1003
|
Qin Z, Li B, Conneely KN, Wu H, Hu M, Ayyala D, Park Y, Jin VX, Zhang F, Zhang H, Li L, Lin S. Statistical challenges in analyzing methylation and long-range chromosomal interaction data. STATISTICS IN BIOSCIENCES 2016; 8:284-309. [PMID: 28008337 PMCID: PMC5167536 DOI: 10.1007/s12561-016-9145-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
With the rapid development of high throughput technologies such as array and next generation sequencing (NGS), genome-wide, nucleotide-resolution epigenomic data are increasingly available. In recent years, there has been particular interest in data on DNA methylation and 3-dimensional (3D) chromosomal organization, which are believed to hold keys to understand biological mechanisms, such as transcription regulation, that are closely linked to human health and diseases. However, small sample size, complicated correlation structure, substantial noise, biases, and uncertainties, all present difficulties for performing statistical inference. In this review, we present an overview of the new technologies that are frequently utilized in studying DNA methylation and 3D chromosomal organization. We focus on reviewing recent developments in statistical methodologies designed for better interrogating epigenomic data, pointing out statistical challenges facing the field whenever appropriate.
Collapse
Affiliation(s)
- Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Ben Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Ming Hu
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY 10016, USA
| | - Deepak Ayyala
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| | - Yongseok Park
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Victor X Jin
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Fangyuan Zhang
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Han Zhang
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| | - Li Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shili Lin
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
1004
|
Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, Kane M, Cleary B, Lander ES, Engreitz JM. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 2016; 354:769-773. [PMID: 27708057 DOI: 10.1126/science.aag2445] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/21/2016] [Indexed: 11/03/2022]
Abstract
Gene expression in mammals is regulated by noncoding elements that can affect physiology and disease, yet the functions and target genes of most noncoding elements remain unknown. We present a high-throughput approach that uses clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) to discover regulatory elements and identify their target genes. We assess >1 megabase of sequence in the vicinity of two essential transcription factors, MYC and GATA1, and identify nine distal enhancers that control gene expression and cellular proliferation. Quantitative features of chromatin state and chromosome conformation distinguish the seven enhancers that regulate MYC from other elements that do not, suggesting a strategy for predicting enhancer-promoter connectivity. This CRISPRi-based approach can be applied to dissect transcriptional networks and interpret the contributions of noncoding genetic variation to human disease.
Collapse
Affiliation(s)
- Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rockwell Anyoha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sharon R Grossman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Division of Health Sciences and Technology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.,Department of Biology, MIT, Cambridge, MA 02139, USA
| | | | - Michael Kane
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian Cleary
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Computational and Systems Biology Program, MIT, Cambridge, MA 02139, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, MIT, Cambridge, MA 02139, USA
| | | |
Collapse
|
1005
|
Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene. Nat Commun 2016; 7:12792. [PMID: 27677580 PMCID: PMC5052699 DOI: 10.1038/ncomms12792] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Acute otitis media (AOM) is among the most common pediatric diseases, and the most frequent reason for antibiotic treatment in children. Risk of AOM is dependent on environmental and host factors, as well as a significant genetic component. We identify genome-wide significance at a locus on 6q25.3 (rs2932989, Pmeta=2.15 × 10−09), and show that the associated variants are correlated with the methylation status of the FNDC1 gene (cg05678571, P=1.43 × 10−06), and further show it is an eQTL for FNDC1 (P=9.3 × 10−05). The mouse homologue, Fndc1, is expressed in middle ear tissue and its expression is upregulated upon lipopolysaccharide treatment. In this first GWAS of AOM and the largest OM genetic study to date, we identify the first genome-wide significant locus associated with AOM. Acute otitis media (AOM) is an acute infection of middle ear mucosa and among the most common pediatric diseases. Here, the authors performed a genome-wide association study to link a variant in the FNDC1 locus on 6q25.3 and differential methylation status of the FNDC1 gene with predisposition to AOM.
Collapse
|
1006
|
Criscione SW, Teo YV, Neretti N. The Chromatin Landscape of Cellular Senescence. Trends Genet 2016; 32:751-761. [PMID: 27692431 DOI: 10.1016/j.tig.2016.09.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022]
Abstract
Cellular senescence, an irreversible growth arrest triggered by a variety of stressors, plays important roles in normal physiology and tumor suppression, but accumulation of senescent cells with age contributes to the functional decline of tissues. Senescent cells undergo dramatic alterations to their chromatin landscape that affect genome accessibility and their transcriptional program. These include the loss of DNA-nuclear lamina interactions, the distension of centromeres, and changes in chromatin composition that can lead to the activation of retrotransposons. Here we discuss these findings, as well as recent advances in microscopy and genomics that have revealed the importance of the higher-order spatial organization of the genome in defining and maintaining the senescent state.
Collapse
Affiliation(s)
- Steven W Criscione
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
1007
|
Bunting KL, Soong TD, Singh R, Jiang Y, Béguelin W, Poloway DW, Swed BL, Hatzi K, Reisacher W, Teater M, Elemento O, Melnick AM. Multi-tiered Reorganization of the Genome during B Cell Affinity Maturation Anchored by a Germinal Center-Specific Locus Control Region. Immunity 2016; 45:497-512. [PMID: 27637145 PMCID: PMC5033726 DOI: 10.1016/j.immuni.2016.08.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
During the humoral immune response, B cells undergo a dramatic change in phenotype to enable antibody affinity maturation in germinal centers (GCs). Using genome-wide chromosomal conformation capture (Hi-C), we found that GC B cells undergo massive reorganization of the genomic architecture that encodes the GC B cell transcriptome. Coordinate expression of genes that specify the GC B cell phenotype-most prominently BCL6-was achieved through a multilayered chromatin reorganization process involving (1) increased promoter connectivity, (2) formation of enhancer networks, (3) 5' to 3' gene looping, and (4) merging of gene neighborhoods that share active epigenetic marks. BCL6 was an anchor point for the formation of GC-specific gene and enhancer loops on chromosome 3. Deletion of a GC-specific, highly interactive locus control region upstream of Bcl6 abrogated GC formation in mice. Thus, large-scale and multi-tiered genomic three-dimensional reorganization is required for coordinate expression of phenotype-driving gene sets that determine the unique characteristics of GC B cells.
Collapse
Affiliation(s)
- Karen L Bunting
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - T David Soong
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rajat Singh
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yanwen Jiang
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David W Poloway
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brandon L Swed
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Katerina Hatzi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - William Reisacher
- Department of Otorhinolaryngology, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY 10065, USA
| | - Matt Teater
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
1008
|
Wilson KA, Elefanty AG, Stanley EG, Gilbert DM. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification. Cell Cycle 2016; 15:2464-75. [PMID: 27433885 PMCID: PMC5026818 DOI: 10.1080/15384101.2016.1203492] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022] Open
Abstract
Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification.
Collapse
Affiliation(s)
- Korey A. Wilson
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Andrew G. Elefanty
- Murdoch Childrens Research Institute, Parkville, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Edouard G. Stanley
- Murdoch Childrens Research Institute, Parkville, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
1009
|
Capture of associated targets on chromatin links long-distance chromatin looping to transcriptional coordination. Nat Commun 2016; 7:12893. [PMID: 27634217 PMCID: PMC5028417 DOI: 10.1038/ncomms12893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/12/2016] [Indexed: 11/09/2022] Open
Abstract
Here we describe a sensitive and novel method of identifying endogenous DNA-DNA interactions. Capture of Associated Targets on CHromatin (CATCH) uses efficient capture and enrichment of specific genomic loci of interest through hybridization and subsequent purification via complementary biotinylated oligonucleotide. The CATCH assay requires no enzymatic digestion or ligation, requires little starting material, provides high-quality data, has excellent reproducibility and is completed in less than 24 h. Efficacy is demonstrated through capture of three disparate loci, which demonstrate unique subsets of long-distance chromatin interactions enriched for both enhancer marks and oestrogen receptor-binding sites. In each experiment, CATCH-seq peaks representing long-distance chromatin interactions were centred near the TSS of genes, and, critically, the genes identified as physically interacting are shown to be transcriptionally coexpressed. These interactions could potentially create transcriptional hubs for the regulation of gene expression programmes.
Collapse
|
1010
|
Kolovos P, Georgomanolis T, Koeferle A, Larkin JD, Brant L, Nikolicć M, Gusmao EG, Zirkel A, Knoch TA, van Ijcken WF, Cook PR, Costa IG, Grosveld FG, Papantonis A. Binding of nuclear factor κB to noncanonical consensus sites reveals its multimodal role during the early inflammatory response. Genome Res 2016; 26:1478-1489. [PMID: 27633323 PMCID: PMC5088591 DOI: 10.1101/gr.210005.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023]
Abstract
Mammalian cells have developed intricate mechanisms to interpret, integrate, and respond to extracellular stimuli. For example, tumor necrosis factor (TNF) rapidly activates proinflammatory genes, but our understanding of how this occurs against the ongoing transcriptional program of the cell is far from complete. Here, we monitor the early phase of this cascade at high spatiotemporal resolution in TNF-stimulated human endothelial cells. NF-κB, the transcription factor complex driving the response, interferes with the regulatory machinery by binding active enhancers already in interaction with gene promoters. Notably, >50% of these enhancers do not encode canonical NF-κB binding motifs. Using a combination of genomics tools, we find that binding site selection plays a key role in NF-κΒ–mediated transcriptional activation and repression. We demonstrate the latter by describing the synergy between NF-κΒ and the corepressor JDP2. Finally, detailed analysis of a 2.8-Mbp locus using sub-kbp-resolution targeted chromatin conformation capture and genome editing uncovers how NF-κΒ that has just entered the nucleus exploits pre-existing chromatin looping to exert its multimodal role. This work highlights the involvement of topology in cis-regulatory element function during acute transcriptional responses, where primary DNA sequence and its higher-order structure constitute a regulatory context leading to either gene activation or repression.
Collapse
Affiliation(s)
- Petros Kolovos
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | | | - Anna Koeferle
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Joshua D Larkin
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Lilija Brant
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Miloš Nikolicć
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Eduardo G Gusmao
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Anne Zirkel
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Tobias A Knoch
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | | | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | - Argyris Papantonis
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
1011
|
Zhan Y, Guo Y, Lu Q. Aberrant Epigenetic Regulation in the Pathogenesis of Systemic Lupus Erythematosus and Its Implication in Precision Medicine. Cytogenet Genome Res 2016; 149:141-155. [PMID: 27607472 DOI: 10.1159/000448793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Great progress has been made in the last decades in understanding the complex immune dysregulation in systemic lupus erythematosus (SLE), yet the efforts to pursue an effective treatment of SLE proved to be futile. The pathoetiology of SLE involves extremely complicated and multifactorial interaction among various genetic and epigenetic factors. Multiple gene loci predispose to disease susceptibility, and the interaction with epigenetic modifications mediated through sex, hormones, and the hypothalamo-pituitary-adrenal axis complicates susceptibility and manifestations of this disease. Finally, certain environmental and psychological factors probably trigger the disease via epigenetic mechanisms. In this review, we summarize and discuss recent epigenetic studies of SLE and suggest a personalized approach to the dissection of disease onset and therapy or precision medicine. We speculate that in the future, precision medicine based on epigenetic and genetic information could help guide more effective targeted therapeutic intervention.
Collapse
Affiliation(s)
- Yi Zhan
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, PR China
| | | | | |
Collapse
|
1012
|
Medrano-Fernández A, Barco A. Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders. Mol Brain 2016; 9:83. [PMID: 27595843 PMCID: PMC5011999 DOI: 10.1186/s13041-016-0263-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/06/2016] [Indexed: 01/08/2023] Open
Abstract
The current view of neuroplasticity depicts the changes in the strength and number of synaptic connections as the main physical substrate for behavioral adaptation to new experiences in a changing environment. Although transcriptional regulation is known to play a role in these synaptic changes, the specific contribution of activity-induced changes to both the structure of the nucleus and the organization of the genome remains insufficiently characterized. Increasing evidence indicates that plasticity-related genes may work in coordination and share architectural and transcriptional machinery within discrete genomic foci. Here we review the molecular and cellular mechanisms through which neuronal nuclei structurally adapt to stimuli and discuss how the perturbation of these mechanisms can trigger behavioral malfunction.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
1013
|
In silico identification of enhancers on the basis of a combination of transcription factor binding motif occurrences. Sci Rep 2016; 6:32476. [PMID: 27582178 PMCID: PMC5007594 DOI: 10.1038/srep32476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/08/2016] [Indexed: 01/06/2023] Open
Abstract
Enhancers interact with gene promoters and form chromatin looping structures that serve important functions in various biological processes, such as the regulation of gene transcription and cell differentiation. However, enhancers are difficult to identify because they generally do not have fixed positions or consensus sequence features, and biological experiments for enhancer identification are costly in terms of labor and expense. In this work, several models were built by using various sequence-based feature sets and their combinations for enhancer prediction. The selected features derived from a recursive feature elimination method showed that the model using a combination of 141 transcription factor binding motif occurrences from 1,422 transcription factor position weight matrices achieved a favorably high prediction accuracy superior to that of other reported methods. The models demonstrated good prediction accuracy for different enhancer datasets obtained from different cell lines/tissues. In addition, prediction accuracy was further improved by integration of chromatin state features. Our method is complementary to wet-lab experimental methods and provides an additional method to identify enhancers.
Collapse
|
1014
|
Abstract
Genome function, replication, integrity, and propagation rely on the dynamic structural organization of chromosomes during the cell cycle. Genome folding in interphase provides regulatory segmentation for appropriate transcriptional control, facilitates ordered genome replication, and contributes to genome integrity by limiting illegitimate recombination. Here, we review recent high-resolution chromosome conformation capture and functional studies that have informed models of the spatial and regulatory compartmentalization of mammalian genomes, and discuss mechanistic models for how CTCF and cohesin control the functional architecture of mammalian chromosomes.
Collapse
Affiliation(s)
- Matthias Merkenschlager
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom;
| | - Elphège P Nora
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158;
| |
Collapse
|
1015
|
Gregoire JM, Fleury L, Salazar-Cardozo C, Alby F, Masson V, Arimondo PB, Ausseil F. Identification of epigenetic factors regulating the mesenchyme to epithelium transition by RNA interference screening in breast cancer cells. BMC Cancer 2016; 16:700. [PMID: 27581651 PMCID: PMC5006536 DOI: 10.1186/s12885-016-2683-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/05/2016] [Indexed: 01/21/2023] Open
Abstract
Background In breast cancer, the epithelial to mesenchyme transition (EMT) is associated to tumour dissemination, drug resistance and high relapse risks. It is partly controlled by epigenetic modifications such as histone acetylation and methylation. The identification of genes involved in these reversible modifications represents an interesting therapeutic strategy to fight metastatic disease by inducing mesenchymal cell differentiation to an epithelial phenotype. Methods We designed a siRNA library based on chromatin modification-related to functional domains and screened it in the mesenchymal breast cancer cell line MDA-MB-231. The mesenchyme to epithelium transition (MET) activation was studied by following human E-CADHERIN (E-CAD) induction, a specific MET marker, and cell morphology. Candidate genes were validated by studying the expression of several differential marker genes and their impact on cell migration. Results The screen led to the identification of 70 gene candidates among which some are described to be, directly or indirectly, involved in EMT like ZEB1, G9a, SMAD5 and SMARCD3. We also identified the DOT1L as involved in EMT regulation in MDA-MB-231. Moreover, for the first time, KAT5 gene was linked to the maintenance of the mesenchymal phenotype. Conclusions A multi-parametric RNAi screening approach was developed to identify new EMT regulators such as KAT5 in the triple negative breast cancer cell line MDA-MB-231. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2683-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Marc Gregoire
- Unité de Service et de Recherche CNRS-Pierre Fabre n°3388 ETaC, CRDPF, 3 avenue H. Curien, BP 13652, 31035, Toulouse cedex 01, France
| | - Laurence Fleury
- Unité de Service et de Recherche CNRS-Pierre Fabre n°3388 ETaC, CRDPF, 3 avenue H. Curien, BP 13652, 31035, Toulouse cedex 01, France
| | - Clara Salazar-Cardozo
- Unité de Service et de Recherche CNRS-Pierre Fabre n°3388 ETaC, CRDPF, 3 avenue H. Curien, BP 13652, 31035, Toulouse cedex 01, France
| | - Frédéric Alby
- Unité de Service et de Recherche CNRS-Pierre Fabre n°3388 ETaC, CRDPF, 3 avenue H. Curien, BP 13652, 31035, Toulouse cedex 01, France
| | - Véronique Masson
- Unité de Service et de Recherche CNRS-Pierre Fabre n°3388 ETaC, CRDPF, 3 avenue H. Curien, BP 13652, 31035, Toulouse cedex 01, France
| | - Paola Barbara Arimondo
- Unité de Service et de Recherche CNRS-Pierre Fabre n°3388 ETaC, CRDPF, 3 avenue H. Curien, BP 13652, 31035, Toulouse cedex 01, France
| | - Frédéric Ausseil
- Unité de Service et de Recherche CNRS-Pierre Fabre n°3388 ETaC, CRDPF, 3 avenue H. Curien, BP 13652, 31035, Toulouse cedex 01, France.
| |
Collapse
|
1016
|
Stumpf PS, Ewing R, MacArthur BD. Single-cell pluripotency regulatory networks. Proteomics 2016; 16:2303-12. [PMID: 27357612 DOI: 10.1002/pmic.201500528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022]
Abstract
Pluripotent stem cells (PSCs) are a popular model system for investigating development, tissue regeneration, and repair. Although much is known about the molecular mechanisms that regulate the balance between self-renewal and lineage commitment in PSCs, the spatiotemporal integration of responsive signaling pathways with core transcriptional regulatory networks are complex and only partially understood. Moreover, measurements made on populations of cells reveal only average properties of the underlying regulatory networks, obscuring their fine detail. Here, we discuss the reconstruction of regulatory networks in individual cells using novel single-cell transcriptomics and proteomics, in order to expand our understanding of the molecular basis of pluripotency, including the role of cell-cell variability within PSC populations, and ways in which networks may be controlled in order to reliably manipulate cell behavior.
Collapse
Affiliation(s)
- Patrick S Stumpf
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rob Ewing
- Institute for Life Sciences, University of Southampton, Southampton, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK. .,Institute for Life Sciences, University of Southampton, Southampton, UK. .,Department of Mathematics, University of Southampton, Southampton, UK.
| |
Collapse
|
1017
|
Pueschel R, Coraggio F, Meister P. From single genes to entire genomes: the search for a function of nuclear organization. Development 2016; 143:910-23. [PMID: 26980791 DOI: 10.1242/dev.129007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The existence of different domains within the nucleus has been clear from the time, in the late 1920s, that heterochromatin and euchromatin were discovered. The observation that heterochromatin is less transcribed than euchromatin suggested that microscopically identifiable structures might correspond to functionally different domains of the nucleus. Until 15 years ago, studies linking gene expression and subnuclear localization were limited to a few genes. As we discuss in this Review, new genome-wide techniques have now radically changed the way nuclear organization is analyzed. These have provided a much more detailed view of functional nuclear architecture, leading to the emergence of a number of new paradigms of chromatin folding and how this folding evolves during development.
Collapse
Affiliation(s)
- Ringo Pueschel
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Francesca Coraggio
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
1018
|
Barutcu AR, Lajoie BR, Fritz AJ, McCord RP, Nickerson JA, van Wijnen AJ, Lian JB, Stein JL, Dekker J, Stein GS, Imbalzano AN. SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells. Genome Res 2016; 26:1188-201. [PMID: 27435934 PMCID: PMC5052043 DOI: 10.1101/gr.201624.115] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/08/2016] [Indexed: 01/20/2023]
Abstract
The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Bryan R Lajoie
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Andrew J Fritz
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | - Rachel P McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | - Job Dekker
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
1019
|
Brkljacic J, Grotewold E. Combinatorial control of plant gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:31-40. [PMID: 27427484 DOI: 10.1016/j.bbagrm.2016.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/02/2023]
Abstract
Combinatorial gene regulation provides a mechanism by which relatively small numbers of transcription factors can control the expression of a much larger number of genes with finely tuned temporal and spatial patterns. This is achieved by transcription factors assembling into complexes in a combinatorial fashion, exponentially increasing the number of genes that they can target. Such an arrangement also increases the specificity and affinity for the cis-regulatory sequences required for accurate target gene expression. Superimposed on this transcription factor combinatorial arrangement is the increasing realization that histone modification marks expand the regulatory information, which is interpreted by histone readers and writers that are part of the regulatory apparatus. Here, we review the progress in these areas from the perspective of plant combinatorial gene regulation, providing examples of different regulatory solutions and comparing them to other metazoans. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Jelena Brkljacic
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA
| | - Erich Grotewold
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
1020
|
Pancaldi V, Carrillo-de-Santa-Pau E, Javierre BM, Juan D, Fraser P, Spivakov M, Valencia A, Rico D. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Genome Biol 2016; 17:152. [PMID: 27391817 PMCID: PMC4939006 DOI: 10.1186/s13059-016-1003-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/07/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Network analysis is a powerful way of modeling chromatin interactions. Assortativity is a network property used in social sciences to identify factors affecting how people establish social ties. We propose a new approach, using chromatin assortativity, to integrate the epigenomic landscape of a specific cell type with its chromatin interaction network and thus investigate which proteins or chromatin marks mediate genomic contacts. RESULTS We use high-resolution promoter capture Hi-C and Hi-Cap data as well as ChIA-PET data from mouse embryonic stem cells to investigate promoter-centered chromatin interaction networks and calculate the presence of specific epigenomic features in the chromatin fragments constituting the nodes of the network. We estimate the association of these features with the topology of four chromatin interaction networks and identify features localized in connected areas of the network. Polycomb group proteins and associated histone marks are the features with the highest chromatin assortativity in promoter-centered networks. We then ask which features distinguish contacts amongst promoters from contacts between promoters and other genomic elements. We observe higher chromatin assortativity of the actively elongating form of RNA polymerase 2 (RNAPII) compared with inactive forms only in interactions between promoters and other elements. CONCLUSIONS Contacts among promoters and between promoters and other elements have different characteristic epigenomic features. We identify a possible role for the elongating form of RNAPII in mediating interactions among promoters, enhancers, and transcribed gene bodies. Our approach facilitates the study of multiple genome-wide epigenomic profiles, considering network topology and allowing the comparison of chromatin interaction networks.
Collapse
Affiliation(s)
- Vera Pancaldi
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | | | - David Juan
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Alfonso Valencia
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Rico
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
1021
|
Analysis of chromosomal aberrations and recombination by allelic bias in RNA-Seq. Nat Commun 2016; 7:12144. [PMID: 27385103 PMCID: PMC4941052 DOI: 10.1038/ncomms12144] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/04/2016] [Indexed: 12/18/2022] Open
Abstract
Genomic instability has profound effects on cellular phenotypes. Studies have shown that pluripotent cells with abnormal karyotypes may grow faster, differentiate less and become more resistance to apoptosis. Previously, we showed that microarray gene expression profiles can be utilized for the analysis of chromosomal aberrations by comparing gene expression levels between normal and aneuploid samples. Here we adopted this method for RNA-Seq data and present eSNP-Karyotyping for the detection of chromosomal aberrations, based on measuring the ratio of expression between the two alleles. We demonstrate its ability to detect chromosomal gains and losses in pluripotent cells and their derivatives, as well as meiotic recombination patterns. This method is advantageous since it does not require matched diploid samples for comparison, is less sensitive to global expression changes caused by the aberration and utilizes already available gene expression profiles to determine chromosomal aberrations. Chromosomal aberrations can be detected by global gene expression analysis. Here, the authors report eSNP-Karyotyping, a new method that can detect chromosomal aberrations by measuring the ratio of expression between the two alleles without comparison to a matched diploid sample.
Collapse
|
1022
|
UMI-4C for quantitative and targeted chromosomal contact profiling. Nat Methods 2016; 13:685-91. [PMID: 27376768 DOI: 10.1038/nmeth.3922] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/27/2016] [Indexed: 01/10/2023]
Abstract
We developed a targeted chromosome conformation capture (4C) approach that uses unique molecular identifiers (UMIs) to derive high-complexity quantitative chromosome contact profiles with controlled signal-to-noise ratios. UMI-4C detects chromosomal interactions with improved sensitivity and specificity, and it can easily be multiplexed to allow robust comparison of contact distributions between loci and conditions. This approach may open the way to the incorporation of contact distributions into quantitative models of gene regulation.
Collapse
|
1023
|
Di Giammartino DC, Apostolou E. The Chromatin Signature of Pluripotency: Establishment and Maintenance. CURRENT STEM CELL REPORTS 2016; 2:255-262. [PMID: 27547710 PMCID: PMC4972866 DOI: 10.1007/s40778-016-0055-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The revolutionary discovery that somatic cells can be reprogrammed by a defined set transcription factors to induced pluripotent stem cells (iPSCs) changed dramatically the way we perceive cell fate determination. Importantly, iPSCs, similar to embryo-derived stem cells (ESCs), are characterized by a remarkable developmental plasticity and the capacity to self-renew "indefinitely" under appropriate culture conditions, opening new avenues for personalized therapy and disease modeling. Elucidating the molecular mechanisms that maintain, induce, or alter stem cell identity is crucial for a deeper understanding of cell fate determination and potential translational applications. Intense research over the last 10 years exploiting technological advances in epigenomics and genome editing has unraveled many of the mysteries of pluripotent identity enabling novel and efficient ways to manipulate it for biomedical purposes. In this review, we focus on the chromatin and epigenetic characteristics that distinguish stem cells from somatic cells and their dynamic changes during differentiation and reprogramming.
Collapse
Affiliation(s)
- Dafne Campigli Di Giammartino
- Weill Cornell Medicine, Division of Hematology and Medical Oncology, Sandra and Edward Meyer Cancer Center, 413E 69th Street, Belfer research Building, New York, NY 10021 USA
| | - Effie Apostolou
- Weill Cornell Medicine, Division of Hematology and Medical Oncology, Sandra and Edward Meyer Cancer Center, 413E 69th Street, Belfer research Building, New York, NY 10021 USA
| |
Collapse
|
1024
|
Spitz F. Gene regulation at a distance: From remote enhancers to 3D regulatory ensembles. Semin Cell Dev Biol 2016; 57:57-67. [PMID: 27364700 DOI: 10.1016/j.semcdb.2016.06.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Large-scale identification of elements associated with gene expression revealed that many of them are located extremely far from gene transcriptional start sites. We review here the growing evidence that show that distal cis-acting elements provide key instructions to genes, as genetic variation affecting them is growingly identified as an importance source of phenotypic diversity and disease. We discuss the different mechanisms that allow these elements to exert their regulatory functions, in a robust and specific manner, despite the large genomic distances separating them from their target genes. We particularly focus on the role of the structural organization of the genome in guiding such regulatory interactions.
Collapse
Affiliation(s)
- François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Department of Developmental Biology and Stem Cells, Institut Pasteur, Paris, France.
| |
Collapse
|
1025
|
Krueger F, Andrews SR. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes. F1000Res 2016; 5:1479. [PMID: 27429743 DOI: 10.12688/f1000research.9037.1] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 11/20/2022] Open
Abstract
Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data.
Collapse
Affiliation(s)
- Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | | |
Collapse
|
1026
|
Krueger F, Andrews SR. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes. F1000Res 2016; 5:1479. [PMID: 27429743 PMCID: PMC4934512 DOI: 10.12688/f1000research.9037.2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data.
Collapse
Affiliation(s)
- Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | | |
Collapse
|
1027
|
Rocha PP, Raviram R, Bonneau R, Skok JA. Breaking TADs: insights into hierarchical genome organization. Epigenomics 2016; 7:523-6. [PMID: 26111025 DOI: 10.2217/epi.15.25] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Pedro P Rocha
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA.,Department of Computer Science, Courant Institute of Mathematical Sciences, New York, NY 10003, USA.,Simons Center for Data Analysis, New York, NY 10010, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
1028
|
Karagiannis P, Eto K. Ten years of induced pluripotency: from basic mechanisms to therapeutic applications. Development 2016; 143:2039-43. [DOI: 10.1242/dev.138172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ten years ago, the discovery that mature somatic cells could be reprogrammed into induced pluripotent stem cells (iPSCs) redefined the stem cell field and brought about a wealth of opportunities for both basic research and clinical applications. To celebrate the tenth anniversary of the discovery, the International Society for Stem Cell Research (ISSCR) and Center for iPS Cell Research and Application (CiRA), Kyoto University, together held the symposium ‘Pluripotency: From Basic Science to Therapeutic Applications’ in Kyoto, Japan. The three days of lectures examined both the mechanisms and therapeutic applications of iPSC reprogramming. Here we summarize the main findings reported, which are testament to how far the field has come in only a decade, as well as the enormous potential that iPSCs hold for the future.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Eto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
1029
|
Gonzalez-Sandoval A, Gasser SM. On TADs and LADs: Spatial Control Over Gene Expression. Trends Genet 2016; 32:485-495. [PMID: 27312344 DOI: 10.1016/j.tig.2016.05.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023]
Abstract
The combinatorial action of transcription factors drives cell-type-specific gene expression patterns. However, transcription factor binding and gene regulation occur in the context of chromatin, which modulates DNA accessibility. High-resolution chromatin interaction maps have defined units of chromatin that are in spatial proximity, called topologically associated domains (TADs). TADs can be further classified based on expression activity, replication timing, or the histone marks or non-histone proteins associated with them. Independently, other chromatin domains have been defined by their likelihood to interact with non-DNA structures, such as the nuclear lamina. Lamina-associated domains (LADs) correlate with low gene expression and late replication timing. TADs and LADs have recently been evaluated with respect to cell-type-specific gene expression. The results shed light on the relevance of these forms of chromatin organization for transcriptional regulation, and address specifically how chromatin sequestration influences cell fate decisions during organismal development.
Collapse
Affiliation(s)
- Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
1030
|
3D genomics imposes evolution of the domain model of eukaryotic genome organization. Chromosoma 2016; 126:59-69. [DOI: 10.1007/s00412-016-0604-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
1031
|
Beagan JA, Phillips-Cremins JE. CRISPR/Cas9 genome editing throws descriptive 3-D genome folding studies for a loop. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:286-99. [PMID: 27265842 DOI: 10.1002/wsbm.1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/28/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
CRISPR/Cas9 genome editing studies have recently shed new light into the causal link between the linear DNA sequence and 3-D chromatin architecture. Here we describe current models for the folding of genomes into a nested hierarchy of higher-order structures and discuss new insights into the organizing principles governing genome folding at each length scale. WIREs Syst Biol Med 2016, 8:286-299. doi: 10.1002/wsbm.1338 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jonathan A Beagan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
1032
|
Abstract
The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
| | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94158
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
- Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305
| |
Collapse
|
1033
|
Zhang W, Li Y, Kulik M, Tiedemann RL, Robertson KD, Dalton S, Zhao S. Nucleosome positioning changes during human embryonic stem cell differentiation. Epigenetics 2016; 11:426-37. [PMID: 27088311 PMCID: PMC4939925 DOI: 10.1080/15592294.2016.1176649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/10/2016] [Accepted: 03/26/2016] [Indexed: 10/21/2022] Open
Abstract
Nucleosomes are the basic unit of chromatin. Nucleosome positioning (NP) plays a key role in transcriptional regulation and other biological processes. To better understand NP we used MNase-seq to investigate changes that occur as human embryonic stem cells (hESCs) transition to nascent mesoderm and then to smooth muscle cells (SMCs). Compared to differentiated cell derivatives, nucleosome occupancy at promoters and other notable genic sites, such as exon/intron junctions and adjacent regions, in hESCs shows a stronger correlation with transcript abundance and is less influenced by sequence content. Upon hESC differentiation, genes being silenced, but not genes being activated, display a substantial change in nucleosome occupancy at their promoters. Genome-wide, we detected a shift of NP to regions of higher G+C content as hESCs differentiate to SMCs. Notably, genomic regions with higher nucleosome occupancy harbor twice as many G↔C changes but fewer than half A↔T changes, compared to regions with lower nucleosome occupancy. Finally, our analysis indicates that the hESC genome is not rearranged and has a sequence mutation rate resembling normal human genomes. Our study reveals another unique feature of hESC chromatin, and sheds light on the relationship between nucleosome occupancy and sequence G+C content.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yaping Li
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Michael Kulik
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Rochelle L. Tiedemann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Keith D. Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| |
Collapse
|
1034
|
Simon JM, Davis JP, Lee SE, Schaner MR, Gipson GR, Weiser M, Sartor RB, Herfarth HH, Rahbar R, Sadiq TS, Koruda MJ, McGovern DP, Lieb JD, Mohlke KL, Furey TS, Sheikh SZ. Alterations to chromatin in intestinal macrophages link IL-10 deficiency to inappropriate inflammatory responses. Eur J Immunol 2016; 46:1912-25. [PMID: 27159132 DOI: 10.1002/eji.201546237] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/26/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023]
Abstract
Intestinal macrophages (IMs) are uniquely programmed to tolerate exposure to bacteria without mounting potent inflammatory responses. The cytokine IL-10 maintains the macrophage anti-inflammatory response such that loss of IL-10 results in chronic intestinal inflammation. To investigate how IL-10-deficiency alters IM programming and bacterial tolerance, we studied changes in chromatin accessibility in response to bacteria in macrophages from two distinct niches, the intestine and bone-marrow, from both wild-type and IL-10-deficient (Il10(-/-) ) mice. We identified chromatin accessibility changes associated with bacterial exposure and IL-10 deficiency in both bone marrow derived macrophages and IMs. Surprisingly, Il10(-/-) IMs adopted chromatin and gene expression patterns characteristic of an inflammatory response, even in the absence of bacteria. Further, when recombinant IL-10 was added to Il10(-/-) cells, it could not revert the chromatin landscape to a normal state. Our results demonstrate that IL-10 deficiency results in stable chromatin alterations in macrophages, even in the absence of bacteria. This supports a model in which IL-10-deficiency leads to chromatin alterations that contribute to a loss of IM tolerance to bacteria, which is a primary initiating event in chronic intestinal inflammation.
Collapse
Affiliation(s)
- Jeremy M Simon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - James P Davis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Saangyoung E Lee
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew R Schaner
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Gregory R Gipson
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew Weiser
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Hans H Herfarth
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Reza Rahbar
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy S Sadiq
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Mark J Koruda
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Dermot P McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason D Lieb
- Department of Human Genetics, University of Chicago, IL, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Terrence S Furey
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Shehzad Z Sheikh
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
1035
|
Gonzalez-Sandoval A, Gasser SM. Mechanism of chromatin segregation to the nuclear periphery in C. elegans embryos. WORM 2016; 5:e1190900. [PMID: 27695653 DOI: 10.1080/21624054.2016.1190900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
In eukaryotic organisms, gene regulation occurs in the context of chromatin. In the interphase nucleus, euchromatin and heterochromatin occupy distinct space during cell differentiation, with heterochromatin becoming enriched at the nuclear and nucleolar peripheries. This organization is thought to fine-tune gene expression. To elucidate the mechanisms that govern this level of genome organization, screens were carried out in C. elegans which monitored the loss of heterochromatin sequestration at the nuclear periphery. This led to the identification of a novel chromodomain protein, CEC-4 (Caenorhabditis elegans chromodomain protein 4) that mediates the anchoring of H3K9 methylation-bearing chromatin at the nuclear periphery in early to mid-stage embryos. Surprisingly, the loss of CEC-4 does not derepress genes found in heterochromatic domains, nor does it affect differentiation under standard laboratory conditions. On the other hand, CEC-4 contributes to the efficiency with which muscle differentiation is induced following ectopic expression of the master regulator, HLH-1. This is one of the first phenotypes specifically attributed to the ablation of heterochromatin anchoring.
Collapse
Affiliation(s)
- Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
1036
|
Fotuhi Siahpirani A, Ay F, Roy S. A multi-task graph-clustering approach for chromosome conformation capture data sets identifies conserved modules of chromosomal interactions. Genome Biol 2016; 17:114. [PMID: 27233632 PMCID: PMC4882777 DOI: 10.1186/s13059-016-0962-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/22/2016] [Indexed: 01/13/2023] Open
Abstract
Chromosome conformation capture methods are being increasingly used to study three-dimensional genome architecture in multiple cell types and species. An important challenge is to examine changes in three-dimensional architecture across cell types and species. We present Arboretum-Hi-C, a multi-task spectral clustering method, to identify common and context-specific aspects of genome architecture. Compared to standard clustering, Arboretum-Hi-C produced more biologically consistent patterns of conservation. Most clusters are conserved and enriched for either high- or low-activity genomic signals. Most genomic regions diverge between clusters with similar chromatin state except for a few that are associated with lamina-associated domains and open chromatin.
Collapse
Affiliation(s)
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, 92037, CA, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, 53717, WI, USA. .,Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, 53717, WI, USA.
| |
Collapse
|
1037
|
Johnson GD, Jodar M, Pique-Regi R, Krawetz SA. Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events. Sci Rep 2016; 6:25864. [PMID: 27184706 PMCID: PMC4869110 DOI: 10.1038/srep25864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/22/2016] [Indexed: 01/08/2023] Open
Abstract
Nuclear remodeling to a condensed state is a hallmark of spermatogenesis. This is achieved by replacement of histones with protamines. Regions retaining nucleosomes may be of functional significance. To determine their potential roles, sperm from wild type and transgenic mice harboring a single copy insert of the human protamine cluster were subjected to Micrococcal Nuclease-seq. CENTIPEDE, a hierarchical Bayesian model, was used to identify multiple spatial patterns, "footprints", of MNase-seq reads along the sperm genome. Regions predicted by CENTIPEDE analysis to be bound by a regulatory factor in sperm were correlated with genomic landmarks and higher order chromatin structure datasets to identify potential roles for these factors in regulating either prior or post spermatogenic, i.e., early embryonic events. This approach linked robust endogenous protamine transcription and transgene suppression to its chromatin environment within topologically associated domains. Of the candidate enhancer-bound regulatory proteins, Ctcf, was associated with chromatin domain boundaries in testes and embryonic stem cells. The continuity of Ctcf binding through the murine germline may permit rapid reconstitution of chromatin organization following fertilization. This likely reflects its preparation for early zygotic genome activation and comparatively accelerated preimplantation embryonic development program observed in mouse as compared to human and bull.
Collapse
Affiliation(s)
- Graham D Johnson
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Meritxell Jodar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
1038
|
Kuznetsova T, Stunnenberg HG. Dynamic chromatin organization: Role in development and disease. Int J Biochem Cell Biol 2016; 76:119-22. [PMID: 27179794 DOI: 10.1016/j.biocel.2016.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
The spatial organization of chromatin in the nucleus is important for proper regulation of gene expression. The cell-type specific transcription program is mainly controlled by distal regulatory elements, which can dynamically engage in long-range interactions with their target genes. These long-range interactions mostly occur within insulated genomic domains and are constrained by global organization of the chromatin, providing an extra layer of regulation. Genetic alterations can lead to disruption of spatial organization and consequently aberrant gene expression. In this review we will discuss the multiple layers of chromatin organization, how this organization changes during development and how its disruption can lead do aberrant gene expression and disease.
Collapse
Affiliation(s)
- Tatyana Kuznetsova
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500HB Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
1039
|
Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population epigenomic variation. Nat Rev Genet 2016; 17:319-32. [DOI: 10.1038/nrg.2016.45] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
1040
|
Xu Z, Zhang G, Wu C, Li Y, Hu M. FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data. Bioinformatics 2016; 32:2692-5. [PMID: 27153668 DOI: 10.1093/bioinformatics/btw240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION How chromatin folds in three-dimensional (3D) space is closely related to transcription regulation. As powerful tools to study such 3D chromatin conformation, the recently developed Hi-C technologies enable a genome-wide measurement of pair-wise chromatin interaction. However, methods for the detection of biologically meaningful chromatin interactions, i.e. peak calling, from Hi-C data, are still under development. In our previous work, we have developed a novel hidden Markov random field (HMRF) based Bayesian method, which through explicitly modeling the non-negligible spatial dependency among adjacent pairs of loci manifesting in high resolution Hi-C data, achieves substantially improved robustness and enhanced statistical power in peak calling. Superior to peak callers that ignore spatial dependency both methodologically and in performance, our previous Bayesian framework suffers from heavy computational costs due to intensive computation incurred by modeling the correlated peak status of neighboring loci pairs and the inference of hidden dependency structure. RESULTS In this work, we have developed FastHiC, a novel approach based on simulated field approximation, which approximates the joint distribution of the hidden peak status by a set of independent random variables, leading to more tractable computation. Performance comparisons in real data analysis showed that FastHiC not only speeds up our original Bayesian method by more than five times, bus also achieves higher peak calling accuracy. AVAILABILITY AND IMPLEMENTATION FastHiC is freely accessible at:http://www.unc.edu/∼yunmli/FastHiC/ CONTACTS: : yunli@med.unc.edu or ming.hu@nyumc.org SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Biostatistics Department of Genetics Department of Computer Science
| | - Guosheng Zhang
- Department of Computer Science Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cong Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yun Li
- Department of Biostatistics Department of Genetics Department of Computer Science
| | - Ming Hu
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
1041
|
Gonzales K, Ng HH. Looping around Reprogramming: The Topological Memory of Induced Pluripotency. Cell Stem Cell 2016; 18:557-9. [DOI: 10.1016/j.stem.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
1042
|
Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome. G3-GENES GENOMES GENETICS 2016; 6:973-86. [PMID: 26888867 PMCID: PMC4825665 DOI: 10.1534/g3.115.025437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types.
Collapse
|
1043
|
Sekelja M, Paulsen J, Collas P. 4D nucleomes in single cells: what can computational modeling reveal about spatial chromatin conformation? Genome Biol 2016; 17:54. [PMID: 27052789 PMCID: PMC4823877 DOI: 10.1186/s13059-016-0923-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genome-wide sequencing technologies enable investigations of the structural properties of the genome in various spatial dimensions. Here, we review computational techniques developed to model the three-dimensional genome in single cells versus ensembles of cells and assess their underlying assumptions. We further address approaches to study the spatio-temporal aspects of genome organization from single-cell data.
Collapse
Affiliation(s)
- Monika Sekelja
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317, Oslo, Norway
| | - Jonas Paulsen
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317, Oslo, Norway.
| |
Collapse
|
1044
|
Chen Y, Wang Y, Xuan Z, Chen M, Zhang MQ. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles. Nucleic Acids Res 2016; 44:e106. [PMID: 27060148 PMCID: PMC4914103 DOI: 10.1093/nar/gkw225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/22/2016] [Indexed: 12/30/2022] Open
Abstract
Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by the Hi-C technology, but also provide additional novel details of chromosomal organizations. We predicted the chromatin interaction frequencies, topological domains and their states (e.g. active or repressive) for 98 additional cell types from Roadmap Epigenomics and ENCODE projects. A total of 131 protein-coding genes located near 78 preserved boundaries among 100 cell types are found to be significantly enriched in functional categories of the nucleosome organization and chromatin assembly. CITD and its predicted results can be used for complementing the topological domains derived from limited Hi-C data and facilitating the understanding of spatial principles underlying the chromosomal organization.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yunfei Wang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Min Chen
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
1045
|
|
1046
|
Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res 2016; 26:719-31. [PMID: 27053337 PMCID: PMC4889976 DOI: 10.1101/gr.201517.115] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
A three-dimensional chromatin state underpins the structural and functional basis of the genome by bringing regulatory elements and genes into close spatial proximity to ensure proper, cell-type–specific gene expression profiles. Here, we performed Hi-C chromosome conformation capture sequencing to investigate how three-dimensional chromatin organization is disrupted in the context of copy-number variation, long-range epigenetic remodeling, and atypical gene expression programs in prostate cancer. We find that cancer cells retain the ability to segment their genomes into megabase-sized topologically associated domains (TADs); however, these domains are generally smaller due to establishment of additional domain boundaries. Interestingly, a large proportion of the new cancer-specific domain boundaries occur at regions that display copy-number variation. Notably, a common deletion on 17p13.1 in prostate cancer spanning the TP53 tumor suppressor locus results in bifurcation of a single TAD into two distinct smaller TADs. Change in domain structure is also accompanied by novel cancer-specific chromatin interactions within the TADs that are enriched at regulatory elements such as enhancers, promoters, and insulators, and associated with alterations in gene expression. We also show that differential chromatin interactions across regulatory regions occur within long-range epigenetically activated or silenced regions of concordant gene activation or repression in prostate cancer. Finally, we present a novel visualization tool that enables integrated exploration of Hi-C interaction data, the transcriptome, and epigenome. This study provides new insights into the relationship between long-range epigenetic and genomic dysregulation and changes in higher-order chromatin interactions in cancer.
Collapse
|
1047
|
Abstract
The role of the spatial organization of chromatin in gene regulation is a long-standing but still open question. Experimentally it has been shown that the genome is segmented into epigenomic chromatin domains that are organized into hierarchical sub-nuclear spatial compartments. However, whether this non-random spatial organization only reflects or indeed contributes-and how-to the regulation of genome function remains to be elucidated. To address this question, we recently proposed a quantitative description of the folding properties of the fly genome as a function of its epigenomic landscape using a polymer model with epigenomic-driven attractions. We propose in this article, to characterize more deeply the physical properties of the 3D epigenome folding. Using an efficient lattice version of the original block copolymer model, we study the structural and dynamical properties of chromatin and show that the size of epigenomic domains and asymmetries in sizes and in interaction strengths play a critical role in the chromatin organization. Finally, we discuss the biological implications of our findings. In particular, our predictions are quantitatively compatible with experimental data and suggest a different mean of self-interaction in euchromatin versus heterochromatin domains.
Collapse
Affiliation(s)
- Juan D Olarte-Plata
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, UMR 5672, Lyon, France
| | | | | | | |
Collapse
|
1048
|
Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat Genet 2016; 48:488-96. [PMID: 27064255 DOI: 10.1038/ng.3539] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Abstract
Discriminating the gene target of a distal regulatory element from other nearby transcribed genes is a challenging problem with the potential to illuminate the causal underpinnings of complex diseases. We present TargetFinder, a computational method that reconstructs regulatory landscapes from diverse features along the genome. The resulting models accurately predict individual enhancer-promoter interactions across multiple cell lines with a false discovery rate up to 15 times smaller than that obtained using the closest gene. By evaluating the genomic features driving this accuracy, we uncover interactions between structural proteins, transcription factors, epigenetic modifications, and transcription that together distinguish interacting from non-interacting enhancer-promoter pairs. Most of this signature is not proximal to the enhancers and promoters but instead decorates the looping DNA. We conclude that complex but consistent combinations of marks on the one-dimensional genome encode the three-dimensional structure of fine-scale regulatory interactions.
Collapse
|
1049
|
Martinez-Jimenez CP, Odom DT. The mechanisms shaping the single-cell transcriptional landscape. Curr Opin Genet Dev 2016; 37:27-35. [PMID: 26803530 DOI: 10.1016/j.gde.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Recent technological and computational advances in understanding the transcriptional and chromatin features of single cells have begun answering longstanding questions in the extent and impact of biological heterogeneity. Here, we outline the intrinsic and extrinsic mechanisms that underlie the transcriptional and functional diversity within superficially homogeneous populations, and we discuss how fascinating new studies have afforded novel insight into each mechanism. The studies are chosen in part to include initial reports of novel functional genomics tools where the eventual applications will clearly have profound impact on our understanding the dynamics of cell-to-cell transcriptional variation-from individual cells to whole organisms.
Collapse
Affiliation(s)
- Celia Pilar Martinez-Jimenez
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
1050
|
Huang H, Wu Q. CRISPR Double Cutting through the Labyrinthine Architecture of 3D Genomes. J Genet Genomics 2016; 43:273-88. [PMID: 27210040 DOI: 10.1016/j.jgg.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/03/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023]
Abstract
The genomes are organized into ordered and hierarchical topological structures in interphase nuclei. Within discrete territories of each chromosome, topologically associated domains (TADs) play important roles in various nuclear processes such as gene regulation. Inside TADs separated by relatively constitutive boundaries, distal elements regulate their gene targets through specific chromatin-looping contacts such as long-distance enhancer-promoter interactions. High-throughput sequencing studies have revealed millions of potential regulatory DNA elements, which are much more abundant than the mere ∼20,000 genes they control. The recently emerged CRISPR-Cas9 genome editing technologies have enabled efficient and precise genetic and epigenetic manipulations of genomes. The multiplexed and high-throughput CRISPR capabilities facilitate the discovery and dissection of gene regulatory elements. Here, we describe the applications of CRISPR for genome, epigenome, and 3D genome editing, focusing on CRISPR DNA-fragment editing with Cas9 and a pair of sgRNAs to investigate topological folding of chromatin TADs and developmental gene regulation.
Collapse
Affiliation(s)
- Haiyan Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|