1001
|
Sharma SB, Ruppert JM. MicroRNA-Based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer. Drug Dev Res 2015; 76:328-42. [PMID: 26284568 DOI: 10.1002/ddr.21270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRs) have been causally implicated in the progression and development of a wide variety of cancers. miRs modulate the activity of key cell signaling networks by regulating the translation of pathway component proteins. Thus, the pharmacological targeting of miRs that regulate cancer cell signaling networks, either by promoting (using miR-supplementation) or by suppressing (using antisense oligonucleotide-based strategies) miR activity is an area of intense research. The RAS-extracellular signal regulated kinase (ERK) pathway represents a major miR-regulated signaling network that endows cells with some of the classical hallmarks of cancer, and is often inappropriately activated in malignancies by somatic genetic alteration through point mutation or alteration of gene copy number. In addition, recent progress indicates that many tumors may be deficient in GTPase activating proteins (GAPs) due to the collaborative action of oncogenic miRs. Recent studies also suggest that in tumors harboring a mutant RAS allele there is a critical role for wild type RAS proteins in determining overall RAS-ERK pathway activity. Together, these two advances comprise a new opportunity for therapeutic intervention. In this review, we evaluate miR-based therapeutic strategies for modulating RAS-ERK signaling in cancers; in particular for more direct modulation of RAS-GTP levels, with the potential to complement current strategies to yield more durable treatment responses. To this end, we discuss the potential for miR-based therapies focused on three prominent miRs including the pan-RAS regulator let-7 and the GAP regulator comprised of miR-206 and miR-21 (miR-206/21).
Collapse
Affiliation(s)
- Sriganesh B Sharma
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA.,Program in Cancer Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - John Michael Ruppert
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA.,The Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
1002
|
Yuan SX, Zhang J, Xu QG, Yang Y, Zhou WP. Long noncoding RNA, the methylation of genomic elements and their emerging crosstalk in hepatocellular carcinoma. Cancer Lett 2015; 379:239-44. [PMID: 26282784 DOI: 10.1016/j.canlet.2015.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
The epigenetic mechanism that incorporates DNA methylation alterations, histone modifications, and non-coding RNA expression has been identified as a major characteristic in distinguishing physiological and pathological settings of cancers including hepatocellular carcinoma (HCC), the third leading cause of mortality related cancer. The advance in methylation modification of chromatin elements (for both genomic DNA and histone tails) and the emerging roles of long noncoding RNA (lncRNA) have given us a better understanding of molecular mechanisms underlying HCC. Recently, methods like genome-wide lncRNA profiling and histone hallmark detection were reported to discover mass tumor-associated lncRNAs epigenetically deregulated by differential chromosome modification, mainly by genomic DNA and histone methylation. Therefore, aberrant methylation modification of certain particular lncRNA genes could be crucial events correlating with unfavorable outcomes in HCC. In addition, amount of lncRNAs could act as a manipulator for DNA methylation or a scaffold for histone modification to affect key signaling pathways in hepatocarcinogenesis. This suggests that methylation modification of chromatin elements may have functional crosstalk with lncRNA. Here, we aim to outline the emerging role of the methylation and lncRNA, and their crosstalk of molecular mechanism.
Collapse
Affiliation(s)
- Sheng-Xian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Jin Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Qing-Guo Xu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
1003
|
Syed M, Ball JP, Romero DG. Let-7i: lethal weapon against angiotensin ii-induced cardiac injury. Hypertension 2015; 66:739-41. [PMID: 26259591 DOI: 10.1161/hypertensionaha.115.05659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Maryam Syed
- From the Department of Biochemistry, Cardiovascular Renal Research Center and Women's Health Research Center, University of Mississippi Medical Center, Jackson
| | - Jana P Ball
- From the Department of Biochemistry, Cardiovascular Renal Research Center and Women's Health Research Center, University of Mississippi Medical Center, Jackson
| | - Damian G Romero
- From the Department of Biochemistry, Cardiovascular Renal Research Center and Women's Health Research Center, University of Mississippi Medical Center, Jackson.
| |
Collapse
|
1004
|
miR-199a and miR-497 Are Associated with Better Overall Survival due to Increased Chemosensitivity in Diffuse Large B-Cell Lymphoma Patients. Int J Mol Sci 2015; 16:18077-95. [PMID: 26251897 PMCID: PMC4581236 DOI: 10.3390/ijms160818077] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/22/2022] Open
Abstract
Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific miRNAs has been identified to correlate with tumor prognosis. For miRNA expression analysis real-time PCR on 81 samples was performed, including 63 diffuse large B-cell lymphoma (DLBCL, 15 of germinal center B-cell like subtype, 17 non germinal center B-cell, 23 transformed, and eight unclassified) and 18 controls, including nine peripheral B-cells, 5 germinal-center B-cells, four lymphadenitis samples, and 4 lymphoma cell lines (RI-1, SUDHL4, Karpas, U2932). Expression levels of a panel of 11 miRNAs that have been previously involved in other types of cancer (miR-15b_2, miR-16_1*, miR-16_2, miR-16_2*, miR-27a, miR-27a*, miR-98-1, miR-103a, miR-185, miR-199a, and miR-497) were measured and correlated with clinical data. Furthermore, cell lines, lacking miR-199a and miR-497 expression, were electroporated with the two respective miRNAs and treated with standard immunochemotherapy routinely used in patients with DLBCL, followed by functional analyses including cell count and apoptosis assays. Seven miRNAs (miR-16_1*, miR-16_2*, miR-27a, miR-103, miR-185, miR-199, and miR-497) were statistically significantly up-regulated in DLBCL compared to normal germinal cells. However, high expression of miR-497 or miR-199a was associated with better overall survival (p = 0.042 and p = 0.007). Overexpression of miR-199a and miR-497 led to a statistically significant decrease in viable cells in a dose-dependent fashion after exposure to rituximab and various chemotherapeutics relevant in multi-agent lymphoma therapy. Our data indicate that elevated miR-199a and miR-497 levels are associated with improved survival in aggressive lymphoma patients most likely by modifying drug sensitivity to immunochemotherapy. This functional impairment may serve as a potential novel therapeutic target in future treatment of patients with DLBCL.
Collapse
|
1005
|
Lundin KE, Gissberg O, Smith CE. Oligonucleotide Therapies: The Past and the Present. Hum Gene Ther 2015; 26:475-85. [PMID: 26160334 PMCID: PMC4554547 DOI: 10.1089/hum.2015.070] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/04/2015] [Indexed: 12/19/2022] Open
Abstract
In this review we address the development of oligonucleotide (ON) medicines from a historical perspective by listing the landmark discoveries in this field. The various biological processes that have been targeted and the corresponding ON interventions found in the literature are discussed together with brief updates on some of the more recent developments. Most ON therapies act through antisense mechanisms and are directed against various RNA species, as exemplified by gapmers, steric block ONs, antagomirs, small interfering RNAs (siRNAs), micro-RNA mimics, and splice switching ONs. However, ONs binding to Toll-like receptors and those forming aptamers have completely different modes of action. Similar to other novel medicines, the path to success has been lined with numerous failures, where different therapeutic ONs did not stand the test of time. Since the first ON drug was approved for clinical use in 1998, the therapeutic landscape has changed considerably, but many challenges remain until the expectations for this new form of medicine are met. However, there is room for cautious optimism.
Collapse
Affiliation(s)
- Karin E. Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Olof Gissberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - C.I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
1006
|
Sadeghian Y, Kamyabi-Moghaddam Z, Nodushan SMHT, Khoshbakht S, Pedram B, Yahaghi E, Mokarizadeh A, Mohebbi M. RETRACTED ARTICLE: Profiles of tissue microRNAs; miR-148b and miR-25 serve as potential prognostic biomarkers for hepatocellular carcinoma. Tumour Biol 2015; 37:10.1007/s13277-015-3799-y. [PMID: 26209296 DOI: 10.1007/s13277-015-3799-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yasan Sadeghian
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | | | | | - Samaneh Khoshbakht
- Department of Statistics, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Behnam Pedram
- Department of Pathobiology, Islamic Azad University, Susangerd Branch, Susangerd, Iran
| | - Emad Yahaghi
- Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Aram Mokarizadeh
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Mahdi Mohebbi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| |
Collapse
|
1007
|
Takemoto H, Miyata K, Nishiyama N, Kataoka K. Bioresponsive polymer-based nucleic acid carriers. ADVANCES IN GENETICS 2015; 88:289-323. [PMID: 25409610 DOI: 10.1016/b978-0-12-800148-6.00010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleic acid carriers need to possess multifunctionality for overcoming biological barriers, such as the stable encapsulation of nucleic acids in extracellular milieu, internalization by target cells, controlled intracellular distribution, and release of nucleic acids at the target site of action. To fulfill these stepwise functionalities, "bioresponsive" polymers that can alter their structure responding to site-specific biological signals are highly useful. Notably, pH, redox potential, and enzymatic activities vary along with microenvironments in the body, and thus, the responsiveness to these signals enables to construct nucleic acid carriers with programmed functionalities. This chapter describes the design of bioresponsive polymers that respond to various biological microenvironments for smart nucleic acids delivery.
Collapse
Affiliation(s)
- Hiroyasu Takemoto
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kanjiro Miyata
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Japan
| |
Collapse
|
1008
|
HPVbase--a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas. Sci Rep 2015. [PMID: 26205472 PMCID: PMC4513345 DOI: 10.1038/srep12522] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis.
Collapse
|
1009
|
Abstract
The role of microRNAs (miRNAs or miRs) in the pathology of epithelial ovarian cancer (EOC) has been extensively studied. Many miRNAs differentially expressed in EOC as compared to normal controls have been identified, prompting further inquiry into their role in the disease. miRNAs belonging to the miR-200 family have repeatedly surfaced over multiple profiling studies. In this review, we attempt to consolidate the data from different studies and highlight mechanisms by which these miRNAs influence progression of metastasis and chemo-resistance in EOC.
Collapse
Affiliation(s)
- Goda G Muralidhar
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood Street, 335 College of Pharmacy Building, Chicago, IL 60612, USA.
| | - Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood Street, 335 College of Pharmacy Building, Chicago, IL 60612, USA.
| |
Collapse
|
1010
|
Schwarzenbach H. The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev Mol Diagn 2015. [DOI: 10.1586/14737159.2015.1069183] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1011
|
Lönnberg T, Hutchinson M, Rokita S. Selective Alkylation of C-Rich Bulge Motifs in Nucleic Acids by Quinone Methide Derivatives. Chemistry 2015. [PMID: 26220692 DOI: 10.1002/chem.201502014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A quinone methide precursor featuring a bis-cyclen anchoring moiety has been synthesized and its capacity to alkylate oligonucleotide targets quantified in the presence and absence of divalent metal ions (Zn(2+) , Ni(2+) and Cd(2+) ). The oligonucleotides were designed for testing the sequence and secondary structure specificity of the reaction. Gel electrophoretic analysis revealed predominant alkylation of C-rich bulges, regardless of the presence of divalent metal ions or even the bis-cyclen anchor. This C-selectivity appears to be an intrinsic property of the quinone methide electrophile as reflected by its reaction with an equimolar mixture of the 2'-deoxynucleosides. Only dA-N1 and dC-N3 alkylation products were detected initially and only the dC adduct persisted for detection under conditions of the gel electrophoretic analysis.
Collapse
Affiliation(s)
- Tuomas Lönnberg
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (USA). .,Department of Chemistry, University of Turku, 20014 Turku (Finland).
| | - Mark Hutchinson
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (USA)
| | - Steven Rokita
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (USA)
| |
Collapse
|
1012
|
Abstract
Human T-cell leukemia virus (HTLV)-1 is a human retrovirus and the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a fatal malignancy of CD4/CD25+ T lymphocytes. In recent years, cellular as well as virus-encoded microRNA (miRNA) have been shown to deregulate signaling pathways to favor virus life cycle. HTLV-1 does not encode miRNA, but several studies have demonstrated that cellular miRNA expression is affected in infected cells. Distinct mechanisms such as transcriptional, epigenetic or interference with miRNA processing machinery have been involved. This article reviews the current knowledge of the role of cellular microRNAs in virus infection, replication, immune escape and pathogenesis of HTLV-1.
Collapse
|
1013
|
Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:169-76. [PMID: 26149773 DOI: 10.1016/j.bbagrm.2015.06.015] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
Most diseases, including human cancer, are frequently associated with an altered transcription pattern. The alteration of the transcriptome is not restricted to the production of aberrant levels of protein-coding RNAs, but also refers to the dysregulation of the expression of the multiple noncoding members that comprise the human genome. Unexpectedly, recent RNA-seq data of the human transcriptome have revealed that less than 2% of the genome encodes protein-coding transcripts, even though the vast majority of the genome is actively transcribed into non-coding RNAs (ncRNAs) under different conditions. In this review, we present an updated version of the mechanistic aspects of some long non-coding RNAs (lncRNAs) that play critical roles in human cancer. Most importantly, we focus on the interplay between lncRNAs and microRNAs, and the importance of such interactions during the tumorigenic process, providing new insight into the regulatory mechanisms underlying several ncRNA classes of importance in cancer, particularly transcribed ultraconserved regions (T-UCRs). This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Julia Liz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
1014
|
Identification of differentially expressed microRNAs involved in non-traumatic osteonecrosis through microRNA expression profiling. Gene 2015; 565:22-9. [DOI: 10.1016/j.gene.2015.03.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/27/2015] [Accepted: 03/10/2015] [Indexed: 12/19/2022]
|
1015
|
Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev 2015; 87:15-24. [PMID: 26024979 PMCID: PMC4544752 DOI: 10.1016/j.addr.2015.05.012] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNA), a class of non-coding RNA molecules recently identified largely due to the efforts of FANTOM, and later GENCODE and ENCODE consortia, have been a subject of intense investigation in the past decade. Extensive efforts to get deeper understanding of lncRNA biology have yielded evidence of their diverse structural and regulatory roles in protecting chromosome integrity, maintaining genomic architecture, X chromosome inactivation, imprinting, transcription, translation and epigenetic regulation. Here we will briefly review the recent studies in the field of lncRNA biology focusing mostly on mammalian species and discuss their therapeutic implications.
Collapse
MESH Headings
- Animals
- Chromosomal Instability
- Epigenesis, Genetic
- Evolution, Molecular
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Genetic Diseases, Inborn/diagnosis
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/therapy
- Humans
- Neoplasms/diagnosis
- Neoplasms/genetics
- Neoplasms/therapy
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/therapeutic use
- RNA Processing, Post-Transcriptional
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/urine
- Species Specificity
- Telomere/genetics
Collapse
Affiliation(s)
- O Khorkova
- OPKO Health Inc., 10320 USA Today Way, Miramar, FL 33025, USA
| | - J Hsiao
- OPKO Health Inc., 10320 USA Today Way, Miramar, FL 33025, USA
| | - C Wahlestedt
- Center for Therapeutic Innovation and the Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami 33136, FL, USA.
| |
Collapse
|
1016
|
Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression. PLoS One 2015; 10:e0130060. [PMID: 26107383 PMCID: PMC4479381 DOI: 10.1371/journal.pone.0130060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/15/2015] [Indexed: 11/20/2022] Open
Abstract
Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s) that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the "stemness" marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease.
Collapse
|
1017
|
Eedunuri VK, Rajapakshe K, Fiskus W, Geng C, Chew SA, Foley C, Shah SS, Shou J, Mohamed JS, Coarfa C, O'Malley BW, Mitsiades N. miR-137 Targets p160 Steroid Receptor Coactivators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation. Mol Endocrinol 2015; 29:1170-83. [PMID: 26066330 DOI: 10.1210/me.2015-1080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The p160 family of steroid receptor coactivators (SRCs) are pleiotropic transcription factor coactivators and "master regulators" of gene expression that promote cancer cell proliferation, survival, metabolism, migration, invasion, and metastasis. Cancers with high p160 SRC expression exhibit poor clinical outcomes and resistance to therapy, highlighting the SRCs as critical oncogenic drivers and, thus, therapeutic targets. microRNAs are important epigenetic regulators of protein expression. To examine the regulation of p160 SRCs by microRNAs, we used and combined 4 prediction algorithms to identify microRNAs that could target SRC1, SRC2, and SRC3 expression. For validation of these predictions, we assessed p160 SRC protein expression and cell viability after transfection of corresponding microRNA mimetics in breast cancer, uveal melanoma, and prostate cancer (PC) cell lines. Transfection of selected microRNA mimetics into breast cancer, uveal melanoma, and PC cells depleted SRC protein expression levels and exerted potent antiproliferative activity in these cell types. In particular, microRNA-137 (miR-137) depleted expression of SRC1, SRC2, and very potently, SRC3. The latter effect can be attributed to the presence of 3 miR-137 recognition sequences within the SRC3 3'-untranslated region. Using reverse phase protein array analysis, we identified a network of proteins, in addition to SRC3, that were modulated by miR-137 in PC cells. We also found that miR-137 and its host gene are epigenetically silenced in human cancer specimens and cell lines. These results support the development and testing of microRNA-based therapies (in particular based on restoring miR-137 levels) for targeting the oncogenic family of p160 SRCs in cancer.
Collapse
Affiliation(s)
- Vijay Kumar Eedunuri
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Kimal Rajapakshe
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Warren Fiskus
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Chuandong Geng
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Sue Anne Chew
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Christopher Foley
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Shrijal S Shah
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - John Shou
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Junaith S Mohamed
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Cristian Coarfa
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Bert W O'Malley
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Nicholas Mitsiades
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
1018
|
Taylor MA, Schiemann WP. Therapeutic Opportunities for Targeting microRNAs in Cancer. MOLECULAR AND CELLULAR THERAPIES 2015; 2:1-13. [PMID: 25717380 PMCID: PMC4337831 DOI: 10.1186/2052-8426-2-30] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that can function as either powerful tumor promoters or suppressors in numerous types of cancer. The ability of miRs to target multiple genes and biological signaling pathways has created intense interest in their potential clinical utility as predictive and diagnostic biomarkers, and as innovative therapeutic agents. Recently, accumulating preclinical studies have illustrated the feasibility of slowing tumor progression by either overexpressing tumor suppressive miRNAs, or by neutralizing the activities of oncogenic miRNAs in cell- and animal-based models of cancer. Here we highlight prominent miRNAs that may represent potential therapeutic targets in human malignancies, as well as review current technologies available for inactivating or restoring miRNA activity in clinical settings.
Collapse
Affiliation(s)
- Molly A Taylor
- Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield, UK
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
1019
|
Abstract
Mortality owing to liver cancer has increased in the past 20 years, and the latest estimates indicate that the global health burden of this disease will continue to grow. Most patients with hepatocellular carcinoma (HCC) are still diagnosed at intermediate or advanced disease stages, where curative approaches are often not feasible. Among the treatment options available, the molecular targeted agent sorafenib is able to significantly increase overall survival in these patients. Thereafter, up to seven large, randomized phase III clinical trials investigating other molecular therapies in the first-line and second-line settings have failed to improve on the results observed with this agent. Potential reasons for this include intertumour heterogeneity, issues with trial design and a lack of predictive biomarkers of response. During the past 5 years, substantial advances in our knowledge of the human genome have provided a comprehensive picture of commonly mutated genes in patients with HCC. This knowledge has not yet influenced clinical decision-making or current clinical practice guidelines. In this Review the authors summarize the molecular concepts of progression, discuss the potential reasons for clinical trial failure and propose new concepts of drug development, which might lead to clinical implementation of emerging targeted agents.
Collapse
|
1020
|
Ghidini M, Braconi C. Non-Coding RNAs in Primary Liver Cancer. Front Med (Lausanne) 2015; 2:36. [PMID: 26131450 PMCID: PMC4469108 DOI: 10.3389/fmed.2015.00036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver with poor prognosis and limited therapeutic options. Over the past few years, many studies have evaluated the role of non-coding RNAs (ncRNAs) in hepatocarcinogenesis and tumor progression. ncRNAs were shown to have diagnostic, prognostic, and therapeutic potential in HCC. In this manuscript, we review the latest major discoveries concerning microRNAs and long ncRNAs in HCC pathogenesis, and discuss the potentials and the limitations for their use in clinical practice.
Collapse
Affiliation(s)
- Michele Ghidini
- Division of Cancer Therapeutics, The Institute of Cancer Research , London , UK ; Cancer Center, Humanitas Clinical and Research Center , Milano , Italy
| | - Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research , London , UK ; The Royal Marsden NHS Foundation Trust , London , UK
| |
Collapse
|
1021
|
Niu J, Xue A, Chi Y, Xue J, Wang W, Zhao Z, Fan M, Yang CH, Shao ZM, Pfeffer LM, Wu J, Wu ZH. Induction of miRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer. Oncogene 2015; 35:1302-1313. [PMID: 26028030 PMCID: PMC4666837 DOI: 10.1038/onc.2015.189] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 01/13/2023]
Abstract
Acquired therapeutic resistance is the major drawback to effective systemic therapies for cancers. Aggressive triple-negative breast cancers (TNBC) develop resistance to chemotherapies rapidly, whereas the underlying mechanisms are not completely understood. Here we show that genotoxic treatments significantly increased the expression of miR-181a in TNBC cells, which enhanced TNBC cell survival and metastasis upon Doxorubicin treatment. Consistently, high miR-181a level associated with poor disease free survival and overall survival after treatments in breast cancer patients. The upregulation of miR-181a was orchestrated by transcription factor STAT3 whose activation depended on NF-κB-mediated IL-6 induction in TNBC cells upon genotoxic treatment. Intriguingly, activated STAT3 not only directly bound to MIR181A1 promoter to drive transcription but also facilitated the recruitment of MSK1 to the same region where MSK1 promoted a local active chromatin state by phosphorylating histone H3. We further identified BAX as a direct functional target of miR-181a, whose suppression decreased apoptosis and increased invasion of TNBC cells upon Dox treatment. These results were further confirmed by evidence that suppression of miR-181a significantly enhanced therapeutic response and reduced lung metastasis in a TNBC orthotopic model. Collectively, our data suggested that miR-181a induction had a critical role in promoting therapeutic resistance and aggressive behavior of TNBC cells upon genotoxic treatment. Antagonizing miR-181a may serve as a promising strategy to sensitize TNBC cells to chemotherapy and mitigate metastasis.
Collapse
Affiliation(s)
- Jixiao Niu
- Department of Pathology and Laboratory Medicine, Shanghai Medical College, Fudan University, Shanghai.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, Shanghai Medical College, Fudan University, Shanghai
| | - Aimin Xue
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai
| | - Yayun Chi
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, Shanghai Medical College, Fudan University, Shanghai.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai
| | - Jingyan Xue
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai
| | - Wei Wang
- Department of Pathology and Laboratory Medicine, Shanghai Medical College, Fudan University, Shanghai.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, Shanghai Medical College, Fudan University, Shanghai
| | - Ziqin Zhao
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai
| | - Meiyun Fan
- Department of Pathology and Laboratory Medicine, Shanghai Medical College, Fudan University, Shanghai.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, Shanghai Medical College, Fudan University, Shanghai
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine, Shanghai Medical College, Fudan University, Shanghai.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, Shanghai Medical College, Fudan University, Shanghai
| | - Zhi-Ming Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, Shanghai Medical College, Fudan University, Shanghai.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, Shanghai Medical College, Fudan University, Shanghai
| | - Jiong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, Shanghai Medical College, Fudan University, Shanghai.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, Shanghai Medical College, Fudan University, Shanghai
| |
Collapse
|
1022
|
Liu J, Huang W, Yang H, Luo Y. Expression and function ofmiR-155 in breast cancer. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1043946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
1023
|
Shi Y, Chen C, Yu SZ, Liu Q, Rao J, Zhang HR, Xiao HL, Fu TW, Long H, He ZC, Zhou K, Yao XH, Cui YH, Zhang X, Ping YF, Bian XW. miR-663 Suppresses Oncogenic Function of CXCR4 in Glioblastoma. Clin Cancer Res 2015; 21:4004-13. [PMID: 26023083 DOI: 10.1158/1078-0432.ccr-14-2807] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/12/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify the miRNA regulators of C-X-C motif chemokine receptor 4 (CXCR4) and the underlying mechanism as well as the therapeutic and prognostic values in human glioblastoma (GBM). EXPERIMENTAL DESIGN miRNA profile analyses and bioinformatics predictions were used to identify the mediators of CXCR4, which were confirmed by luciferase reporter assay, Western blot assay and immunohistochemistry. The effects of miR-663 on CXCR4-mediated GBM malignancy were investigated by gain-of-function experiments. Orthotopic xenografts derived from constitutive or induced miR-663-expressing GBM cells were used to determine the antitumor effects of miR-663 and CXCR4-specific antagonist AMD3100. Bivariate correlation analyses were used to examine the correlation of miR-663 and CXCR4 levels in glioma. The prognostic values of miR-663 and CXCR4 were examined in 281 cases of astrocytic glioma from our hospital and 476 cases of GBM from The Cancer Genome Atlas database using the multivariate Cox regression analysis and Kaplan-Meier analysis. RESULTS miR-663 negatively regulated CXCR4 expression by targeting its coding sequence in GBM and compromised the proliferative and invasive capacities of GBM cells induced by CXCR4 overexpression. Constitutive or induced miR-663 overexpression combined with CXCR4 antagonist AMD3100 suppressed orthotopic GBM growth and prolonged tumor-bearing mice survival. Clinically, miR-663 and CXCR4 were inversely correlated in GBM and composed a valuable biomarker set in predicting the outcomes of GBM patients. CONCLUSIONS miR-663 negatively regulated CXCR4 to inhibit its oncogenic effect. Combination of miR-663 and CXCR4 can serve as a valuable prognostic biomarker set as well as molecular targets for therapeutic intervention of GBM.
Collapse
Affiliation(s)
- Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shi-Zhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jun Rao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hua-Rong Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hua-Liang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China. Department of Pathology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ti-Wei Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hua Long
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Kai Zhou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
1024
|
Chen S, Zhang Y, Kuzel TM, Zhang B. Regulating Tumor Myeloid-Derived Suppressor Cells by MicroRNAs. CANCER CELL & MICROENVIRONMENT 2015; 2:e637. [PMID: 26005707 PMCID: PMC4440580 DOI: 10.14800/ccm.637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the major cell components responsible for cancer immune evasion. Studying mechanisms associated with the regulation of MDSCs is becoming appreciated as another way to manipulate immune responses. MicroRNAs (miRNAs) have been recognized as substances which may interact with MDSCs, and eight miRNAs including miR-17-5p, miR-20a, miR-223, miR-21, miR-155, miR-494, miR-690 and miR-101 are of particular interest regarding MDSC accumulation and function. We have reviewed the data supporting this activity of these entities.
Collapse
Affiliation(s)
- Siqi Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Timothy M. Kuzel
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bin Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
1025
|
MicroRNA expression profiles in muscle-invasive bladder cancer: identification of a four-microRNA signature associated with patient survival. Tumour Biol 2015; 36:8159-66. [PMID: 25990459 DOI: 10.1007/s13277-015-3559-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer ranks the second most common genitourinary tract cancer, and muscle-invasive bladder cancer (MIBC) accounts for approximately 25 % of all bladder cancer cases with high mortality. In the current study, with a total of 202 treatment-naïve primary MIBC patients identified from The Cancer Genome Atlas dataset, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in MIBC, with the aim to investigate the relationship of miRNA expression with the progression and prognosis of MIBC, and generate a miRNA signature of prognostic capabilities. In the progression-related miRNA profiles, a total of 47, 16, 3, and 84 miRNAs were selected for pathologic T, N, M, and histologic grade, respectively. Of the eight most important progression-related miRNAs, four (let-7c, mir-125b-1, mir-193a, and mir-99a) were significantly associated with survival of patients with MIBC. Finally, a four-miRNA signature was generated and proven as a promising prognostic parameter. In summary, this study identified the specific miRNAs associated with the progression and aggressiveness of MIBC and a four-miRNA signature as a promising prognostic parameter of MIBC.
Collapse
|
1026
|
Szalat R, Munshi NC. Genomic heterogeneity in multiple myeloma. Curr Opin Genet Dev 2015; 30:56-65. [PMID: 25982873 DOI: 10.1016/j.gde.2015.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
Multiple myeloma (MM) is an incurable malignancy in majority of patients characterized by clonal proliferation of plasma cells. To date, treatment is established based on general conditions and age of patients. However, MM is a heterogeneous disease, featured by various subtypes and different outcomes. Thus, the understanding of MM biology is currently a major challenge to eventually cure the disease. During the last decade, karyotype studies and gene expression profiling have identified robust prognostic markers as well as a widespread genomic landscape. More recently, studies of epigenetic, transcriptional modifications and next generation sequencing have allowed characterization of critical genes and pathways, clonal heterogeneity and mutational profiles involved in myelomagenesis. Altogether, these findings constitute important tools to develop new targeted and personalized therapies in MM.
Collapse
Affiliation(s)
- Raphaël Szalat
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nikhil C Munshi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Boston, MA, United States.
| |
Collapse
|
1027
|
Lamba G, Zaidi SK, Luebbers K, Verschraegen C, Stein GS, Rosmarin A. Epigenetic landscape of acute myelogenous leukemia--moving toward personalized medicine. J Cell Biochem 2015; 115:1669-72. [PMID: 24905899 DOI: 10.1002/jcb.24853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic cancer that is characterized by accumulation of immature myeloid cells in the blood and bone marrow. The malignant cells in AML have reduced capacity to mature fully, and often exhibit chromosomal abnormalities, defects in cell signaling, and abnormal cell cycle control. Genetic and epigenetic changes are implicated in the onset and progression of AML. While progress has been made in using genetic and epigenetic changes as prognostic features of AML, these findings have not yet been effectively translated into novel treatment strategies. Disappointingly, rates of recurrence in AML remain high and overall survival is poor. Research strategies should focus on developing a comprehensive landscape of genetic and epigenetic changes in individual patients with AML to expand the clinicians' therapeutic armamentarium and to individualize and optimize treatment.
Collapse
Affiliation(s)
- Gurpreet Lamba
- Division of Hematology/Oncology, University of Vermont, Burlington, Vermont; Vermont Cancer Center, Burlington, Vermont
| | | | | | | | | | | |
Collapse
|
1028
|
Andreoli F, Del Rio A. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes. Comput Struct Biotechnol J 2015; 13:358-65. [PMID: 26082827 PMCID: PMC4459771 DOI: 10.1016/j.csbj.2015.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
Growing evidences show that epigenetic mechanisms play crucial roles in the genesis and progression of many physiopathological processes. As a result, research in epigenetic grew at a fast pace in the last decade. In particular, the study of histone post-translational modifications encountered an extraordinary progression and many modifications have been characterized and associated to fundamental biological processes and pathological conditions. Histone modifications are the catalytic result of a large set of enzyme families that operate covalent modifications on specific residues at the histone tails. Taken together, these modifications elicit a complex and concerted processing that greatly contribute to the chromatin remodeling and may drive different pathological conditions, especially cancer. For this reason, several epigenetic targets are currently under validation for drug discovery purposes and different academic and industrial programs have been already launched to produce the first pre-clinical and clinical outcomes. In this scenario, computer-aided molecular design techniques are offering important tools, mainly as a consequence of the increasing structural information available for these targets. In this mini-review we will briefly discuss the most common types of known histone modifications and the corresponding operating enzymes by emphasizing the computer-aided molecular design approaches that can be of use to speed-up the efforts to generate new pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Federico Andreoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti, 101 40129 Bologna, Italy
| |
Collapse
|
1029
|
Prognostic Value of MicroRNA-182 in Cancers: A Meta-Analysis. DISEASE MARKERS 2015; 2015:482146. [PMID: 26063957 PMCID: PMC4439499 DOI: 10.1155/2015/482146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/14/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE MicroRNA-182 (miR-182) exhibits altered expression in various cancers. The aim of this study was to investigate the predictive value of miR-182 expression for cancer patient survival. METHODS Eligible studies were identified through multiple search strategies, and the hazard ratios (HRs) for patient outcomes were extracted and estimated. A meta-analysis was performed to evaluate the prognostic value of miR-182. RESULTS In total, 14 studies were included. A high miR-182 expression level predicted a worse outcome with a pooled HR of 2.18 (95% CI: 1.53-3.11) in ten studies related to overall survival (OS), especially in Chinese populations. The results of seven studies evaluating disease-free survival/relapse-free survival/recurrence-free interval/disease-specific survival (DFS/RFS/RFI/DSS) produced a pooled HR of 1.77 (95% CI: 0.91-3.43), which was not statistically significant; however, the trend was positive. When disregarding the DSS from one study, the expression of miR-182 was significantly correlated with DFS/RFS/RFI (pooled HR = 2.52, 95% CI: 1.67-3.79). CONCLUSIONS High miR-182 expression is associated with poor OS and DFS/RFS/RFI in some types of cancers, and miR-182 may be a useful prognostic biomarker for predicting cancer prognosis. However, given the current insufficient relevant data, further clinical studies are needed.
Collapse
|
1030
|
Sun Y, Ma L. The emerging molecular machinery and therapeutic targets of metastasis. Trends Pharmacol Sci 2015; 36:349-59. [PMID: 25939811 DOI: 10.1016/j.tips.2015.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/29/2015] [Accepted: 04/02/2015] [Indexed: 12/14/2022]
Abstract
Metastasis is a 100-year-old research topic. Technological advances during the past few decades have led to significant progress in our understanding of metastatic disease. However, metastasis remains the leading cause of cancer-related mortalities. The lack of appropriate clinical trials for metastasis preventive drugs and incomplete understanding of the molecular machinery are major obstacles in metastasis prevention and treatment. Numerous processes, factors, and signaling pathways are involved in regulating metastasis. Here we discuss recent progress in metastasis research, including epithelial-mesenchymal plasticity, cancer stem cells, emerging molecular determinants and therapeutic targets, and the link between metastasis and therapy resistance.
Collapse
Affiliation(s)
- Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Genes and Development Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
1031
|
Zhang Y, Xiao HQ, Wang Y, Yang ZS, Dai LJ, Xu YC. Differential expression and therapeutic efficacy of microRNA-346 in diabetic nephropathy mice. Exp Ther Med 2015; 10:106-112. [PMID: 26170919 DOI: 10.3892/etm.2015.2468] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/27/2015] [Indexed: 11/06/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, in which the SMAD signaling pathway plays an important role. The aim of the present study was to identify differentially expressed microRNAs (miRNAs) during the progression of DN and to investigate a selected miRNA in relation to SMAD3/4 and its therapeutic efficacy. The miRNA microarray was used to identify differentially expressed miRNAs in db/db DN mice. Reverse transcription-quantitative polymerase chain reaction and immunoblot analyses were used to detect SMAD3/4 expression. The development of DN in the db/db mice was demonstrated by glucose dysregulation and typical morphological changes in the kidney. miRNA-346 (miR-346) was identified as one of the differentially expressed miRNAs. The expression of SMAD3/4 was significantly attenuated by miR-346 administration and the therapeutic effects of miR-346 were observed in the DN mouse models. miR-346 was identified as a negative regulator of SMAD3/4. SMAD3/4 was upregulated in the renal tissue of db/db mice. The administration of miR-346 attenuated the SMAD3/4 expression in renal tissue and ameliorated the renal function and glomerular histology in DN mice. This study paves the way for clinical studies of miR-346 in DN.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China ; Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hou-Qin Xiao
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yang Wang
- The Research Center for High Altitude Medicine, Medical College, Qinghai University, Xining, Qinghai 810001, P.R. China
| | - Zhuo-Shun Yang
- Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Long-Jun Dai
- Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China ; Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yan-Cheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
1032
|
Long Noncoding RNAs in Digestive System Malignancies: A Novel Class of Cancer Biomarkers and Therapeutic Targets? Gastroenterol Res Pract 2015; 2015:319861. [PMID: 26064090 PMCID: PMC4429197 DOI: 10.1155/2015/319861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
High throughput methodologies have revealed the existence of an unexpectedly large number of long noncoding RNAs (lncRNAs). The unconventional role of lncRNAs in gene expression regulation and their broad implication in oncogenic and tumor suppressive pathways have introduced lncRNAs as novel biological tumor markers. The most prominent example of lncRNAs application in routine clinical practice is PCA3, a FDA-approved biomarker for prostate cancer. Regarding digestive system malignancies, the oncogenic HOTAIR is one of the most widely studied lncRNAs in the preclinical level and has already been identified as a potent prognostic marker for major malignancies of the gastrointestinal tract. Here, we provide an overview of recent findings regarding the emerging role of lncRNAs not only as key regulators of cancer initiation and progression in colon, stomach, pancreatic, liver, and esophageal cancers, but also as reliable tumor markers and therapeutic tools. lncRNAs can be easily, rapidly, and cost-effectively determined in tissues, serum, and gastric juice, making them highly versatile analytes. Taking also into consideration the largely unmet clinical need for early diagnosis and more accurate prognostic/predictive markers for gastrointestinal cancer patients, we comment upon the perspectives of lncRNAs as efficient molecular tools that could aid in the clinical management.
Collapse
|
1033
|
Long MD, Sucheston-Campbell LE, Campbell MJ. Vitamin D receptor and RXR in the post-genomic era. J Cell Physiol 2015; 230:758-66. [PMID: 25335912 DOI: 10.1002/jcp.24847] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/16/2014] [Indexed: 12/25/2022]
Abstract
Following the elucidation of the human genome and components of the epigenome, it is timely to revisit what is known of vitamin D receptor (VDR) function. Early transcriptomic studies using microarray approaches focused on the protein coding mRNA that were regulated by the VDR, usually following treatment with ligand. These studies quickly established the approximate size and surprising diversity of the VDR transcriptome, revealing it to be highly heterogenous and cell type and time dependent. Investigators also considered VDR regulation of non-protein coding RNA and again, cell and time dependency was observed. Attempts to integrate mRNA and miRNA regulation patterns are beginning to reveal patterns of co-regulation and interaction that allow for greater control of mRNA expression, and the capacity to govern more complex cellular events. Alternative splicing in the trasncriptome has emerged as a critical process in transcriptional control and there is evidence of the VDR interacting with components of the splicesome. ChIP-Seq approaches have proved to be pivotal to reveal the diversity of the VDR binding choices across cell types and following treatment, and have revealed that the majority of these are non-canonical in nature. The underlying causes driving the diversity of VDR binding choices remain enigmatic. Finally, genetic variation has emerged as important to impact the transcription factor affinity towards genomic binding sites, and recently the impact of this on VDR function has begun to be considered.
Collapse
Affiliation(s)
- Mark D Long
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | | |
Collapse
|
1034
|
Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life 2015; 67:145-59. [PMID: 25899846 DOI: 10.1002/iub.1358] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Blood vessel formation is a fundamental process for the development of organism and tissue regeneration. Of importance, angiogenesis occurring during postnatal development is usually connected with inflammation. Here, we review how molecular and cellular mechanisms underlying inflammatory reactions regulate angiogenesis. Inflamed tissues are characterized by hypoxic conditions and immune cell infiltration. In this review, we describe an interplay of hypoxia-inducible factors (HIFs), HIF1 and HIF2, as well as NF-κB and nitric oxide in the regulation of angiogenesis. The mobilization of macrophages and the differential role of M1 and M2 macrophage subsets in angiogenesis are also discussed. Next, we present the current knowledge about microRNA regulation of inflammation in the context of new blood vessel formation. Finally, we describe how the mechanisms involved in inflammation influence tumor angiogenesis. We underlay and discuss the role of NF-E2-related factor 2/heme oxygenase-1 pathway as crucial in the regulation of inflammation-induced angiogenesis.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|
1035
|
Sang H, Liu H, Xiong P, Zhu M. Long non-coding RNA functions in lung cancer. Tumour Biol 2015; 36:4027-37. [PMID: 25895460 DOI: 10.1007/s13277-015-3449-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/08/2015] [Indexed: 02/06/2023] Open
Abstract
Numerous long non-coding RNAs (lncRNAs) have been discovered as a result of advances in sequencing methods in genomic research. Recent evidence indicates that lncRNAs may serve as gene regulators via various mechanisms, such as translational control. Dysregulation of lncRNAs contributes to the development and progression of several human diseases, notably lung cancer, which is one of the leading causes of cancer-associated death. Recent studies have identified key roles for molecules such as p53 and polycomb repressive complex 2 (PRC2) in carcinogenesis and the anti-carcinogenic action of lncRNAs. These findings point to the potential of lncRNAs as prospective diagnostic and prognostic biomarkers in lung cancer. In this review, we consider the functions of lncRNAs in translational control and discuss their involvement in lung cancer via p53, PRC2, and other pathways. We also consider the effects of modulating the levels and functions of lncRNAs. Further characterization of these lung cancer-associated lncRNAs will provide a better understanding of their potential roles as therapeutic targets.
Collapse
Affiliation(s)
- Haiwei Sang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, China
| | | | | | | |
Collapse
|
1036
|
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease without effective treatment. Despite decades of research and the development of novel treatments, PAH remains a fatal disease, suggesting an urgent need for better understanding of the pathogenesis of PAH. Recent studies suggest that microRNAs (miRNAs) are dysregulated in patients with PAH and in experimental pulmonary hypertension. Furthermore, normalization of a few miRNAs is reported to inhibit experimental pulmonary hypertension. We have reviewed the current knowledge about miRNA biogenesis, miRNA expression pattern, and their roles in regulation of pulmonary artery smooth muscle cells, endothelial cells, and fibroblasts. We have also identified emerging trends in our understanding of the role of miRNAs in the pathogenesis of PAH and propose future studies that might lead to novel therapeutic strategies for the treatment of PAH.
Collapse
Affiliation(s)
- Guofei Zhou
- 1 Department of Pediatrics, University of Illinois at Chicago; and
| | | | | |
Collapse
|
1037
|
MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity. Oncogene 2015; 35:448-58. [PMID: 25867061 PMCID: PMC4603999 DOI: 10.1038/onc.2015.96] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/28/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) have been demonstrated to have critical roles in regulating cancer cell proliferation, survival and sensitivity to chemotherapy. The potential application of using miRNAs to predict therapeutic response to cancer treatment holds high promise, but miRNAs with predictive value remain to be identified and underlying mechanisms have not been completely understood. Here, we show a strong correlation between miR-621 expression and chemosensitivity to paclitaxel plus carboplatin (PTX/CBP) regimen, an effective neoadjuvant chemotherapy for breast cancer patients. High level of miR-621 predicts better response to PTX/CBP regimen neoadjuvant chemotherapy in breast cancer patients, who also tend to achieve pathological complete response. Ectopic overexpression of miR-621 promoted apoptosis and increased chemosensitivity to PTX and CBP both in cultured breast cancer cells and in xenograft tumor model. We further show that FBXO11 is a direct functional target of miR-621 and miR-621 level is negatively correlated with FBXO11 expression in breast cancer patients. Ectopic expression of FBXO11 attenuated increased apoptosis in breast cancer cells overexpressing miR-621 upon PTX or CBP treatment. Consistently, high FBXO11 expression significantly correlated with poor survival in breast cancer patients. Mechanistically, we found in breast cancer cells FBXO11 interacts with p53 and promotes its neddylation, which suppressed the p53 transactivity. Accordingly, miR-621-dependent FBXO11 suppression enhanced p53 activity and increased apoptosis in breast cancer cells exposed to chemotherapeutics. Taken together, our data suggest that miR-621 enhances chemosensitivity of breast cancer cells to PTX/CBP chemotherapy by suppressing FBXO11-depedent inhibition of p53. miR-621 may serve as a predictive biomarker and a potential therapeutic target in breast cancer treatment.
Collapse
|
1038
|
The clinical value of ncRNAs in gastric cancer: a systematic review and meta-analyses. Tumour Biol 2015; 36:4017-25. [DOI: 10.1007/s13277-015-3411-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/30/2015] [Indexed: 12/28/2022] Open
|
1039
|
Hatano K, Kumar B, Zhang Y, Coulter JB, Hedayati M, Mears B, Ni X, Kudrolli TA, Chowdhury WH, Rodriguez R, DeWeese TL, Lupold SE. A functional screen identifies miRNAs that inhibit DNA repair and sensitize prostate cancer cells to ionizing radiation. Nucleic Acids Res 2015; 43:4075-86. [PMID: 25845598 PMCID: PMC4417178 DOI: 10.1093/nar/gkv273] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/17/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) have been implicated in DNA repair pathways through transcriptional responses to DNA damaging agents or through predicted miRNA regulation of DNA repair genes. We hypothesized that additional DNA damage regulating miRNAs could be identified by screening a library of 810 miRNA mimetics for the ability to alter cellular sensitivity to ionizing radiation (IR). A prostate cancer Metridia luciferase cell model was applied to examine the effects of individual miRNAs on IR sensitivity. A large percentage of miRNA mimetics were found to increase cellular sensitivity to IR, while a smaller percentage were protective. Two of the most potent IR sensitizing miRNAs, miR-890 and miR-744–3p, significantly delayed IR induced DNA damage repair. Both miRNAs inhibited the expression of multiple components of DNA damage response and DNA repair. miR-890 directly targeted MAD2L2, as well as WEE1 and XPC, where miR-744–3p directly targeted RAD23B. Knock-down of individual miR-890 targets by siRNA was not sufficient to ablate miR-890 radiosensitization, signifying that miR-890 functions by regulating multiple DNA repair genes. Intratumoral delivery of miR-890 mimetics prior to IR therapy significantly enhanced IR therapeutic efficacy. These results reveal novel miRNA regulation of DNA repair and identify miR-890 as a potent IR sensitizing agent.
Collapse
Affiliation(s)
- Koji Hatano
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Binod Kumar
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yonggang Zhang
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan B Coulter
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammad Hedayati
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Mears
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaohua Ni
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Shanghai Institute of Planned Parenthood Research, National Population & Family Planning Key Laboratory of Contraceptive Drugs and Devices. 2140 Xietu Rd., Shanghai 200032, China
| | - Tarana A Kudrolli
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wasim H Chowdhury
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA The Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ronald Rodriguez
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA The Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Theodore L DeWeese
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawn E Lupold
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
1040
|
Falcone G, Felsani A, D'Agnano I. Signaling by exosomal microRNAs in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:32. [PMID: 25886763 PMCID: PMC4391656 DOI: 10.1186/s13046-015-0148-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
A class of small non-coding RNAs, the microRNAs (miRNAs), have recently attracted great attention in cancer research since they play a central role in regulation of gene-expression and miRNA aberrant expression is found in almost all types of human cancer. The discovery of circulating miRNAs in body fluids and the finding that they are often tumor specific and can be detected early in tumorigenesis has soon led to the evaluation of their possible use as cancer biomarkers and treatment-response predictors. The evidence that tumor cells communicate via the secretion and delivery of miRNAs packed into tumor-released microvesicles has prompted to investigate miRNA contribution as signaling molecules to the establishment and maintenance of the tumor microenvironment and the metastatic niche in cancer. In this review we highlight the recent advances on the role of exosomal miRNAs as mediators of cancer cell-to-cell communication.
Collapse
Affiliation(s)
- Germana Falcone
- Institute of Cell Biology and Neurobiology, CNR, Via Ramarini 32-00015, Monterotondo, RM, Italy.
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, CNR, Via Ramarini 32-00015, Monterotondo, RM, Italy. .,Genomnia srl, Via Nerviano, 31/B - 20020, Lainate, MI, Italy.
| | - Igea D'Agnano
- Institute of Cell Biology and Neurobiology, CNR, Via Ramarini 32-00015, Monterotondo, RM, Italy.
| |
Collapse
|
1041
|
Mu W, Hu C, Zhang H, Qu Z, Cen J, Qiu Z, Li C, Ren H, Li Y, He X, Shi X, Hui L. miR-27b synergizes with anticancer drugs via p53 activation and CYP1B1 suppression. Cell Res 2015; 25:477-495. [PMID: 25698578 PMCID: PMC4387554 DOI: 10.1038/cr.2015.23] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023] Open
Abstract
Liver and kidney cancers are notorious for drug resistance. Due to the complexity, redundancy and interpatient heterogeneity of resistance mechanisms, most efforts targeting a single pathway were unsuccessful. Novel personalized therapies targeting multiple essential drug resistance pathways in parallel hold a promise for future cancer treatment. Exploiting the multitarget characteristic of microRNAs (miRNAs), we developed a new therapeutic strategy by the combinational use of miRNA and anticancer drugs to increase drug response. By a systems approach, we identified that miR-27b, a miRNA deleted in liver and kidney cancers, sensitizes cancer cells to a broad spectrum of anticancer drugs in vitro and in vivo. Functionally, miR-27b enhances drug response by activating p53-dependent apoptosis and reducing CYP1B1-mediated drug detoxification. Notably, miR-27b promotes drug response specifically in patients carrying p53-wild-type or CYP1B1-high signature. Together, we propose that miR-27b synergizes with anticancer drugs in a defined subgroup of liver and kidney cancer patients.
Collapse
Affiliation(s)
- Wenjing Mu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Chaobo Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Haibin Zhang
- Eastern Hepatobilliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zengqiang Qu
- Eastern Hepatobilliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Zhixin Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Chao Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Yixue Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| |
Collapse
|
1042
|
C/EBP-β-activated microRNA-223 promotes tumour growth through targeting RASA1 in human colorectal cancer. Br J Cancer 2015; 112:1491-500. [PMID: 25867276 PMCID: PMC4453668 DOI: 10.1038/bjc.2015.107] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/19/2015] [Indexed: 01/02/2023] Open
Abstract
Background: Evidences have shown that the RAS signalling pathway plays an important role in colorectal cancer (CRC). Moreover, RAS-GTPase-activating proteins (RASGAPs) as RAS signalling terminators are associated with tumourigenicity and tumour progression. In this study, we used bioinformatics analysis to predict and study important miRNAs that could target RAS p21 GTPase-activating protein 1 (RASA1), an important member of RASGAPs. Methods: The levels of RASA1 and miR-223 were analysed by real-time PCR, western blotting or in situ immunofluorescence analyses. The functional effects of miR-223 and the effects of miR-223-targeted inhibitors were examined in vivo using established assays. Results: Upregulation of miR-223 was detected in CRC tissues (P<0.01) and was involved in downregulation of RASA1 in CRC tissues. Furthermore, the direct inhibition of RASA1 translation by miR-223 and the activation of miR-223 by CCAAT/enhancer binding protein-β (C/EBP-β) were evaluated in CRC cells. An in vivo xenograft model of CRC suggested that the upregulation of miR-223 could promote tumour growth and that the inhibition of miR-223 might prevent solid tumour growth. Conclusions: These results identify that C/EBP-β-activated miR-223 contributes to tumour growth by targeting RASA1 in CRC and miR-223-targeted inhibitors may have clinical promise for CRC treatment via suppression of miR-223.
Collapse
|
1043
|
Chen QX, Wang WP, Zeng S, Urayama S, Yu AM. A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications. Nucleic Acids Res 2015; 43:3857-69. [PMID: 25800741 PMCID: PMC4402540 DOI: 10.1093/nar/gkv228] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/04/2015] [Indexed: 12/15/2022] Open
Abstract
RNA research and therapy relies primarily on synthetic RNAs. We employed recombinant RNA technology toward large-scale production of pre-miRNA agents in bacteria, but found the majority of target RNAs were not or negligibly expressed. We thus developed a novel strategy to achieve consistent high-yield biosynthesis of chimeric RNAs carrying various small RNAs (e.g. miRNAs, siRNAs and RNA aptamers), which was based upon an optimal noncoding RNA scaffold (OnRS) derived from tRNA fusion pre-miR-34a (tRNA/mir-34a). Multi-milligrams of chimeric RNAs (e.g. OnRS/miR-124, OnRS/GFP-siRNA, OnRS/Neg (scrambled RNA) and OnRS/MGA (malachite green aptamer)) were readily obtained from 1 l bacterial culture. Deep sequencing analyses revealed that mature miR-124 and target GFP-siRNA were selectively released from chimeric RNAs in human cells. Consequently, OnRS/miR-124 was active in suppressing miR-124 target gene expression and controlling cellular processes, and OnRS/GFP-siRNA was effective in knocking down GFP mRNA levels and fluorescent intensity in ES-2/GFP cells and GFP-transgenic mice. Furthermore, the OnRS/MGA sensor offered a specific strong fluorescence upon binding MG, which was utilized as label-free substrate to accurately determine serum RNase activities in pancreatic cancer patients. These results demonstrate that OnRS-based bioengineering is a common, robust and versatile strategy to assemble various types of small RNAs for broad applications.
Collapse
Affiliation(s)
- Qiu-Xia Chen
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei-Peng Wang
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shiro Urayama
- Department of Internal Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
1044
|
Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 2015; 12:344-57. [PMID: 25781572 DOI: 10.1038/nrclinonc.2015.38] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is the commonest childhood cancer and an important cause of morbidity from haematological malignancies in adults. In the past several years, we have witnessed major advances in the understanding of the genetic basis of ALL. Genome-wide profiling studies, including microarray analysis and genome sequencing, have helped identify multiple key cellular pathways that are frequently mutated in ALL such as lymphoid development, tumour suppression, cytokine receptors, kinase and Ras signalling, and chromatin remodeling. These studies have characterized new subtypes of ALL, notably Philadelphia chromosome-like ALL, which is a high-risk subtype characterized by a diverse range of alterations that activate cytokine receptors or tyrosine kinases amenable to inhibition with approved tyrosine kinase inhibitors. Genomic profiling has also enabled the identification of inherited genetic variants of ALL that influence the risk of leukaemia development, and characterization of the relationship between genetic variants, clonal heterogeneity and the risk of relapse. Many of these findings are of direct clinical relevance and ongoing studies implementing clinical sequencing in leukaemia diagnosis and management have great potential to improve the outcome of patients with high-risk ALL.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN 38105, USA
| |
Collapse
|
1045
|
Zheng B, Liu H, Wang R, Xu S, Liu Y, Wang K, Hou X, Shen C, Wu J, Chen X, Wu P, Zhang G, Ji Z, Wang H, Xiao Y, Han J, Shi H, Zhao S. Expression signatures of long non-coding RNAs in early brain injury following experimental subarachnoid hemorrhage. Mol Med Rep 2015; 12:967-73. [PMID: 25777551 PMCID: PMC4438960 DOI: 10.3892/mmr.2015.3474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/02/2014] [Indexed: 01/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is an important cause of mortality in stroke patients. Long non-coding RNAs (LncRNAs) have important functions in brain disease, however their expression profiles in SAH remain to be elucidated. The present study aimed to investigate the expression signatures of LncRNAs and mRNAs in early brain injury (EBI) following SAH in a rat model. Male Wistar rats were randomly divided into an SAH group and a sham operation group. The expression signatures of the LncRNAs and mRNAs in the temporal lobe cortex were investigated using a rat LncRNAs array following experimental SAH. The results revealed that there were 144 downregulated and 64 upregulated LncRNAs and 181 downregulated and 221 upregulated mRNAs following SAH. Additionally, two upregulated (BC092207, MRuc008hvl) and three downregulated (XR_006756, MRAK038897, MRAK017168) LncRNAs were confirmed using reverse transcription quantitative polymerase chain reaction. The differentially expressed mRNAs were further analyzed using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The pathway analysis results provided by the KEGG database indicated that eight pathways associated with inflammation were involved in EBI following SAH. In conclusion, these results demonstrated that the expression profiles of the LncRNAs and mRNAs were significantly different between the SAH-induced EBI group and the sham operation group. These differently expressed LncRNAs may be important in EBI following SAH.
Collapse
Affiliation(s)
- Bingjie Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huailei Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ruke Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shancai Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yaohua Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kaikai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xu Hou
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chen Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianing Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhiyong Ji
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yao Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianyi Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
1046
|
Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med 2015; 21:307-18. [PMID: 25771097 DOI: 10.1016/j.molmed.2015.02.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/28/2015] [Accepted: 02/10/2015] [Indexed: 02/03/2023]
Abstract
Atherosclerosis is a chronic immune-inflammatory disorder that integrates multiple cell types and a diverse set of inflammatory mediators. miRNAs are emerging as important post-transcriptional regulators of gene expression in most, if not all, vertebrate cells, and constitute central players in many physiological and pathological processes. Rapidly accumulating experimental studies reveal their key role in cellular and molecular processes related to the development of atherosclerosis. We review current evidence for the involvement of miRNAs in early atherosclerotic lesion formation and in plaque rupture and erosion. We conclude with a perspective on the clinical relevance, therapeutic opportunities, and future challenges of miRNA biology in understanding the pathogenesis of this complex disease.
Collapse
Affiliation(s)
- Ioannis Andreou
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xinghui Sun
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter H Stone
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elazer R Edelman
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark W Feinberg
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
1047
|
Hiraki M, Nishimura J, Takahashi H, Wu X, Takahashi Y, Miyo M, Nishida N, Uemura M, Hata T, Takemasa I, Mizushima T, Soh JW, Doki Y, Mori M, Yamamoto H. Concurrent Targeting of KRAS and AKT by MiR-4689 Is a Novel Treatment Against Mutant KRAS Colorectal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e231. [PMID: 25756961 PMCID: PMC4354340 DOI: 10.1038/mtna.2015.5] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 01/29/2023]
Abstract
KRAS mutations are a major cause of drug resistance to molecular-targeted therapies. Aberrant epidermal growth factor receptor (EGFR) signaling may cause dysregulation of microRNA (miRNA) and gene regulatory networks, which leads to cancer initiation and progression. To address the functional relevance of miRNAs in mutant KRAS cancers, we transfected exogenous KRAS(G12V) into human embryonic kidney 293 and MRC5 cells with wild-type KRAS and BRAF genes, and we comprehensively profiled the dysregulated miRNAs. The result showed that mature miRNA oligonucleotide (miR)-4689, one of the significantly down-regulated miRNAs in KRAS(G12V) overexpressed cells, was found to exhibit a potent growth-inhibitory and proapoptotic effect both in vitro and in vivo. miR-4689 expression was significantly down-regulated in cancer tissues compared to normal mucosa, and it was particularly decreased in mutant KRAS CRC tissues. miR-4689 directly targets v-ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS) and v-akt murine thymoma viral oncogene homolog 1(AKT1), key components of two major branches in EGFR pathway, suggesting KRAS overdrives this signaling pathway through inhibition of miR-4689. Overall, this study provided additional evidence that mutant KRAS functions as a broad regulator of the EGFR signaling cascade by inhibiting miR-4689, which negatively regulates both RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways. These activities indicated that miR-4689 may be a promising therapeutic agent in mutant KRAS CRC.
Collapse
Affiliation(s)
- Masayuki Hiraki
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Nishimura
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xin Wu
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yusuke Takahashi
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaaki Miyo
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naohiro Nishida
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mamoru Uemura
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taishi Hata
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ichiro Takemasa
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jae-Won Soh
- Department of Chemistry, Biomedical Research Centre for Signal Transduction Networks, Inha University, Incheon, Korea
| | - Yuichiro Doki
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
1048
|
Li JR, Wang JQ, Gong Q, Fang RH, Guo YL. MicroRNA-328 Inhibits Proliferation of Human Melanoma Cells by Targeting TGFB2. Asian Pac J Cancer Prev 2015; 16:1575-9. [DOI: 10.7314/apjcp.2015.16.4.1575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
1049
|
Chen J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev Med Virol 2015; 25 Suppl 1:24-53. [PMID: 25752815 DOI: 10.1002/rmv.1823] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/15/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
1050
|
Marrone AK, Beland FA, Pogribny IP. The role for microRNAs in drug toxicity and in safety assessment. Expert Opin Drug Metab Toxicol 2015; 11:601-11. [PMID: 25739314 DOI: 10.1517/17425255.2015.1021687] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Adverse drug reactions present significant challenges that impact pharmaceutical development and are major burdens to public health services worldwide. In response to this need, the field of toxicology is rapidly expanding to identify key pathways involved in drug toxicity. AREAS COVERED MicroRNAs (miRNAs) are a class of small evolutionary conserved endogenous non-coding RNAs that regulate the translation of protein-coding genes. A wide range of toxicants alter miRNA levels in target organs and these altered miRNAs can also be detected in easily accessible biological fluids. This, combined with an early miRNA response to toxic insults and miRNA stability, substantiates the potential for these small molecules to be useful biomarkers for drug safety assessment. EXPERT OPINION miRNAs are early indicators and useful tools to detect drug-induced toxicity. Incorporation of miRNA profiling into the drug safety testing process will complement currently used techniques and may substantially enhance drug safety. With the increasing interests in translational research, the field of miRNA biomarker research will continue to expand and become an important part of the investigation of human drug toxicity.
Collapse
Affiliation(s)
- April K Marrone
- FDA-National Center for Toxicological Research, Division of Biochemical Toxicology , Jefferson, AR , USA
| | | | | |
Collapse
|