1001
|
Abstract
The past decade has witnessed an explosion of knowledge regarding the vast microbial community that resides within our intestine-the gut microbiota. The topic has generated great expectations in terms of gaining a better understanding of disorders ranging from IBD to metabolic disorders and obesity. IBS is a condition for which investigators have long been in search of plausible underlying pathogeneses and it is inevitable that altered composition or function of the gut microbiota will be considered as a potential aetiological factor in at least a subset of patients with IBS. This Review describes the evidence implicating the gut microbiota in not only the expression of the intestinal manifestations of IBS, but also the psychiatric morbidity that coexists in up to 80% of patients with IBS. The evidence described herein ranges from proof-of-concept studies in animals to observational studies and clinical trials in humans. The gut microbiota is subject to influences from a diverse range of factors including diet, antibiotic usage, infection and stress. These factors have previously been implicated in the pathophysiology of IBS and further prompt consideration of a role for the gut microbiota in IBS.
Collapse
|
1002
|
Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 2014; 277:32-48. [PMID: 25078296 DOI: 10.1016/j.bbr.2014.07.027] [Citation(s) in RCA: 1206] [Impact Index Per Article: 109.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
Abstract
The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders.
Collapse
|
1003
|
Lee KN, Lee OY. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome. World J Gastroenterol 2014; 20:8886-8897. [PMID: 25083061 PMCID: PMC4112865 DOI: 10.3748/wjg.v20.i27.8886] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/02/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS.
Collapse
|
1004
|
Miyazaki K, Itoh N, Yamamoto S, Higo-Yamamoto S, Nakakita Y, Kaneda H, Shigyo T, Oishi K. Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice. Life Sci 2014; 111:47-52. [PMID: 25058921 DOI: 10.1016/j.lfs.2014.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/12/2014] [Accepted: 07/11/2014] [Indexed: 01/03/2023]
Abstract
AIMS We previously reported that heat-killed Lactobacillus brevis SBC8803 enhances appetite via changes in autonomic neurotransmission. Here we assessed whether a diet supplemented with heat-killed SBC8803 affects circadian locomotor rhythmicity and sleep architecture. MAIN METHODS AND KEY FINDINGS Daily total activity gradually increased in mice over 4 weeks and supplementation with heat-killed SBC8803 significantly intensified the increase, which reached saturation at 25 days. Electroencephalography revealed that SBC8803 supplementation significantly reduced the total amount of time spent in non-rapid eye movement (NREM) sleep and increased the amount of time spent being awake during the latter half of the nighttime, but tended to increase the total amount of time spent in NREM sleep during the daytime. Dietary supplementation with SBC8803 can extend the duration of activity during the nighttime and of sleep during the daytime. Daily voluntary wheel-running and sleep rhythmicity become intensified when heat-killed SBC8803 is added to the diet. SIGNIFICANCE Dietary heat-killed SBC8803 can modulate circadian locomotion and sleep rhythms, which might benefit individuals with circadian rhythms that have been disrupted by stress or ageing.
Collapse
Affiliation(s)
- Koyomi Miyazaki
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.
| | - Nanako Itoh
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Saori Yamamoto
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Sayaka Higo-Yamamoto
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Yasukazu Nakakita
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu 325-0013, Japan
| | - Hirotaka Kaneda
- Corporate Planning Department, Sapporo Holdings Ltd., Tokyo 150-8522, Japan
| | - Tatsuro Shigyo
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu 325-0013, Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan; Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
1005
|
De Palma G, Collins SM, Bercik P, Verdu EF. The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J Physiol 2014; 592:2989-97. [PMID: 24756641 PMCID: PMC4214655 DOI: 10.1113/jphysiol.2014.273995] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/17/2014] [Indexed: 12/29/2022] Open
Abstract
The gut-brain axis is the bidirectional communication between the gut and the brain, which occurs through multiple pathways that include hormonal, neural and immune mediators. The signals along this axis can originate in the gut, the brain or both, with the objective of maintaining normal gut function and appropriate behaviour. In recent years, the study of gut microbiota has become one of the most important areas in biomedical research. Attention has focused on the role of gut microbiota in determining normal gut physiology and immunity and, more recently, on its role as modulator of host behaviour ('microbiota-gut-brain axis'). We therefore review the literature on the role of gut microbiota in gut homeostasis and link it with mechanisms that could influence behaviour. We discuss the association of dysbiosis with disease, with particular focus on functional bowel disorders and their relationship to psychological stress. This is of particular interest because exposure to stressors has long been known to increase susceptibility to and severity of gastrointestinal diseases.
Collapse
Affiliation(s)
- Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
1006
|
Wang Y, Begum-Haque S, Telesford KM, Ochoa-Repáraz J, Christy M, Kasper EJ, Kasper DL, Robson SC, Kasper LH. A commensal bacterial product elicits and modulates migratory capacity of CD39(+) CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes 2014; 5:552-61. [PMID: 25006655 DOI: 10.4161/gmic.29797] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tolerance established by host-commensal interactions regulates host immunity at both local mucosal and systemic levels. The intestinal commensal strain Bacteroides fragilis elicits immune tolerance, at least in part, via the expression capsular polysaccharide A (PSA). How such niche-specific commensal microbial elements regulate extra-intestinal immune responses, as in the brain, remains largely unknown. We have recently shown that oral treatment with PSA suppresses neuro-inflammation elicited during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. This protection is dependent upon the expansion of immune-regulatory CD4 T cells (Treg) expressing CD39, an ectonucleotidase. Here, we further show that CD39 modulation of purinergic signals enhances migratory phenotypes of both total CD4 T cells and Foxp3(+) CD4 Tregs at central nervous system (CNS) lymphoid-draining sites in EAE in vivo and promotes their migration in vitro. These changes are noted during PSA treatment, which leads to heightened accumulation of CD39(+) CD4 Tregs in the CNS. Deficiency of CD39 abrogates accumulation of Treg during EAE, and is accompanied by elevated Th1/Th17 signals in the CNS and in gut-associated lymphoid tissues. Our results demonstrate that immune-modulatory commensal bacterial products impact the migratory patterns of CD4 Treg during CNS autoimmunity via the regulation of CD39. These observations provide clues as to how intestinal commensal microbiome is able to modulate Treg functions and impact host immunity in the distal site.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Sakhina Begum-Haque
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Kiel M Telesford
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Javier Ochoa-Repáraz
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Marc Christy
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Eli J Kasper
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Dennis L Kasper
- Department of Microbiology and Immunobiology; Harvard Medical School; Boston, MA USA
| | - Simon C Robson
- Division of Gastroenterology; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Lloyd H Kasper
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| |
Collapse
|
1007
|
Kanai T, Matsuoka K, Naganuma M, Hayashi A, Hisamatsu T. Diet, microbiota, and inflammatory bowel disease: lessons from Japanese foods. Korean J Intern Med 2014; 29:409-15. [PMID: 25045286 PMCID: PMC4101585 DOI: 10.3904/kjim.2014.29.4.409] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/22/2014] [Indexed: 02/07/2023] Open
Abstract
The incidence and prevalence of inflammatory bowel diseases (IBDs) including ulcerative colitis and Crohn disease are rapidly increasing in Western countries and in developed Asian countries. Although biologic agents targeting the immune system have been effective in patients with IBD, cessation of treatment leads to relapse in the majority of patients, suggesting that intrinsic immune dysregulation is an effect, not a cause, of IBD. Dramatic changes in the environment, resulting in the dysregulated composition of intestinal microbiota or dysbiosis, may be associated with the fundamental causes of IBD. Japan now has upgraded water supply and sewerage systems, as well as dietary habits and antibiotic overuse that are similar to such features found in developed Western countries. The purpose of this review article was to describe the association of diet, particularly Japanese food and microbiota, with IBD.
Collapse
Affiliation(s)
- Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuyoshi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tadakazu Hisamatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
1008
|
Zheng X, Zhang X, Kang A, Ran C, Wang G, Hao H. Thinking outside the brain for cognitive improvement: Is peripheral immunomodulation on the way? Neuropharmacology 2014; 96:94-104. [PMID: 24978103 DOI: 10.1016/j.neuropharm.2014.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
Cognitive impairment is a devastating condition commonly observed with normal aging and neurodegenerative disorders such as Alzheimer's Disease (AD). Although major efforts to prevent or slow down cognitive decline are largely focused within the central nervous system (CNS), it has become clear that signals from the systemic milieu are closely associated with the dysfunctional brain. In particular, the bidirectional crosstalk between the CNS and peripheral immune system plays a decisive role in shaping neuronal survival and function via neuroimmune, neuroendocrinal and bioenergetic mechanisms. Importantly, it is emerging that some neuroprotective and cognition-strengthening drugs may work by targeting the brain-periphery interactions, which could be intriguingly achieved without entering the CNS. We describe here how recent advances in dissecting cognitive deficits from a systems-perspective have contributed to a non-neurocentric understanding of its pathogenesis and treatment strategy. We also discuss the therapeutic and diagnostic implications of these exciting progresses and consider some key issues in the clinical translation. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Xiao Zheng
- Nanjing University of Chinese Medicine Affiliated Hospital, Nanjing 210029, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueli Zhang
- Zhong Da Hospital, Southeast University, Nanjing 210009, China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chongzhao Ran
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston 02129, United States
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
1009
|
Borre YE, O'Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 2014; 20:509-18. [PMID: 24956966 DOI: 10.1016/j.molmed.2014.05.002] [Citation(s) in RCA: 728] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023]
Abstract
Gut microbiota is essential to human health, playing a major role in the bidirectional communication between the gastrointestinal tract and the central nervous system. The microbiota undergoes a vigorous process of development throughout the lifespan and establishes its symbiotic rapport with the host early in life. Early life perturbations of the developing gut microbiota can impact neurodevelopment and potentially lead to adverse mental health outcomes later in life. This review compares the parallel early development of the intestinal microbiota and the nervous system. The concept of parallel and interacting microbial-neural critical windows opens new avenues for developing novel microbiota-modulating based therapeutic interventions in early life to combat neurodevelopmental deficits and brain disorders.
Collapse
Affiliation(s)
- Yuliya E Borre
- Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland
| | - Gerard Clarke
- Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Department of Psychiatry, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
1010
|
Zhang MM, Liu SB, Chen T, Koga K, Zhang T, Li YQ, Zhuo M. Effects of NB001 and gabapentin on irritable bowel syndrome-induced behavioral anxiety and spontaneous pain. Mol Brain 2014; 7:47. [PMID: 24935250 PMCID: PMC4071154 DOI: 10.1186/1756-6606-7-47] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is characterized by recurrent abdominal discomfort, spontaneous pain, colorectal hypersensitivity and bowel dysfunction. Patients with IBS also suffer from emotional anxiety and depression. However, few animal studies have investigated IBS-induced spontaneous pain and behavioral anxiety. In this study, we assessed spontaneous pain and anxiety behaviors in an adult mouse model of IBS induced by zymosan administration. By using Fos protein as a marker, we found that sensory and emotion related brain regions were activated at day 7 after the treatment with zymosan; these regions include the prefrontal cortex, anterior cingulate cortex, insular cortex and amygdala. Behaviorally, zymosan administration triggered spontaneous pain (decreased spontaneous activities in the open field test) and increased anxiety-like behaviors in three different tests (the open field, elevated plus maze and light/dark box tests). Intraperitoneal injection of NB001, an adenylyl cyclase 1 (AC1) inhibitor, reduced spontaneous pain but had no significant effect on behavioral anxiety. In contrast, gabapentin reduced both spontaneous pain and behavioral anxiety. These results indicate that NB001 and gabapentin may inhibit spontaneous pain and anxiety-like behaviors through different mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun-Qing Li
- Department of Anatomy, Histology, Embryology & K, K, Leung Brain Research Centre, The Fourth Military Medical University, Xian, Shanxi 710032, China.
| | | |
Collapse
|
1011
|
Endo A, Pӓrtty A, Kalliomӓki M, Isolauri E, Salminen S. Long-term monitoring of the human intestinal microbiota from the 2nd week to 13 years of age. Anaerobe 2014; 28:149-56. [PMID: 24933584 DOI: 10.1016/j.anaerobe.2014.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/15/2014] [Accepted: 06/03/2014] [Indexed: 12/11/2022]
Abstract
Microbial contact begins prior to birth and continues rapidly thereafter. Few long term follow-up studies have been reported and we therefore characterized the development of intestinal microbiota of ten subjects from the 2nd week of life to 13 years of age. PCR-denaturing gradient gel electrophoresis combined with several bacterial group-specific primer sets demonstrated the colonization steps of defined bacterial groups in the microbiota. Bifidobacterium species were seen throughout the test period in all subjects. Bacteroides fragilis group and Blautia coccoides-Eubacterium rectale group species were not detected in several subjects during the first 6 months of life but were commonly seen after 12 months of life. Streptococcus group appeared during early life but was not seen in several subjects at the age of 13 years. Although a few species were linked with the increasing age, major bacterial species in the groups did not change dramatically. Rather considerable changes were found in the relative abundances of each bacterial species. Clustering analysis of total bacterial flora indicated that the microbiota changed considerably between 6 months and 12 months of life, and, at the age of 12 months, the intestinal microbiota was already converted toward a profile characteristic of an adult microbiota. Probiotic supplementation in the beginning of life did not have major impacts on later microbiota development.
Collapse
Affiliation(s)
- Akihito Endo
- Functional Foods Forum, University of Turku, Itäinen Pitkäkatu 4A, Turku 20014, Finland.
| | - Anna Pӓrtty
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Marko Kalliomӓki
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Erika Isolauri
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, Itäinen Pitkäkatu 4A, Turku 20014, Finland
| |
Collapse
|
1012
|
Arndt A, Hoffacker P, Zellmer K, Goecer O, Recks MS, Kuerten S. Conventional housing conditions attenuate the development of experimental autoimmune encephalomyelitis. PLoS One 2014; 9:e99794. [PMID: 24919069 PMCID: PMC4053466 DOI: 10.1371/journal.pone.0099794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/16/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The etiology of multiple sclerosis (MS) has remained unclear, but a causative contribution of factors outside the central nervous system (CNS) is conceivable. It was recently suggested that gut bacteria trigger the activation of CNS-reactive T cells and the development of demyelinative disease. METHODS C57BL/6 (B6) mice were kept either under specific pathogen free or conventional housing conditions, immunized with the myelin basic protein (MBP)-proteolipid protein (PLP) fusion protein MP4 and the development of EAE was clinically monitored. The germinal center size of the Peyer's patches was determined by immunohistochemistry in addition to the level of total IgG secretion which was assessed by ELISPOT. ELISPOT assays were also used to measure MP4-specific T cell and B cell responses in the Peyer's patches and the spleen. Ear swelling assays were performed to determine the extent of delayed-type hypersensitivity reactions in specific pathogen free and conventionally housed mice. RESULTS In B6 mice that were actively immunized with MP4 and kept under conventional housing conditions clinical disease was significantly attenuated compared to specific pathogen free mice. Conventionally housed mice displayed increased levels of IgG secretion in the Peyer's patches, while the germinal center formation in the gut and the MP4-specific TH17 response in the spleen were diminished after immunization. Accordingly, these mice displayed an attenuated delayed type hypersensitivity (DTH) reaction in ear swelling assays. CONCLUSIONS The data corroborate the notion that housing conditions play a substantial role in the induction of murine EAE and suggest that the presence of gut bacteria might be associated with a decreased immune response to antigens of lower affinity. This concept could be of importance for MS and calls for caution when considering the therapeutic approach to treat patients with antibiotics.
Collapse
Affiliation(s)
- Andreas Arndt
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Peter Hoffacker
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | | | - Oktay Goecer
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Mascha S. Recks
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
1013
|
Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol 2014; 28:1221-38. [PMID: 24892638 DOI: 10.1210/me.2014-1108] [Citation(s) in RCA: 717] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The concept that the gut microbiota serves as a virtual endocrine organ arises from a number of important observations. Evidence for a direct role arises from its metabolic capacity to produce and regulate multiple compounds that reach the circulation and act to influence the function of distal organs and systems. For example, metabolism of carbohydrates results in the production of short-chain fatty acids, such as butyrate and propionate, which provide an important source of nutrients as well as regulatory control of the host digestive system. This influence over host metabolism is also seen in the ability of the prebiotic inulin to influence production of relevant hormones such as glucagon-like peptide-1, peptide YY, ghrelin, and leptin. Moreover, the probiotic Lactobacillus rhamnosus PL60, which produces conjugated linoleic acid, has been shown to reduce body-weight gain and white adipose tissue without effects on food intake. Manipulating the microbial composition of the gastrointestinal tract modulates plasma concentrations of tryptophan, an essential amino acid and precursor to serotonin, a key neurotransmitter within both the enteric and central nervous systems. Indirectly and through as yet unknown mechanisms, the gut microbiota exerts control over the hypothalamic-pituitary-adrenal axis. This is clear from studies on animals raised in a germ-free environment, who show exaggerated responses to psychological stress, which normalizes after monocolonization by certain bacterial species including Bifidobacterium infantis. It is tempting to speculate that therapeutic targeting of the gut microbiota may be useful in treating stress-related disorders and metabolic diseases.
Collapse
Affiliation(s)
- Gerard Clarke
- Alimentary Pharmabiotic Centre (G.C., R.M.S., P.J.K., C.S., J.F.C., T.G.D.) and Departments of Psychiatry (G.C., C.S., T.G.D.) and Anatomy and Neuroscience (J.F.C.), University College Cork, Cork, Ireland; and Teagasc (C.S.), Moorepark, Fermoy, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
1014
|
|
1015
|
Xu Y, Dugat-Bony E, Zaheer R, Selinger L, Barbieri R, Munns K, McAllister TA, Selinger LB. Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communities. PLoS One 2014; 9:e98115. [PMID: 24858731 PMCID: PMC4032279 DOI: 10.1371/journal.pone.0098115] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/28/2014] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed "super-shedders". A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a "normal" microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7.
Collapse
Affiliation(s)
- Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Eric Dugat-Bony
- AgroParisTech National Institute for Agricultural Research, Thiverval, Grignon France
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Lorna Selinger
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Ruth Barbieri
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Krysty Munns
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - L. Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
1016
|
Budzyński J, Kłopocka M. Brain-gut axis in the pathogenesis of Helicobacter pylori infection. World J Gastroenterol 2014; 20:5212-5225. [PMID: 24833851 PMCID: PMC4017036 DOI: 10.3748/wjg.v20.i18.5212] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/11/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the main pathogenic factor for upper digestive tract organic diseases. In addition to direct cytotoxic and proinflammatory effects, H. pylori infection may also induce abnormalities indirectly by affecting the brain-gut axis, similar to other microorganisms present in the alimentary tract. The brain-gut axis integrates the central, peripheral, enteric and autonomic nervous systems, as well as the endocrine and immunological systems, with gastrointestinal functions and environmental stimuli, including gastric and intestinal microbiota. The bidirectional relationship between H. pylori infection and the brain-gut axis influences both the contagion process and the host’s neuroendocrine-immunological reaction to it, resulting in alterations in cognitive functions, food intake and appetite, immunological response, and modification of symptom sensitivity thresholds. Furthermore, disturbances in the upper and lower digestive tract permeability, motility and secretion can occur, mainly as a form of irritable bowel syndrome. Many of these abnormalities disappear following H. pylori eradication. H. pylori may have direct neurotoxic effects that lead to alteration of the brain-gut axis through the activation of neurogenic inflammatory processes, or by microelement deficiency secondary to functional and morphological changes in the digestive tract. In digestive tissue, H. pylori can alter signaling in the brain-gut axis by mast cells, the main brain-gut axis effector, as H. pylori infection is associated with decreased mast cell infiltration in the digestive tract. Nevertheless, unequivocal data concerning the direct and immediate effect of H. pylori infection on the brain-gut axis are still lacking. Therefore, further studies evaluating the clinical importance of these host-bacteria interactions will improve our understanding of H. pylori infection pathophysiology and suggest new therapeutic approaches.
Collapse
|
1017
|
Selkrig J, Wong P, Zhang X, Pettersson S. Metabolic tinkering by the gut microbiome: Implications for brain development and function. Gut Microbes 2014; 5:369-80. [PMID: 24685620 PMCID: PMC4153776 DOI: 10.4161/gmic.28681] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain development is an energy demanding process that relies heavily upon diet derived nutrients. Gut microbiota enhance the host's ability to extract otherwise inaccessible energy from the diet via fermentation of complex oligosaccharides in the colon. This nutrient yield is estimated to contribute up to 10% of the host's daily caloric requirement in humans and fluctuates in response to environmental variations. Research over the past decade has demonstrated a surprising role for the gut microbiome in normal brain development and function. In this review we postulate that perturbations in the gut microbial-derived nutrient supply, driven by environmental variation, profoundly impacts upon normal brain development and function.
Collapse
Affiliation(s)
- Joel Selkrig
- School of Biological Sciences; Nanyang Technological University; Singapore, Singapore,Lee Kong Chain School of Medicine; Nanyang Technological University; Singapore, Singapore
| | - Peiyan Wong
- Program in Neuroscience and Behavioral Disorders; Duke-NUS Graduate Medical School Singapore; Singapore, Singapore,Behavioural Phenotyping Core Facility; Duke-NUS; Duke University Medical Center; Durham, NC USA
| | - Xiaodong Zhang
- Program in Neuroscience and Behavioral Disorders; Duke-NUS Graduate Medical School Singapore; Singapore, Singapore,Department of Physiology; National University of Singapore; Singapore, Singapore,Departments of Psychiatry and Behavioral Sciences; Duke University Medical Center; Durham, NC USA
| | - Sven Pettersson
- Lee Kong Chain School of Medicine; Nanyang Technological University; Singapore, Singapore,Department of Microbiology, Tumor, and Cell Biology (MTC); Karolinska Institute; Stockholm, Sweden,Correspondence to: Sven Pettersson,
| |
Collapse
|
1018
|
Kennedy PJ, Clarke G, O‘Neill A, Groeger JA, Quigley EMM, Shanahan F, Cryan JF, Dinan TG. Cognitive performance in irritable bowel syndrome: evidence of a stress-related impairment in visuospatial memory. Psychol Med 2014; 44:1553-1566. [PMID: 23985155 PMCID: PMC3967841 DOI: 10.1017/s0033291713002171] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/30/2013] [Accepted: 08/04/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Central nervous system (CNS) dysfunction is a prominent feature of the functional gastrointestinal (GI) disorder, irritable bowel syndrome (IBS). However, the neurobiological and cognitive consequences of key pathophysiological features of IBS, such as stress-induced changes in hypothalamic-pituitary-adrenal (HPA)-axis functioning, is unknown. Our aim was to determine whether IBS is associated with cognitive impairment, independently of psychiatric co-morbidity, and whether cognitive performance is related to HPA-axis function. METHOD A cross-sectional sample of 39 patients with IBS, a disease control group of 18 patients with Crohn's disease (CD) in clinical remission and 40 healthy age- and IQ-matched control participants were assessed using the Paired Associates Learning (PAL), Intra-Extra Dimensional Set Shift (IED) and Spatial Working Memory (SWM) tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and a computerized Stroop test. HPA-axis function was determined by measuring the cortisol awakening response (CAR). RESULTS IBS patients exhibited a subtle visuospatial memory deficit at the PAL six- pattern stage (p = 0.03), which remained after psychiatric co-morbidity was controlled for (p = 0.04). Morning cortisol levels were lower in IBS (p = 0.04) and significantly associated with visuospatial memory performance within IBS only (p = 0.02). CONCLUSIONS For the first time, altered cognitive function on a hippocampal-mediated test of visuospatial memory, which was related to cortisol levels and independent of psychiatric co-morbidity, has been identified in IBS. Visuospatial memory impairment may be a common, but currently neglected, component of IBS. Further elucidation of the nature of this impairment may lead to a greater understanding of the underlying pathophysiology of IBS, and may provide novel therapeutic approaches.
Collapse
Affiliation(s)
- P. J. Kennedy
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
- Department of Psychiatry, University College Cork, Ireland
| | - G. Clarke
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
- Department of Psychiatry, University College Cork, Ireland
| | - A. O‘Neill
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | | | - E. M. M. Quigley
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
- Department of Medicine, University College Cork, Ireland
| | - F. Shanahan
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
- Department of Medicine, University College Cork, Ireland
| | - J. F. Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - T. G. Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
- Department of Psychiatry, University College Cork, Ireland
| |
Collapse
|
1019
|
Dupont HL. Review article: evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on therapeutic targets. Aliment Pharmacol Ther 2014; 39:1033-42. [PMID: 24665829 DOI: 10.1111/apt.12728] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/18/2013] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a prevalent gastrointestinal disease with a substantial social and economic burden. Treatment options remain limited and research on the aetiology and pathophysiology of this multifactorial disease is ongoing. AIM To discuss the potential role of gut microbiota in the pathophysiology of IBS and to identify possible interactions with pathophysiologic targets in IBS. METHODS Articles were identified via a PubMed database search ['irritable bowel syndrome' AND (anti-bacterial OR antibiotic OR flora OR microbiota OR microflora OR probiotic)]. English-language articles were screened for relevance. Full review of publications for the relevant studies was conducted, including additional publications that were identified from individual article reference lists. RESULTS The role of gut microbiota in IBS is supported by varying lines of evidence from animal and human studies. For example, post-infectious IBS in humans is well documented. In addition, certain probiotics and nonsystemic antibiotics appear to be efficacious in the treatment of IBS. Mechanisms involved in improving IBS symptoms likely go beyond mere changes in the composition of the gut microbiota, and accumulating animal data support the interplay of microbiota with other IBS targets, such as the gut-brain axis, visceral hypersensitivity, mucosal inflammation and motility. CONCLUSION The role of the gut microbiota is still being elucidated; however, it appears to be one of several important factors that contributes to the aetiology and pathophysiology of the irritable bowel syndrome.
Collapse
Affiliation(s)
- H L Dupont
- St Luke's Medical Center, and Baylor College of Medicine, The University of Texas School of Public Health, Houston, TX, USA
| |
Collapse
|
1020
|
Abstract
The role of the gastrointestinal microbiota in human brain development and function is an area of increasing interest and research. Preclinical models suggest a role for the microbiota in broad aspects of human health, including mood, cognition, and chronic pain. Early human studies suggest that altering the microbiota with beneficial bacteria, or probiotics, can lead to changes in brain function, as well as subjective reports of mood. As the mechanisms of bidirectional communication between the brain and microbiota are better understood, it is expected that these pathways will be harnessed to provide novel methods to enhance health and treat disease.
Collapse
|
1021
|
Abstract
Regulatory T cells are the central element for the maintenance of peripheral tolerance. Several subtypes of regulatory T (Treg) cells have been described, and most of them belong to the CD4(+) T-helper (Th) cell lineage. These specific subtypes can be discriminated according to phenotype and function. Forkhead box protein 3 (FoxP3)-expressing natural Treg cells (Tregs) and IL-10-producing, T-regulatory type 1 cells (Tr1) are the best-studied types of CD4(+) regulatory T cells in humans and experimental animal models. It was shown that they play a crucial role during autoimmune neuroinflammation. Both cells types seem to be particularly important for multiple sclerosis (MS). Here, we discuss the role of CD4(+) regulatory T cells in autoimmune neuroinflammation with an emphasis on Tregs and Tr1 cells in MS.
Collapse
Affiliation(s)
- Markus Kleinewietfeld
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Faculty of Medicine, Dresden University of Technology (TUD), Dresden, Germany
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
1022
|
Glendinning L, Free A. Supra-organismal interactions in the human intestine. Front Cell Infect Microbiol 2014; 4:47. [PMID: 24795867 PMCID: PMC4005949 DOI: 10.3389/fcimb.2014.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/01/2014] [Indexed: 01/21/2023] Open
Affiliation(s)
- Laura Glendinning
- Developmental Biology, The Roslin Institute, University of Edinburgh Midlothian, UK
| | - Andrew Free
- School of Biological Sciences, Institute of Cell Biology, University of Edinburgh Edinburgh, UK
| |
Collapse
|
1023
|
Derkinderen P, Shannon KM, Brundin P. Gut feelings about smoking and coffee in Parkinson's disease. Mov Disord 2014; 29:976-9. [PMID: 24753353 DOI: 10.1002/mds.25882] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 12/14/2022] Open
Abstract
Strong epidemiologic evidence suggests that smokers and coffee drinkers have a lower risk of Parkinson's disease (PD). The explanation for this finding is still unknown, and the discussion has focused on two main hypotheses. The first suggests that PD patients have premorbid personality traits associated with dislike for coffee-drinking and smoking. The second posits that caffeine and nicotine are neuroprotective. We propose an alternative third hypothesis, in which both cigarette and coffee consumption change the composition of the microbiota in the gut in a way that mitigates intestinal inflammation. This, in turn, would lead to less misfolding of the protein alpha-synuclein in enteric nerves, reducing the risk of PD by minimizing propagation of the protein aggregates to the central nervous system, where they otherwise can induce neurodegeneration.
Collapse
Affiliation(s)
- Pascal Derkinderen
- CHU Nantes, Department of Neurology, F-44093, France; Inserm, U913, Nantes, F-44093, France
| | | | | |
Collapse
|
1024
|
Dominy SS, Brown JN, Ryder MI, Gritsenko M, Jacobs JM, Smith RD. Proteomic analysis of saliva in HIV-positive heroin addicts reveals proteins correlated with cognition. PLoS One 2014; 9:e89366. [PMID: 24717448 PMCID: PMC3981673 DOI: 10.1371/journal.pone.0089366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/21/2014] [Indexed: 02/07/2023] Open
Abstract
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high despite effective antiretroviral therapies. Multiple etiologies have been proposed over the last several years to account for this phenomenon, including the neurotoxic effects of antiretrovirals and co-morbid substance abuse; however, no underlying molecular mechanism has been identified. Emerging evidence in several fields has linked the gut to brain diseases, but the effect of the gut on the brain during HIV infection has not been explored. Saliva is the most accessible gut biofluid, and is therefore of great scientific interest for diagnostic and prognostic purposes. This study presents a longitudinal, liquid chromatography-mass spectrometry-based quantitative proteomics study investigating saliva samples taken from 8 HIV-positive (HIV+), 11 −negative (HIV−) heroin addicts. In addition, saliva samples were investigated from 11 HIV−, non-heroin addicted healthy controls. In the HIV+ group, 58 proteins were identified that show significant correlations with cognitive scores, implicating disruption of protein quality control pathways by HIV. Notably, only one protein from the HIV− heroin addict cohort showed a significant correlation with cognitive scores, and no proteins correlated with cognitive scores in the healthy control group. In addition, the majority of correlated proteins have been shown to be associated with exosomes, allowing us to propose that the salivary glands and/or oral epithelium may modulate brain function during HIV infection through the release of discrete packets of proteins in the form of exosomes.
Collapse
Affiliation(s)
- Stephen S. Dominy
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (SD); (RS)
| | - Joseph N. Brown
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Mark I. Ryder
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Marina Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
- * E-mail: (SD); (RS)
| |
Collapse
|
1025
|
Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse". FASEB J 2014; 28:3064-74. [PMID: 24719355 DOI: 10.1096/fj.13-245282] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse."
Collapse
Affiliation(s)
- Azucena Perez-Burgos
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and
| | - Yu-Kang Mao
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and
| | - John Bienenstock
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and Department of Medicine, Department of Pathology and Molecular Medicine, and
| | - Wolfgang A Kunze
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
1026
|
Gilbert SF. Symbiosis as the way of eukaryotic life: The dependent co-origination of the body. J Biosci 2014; 39:201-9. [DOI: 10.1007/s12038-013-9343-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
1027
|
Marques TM, Cryan JF, Shanahan F, Fitzgerald GF, Ross RP, Dinan TG, Stanton C. Gut microbiota modulation and implications for host health: Dietary strategies to influence the gut–brain axis. INNOV FOOD SCI EMERG 2014. [DOI: 10.1016/j.ifset.2013.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1028
|
Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L, Rabot S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 2014; 42:207-17. [PMID: 24636517 DOI: 10.1016/j.psyneuen.2014.01.014] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Establishment of the gut microbiota is one of the most important events in early life and emerging evidence indicates that the gut microbiota influences several aspects of brain functioning, including reactivity to stress. To better understand how the gut microbiota contributes to a vulnerability to the stress-related psychiatric disorders, we investigated the relationship between the gut microbiota, anxiety-like behavior and HPA axis activity in stress-sensitive rodents. We also analyzed the monoamine neurotransmitters in the brain upper structures involved in the regulation of stress and anxiety. METHODS Germfree (GF) and specific pathogen free (SPF) F344 male rats were first subjected to neurological tests to rule out sensorimotor impairments as confounding factors. Then, we examined the behavior responses of rats to social interaction and open-field tests. Serum corticosterone concentrations, CRF mRNA expression levels in the hypothalamus, glucocorticoid receptor (GR) mRNA expression levels in the hippocampus, and monoamine concentrations in the frontal cortex, hippocampus and striatum were compared in rats that were either exposed to the open-field stress or not. RESULTS GF rats spent less time sniffing an unknown partner than SPF rats in the social interaction test, and displayed a lower number of visits to the aversive central area, and an increase in latency time, time spent in the corners and number of defecations in the open-field test. In response to the open-field stress, serum corticosterone concentrations were 2.8-fold higher in GF than in SPF rats. Compared to that of SPF rats, GF rats showed elevated CRF mRNA expression in the hypothalamus and reduced GR mRNA expression in the hippocampus. GF rats also had a lower dopaminergic turnover rate in the frontal cortex, hippocampus and striatum than SPF rats. CONCLUSIONS In stress-sensitive F344 rats, absence of the gut microbiota exacerbates the neuroendocrine and behavioral responses to acute stress and the results coexist with alterations of the dopaminergic turnover rate in brain upper structures that are known to regulate reactivity to stress and anxiety-like behavior.
Collapse
Affiliation(s)
- Michèle Crumeyrolle-Arias
- INSERM, UMRS952 Physiopathologie des Maladies du Système Nerveux Central, F-75005 Paris, France; CNRS, UMR7224 Physiopathologie des Maladies du Système Nerveux Central, F-75005 Paris, France; UPMC, Physiopathologie des Maladies du Système Nerveux Central, F-75005 Paris, France
| | - Mathilde Jaglin
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, Micalis, F-78350 Jouy-en-Josas, France
| | - Aurélia Bruneau
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, Micalis, F-78350 Jouy-en-Josas, France
| | | | - Ana Cardona
- Institut Pasteur, Plateforme Imagerie Dynamique, Paris, France
| | - Valérie Daugé
- INSERM, UMRS952 Physiopathologie des Maladies du Système Nerveux Central, F-75005 Paris, France; CNRS, UMR7224 Physiopathologie des Maladies du Système Nerveux Central, F-75005 Paris, France; UPMC, Physiopathologie des Maladies du Système Nerveux Central, F-75005 Paris, France; CNRS, Micalis, F-78350 Jouy-en-Josas, France
| | - Laurent Naudon
- INSERM, UMRS952 Physiopathologie des Maladies du Système Nerveux Central, F-75005 Paris, France; CNRS, UMR7224 Physiopathologie des Maladies du Système Nerveux Central, F-75005 Paris, France; UPMC, Physiopathologie des Maladies du Système Nerveux Central, F-75005 Paris, France; CNRS, Micalis, F-78350 Jouy-en-Josas, France
| | - Sylvie Rabot
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, Micalis, F-78350 Jouy-en-Josas, France.
| |
Collapse
|
1029
|
Farmer AD, Randall HA, Aziz Q. It's a gut feeling: how the gut microbiota affects the state of mind. J Physiol 2014; 592:2981-8. [PMID: 24665099 DOI: 10.1113/jphysiol.2013.270389] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Common human experience shows that stress and anxiety may modulate gut function. Such observations have been combined with an increasing evidence base that has culminated in the concept of the brain-gut axis. Nevertheless, it has not been until recently that the gut and its attendant components have been considered to influence higher cerebral function and behaviour per se. Moreover, the proposal that the gut and the bacteria contained therein (collectively referred to as the microbiota) can modulate mood and behaviours, has an increasing body of supporting evidence, albeit largely derived from animal studies. The gut microbiota is a dynamic and diverse ecosystem and forms a symbiotic relationship with the host. Herein we describe the components of the gut microbiota and mechanisms by which it can influence neural development, complex behaviours and nociception. Furthermore, we propose the novel concept of a 'state of gut' rather than a state of mind, particularly in relation to functional bowel disorders. Finally, we address the exciting possibility that the gut microbiota may offer a novel area of therapeutic intervention across a diverse array of both affective and gastrointestinal disorders.
Collapse
Affiliation(s)
- Adam D Farmer
- Centre for Digestive Diseases, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, E1 2AJ, UK
| | - Holly A Randall
- Centre for Digestive Diseases, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, E1 2AJ, UK
| | - Qasim Aziz
- Centre for Digestive Diseases, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, E1 2AJ, UK
| |
Collapse
|
1030
|
Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014; 182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Tor C Savidge
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
1031
|
Bapteste E. The origins of microbial adaptations: how introgressive descent, egalitarian evolutionary transitions and expanded kin selection shape the network of life. Front Microbiol 2014; 5:83. [PMID: 24624128 PMCID: PMC3940903 DOI: 10.3389/fmicb.2014.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/16/2014] [Indexed: 11/20/2022] Open
Affiliation(s)
- Eric Bapteste
- UPMC, Institut de Biologie Paris Seine, UMR7138 'Evolution Paris Seine' Paris, France ; CNRS, Institut de Biologie Paris Seine, UMR7138 'Evolution Paris Seine' Paris, France
| |
Collapse
|
1032
|
Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res 2014; 39:624-44. [PMID: 24590859 DOI: 10.1007/s11064-014-1266-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 12/15/2022]
Abstract
The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota-termed "dysbiosis", impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional "Gut-Brain Axis" pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Department, Melbourne School of Engineering, The University of Melbourne, Grattan Street, 3rd Floor, Room No. 344, Parkville, VIC, 3010, Australia,
| |
Collapse
|
1033
|
Dorożyńska I, Majewska-Szczepanik M, Marcińska K, Szczepanik M. Partial depletion of natural gut flora by antibiotic aggravates collagen induced arthritis (CIA) in mice. Pharmacol Rep 2014; 66:250-5. [PMID: 24911078 DOI: 10.1016/j.pharep.2013.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 08/01/2013] [Accepted: 09/19/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects about 1% of the adult population and occurs twice as frequently among women than men. At present it is accepted that pathogenesis of RA is based on inflammatory response mediated by CD4(+) Th1 and Th17 lymphocytes. The most commonly applied model imitating RA is the collagen induced arthritis (CIA). A growing evidence shows that there is a correlation between microbial dysbiosis and human pathology which includes autoimmunity, allergic diseases, obesity, inflammatory bowel disease (IBD), metabolic syndrome. METHODS Collagen induced arthritis was used to study influence of natural gut flora on course of rheumatoid arthritis. RESULTS Current work employing CIA model showed that partial depletion of natural gut flora with orally administered antibiotic Baytril (enrofloxacin) aggravates disease severity when compared to control mice. Observed partial depletion of both aerobic and anaerobic bacteria did not affect animal body weight. Additionally, in vitro study showed increased production of IFN-? and IL-17A and decreased release of IL-4 by axillary lymph node cells (ALNC) isolated from mice treated with antibiotic and induced CIA when compared to positive control. Furthermore, treatment with antibiotic prior to CIA induction results in augmented production of IFN-?, IL-17A and IL-6 by mesenteric lymph node cells (MLNC). CONCLUSION Presented data suggest that alteration of gut microbiota via use of enrofloxacin may play a role in modulating arthritis symptom severity in this mouse model.
Collapse
Affiliation(s)
- Iwona Dorożyńska
- Department of Medical Biology, Jagiellonian University College of Medicine, Kraków, Poland
| | | | - Katarzyna Marcińska
- Department of Medical Biology, Jagiellonian University College of Medicine, Kraków, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Jagiellonian University College of Medicine, Kraków, Poland
| |
Collapse
|
1034
|
Abstract
While autism spectrum disorder (ASD) is characterized by communication impairments, social abnormalities, and stereotypic behaviors, several medical comorbidities are observed in autistic individuals. Of these, gastrointestinal (GI) abnormalities are of particular interest given their reported prevalence and correlation with the severity of core autism-related behavioral abnormalities. This review discusses the GI pathologies seen in ASD individuals and the association of particular GI conditions with known genetic and environmental risk factors for autism. It further addresses how GI abnormalities can affect the neuropathological and behavioral features of ASD, as well as the development of autism-related endophenotypes such as immune dysregulation, hyperserotonemia, and metabolic dysfunction. Finally, it presents emerging evidence for a gut-brain connection in autism, wherein GI dysfunction may contribute to the pathogenesis or severity of ASD symptoms.
Collapse
|
1035
|
Affiliation(s)
- Bruno P. Chumpitazi
- Baylor College of Medicine, Department of Pediatrics, Texas Children’s Hospital, Houston
| | - Robert J. Shulman
- Baylor College of Medicine, Department of Pediatrics, Texas Children’s Hospital, Houston2US Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
1036
|
Caracciolo B, Xu W, Collins S, Fratiglioni L. Cognitive decline, dietary factors and gut–brain interactions. Mech Ageing Dev 2014; 136-137:59-69. [DOI: 10.1016/j.mad.2013.11.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/16/2013] [Accepted: 11/28/2013] [Indexed: 02/08/2023]
|
1037
|
Current understanding on the role of standard and immunoproteasomes in inflammatory/immunological pathways of multiple sclerosis. Autoimmune Dis 2014; 2014:739705. [PMID: 24523959 PMCID: PMC3910067 DOI: 10.1155/2014/739705] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/12/2013] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin-proteasome system is the major intracellular molecular machinery for protein degradation and maintenance of protein homeostasis in most human cells. As ubiquitin-proteasome system plays a critical role in the regulation of the immune system, it might also influence the development and progression of multiple sclerosis (MS). Both ex vivo analyses and animal models suggest that activity and composition of ubiquitin-proteasome system are altered in MS. Proteasome isoforms endowed of immunosubunits may affect the functionality of different cell types such as CD8+ and CD4+ T cells and B cells as well as neurons during MS development. Furthermore, the study of proteasome-related biomarkers, such as proteasome antibodies and circulating proteasomes, may represent a field of interest in MS. Proteasome inhibitors are already used as treatment for cancer and the recent development of inhibitors selective for immunoproteasome subunits may soon represent novel therapeutic approaches to the different forms of MS. In this review we describe the current knowledge on the potential role of proteasomes in MS and discuss the pro et contra of possible therapies for MS targeting proteasome isoforms.
Collapse
|
1038
|
Abstract
PURPOSE OF REVIEW The incidence and severity of Clostridium difficile infection (CDI) have increased worldwide in the past two decades. A principal function of the gut microbiota is to protect the intestine against colonization by exogenous pathogens. Increasingly, the gut microbiota have been shown to influence susceptibility to other genetic and environmentally acquired conditions. Transplantation of healthy donor fecal material in patients with CDI may re-establish the normal composition of the gut microbiota and has been shown to be effective in recurrent CDI. We intend to review the most recent data on fecal microbiota transplantation (FMT) and critically discuss potential advantages and handicaps of this new therapeutic approach. RECENT FINDINGS Evidence from case series and only one randomized clinical trial suggests that FMT is able to restore the wide diversity of microflora, improve C. difficile-related symptoms and prevent CDI recurrence. SUMMARY FMT is a promising treatment option for serious and recurrent CDI, and current evidence (although weak) demonstrates consistent and excellent efficacy in clinical outcomes. However, many questions should be answered before it may be recommended as routine standard treatment. Mechanisms of action need to be better understood. Long-term follow-up studies are needed to determine long-lasting effects (including the association with autoimmune diseases).
Collapse
|
1039
|
Gareau MG. Microbiota-gut-brain axis and cognitive function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:357-71. [PMID: 24997042 DOI: 10.1007/978-1-4939-0897-4_16] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated a clear association between changes in the microbiota and cognitive behavior. Intestinal dysbiosis, as modeled using GF mice (containing no microbiota), bacterial infection with an enteric pathogen, and administration of probiotics, can modulate cognitive behavior including learning and memory. This chapter will highlight recent findings in both human and animal studies indicating how changes in the composition and diversity of the microbiota can impact behavior and brain physiology in both disease states and in health. Cognitive behavior can not only be affected in cases of intestinal disease, but also manifests changes in extra-intestinal disease conditions.
Collapse
Affiliation(s)
- Mélanie G Gareau
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr #0063, La Jolla, CA, 92093, USA,
| |
Collapse
|
1040
|
Bourlioux P. Actualité du microbiote intestinal. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 72:15-21. [DOI: 10.1016/j.pharma.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 09/01/2013] [Indexed: 12/26/2022]
|
1041
|
Neuropeptides and the microbiota-gut-brain axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:195-219. [PMID: 24997035 DOI: 10.1007/978-1-4939-0897-4_9] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides are likely to emerge as neural and endocrine messengers in orchestrating the microbiota-gut-brain axis in health and disease.
Collapse
|
1042
|
Abstract
PURPOSE OF REVIEW To critically evaluate recent advances in the anatomy and physiology of colorectal motility and sensation and to discuss their potential clinical implications. RECENT FINDINGS Relatively noninvasive methods for the assessment of colonic transit have been developed and validated and high-resolution colonic and anorectal manometry as well as the barostat, despite their technical challenges, are beginning to show promise in clinical practice. At a more basic level, the importance of interstitial cells of Cajal as pacemakers, neuromodulators and stretch receptors has been revealed and their dysfunction associated with a number of disease states. Although the impact of a variety of biologically active agents on colonic sensorineural function in vitro has been described, the clinical implications of most of these effects remain unknown at this time. As the molecular bases of colonic motor and sensory function are identified, new disease entities are being described and novel therapeutic targets revealed. Equally important is the growing recognition of luminal factors and of the colonic microbiota, in particular, in the generation and modulation of colonic motility and sensation. SUMMARY The complexities of the basic physiology of colorectal motility and sensation continue to be revealed and our understanding of their regulation has progressed; clinical implications remain at a preliminary stage. Progress has been made, however, in the clinical assessment of colonic motor function.
Collapse
|
1043
|
Martinez FD. The human microbiome. Early life determinant of health outcomes. Ann Am Thorac Soc 2014; 11 Suppl 1:S7-12. [PMID: 24437411 PMCID: PMC3972972 DOI: 10.1513/annalsats.201306-186mg] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/16/2013] [Indexed: 01/15/2023] Open
Abstract
The development of new technologies to isolate and identify microbial genomes has markedly increased our understanding of the role of microbiomes in health and disease. The idea, first proposed as part of the hygiene hypothesis, that environmental microbes influence the developmental trajectories of the immune system in early life, has now been considerably extended and refined. The abundant microbiota present in mucosal surfaces, especially the gut, is actively selected by the host through complex receptor systems that respond differentially depending on the molecular patterns presented to mucosal cells. Germ-free mice are more likely to develop allergic airway inflammation and show alterations in normal motor control and anxiety. These effects can be reversed by neonatal microbial recolonization but remain unchanged if recolonization occurs in adults. What emerges from these recent studies is the discovery of a complex, major early environmental determinant of lifetime human phenotypes. To change the natural course of asthma, obesity, and other chronic inflammatory conditions, active manipulation of the extensive bacterial, phage, and fungal metagenomes present in mucosal surfaces may be required, specifically during the developing years. Domesticating the human microbiome and adapting it to our health needs may be a challenge akin to, but far more complex than, the one faced by humanity when a few dozen species of plants and animals were domesticated during the transition between hunter-gatherer and sedentary societies after the end of the Pleistocene era.
Collapse
Affiliation(s)
- Fernando D. Martinez
- Arizona Respiratory Center and BIO5 Institute, The University of Arizona, Tucson, Arizona
| |
Collapse
|
1044
|
|
1045
|
Beurel E, Nemeroff CB. Interaction of stress, corticotropin-releasing factor, arginine vasopressin and behaviour. Curr Top Behav Neurosci 2014; 18:67-80. [PMID: 24659554 DOI: 10.1007/7854_2014_306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Stress mediates the activation of a variety of systems ranging from inflammatory to behavioral responses. In this review we focus on two neuropeptide systems, corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and their roles in regulating stress responses. Both peptides have been demonstrated to be involved in anxiogenic and depressive effects, actions mediated in part through their regulation of the hypothalamic-pituitary-adrenal axis and the release of adrenocorticotropic hormone. Because of the depressive effects of CRF and AVP, drugs modifying the stress-associated detrimental actions of CRF and AVP are under development, particularly drugs antagonizing CRF and AVP receptors for therapy in depression.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | | |
Collapse
|
1046
|
Irritable eye syndrome: neuroimmune mechanisms and benefits of selected nutrients. Ocul Surf 2013; 12:134-45. [PMID: 24725325 DOI: 10.1016/j.jtos.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/21/2013] [Accepted: 09/01/2013] [Indexed: 12/15/2022]
Abstract
Previous studies showed comorbidity of some ocular, enteral, and affective symptoms comprising irritable eye syndrome. Aims of the present study were to learn more about the pathogenic mechanisms of this syndrome and to evaluate benefits of food supplements on these disorders. In in vitro assay, Lactobacillus acidophilus lysate inhibited interleukin (IL)-1β and tumor necrosis factor (TNF)-α generation of lipopolysaccharide (LPS)-stimulated macrophages in dose- and size-dependent manner. For a prospective, open-label phase I/II controlled clinical trial, 40 subjects affected by ocular dysesthesia and hyperesthesia and comorbid enteral and anxiety-depression symptoms were randomly assigned either into the treated group, which received a composition containing probiotic lysate, vitamins A, B, and D and omega 3 fatty acids, or into the control group, which received vitamins and omega 3 fatty acids. For reference, 20 age- and sex-matched healthy subjects were also selected. White blood count (WBC) and lymphocyte and monocyte counts, as well as IL-6 and TNF-α levels, were significantly above the reference levels in both treated and control groups. After 8 weeks, WBC and lymphocyte and monocyte counts, and cytokine levels significantly decreased, and ocular, enteral, and anxiety-depression symptoms significantly improved in the treated group as compared to the control group. This proof-of-concept study suggested that subclinical inflammation may be a common mechanism connecting ocular, enteral, and anxiety/depression symptoms, and supplements affecting dysbiosis may be a new approach to treating this syndrome.
Collapse
|
1047
|
Alverdy J, Gilbert J, DeFazio JR, Sadowsky MJ, Chang EB, Morowitz MJ, Teitelbaum DH. Proceedings of the 2013 A.S.P.E.N. Research workshop: the interface between nutrition and the gut microbiome: implications and applications for human health [corrected]. JPEN J Parenter Enteral Nutr 2013; 38:167-78. [PMID: 24379111 DOI: 10.1177/0148607113517904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human and earth microbiomes are among the most important biological agents in understanding and preventing disease. Technology is advancing at a fast pace and allowing for high-resolution analysis of the composition and function of our microbial partners across regions, space, and time. Bioinformaticists and biostatisticians are developing ever more elegant displays to understand the generated megadatasets. A virtual cyberinfrastructure of search engines to cross-reference the rapidly developing data is emerging in line with technologic advances. Nutrition science will reap the benefits of this new field, and its role in preserving the earth and the humans who inhabit it will become evidently clear. In this report we highlight some of the topics of an A.S.P.E.N.-sponsored symposium held during Clinical Nutrition Week in 2013 that address the importance of the human microbiome to human health and disease.
Collapse
Affiliation(s)
- John Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
1048
|
Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis. GENES BRAIN AND BEHAVIOR 2013; 13:69-86. [PMID: 24286462 DOI: 10.1111/gbb.12109] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022]
Abstract
To date, there is rapidly increasing evidence for host-microbe interaction at virtually all levels of complexity, ranging from direct cell-to-cell communication to extensive systemic signalling, and involving various organs and organ systems, including the central nervous system. As such, the discovery that differential microbial composition is associated with alterations in behaviour and cognition has significantly contributed to establishing the microbiota-gut-brain axis as an extension of the well-accepted gut-brain axis concept. Many efforts have been focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome to neurodevelopmental disorders such as autism. There is also a growing appreciation of the role of epigenetic mechanisms in shaping brain and behaviour. However, the role of epigenetics in informing host-microbe interactions has received little attention to date. This is despite the fact that there are many plausible routes of interaction between epigenetic mechanisms and the host-microbiota dialogue. From this new perspective we put forward novel, yet testable, hypotheses. Firstly, we suggest that gut-microbial products can affect chromatin plasticity within their host's brain that in turn leads to changes in neuronal transcription and eventually alters host behaviour. Secondly, we argue that the microbiota is an important mediator of gene-environment interactions. Finally, we reason that the microbiota itself may be viewed as an epigenetic entity. In conclusion, the fields of (neuro)epigenetics and microbiology are converging at many levels and more interdisciplinary studies are necessary to unravel the full range of this interaction.
Collapse
|
1049
|
Candela M, Biagi E, Brigidi P, O'Toole PW, De Vos WM. Maintenance of a healthy trajectory of the intestinal microbiome during aging: a dietary approach. Mech Ageing Dev 2013; 136-137:70-5. [PMID: 24373997 DOI: 10.1016/j.mad.2013.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 12/05/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022]
Abstract
Sharing an intense transgenomic metabolism with the host, the intestinal microbiota is an essential factor for several aspects of the human physiology. However, several age-related factors, such as changes diet, lifestyle, inflammation and frailty, force the deterioration of this intestinal microbiota-host mutualistic interaction, compromising the possibility to reach longevity. In this scenario, the NU-AGE project involves the development of dietary interventions specifically tailored to the maintenance of a healthy trajectory of the intestinal microbiome, counteracting all processes connected to the pathophysiology of the human aging.
Collapse
Affiliation(s)
- Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paul W O'Toole
- Department of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - Willem M De Vos
- Laboratory of Microbiology, Wageningen University, The Netherlands, and Departments of Veterinary Biosciences and Bacteriology & Immunology, Helsinki University, Finland
| |
Collapse
|
1050
|
Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2013; 181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
|