1001
|
Ishii KJ, Coban C, Akira S. Manifold mechanisms of Toll-like receptor-ligand recognition. J Clin Immunol 2009; 25:511-21. [PMID: 16380815 DOI: 10.1007/s10875-005-7829-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 08/08/2005] [Indexed: 02/07/2023]
Abstract
Toll-like receptors recognize a diverse range of molecules derived from pathogens as well as host cells. As the number and diversity of TLR ligands and host factors increase, more questions are being raised. Here, we review recent advances toward understanding the molecular and cellular mechanisms underlying TLR-mediated direct or indirect recognition of their diverse range of ligands, including lipids, proteins, and nucleic acids. The elucidation of such mechanisms may represent a key for developing novel immunotherapeutics for infectious diseases, allergies, or cancer and to intervene in immunological disorders such as autoimmune diseases.
Collapse
Affiliation(s)
- Ken J Ishii
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
1002
|
Liu Y, Yuan Y, Li Y, Zhang J, Xiao G, Vodovotz Y, Billiar TR, Wilson MA, Fan J. Interacting neuroendocrine and innate and acquired immune pathways regulate neutrophil mobilization from bone marrow following hemorrhagic shock. THE JOURNAL OF IMMUNOLOGY 2009; 182:572-80. [PMID: 19109190 DOI: 10.4049/jimmunol.182.1.572] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymorphonuclear neutrophils (PMN) are critical innate immune effector cells that either protect the host or exacerbate organ dysfunction by migrating to injured or inflamed tissues. Resuscitated hemorrhagic shock following major trauma promotes the development of organ inflammation by priming PMN migration and activation in response to a second, often trivial, stimulus (a so-called "two hit" phenomenon). PMN mobilization from bone marrow supports a sustained, hemorrhagic shock/resuscitation (HS/R)-primed migration of PMN. We addressed the role and mechanism of HS/R in regulating PMN egress from bone marrow. We demonstrate that HS/R through the alarmin HMGB1 induces IL-23 secretion from macrophages in an autocrine and TLR4 signaling-dependent manner. In turn IL-23, through an IL-17 G-CSF-mediated mechanism, induces PMN egress from bone marrow. We also show that beta-adrenergic receptor activation by catecholamine of macrophages mediates the HS/R-induced release of HMGB1. These data indicate that HS/R, a global ischemia/reperfusion stimulus, regulates PMN mobilization through a series of interacting pathways that include neuroendocrine and innate and acquired immune systems. Blocking this novel signaling axis may present a novel therapeutic target for posttrauma inflammation.
Collapse
Affiliation(s)
- Yujian Liu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1003
|
Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci U S A 2009; 106:3390-5. [PMID: 19218437 DOI: 10.1073/pnas.0810169106] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While studies in animal models have linked Toll-like receptor (TLR) 4 signaling to kidney injury induced by ischemia and reperfusion, the relevance of TLR4 activation to allograft injury in human kidney transplants is unknown. Here we show that TLR4 is constitutively expressed within all donor kidneys but is significantly higher in deceased-, compared with living-donor organs. Tubules from deceased- but not living-donor kidneys also stained positively for high-mobility group box-1 (HMGB1), a known endogenous TLR4 ligand. In vitro stimulation of human tubular cells with HMGB1, in a TLR4-dependent system, confirmed that HMGB1 can stimulate proinflammatory responses through TLR4. To assess the functional significance of TLR4 in human kidney transplantation, we determined whether TLR4 mutations that confer diminished affinity for HMGB1 influence intragraft gene-expression profiles and immediate graft function. Compared with kidneys expressing WT alleles, kidneys with a TLR4 loss-of-function allele contained less TNFalpha, MCP-1, and more heme oxygenase 1 (HO-1), and exhibited a higher rate of immediate graft function. These results represent previously undetected evidence that donor TLR4 contributes to graft inflammation and sterile injury following cold preservation and transplantation in humans. Targeting TLR4 signaling may have value in preventing or treating postischemic acute kidney injury after transplantation.
Collapse
|
1004
|
Lupus antibodies to the HMGB1 chromosomal protein: epitope mapping and association with disease activity. Mod Rheumatol 2009; 19:283-92. [PMID: 19214652 DOI: 10.1007/s10165-009-0151-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/26/2008] [Indexed: 10/20/2022]
Abstract
The high mobility group box 1 (HMGB1) protein is a non-histone chromosomal protein that acts as a potent proinflammatory cytokine when actively secreted from LPS- or TNF-activated macrophages, monocytes, and other cells. Anti-HMGB1/2 antibodies have been previously identified in sera from a high proportion of patients with autoimmune diseases. In this study, we examined anti-HMGB1 antibody titers in sera of patients with systemic rheumatic diseases and the correlations between the presence of anti-HMGB1 antibodies and disease activity in systemic lupus erythematosus (SLE) patients by enzyme-linked immunosorbent assay and western blotting. We detected increases in both the levels and the frequency of anti-HMGB1 antibodies in sera from SLE and polymyositis/dermatomyositis (PM/DM) patients, and observed that the presence of anti-HMGB1 antibodies positively correlates with SLE disease activity index. Through epitope mapping, we found that multiple HMGB1 epitopes were recognised in SLE sera, with the major epitope mapping to box A. Another epitope, the joiner region of HMGB1, was preferentially recognized by SLE sera, but not by PM/DM sera. Collectively, these observations suggest that the presence of anti-HMGB1 antibodies correlates with disease activity in SLE patients.
Collapse
|
1005
|
Abstract
BACKGROUND Remarkable progress has been made during the last decade in defining the molecular mechanisms that underlie septic shock. This rapidly expanding field is leading to new therapeutic opportunities in the management of severe sepsis. AIM To provide the clinician with a timely summary of the molecular biology of sepsis and to better understand recent advances in sepsis research. DATA SELECTION Medline search of relevant publications in basic mechanisms of sepsis/severe sepsis/septic shock, and selected literature review of other manuscripts about the signalosome, inflammasome, apoptosis, or mechanisms of shock. DATA SYNTHESIS AND FINDINGS: The identification of the toll-like receptors and the associated concept of innate immunity based upon pathogen- or damage-associated molecular pattern molecules allowed significant advances in our understanding of the pathophysiology of sepsis. The essential elements of the inflammasome and signal transduction networks responsible for activation of the host response have now been characterized. Apoptosis, mitochondrial dysfunction, sepsis-related immunosuppression, late mediators of systemic inflammation, control mechanisms for coagulation, and reprogramming of immune response genes all have critical roles in the development of sepsis. CONCLUSIONS Many of these basic discoveries have direct implications for the clinical management of sepsis. The translation of these "bench-to-bedside" findings into new therapeutic strategies is already underway. This brief review provides the clinician with a primer into the basic mechanisms responsible for the molecular biology of sepsis, severe sepsis, and septic shock.
Collapse
|
1006
|
Flohé SB, Flohé S, Schade FU. Invited review: deterioration of the immune system after trauma: signals and cellular mechanisms. Innate Immun 2009; 14:333-44. [PMID: 19039057 DOI: 10.1177/1753425908100016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Multiple trauma leads to a deterioration of the immune system. On the one hand, hyperinflammation mediates remote organ damage and may lead to multi-organ failure. On the other hand, immunosuppression develops and promotes an enhanced risk to acquire infectious complications after trauma. The mechanisms that underlie these opposing consequences of trauma are not yet completely understood. There is increasing evidence that endogenous danger signals that derive from destroyed tissues play a role in trauma-induced immune dysfunction. Here, we give an overview on the common animal models that are used to investigate trauma-induced pathology, potential signals and cellular mechanisms that support the imbalance between inflammation and counter-regulation after trauma.
Collapse
Affiliation(s)
- Stefanie B Flohé
- Surgical Research, Department of Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | | | | |
Collapse
|
1007
|
Abstract
In ischemic stroke, the necrotic core is surrounded by a zone of inflammation, in which delayed cell death aggravates the initial insult. Here, we provide evidence that the receptor for advanced glycation end products (RAGE) functions as a sensor of necrotic cell death and contributes to inflammation and ischemic brain damage. The RAGE ligand high mobility group box 1 (HMGB1) was elevated in serum of stroke patients and was released from ischemic brain tissue in a mouse model of cerebral ischemia. A neutralizing anti-HMGB1 antibody and HMGB1 box A, an antagonist of HMGB1 at the receptor RAGE, ameliorated ischemic brain damage. Interestingly, genetic RAGE deficiency and the decoy receptor soluble RAGE reduced the infarct size. In vitro, expression of RAGE in (micro)glial cells mediated the toxic effect of HMGB1. Addition of macrophages to neural cultures further enhanced the toxic effect of HMGB1. To test whether immigrant macrophages in the ischemic brain mediate the RAGE effect, we generated chimeric mice by transplanting RAGE(-/-) bone marrow to wild-type mice. RAGE deficiency in bone marrow-derived cells significantly reduced the infarct size. Thus, HMGB1-RAGE signaling links necrosis with macrophage activation and may provide a target for anti-inflammatory therapy in stroke.
Collapse
|
1008
|
Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol 2009; 29:1959-71. [PMID: 19158276 DOI: 10.1128/mcb.01862-08] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epigenetic silencing of tumor necrosis factor alpha (TNF-alpha) and interleukin 1beta (IL-1beta) transcription occurs in blood leukocytes of animals and humans after the initiation of severe systemic inflammation (SSI). We previously reported that the epigenetic signature requires induction of NF-kappaB factor RelB, which directs histone H3K9 dimethylation, disrupts assembly of transcription activator NF-kappaB p65, and induces a sustained switch from the euchromatin to heterochromatin. Here, we report the novel findings that intracellular high mobility group box 1 protein (HMGB1) and nucleosome linker histone H1 protein are necessary components of endotoxin-mediated silencing of TNF-alpha in THP-1 human promonocytes. HMGB1 binds the TNF-alpha promoter during transcription silencing and promotes assembly of the repressor RelB. Depletion of HMGB1 by small interfering RNA results in dissociation of RelB from the promoter and partially restores TNF-alpha transcription. Histone H1, which typically displaces HMGB1 from nucleosomal DNA, also binds concomitantly with HMGB1 to the heterochromatin of the silenced TNF-alpha promoter. Combined knockdown of HMGB1 and H1 restores binding of the transcriptionally active NF-kappaB p65 and reestablishes TNF-alpha mRNA levels. Chromatin reimmunoprecipitation experiments demonstrate that HMGB1 and H1 are likely recruited to TNF-alpha sequences independently and that their binding correlates with histone H3K9 dimethylation, as inhibition of histone methylation blocks HMGB1 and H1 binding. Moreover, HMGB1- and H1-mediated chromatin modifications are gene specific during endotoxin silencing in that they also bind and repress acute proinflammatory IL-1beta, while no binding nor repression of antiinflammatory IkappaBalpha is observed. Finally, we find that H1 and HMGB1 bind to the TNF-alpha a promoter in human leukocytes obtained from patients with SSI. We conclude proinflammatory HMGB1 and structural nucleosome linker H1 couple as a component of the epigenetic complex that silences acute proinflammatory TNF-alpha during the assembly of heterochromatin in the SSI phenotype.
Collapse
|
1009
|
Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, Yagiz K, Edwards MR, Michelsen KS, Kroeger KM, Liu C, Muhammad AKMG, Clark MC, Arditi M, Comin-Anduix B, Ribas A, Lowenstein PR, Castro MG. HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 2009; 6:e10. [PMID: 19143470 PMCID: PMC2621261 DOI: 10.1371/journal.pmed.1000010] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 11/19/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor that carries a 5-y survival rate of 5%. Attempts at eliciting a clinically relevant anti-GBM immune response in brain tumor patients have met with limited success, which is due to brain immune privilege, tumor immune evasion, and a paucity of dendritic cells (DCs) within the central nervous system. Herein we uncovered a novel pathway for the activation of an effective anti-GBM immune response mediated by high-mobility-group box 1 (HMGB1), an alarmin protein released from dying tumor cells, which acts as an endogenous ligand for Toll-like receptor 2 (TLR2) signaling on bone marrow-derived GBM-infiltrating DCs. METHODS AND FINDINGS Using a combined immunotherapy/conditional cytotoxic approach that utilizes adenoviral vectors (Ad) expressing Fms-like tyrosine kinase 3 ligand (Flt3L) and thymidine kinase (TK) delivered into the tumor mass, we demonstrated that CD4(+) and CD8(+) T cells were required for tumor regression and immunological memory. Increased numbers of bone marrow-derived, tumor-infiltrating myeloid DCs (mDCs) were observed in response to the therapy. Infiltration of mDCs into the GBM, clonal expansion of antitumor T cells, and induction of an effective anti-GBM immune response were TLR2 dependent. We then proceeded to identify the endogenous ligand responsible for TLR2 signaling on tumor-infiltrating mDCs. We demonstrated that HMGB1 was released from dying tumor cells, in response to Ad-TK (+ gancyclovir [GCV]) treatment. Increased levels of HMGB1 were also detected in the serum of tumor-bearing Ad-Flt3L/Ad-TK (+GCV)-treated mice. Specific activation of TLR2 signaling was induced by supernatants from Ad-TK (+GCV)-treated GBM cells; this activation was blocked by glycyrrhizin (a specific HMGB1 inhibitor) or with antibodies to HMGB1. HMGB1 was also released from melanoma, small cell lung carcinoma, and glioma cells treated with radiation or temozolomide. Administration of either glycyrrhizin or anti-HMGB1 immunoglobulins to tumor-bearing Ad-Flt3L and Ad-TK treated mice, abolished therapeutic efficacy, highlighting the critical role played by HMGB1-mediated TLR2 signaling to elicit tumor regression. Therapeutic efficacy of Ad-Flt3L and Ad-TK (+GCV) treatment was demonstrated in a second glioma model and in an intracranial melanoma model with concomitant increases in the levels of circulating HMGB1. CONCLUSIONS Our data provide evidence for the molecular and cellular mechanisms that support the rationale for the clinical implementation of antibrain cancer immunotherapies in combination with tumor killing approaches in order to elicit effective antitumor immune responses, and thus, will impact clinical neuro-oncology practice.
Collapse
Affiliation(s)
- James F Curtin
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Naiyou Liu
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Marianela Candolfi
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Weidong Xiong
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Hikmat Assi
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Kader Yagiz
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Matthew R Edwards
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
| | - Kathrin S Michelsen
- Inflammatory Bowel Disease Center and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California, United States of America
| | - Kurt M Kroeger
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Chunyan Liu
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - A. K. M. Ghulam Muhammad
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Mary C Clark
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Moshe Arditi
- Division of Pediatric Infectious Diseases, Cedars Sinai Medical Center, Los Angeles, California, United States of America
| | - Begonya Comin-Anduix
- Department of Surgery, University of California, Los Angeles, California, United States of America
| | - Antoni Ribas
- Department of Surgery, University of California, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Pedro R Lowenstein
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- The Brain Research Institute, University of California, Los Angeles, California, United States of America
| | - Maria G Castro
- Board of Governors' Gene Therapeutics Research Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- The Brain Research Institute, University of California, Los Angeles, California, United States of America
| |
Collapse
|
1010
|
Muthumani G, Laddy DJ, Sundaram SG, Fagone P, Shedlock DJ, Kannan S, Wu L, Chung CW, Lankaraman KM, Burns J, Muthumani K, Weiner DB. Co-immunization with an optimized plasmid-encoded immune stimulatory interleukin, high-mobility group box 1 protein, results in enhanced interferon-gamma secretion by antigen-specific CD8 T cells. Immunology 2009; 128:e612-20. [PMID: 19740322 DOI: 10.1111/j.1365-2567.2009.03044.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA vaccination is a novel immunization strategy that has great potential for the development of vaccines and immune therapeutics. This strategy has been highly effective in mice, but is less immunogenic in non-human primates and in humans. Enhancing DNA vaccine potency remains a challenge. It is likely that antigen-presenting cells (APCs), and especially dendritic cells (DCs), play a significant role in the presentation of the vaccine antigen to the immune system. A new study reports the synergistic recruitment, expansion and activation of DCs in vivo by high-mobility group box 1 (HMGB1) protein. Such combinational strategies for delivering vaccine in a single, simple platform will hypothetically bolster the cellular immunity in vivo. Here, we combined plasmid encoding human immunodeficiency virus-1 (HIV-1) Gag and Env with an HMGB1 plasmid as a DNA adjuvant in BALB/c mice (by intramuscular immunization via electroporation), and humoral and cellular responses were measured. Co-administration of this potent immunostimulatory adjuvant strongly enhanced the cellular interferon-gamma (IFN-gamma) and humoral immune response compared with that obtained in mice immunized with vaccine only. Our results show that co-immunization with HMGB1 can have a strong adjuvant activity, driving strong cellular and humoral immunity that may be an effective immunological adjuvant in DNA vaccination against HIV-1.
Collapse
Affiliation(s)
- Gowtham Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1011
|
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors that are best-known for their role in host defence from infection. Emerging evidence also suggests that TLRs have an important role in maintaining tissue homeostasis by regulating the inflammatory and tissue repair responses to injury. The development of cancer has been associated with microbial infection, injury, inflammation and tissue repair. Here we discuss how the function of TLRs may relate to these processes in the context of carcinogenesis.
Collapse
Affiliation(s)
- Seth Rakoff-Nahoum
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | |
Collapse
|
1012
|
Lin L, Park S, Lakatta EG. RAGE signaling in inflammation and arterial aging. Front Biosci (Landmark Ed) 2009; 14:1403-13. [PMID: 19273137 DOI: 10.2741/3315] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor (PRR) that interacts with diverse endogenous ligands. Ligation of RAGE triggers a series of cellular signaling events, including the activation of transcription factor NF-kappaB, leading to the production of pro-inflammatory cytokines, and causing inflammation. While acute inflammation serves to resolve pathogen infection and stresses, which promote tissue repair, persistent inflammation results in maladaptive tissue remodeling and damage. RAGE signaling has been implicated in multiple detrimental human illnesses including diabetes, atherosclerosis, arthritis, and Alzheimer's disease. In addition, prolonged inflammation often serves as the precursor for arterial remodeling that underlies the exponential increase of age-associated arterial diseases. Despite the significant progress and exciting discoveries in RAGE research, little is known on the biochemistry of RAGE and the signaling mechanism of RAGE remains poorly defined. The biological impact of RAGE signaling in clinical situations and aging-associated diseases also remains to be fully realized. This review attempts to provide a comprehensive summary on both recent findings and missing pieces of the RAGE puzzle.
Collapse
Affiliation(s)
- Li Lin
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Baltimore, Maryland, 21224, USA.
| | | | | |
Collapse
|
1013
|
See WA, Zhang G, Chen F, Cao Y, Langenstroer P, Sandlow J. Bacille-Calmette Guèrin induces caspase-independent cell death in urothelial carcinoma cells together with release of the necrosis-associated chemokine high molecular group box protein 1. BJU Int 2008; 103:1714-20. [PMID: 19154459 DOI: 10.1111/j.1464-410x.2008.08274.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the ability of bacille-Calmette Guèrin (BCG) to induce caspase-independent cell death and release the necrosis-associated chemokine high molecular group box protein 1 (HMGB1) from urothelial carcinoma (UC) cells; a correlative clinical trial determined if BCG treatment resulted in increased urinary levels of HMGB1. PATIENTS, MATERIALS AND METHODS The human UC cell lines 253 J and T24 were pretreated with apoptosis inhibitors, exposed to BCG, and cell viability and ultrastructural changes measured. HMGB1 levels were assessed in cell culture supernatant after BCG treatment. The expression/function of HMGB1 receptors on the UC cell lines was determined by reverse transcription-polymer chain reaction and the ability of exogenous HMGB1 to activate nuclear factor (NF)-kappaB signalling assessed. An HMGB1 enzyme-linked immunosorbent assay was used to measure HMGB1 levels in urine obtained from BCG-treated patients. RESULTS Inhibition of apoptotic pathways failed to inhibit BCG-induced cell death in UC cells. Electron microscopy showed BCG-dependent ultrastructural changes consistent with cellular necrosis. BCG exposure resulted in a binary increase in cell culture supernatant levels of HMGB1. UCs expressed multiple HMGB1 receptors. Treatment of UCs with HMGB1 activated NF-kappaB. In the clinical setting, six of seven patients had increased urinary levels of HMGB1 at 24 h after BCG treatment. CONCLUSIONS BCG causes direct cytotoxicity in a subpopulation of UC cells. This cytotoxicity is caspase-independent and associated with ultrastructural changes and cellular protein release (HMGB1), characteristic of necrosis. Urinary levels of HMGB1 can be elevated in patients after BCG treatment. The expression and function of HMGB1 receptors in UC cells, coupled with the known role of HMGB1 on the host immune response, suggest a role for necrosis and HMGB1 release in the antitumour effect of BCG.
Collapse
Affiliation(s)
- William A See
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
1014
|
Abstract
Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
Collapse
Affiliation(s)
- David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
1015
|
Urbonaviciute V, Fürnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA, Kalden JR, Schett G, Rovere-Querini P, Herrmann M, Voll RE. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. ACTA ACUST UNITED AC 2008; 205:3007-18. [PMID: 19064698 PMCID: PMC2605236 DOI: 10.1084/jem.20081165] [Citation(s) in RCA: 411] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autoantibodies against double-stranded DNA (dsDNA) and nucleosomes represent a hallmark of systemic lupus erythematosus (SLE). However, the mechanisms involved in breaking the immunological tolerance against these poorly immunogenic nuclear components are not fully understood. Impaired phagocytosis of apoptotic cells with consecutive release of nuclear antigens may contribute to the immune pathogenesis. The architectural chromosomal protein and proinflammatory mediator high mobility group box protein 1 (HMGB1) is tightly attached to the chromatin of apoptotic cells. We demonstrate that HMGB1 remains bound to nucleosomes released from late apoptotic cells in vitro. HMGB1–nucleosome complexes were also detected in plasma from SLE patients. HMGB1-containing nucleosomes from apoptotic cells induced secretion of interleukin (IL) 1β, IL-6, IL-10, and tumor necrosis factor (TNF) α and expression of costimulatory molecules in macrophages and dendritic cells (DC), respectively. Neither HMGB1-free nucleosomes from viable cells nor nucleosomes from apoptotic cells lacking HMGB1 induced cytokine production or DC activation. HMGB1-containing nucleosomes from apoptotic cells induced anti-dsDNA and antihistone IgG responses in a Toll-like receptor (TLR) 2–dependent manner, whereas nucleosomes from living cells did not. In conclusion, HMGB1–nucleosome complexes activate antigen presenting cells and, thereby, may crucially contribute to the pathogenesis of SLE via breaking the immunological tolerance against nucleosomes/dsDNA.
Collapse
Affiliation(s)
- Vilma Urbonaviciute
- Interdisciplinary Center of Clinical Research (IZKF), Research Group N2, Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1016
|
Chen Y, Akirav EM, Chen W, Henegariu O, Moser B, Desai D, Shen JM, Webster JC, Andrews RC, Mjalli AM, Rothlein R, Schmidt AM, Clynes R, Herold KC. RAGE ligation affects T cell activation and controls T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2008; 181:4272-8. [PMID: 18768885 DOI: 10.4049/jimmunol.181.6.4272] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The pattern recognition receptor, RAGE, has been shown to be involved in adaptive immune responses but its role on the components of these responses is not well understood. We have studied the effects of a small molecule inhibitor of RAGE and the deletion of the receptor (RAGE-/- mice) on T cell responses involved in autoimmunity and allograft rejection. Syngeneic islet graft and islet allograft rejection was reduced in NOD and B6 mice treated with TTP488, a small molecule RAGE inhibitor (p < 0.001). RAGE-/- mice with streptozotocin-induced diabetes showed delayed rejection of islet allografts compared with wild type (WT) mice (p < 0.02). This response in vivo correlated with reduced proliferative responses of RAGE-/- T cells in MLRs and in WT T cells cultured with TTP488. Overall T cell proliferation following activation with anti-CD3 and anti-CD28 mAbs were similar in RAGE-/- and WT cells, but RAGE-/- T cells did not respond to costimulation with anti-CD28 mAb. Furthermore, culture supernatants from cultures with anti-CD3 and anti-CD28 mAbs showed higher levels of IL-10, IL-5, and TNF-alpha with RAGE-/- compared with WT T cells, and WT T cells showed reduced production of IFN-gamma in the presence of TTP488, suggesting that RAGE may be important in the differentiation of T cell subjects. Indeed, by real-time PCR, we found higher levels of RAGE mRNA expression on clonal T cells activated under Th1 differentiating conditions. We conclude that activation of RAGE on T cells is involved in early events that lead to differentiation of Th1(+) T cells.
Collapse
Affiliation(s)
- Yali Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1017
|
Gribar SC, Richardson WM, Sodhi CP, Hackam DJ. No longer an innocent bystander: epithelial toll-like receptor signaling in the development of mucosal inflammation. Mol Med 2008; 14:645-59. [PMID: 18584047 PMCID: PMC2435494 DOI: 10.2119/2008-00035.gribar] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/14/2008] [Indexed: 12/17/2022] Open
Abstract
Diseases of mucosal inflammation represent important causes of morbidity and mortality, and have led to intense research efforts to understand the factors that lead to their development. It is well accepted that a breakdown of the normally impermeant epithelial barrier of the intestine, the lung, and the kidney is associated with the development of inflammatory disease in these organs, yet significant controversy exists as to how this breakdown actually occurs, and how such a breakdown may lead to inflammation. In this regard, much work has focused upon the role of the epithelium as an “innocent bystander,” a target of a leukocyte-mediated inflammatory cascade that leads to its destruction in the mucosal inflammatory process. However, recent evidence from a variety of laboratories indicates that the epithelium is not merely a passive component in the steps that lead to mucosal inflammation, but is a central participant in the process. In addressing this controversy, we and others have determined that epithelial cells express Toll-like receptors (TLRs) of the innate immune system, and that activation of TLRs by endogenous and exogenous ligands may play a central role in determining the balance between a state of “mucosal homeostasis,” as is required for optimal organ function, and “mucosal injury,” leading to mucosal inflammation and barrier breakdown. In particular, activation of TLRs within intestinal epithelial cells leads to the development of cellular injury and impairment in mucosal repair in the pathogenesis of intestinal inflammation, while activation of TLRs in the lung and kidney may participate in the development of pneumonitis and nephritis respectively. Recent work in support of these concepts is extensively reviewed, while essential areas of further study that are required to determine the significance of epithelial TLR signaling during states of health and disease are outlined.
Collapse
Affiliation(s)
- Steven C Gribar
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
1018
|
Abstract
Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial
infection. The inflammatory response is partly mediated by innate immune cells (such as
macrophages, monocytes and neutrophils), which not only ingest and eliminate invading
pathogens but also initiate an inflammatory response upon recognition of
pathogen-associated molecular patterns (PAMPs). The prevailing theories of sepsis as a
dysregulated inflammatory response, as manifested by excessive release of inflammatory
mediators such as tumour necrosis factor and high-mobility group box 1 protein (HMGB1),
are supported by extensive studies employing animal models of sepsis. Here we review
emerging evidence that support extracellular HMGB1 as a late mediator of experimental
sepsis, and discuss the therapeutic potential of several HMGB1-targeting agents (including
neutralising antibodies and steroid-like tanshinones) in experimental sepsis.
Collapse
|
1019
|
Meng E, Guo Z, Wang H, Jin J, Wang J, Wang H, Wu C, Wang L. High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway. Stem Cells Dev 2008; 17:805-13. [PMID: 18715162 DOI: 10.1089/scd.2007.0276] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Extracellular high mobility group box 1 (HMGB1) is a novel cytokine that takes part in the processes of inflammation, tissue damage and regeneration. Mesenchymal stem cells (MSCs) are adult stem cells characterized by their inherently suppressive activities on inflammative and allo-immune reactions. In the present study, we have addressed whether HMGB1 could affect the biological properties of human bone marrow MSCs. Transwell experiments showed that HMGB1 induced MSC migration and this effect could not be hampered by a blocking antibody against the receptor for advanced glycation end products (RAGE). MSCs exposed to HMGB1 were negative for CD31, CD45, CD80, and HLA-DR, and displayed equal levels of CD73, CD166, and HLA-ABC compared with their counterparts, but HMGB1 profoundly suppressed MSC proliferation in a dose-dependent manner as evaluated by carboxyfluorescein diacetate succinmidyl ester dye dilution assay. Furthermore, HMGB1 triggered the differentiation of MSCs into osteoblasts as identified by histochemical staining, traditional RT-PCR and real-time RT-PCR analysis on mRNA expression of lineage-specific molecular markers. The differentiation-inductive activity could neither be inhibited by RAGE neutralizing antibody. Moreover, HMGB1-treated MSCs displayed unchanged suppressive activity on in vitro lymphocyte cell proliferation elicited by ConA. Collectively, the data suggest that MSCs are a target of HMGB1.
Collapse
Affiliation(s)
- Erhong Meng
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
1020
|
Rakoff-Nahoum S, Medzhitov R. Role of toll-like receptors in tissue repair and tumorigenesis. BIOCHEMISTRY (MOSCOW) 2008; 73:555-61. [PMID: 18605980 DOI: 10.1134/s0006297908050088] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLRs) play a critical role in host defense from microbial infection. TLRs recognize conserved molecular structures produced by microorganisms and induce activation of innate and adaptive immune responses. The inflammatory responses induced by TLRs play an important role TLRs not only in host defense from infection, but also in tissue repair and regeneration. This latter function of TLRs can also contribute to tumorigenesis. Here we review recent progress in understanding the role of TLRs in cancer development.
Collapse
Affiliation(s)
- S Rakoff-Nahoum
- Howard Hughes Memorial Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
1021
|
Rowe SM, Jackson PL, Liu G, Hardison M, Livraghi A, Solomon GM, McQuaid DB, Noerager BD, Gaggar A, Clancy JP, O'Neal W, Sorscher EJ, Abraham E, Blalock JE. Potential role of high-mobility group box 1 in cystic fibrosis airway disease. Am J Respir Crit Care Med 2008; 178:822-31. [PMID: 18658107 PMCID: PMC2566793 DOI: 10.1164/rccm.200712-1894oc] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 07/14/2008] [Indexed: 01/12/2023] Open
Abstract
RATIONALE High-mobility group box 1 (HMGB1) is a potent inflammatory mediator elevated in sepsis and rheumatoid arthritis, although its role in cystic fibrosis (CF) lung disease is unknown. OBJECTIVES To determine whether HMGB1 contributes to CF lung inflammation, including neutrophil chemotaxis and lung matrix degradation. METHODS We used sputum and serum from subjects with CF and a Scnn1b-transgenic (Scnn1b-Tg) mouse model that overexpresses beta-epithelial Na(+) channel in airways and mimics the CF phenotype, including lung inflammation. Human secretions and murine bronchoalveolar lavage fluid (BALF) was assayed for HMGB1 by Western blot and ELISA. Neutrophil chemotaxis was measured in vitro after incubation with human neutrophils. The collagen fragment proline-glycine-proline (PGP) was measured by tandem mass spectroscopy. MEASUREMENTS AND MAIN RESULTS HMGB1 was detected in CF sputum at higher levels than secretions from normal individuals. Scnn1b-Tg mice had elevated levels of HMGB1 by Western blot and ELISA. We demonstrated that dose-dependent chemotaxis of human neutrophils stimulated by purified HMGB1 was partially dependent on CXC chemokine receptors and that this could be duplicated in CF sputum and BALF from Scnn1b-Tg mice. Neutralization by anti-HMGB1 antibody, in both the sputum and BALF-reduced chemotaxis, which suggested that HMGB1 contributed to the chemotactic properties of these samples. Intratracheal administration of purified HMGB1 induced neutrophil influx into the airways of mice and promoted the release of PGP. PGP was also elevated in Scnn1b-Tg mice and CF serum. CONCLUSIONS HMGB1 expression contributes to pulmonary inflammation and lung matrix degradation in CF airway disease and deserves further investigation as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Steven M Rowe
- Department University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1022
|
Tada Y, Koarada S, Morito F, Mitamura M, Inoue H, Suematsu R, Ohta A, Miyake K, Nagasawa K. Toll-like receptor homolog RP105 modulates the antigen-presenting cell function and regulates the development of collagen-induced arthritis. Arthritis Res Ther 2008; 10:R121. [PMID: 18847495 PMCID: PMC2592811 DOI: 10.1186/ar2529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 09/26/2008] [Accepted: 10/11/2008] [Indexed: 02/09/2023] Open
Abstract
Introduction RP105 is a Toll-like receptor homolog expressed on B cells, dendritic cells (DCs), and macrophages. We investigated the role of RP105 in the development of collagen-induced arthritis (CIA). Methods CIA was induced in RP105-deficient DBA/1 mice and the incidence and arthritis index were analyzed. The cytokine production by spleen cells was determined. The functions of the DCs and regulatory T cells (Tregs) from RP105-deficient or control mice were determined by adding these cells to the lymph node cell culture. Arthritis was also induced by incomplete Freund's adjuvant (IFA) plus collagen or by injecting anti-collagen antibody and lipopolysaccharide. Results RP105-deficient mice showed accelerated onset of arthritis and increased severity. Interferon-gamma (IFN-γ) and tumor necrosis factor-alpha production by spleen cells from RP105-deficient mice was increased in comparison with that from wild-type mice. The DCs from RP105-deficient mice induced more IFN-γ production, whereas Tregs from those mice showed less inhibitory effect against IFN-γ production. RP105-deficient mice also showed more severe arthritis induced by collagen with IFA. Conclusions These results indicate that RP105 regulates the antigen-presenting cell function and Treg development, which induced the attenuation of the cell-mediated immune responses and, as a result, suppressed the development of CIA.
Collapse
Affiliation(s)
- Yoshifumi Tada
- Department of Internal Medicine, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1023
|
Abstract
Sepsis and sepsis-associated multi-organ failure are major challenges for scientists and clinicians and are a tremendous burden for health-care systems. Despite extensive basic research and clinical studies, the pathophysiology of sepsis is still poorly understood. We are now beginning to understand that sepsis is a heterogeneous, dynamic syndrome caused by imbalances in the 'inflammatory network'. In this Review, we highlight recent insights into the molecular interactions that occur during sepsis and attempt to unravel the nature of the dysregulated immune response during sepsis.
Collapse
Affiliation(s)
- Daniel Rittirsch
- Department of Pathology, The University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, Michigan 48109-0602, USA
| | | | | |
Collapse
|
1024
|
Tirapu I, Lewis A, Kreutz M, McLinden H, Diebold SS. Freeze-and-thaw-disrupted tumour cells impair the responsiveness of DC to TLR stimulation. Eur J Immunol 2008; 38:2740-50. [DOI: 10.1002/eji.200838284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
1025
|
Jeannin P, Jaillon S, Delneste Y. Pattern recognition receptors in the immune response against dying cells. Curr Opin Immunol 2008; 20:530-7. [PMID: 18555676 DOI: 10.1016/j.coi.2008.04.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/29/2008] [Accepted: 04/29/2008] [Indexed: 02/07/2023]
Abstract
Pattern recognition receptors (PRR), immune sensors that discriminate self from non-self, link innate to adaptive immunity. PRR are involved in microbe internalization by phagocytes (soluble PRR and endocytic receptors) and/or cell activation (signaling PRR). PRR also recognize dying cells (i.e. modified self). Apoptotic cell recognition involves soluble bridging molecules (e.g. pentraxins) and endocytic receptors (e.g. scavenger receptors, the CD91-calreticulin complex). Apoptotic cells induce an immunosuppressive signal, avoiding the initiation of an autoimmune response. By contrast, necrotic cells, via the release of stimulatory molecules [heat shock protein (HSP), high-mobility group box 1 protein (HMGB1)], activate immune cells. This review summarizes the PRR involved in the recognition of dying cells and the consequences on the outcome of the immune response directed against dying cell antigens.
Collapse
Affiliation(s)
- Pascale Jeannin
- Institut National de la Santé et de la Recherche Médicale, U564, University Hospital of Angers, France.
| | | | | |
Collapse
|
1026
|
Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med 2008; 14:476-84. [PMID: 18431461 PMCID: PMC2323334 DOI: 10.2119/2008-00034.klune] [Citation(s) in RCA: 616] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 04/10/2008] [Indexed: 12/20/2022] Open
Abstract
While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions.
Collapse
Affiliation(s)
- John R Klune
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
1027
|
Yoshizaki A, Komura K, Iwata Y, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Sato S. Clinical significance of serum HMGB-1 and sRAGE levels in systemic sclerosis: association with disease severity. J Clin Immunol 2008; 29:180-9. [PMID: 18825489 DOI: 10.1007/s10875-008-9252-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 09/05/2008] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The high mobility group box 1 protein (HMGB-1)/advanced glycation end products (RAGE) system is recently shown to play an important part in immune/inflammatory disorders. However, the association of this system in systemic sclerosis (SSc) remains unknown. MATERIALS AND METHODS To determine clinical association of serum levels of HMGB-1 and soluble RAGE (sRAGE) in patients with SSc, sera from 70 patients with SSc and 25 healthy controls were examined by enzyme-linked immunosorbent assay. Sera from tight-skin mice and bleomycin-induced scleroderma mice, animal models for SSc, were also examined. Skin HMGB-1 and RAGE expression was assessed by immunohistochemistry. RESULTS AND DISCUSSION Serum HMGB-1 and sRAGE levels in SSc were higher than those in controls. Similarly, HMGB-1 and sRAGE levels in animal SSc models were higher than those in control mice. SSc patients with elevated HMGB-1 and sRAGE levels had more frequent involvement of several organs and immunological abnormalities compared to those with normal levels. Furthermore, HMGB-1 and sRAGE levels correlated positively with modified Rodnan total skin thickness score and negatively with pulmonary function test. CONCLUSIONS HMGB-1 and sRAGE expression in the sclerotic skin was more intense than normal skin. These results suggest that elevated serum HMGB-1 and sRAGE levels are associated with the disease severity and immunological abnormalities in SSc.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1028
|
Cho IH, Hong J, Suh EC, Kim JH, Lee H, Lee JE, Lee S, Kim CH, Kim DW, Jo EK, Lee KE, Karin M, Lee SJ. Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. ACTA ACUST UNITED AC 2008; 131:3019-33. [PMID: 18819987 DOI: 10.1093/brain/awn230] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Microglial cells are activated during excitotoxin-induced neurodegeneration. However, the in vivo role of microglia activation in neurodegeneration has not yet been fully elucidated. To this end, we used Ikkbeta conditional knockout mice (LysM-Cre/Ikkbeta(F/F)) in which the Ikkbeta gene is specifically deleted in cells of myeloid lineage, including microglia, in the CNS. This deletion reduced IkappaB kinase (IKK) activity in cultured primary microglia by up to 40% compared with wild-type (Ikkbeta(F/F)), and lipopolysaccharide-induced proinflammatory gene expression was also compromised. Kainic acid (KA)-induced hippocampal neuronal cell death was reduced by 30% in LysM-Cre/Ikkbeta(F/F) mice compared with wild-type mice. Reduced neuronal cell death was accompanied by decreased KA-induced glial cell activation and subsequent expression of proinflammatory genes such as tumour necrosis factor (TNF)-alpha and interleukin (IL)-1beta. Similarly, neurons in organotypic hippocampal slice cultures (OHSCs) from LysM-Cre/Ikkbeta(F/F) mouse brain were less susceptible to KA-induced excitotoxicity compared with wild-type OHSCs, due in part to decreased TNF-alpha and IL-1beta expression. Based on these data, we concluded that IKK/nuclear factor-kappaB dependent microglia activation contributes to KA-induced hippocampal neuronal cell death in vivo through induction of inflammatory mediators.
Collapse
Affiliation(s)
- Ik-Hyun Cho
- Program in Molecular and Cellular Neuroscience, DRI, and Department of Oral Physiology, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1029
|
Pathogenic anti-DNA antibodies modulate gene expression in mesangial cells: involvement of HMGB1 in anti-DNA antibody-induced renal injury. Immunol Lett 2008; 121:61-73. [PMID: 18822317 DOI: 10.1016/j.imlet.2008.08.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/24/2008] [Accepted: 08/25/2008] [Indexed: 11/23/2022]
Abstract
Although anti-DNA antibodies have been decisively linked to the pathogenesis of lupus nephritis, the mechanisms have not been conclusively determined. Recently, we reported that anti-DNA antibodies may contribute to kidney damage by upregulation of proinflammatory genes in mesangial cells (MC), a process involving both Fc receptor-dependent and independent pathways. In investigating the mechanism by which pathogenic anti-DNA antibodies modulate gene expression in MC, we found that the pathogenic anti-DNA antibody 1A3F bound to high mobility group binding protein 1 (HMGB1), an endogenous ligand for TLR2/4 and RAGE (receptor for advanced glycation end products). Interestingly, HMGB1 treatment of MC induced a similar pattern of genes as stimulation with 1A3F. Furthermore, HMGB1 and 1A3F exhibited a synergistic proinflammatory effect in the kidney, where increased expression of HMGB1 was found in lupus patients but not in patients with other types of renal disease. TLR2/Fc and RAGE/Fc inhibited the proinflammatory effects of 1A3F on MC. Finally, we found enhanced susceptibility of lupus prone MRL-lpr/lpr (MRL/lpr) as compared to normal BALB/c derived MC to pathogenic anti-DNA antibody and LPS stimulation (in particular enhanced chemokine synthesis), in addition to significantly increased expression of TLR4. Our results suggest that gene upregulation in MC induced by nephritogenic anti-DNA antibodies is TLR2/4 and RAGE-dependent. Finally, HMGB1 may act as a proinflammatory mediator in antibody-induced kidney damage in systemic lupus erythematosus (SLE).
Collapse
|
1030
|
Ramasamy R, Yan SF, Schmidt AM. Stopping the primal RAGE reaction in myocardial infarction: capturing adaptive responses to heal the heart? Circulation 2008; 117:3165-7. [PMID: 18574057 DOI: 10.1161/circulationaha.108.784397] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
1031
|
Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairbäurl H, Nawroth PP, Remppis A, Katus HA, Bierhaus A. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008; 117:3216-26. [PMID: 18574060 DOI: 10.1161/circulationaha.108.769331] [Citation(s) in RCA: 490] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND High-mobility group box-1 (HMGB1) is a nuclear factor released by necrotic cells and by activated immune cells. HMGB1 signals via members of the toll-like receptor family and the receptor for advanced glycation end products (RAGE). Although HMGB1 has been implicated in ischemia/reperfusion (I/R) injury of the liver and lung, its role in I/R injury of the heart remains unclear. METHODS AND RESULTS Here, we demonstrate that HMGB1 acts as an early mediator of inflammation and organ damage in I/R injury of the heart. HMGB1 levels were already elevated 30 minutes after hypoxia in vitro and in ischemic injury of the heart in vivo. Treatment of mice with recombinant HMGB1 worsened I/R injury, whereas treatment with HMGB1 box A significantly reduced infarct size and markers of tissue damage. In addition, HMGB1 inhibition with recombinant HMGB1 box A suggested an involvement of the mitogen-activated protein kinases jun N-terminal kinase and extracellular signal-regulated kinase 1/2, as well as the nuclear transcription factor nuclear factor-kappaB in I/R injury. Interestingly, infarct size and markers of tissue damage were not affected by administration of recombinant HMGB1 or HMGB1 antagonists in RAGE(-/-) mice, which demonstrated significantly reduced damage in reperfused hearts compared with wild-type mice. Coincubation studies using recombinant HMGB1 in vitro induced an inflammatory response in isolated macrophages from wild-type mice but not in macrophages from RAGE(-/-) mice. CONCLUSIONS HMGB1 plays a major role in the early event of I/R injury by binding to RAGE, resulting in the activation of proinflammatory pathways and enhanced myocardial injury. Therefore, blockage of HMGB1 might represent a novel therapeutic strategy in I/R injury.
Collapse
Affiliation(s)
- Martin Andrassy
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1032
|
Kosai K, Seki M, Yanagihara K, Nakamura S, Kurihara S, Izumikawa K, Kakeya H, Yamamoto Y, Tashiro T, Kohno S. Elevated levels of high mobility group box chromosomal protein-1 (HMGB-1) in sera from patients with severe bacterial pneumonia coinfected with influenza virus. ACTA ACUST UNITED AC 2008; 40:338-42. [PMID: 17918013 DOI: 10.1080/00365540701660486] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Plasma levels of high mobility group box chromosomal protein-1 (HMGB-1), as well as of other inflammatory molecules such as interleukin-6 (IL-6), regulated on activation normal T-cell expressed and secreted (RANTES), and soluble intercellular adhesion molecule-1 (sICAM-1), were determined in patients with bacterial pneumonia coinfected with influenza virus. HMGB-1 levels were significantly elevated in these patients compared to patients undergoing mild bacterial pneumonia alone (p < 0.01). Among cases of coinfection, we found a significant correlation between the concentration of HMGB-1 and white blood cell counts (p < 0.05, r = 0.612). Levels of IL-6 were also higher in these patients than in patients with bacterial pneumonia alone (p < 0.05), despite similar levels of RANTES and sICAM-1 in the 2 groups. These data suggest that HMGB-1 is involved in the pathogenesis of severe bacterial pneumonia coinfected with influenza virus.
Collapse
Affiliation(s)
- Kosuke Kosai
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical, Sakamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1033
|
Aneja RK, Tsung A, Sjodin H, Gefter JV, Delude RL, Billiar TR, Fink MP. Preconditioning with high mobility group box 1 (HMGB1) induces lipopolysaccharide (LPS) tolerance. J Leukoc Biol 2008; 84:1326-34. [PMID: 18687905 DOI: 10.1189/jlb.0108030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
High mobility group box protein 1 (HMGB1) modulates the innate immune response when present in the extracellular compartment. Receptors for HMGB1 include TLR4, TLR2, and the receptor for advanced glycation end products (RAGE). We tested the hypothesis that extracellular HMGB1 can induce LPS tolerance. HMGB1 dose-response experiments were performed on IFN-gamma-differentiated human monocyte-like THP-1 cells. Treatment with 1 microg/ml HMGB1 18 h before exposure to LPS (1 microg/ml) decreased TNF release, NF-kappaB nuclear DNA-binding activity, phosphorylation, and degradation of IkappaBalpha. Preconditioning with HMGB1 alone and HMGB1 in the presence of polymyxin B decreased LPS-mediated, NF-kappaB-dependent luciferase reporter gene expression. The specificity of HMGB1 in tolerance induction was supported further by showing that boiled HMGB1 failed to induce tolerance, and antibodies against HMGB1 blocked the induction of LPS tolerance. Bone marrow-derived macrophages obtained from C57Bl/6 wild-type mice became LPS-tolerant following HMGB1 exposure ex vivo, but macrophages derived from RAGE-deficient mice failed to develop tolerance and responded normally to LPS. Mice preconditioned with HMGB1 (20 microg) 1 h before LPS injection (10 mg/kg) had lower circulating TNF compared with control mice preconditioned with saline vehicle. Similarly, decreased nuclear DNA binding of hepatic NF-kappaB was observed in mice preconditioned with HMGB1. Taken together, these results suggest that extracellular HMGB1 induces LPS tolerance, and the RAGE receptor is required for this induction.
Collapse
Affiliation(s)
- Rajesh K Aneja
- Department of Critical Care Medicine and Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
1034
|
Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, Wallström E, Lobell A, Brundin L, Lassmann H, Harris RA. Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 2008; 84:1248-55. [PMID: 18644848 DOI: 10.1189/jlb.1207844] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the CNS, most frequently starting with a series of bouts, each followed by complete remission and then a secondary, progressive phase during which the neurological deficit increases steadily. The underlying molecular mechanisms responsible for disease progression are still unclear. Herein, we demonstrate that high mobility group box chromosomal protein 1 (HMGB1), a DNA-binding protein with proinflammatory properties, is evident in active lesions of MS and experimental autoimmune encephalomyelitis (EAE) and that HMGB1 levels correlate with active inflammation. Furthermore, the expression of the innate HMGB1 receptors--receptor for advanced glycation end products, TLR2, and TLR4--was also highly increased in MS and rodent EAE. Additionally, in vitro activation of rodent CNS-derived microglia and bone marrow-derived macrophages demonstrated that microglia were equally as capable as macrophages of translocating HMGB1 following LPS/IFN-gamma stimulation. Significant expression of HMGB1 and its receptors on accumulating activated macrophages and resident microglia may thus provide a positive feedback loop that amplifies the inflammatory response during MS and EAE pathogenesis.
Collapse
Affiliation(s)
- Asa Andersson
- Department of Clinical Neurosciences, Neuroimmunology Unit, Karolinska University Hospital at Solna, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1035
|
Alleva LM, Budd AC, Clark IA. Systemic Release of High Mobility Group Box 1 Protein during Severe Murine Influenza. THE JOURNAL OF IMMUNOLOGY 2008; 181:1454-9. [DOI: 10.4049/jimmunol.181.2.1454] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
1036
|
Abstract
High-mobility group box 1 (HMGB1), a nonhistone nuclear protein, is released by macrophages into the extracellular milieu consequent to cellular activation. Extracellular HMGB1 has properties of a pro-inflammatory cytokine through its interaction with receptor for advanced glycation endproducts (RAGE) and/or toll-like receptors (TLR2 and TLR4). Although HMGB1 is highly expressed in macrophages and differentiating osteoclasts, its role in osteoclastogenesis remains largely unknown. In this report, we present evidence for a function of HMGB1 in this event. HMGB1 is released from macrophages in response to RANKL stimulation and is required for RANKL-induced osteoclastogenesis in vitro and in vivo. In addition, HMGB1, like other osteoclastogenic cytokines (e.g., TNFalpha), enhances RANKL-induced osteoclastogenesis in vivo and in vitro at subthreshold concentrations of RANKL, which alone would be insufficient. The role of HMGB1 in osteoclastogenesis is mediated, in large part, by its interaction with RAGE, an immunoglobin domain containing family receptor that plays an important role in osteoclast terminal differentiation and activation. HMGB1-RAGE signaling seems to be important in regulating actin cytoskeleton reorganization, thereby participating in RANKL-induced and integrin-dependent osteoclastogenesis. Taken together, these observations show a novel function of HMGB1 in osteoclastogenesis and provide a new link between inflammatory mechanisms and bone resorption.
Collapse
|
1037
|
Pisetsky DS, Erlandsson-Harris H, Andersson U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther 2008; 10:209. [PMID: 18598385 PMCID: PMC2483460 DOI: 10.1186/ar2440] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High-mobility group box protein 1 (HMGB1) is a non-histone nuclear protein that has a dual function. Inside the cell, HMGB1 binds DNA, regulating transcription and determining chromosomal architecture. Outside the cell, HMGB1 can serve as an alarmin to activate the innate system and mediate a wide range of physiological and pathological responses. To function as an alarmin, HMGB1 translocates from the nucleus of the cell to the extra-cellular milieu, a process that can take place with cell activation as well as cell death. HMGB1 can interact with receptors that include RAGE (receptor for advanced glycation endproducts) as well as Toll-like receptor-2 (TLR-2) and TLR-4 and function in a synergistic fashion with other proinflammatory mediators to induce responses. As shown in studies on patients as well as animal models, HMGB1 can play an important role in the pathogenesis of rheumatic disease, including rheumatoid arthritis, systemic lupus erythematosus, and polymyositis among others. New approaches to therapy for these diseases may involve strategies to inhibit HMGB1 release from cells, its interaction with receptors, and downstream signaling.
Collapse
Affiliation(s)
- David S Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
1038
|
Pullerits R, Jonsson IM, Kollias G, Tarkowski A. Induction of arthritis by high mobility group box chromosomal protein 1 is independent of tumour necrosis factor signalling. Arthritis Res Ther 2008; 10:R72. [PMID: 18582368 PMCID: PMC2483464 DOI: 10.1186/ar2445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/29/2008] [Accepted: 06/26/2008] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION TNFalpha and high mobility group box chromosomal protein 1 (HMGB1) are two potent proinflammatory cytokines implicated as important mediators of arthritis. Increased levels of these cytokines are found in the joints of rheumatoid arthritis patients, and the cytokines trigger arthritis when applied into the joints of naïve mice. HMGB1 is actively released from immune cells in response to TNFalpha; once released, HMGB1 in turn induces production of several proinflammatory cytokines--including IL-6 and TNFalpha--by macrophages. Whether HMGB1-induced arthritis is mediated via the TNFalpha pathway, however, is unknown. The purpose of the present study was to investigate whether the arthritis-inducing effect of HMGB1 is dependent on TNFalpha expression in vivo and to assess whether TNFalpha deficiency affects a proinflammatory cytokine response to HMGB1 in vitro. METHODS TNFalpha knockout mice and backcrossed control animals on a C57Bl6 background were injected intraarticularly with 5 microg HMGB1. Joints were dissected 3 days after intraarticular injection and were evaluated histologically by scoring the frequency and severity of arthritis. For in vitro studies, mouse spleen cultures from TNFalpha knockout mice and from control mice were incubated with different doses of HMGB1, and cell culture supernatants were collected at different time points for analysis of IL-6. RESULTS Intraarticular injection of HMGB1 into healthy mouse joints resulted in an overall frequency of 32% to 39% arthritic animals. No significant differences were found with respect to the severity and incidence of synovitis between mice deficient for TNFalpha (seven out of 18 mice with arthritis) in comparison with control TNFalpha+/+ animals (six out of 19). No significant differences were detected between spleen cells from TNFalpha+/+ mice versus TNFalpha-/- mice regarding IL-6 production upon stimulation with highly purified HMGB1 after 24 hours and 48 hours. Upon stimulation with a suboptimal dose of recombinant HMGB1, however, the splenocytes from TNFalpha+/+ animals released significantly more IL-6 than cells from the knockout mice (602 +/- 112 pg/ml and 304 +/- 50 pg/ml, respectively; P < 0.05). CONCLUSION Our data show that HMGB1-triggered joint inflammation is not mediated via the TNF pathway. Combined with our previous study, we suggest that HMGB1-triggered arthritis is probably mediated through IL-1 activation.
Collapse
Affiliation(s)
- Rille Pullerits
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at Göteborg University, Guldhedsgatan 10A, 41346, Göteborg, Sweden.
| | | | | | | |
Collapse
|
1039
|
Zuckerman ST, Kao WJ. LC/MS identification of 12 intracellular cytoskeletal and inflammatory proteins from monocytes adherent on surface-adsorbed fibronectin-derived peptides. J Biomed Mater Res A 2008; 85:513-29. [PMID: 17729253 PMCID: PMC5578865 DOI: 10.1002/jbm.a.31306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The extent and duration of the host response determines device efficacy, yet the mechanism is poorly understood. U937 promonocytic cells were cultured on peptide-adsorbed tissue-culture polystyrene to better understand surface-modulated intracellular events. Phosphotyrosine proteins were enriched by immunoprecipitation and analyzed by nanospray HPLC-coupled tandem mass spectrometry (LC/MS). Tyrosine-phosphorylated proteins were chosen based on physiological significance and previous densitometry results, which identified a set of proteins ranging from approximately 200 to approximately 23 kDa showing altered phosphorylation levels in response to various surface-adsorbed ligands and phosphorylation inhibitor AG18. Although LC/MS has been used for nearly a decade, its application to the field of biomaterials is relatively novel. Twelve intracellular proteins identified by nanospray LC/MS are potentially related to the host response. Eight of the twelve proteins are related to the cytoskeleton including: moesin, heat shock protein 90beta, alpha-tubulin, elongation factor 1alpha, beta actin, vimentin, plasminogen activator inhibitor 2, and heterogeneous ribonuclear protein A2. The remaining four proteins: high mobility group box 1, caspase recruitment domain 5, glycoprotein 96, and heterogeneous nuclear ribonucleoprotein D0 modulate inflammation. The specific effect each peptide has upon modulating the phosphorylation state of these proteins cannot be determined from this work; however, 12 viable targets have been identified for further investigation into the role each plays in the surface-mediated monocyte response.
Collapse
Affiliation(s)
- Sean T. Zuckerman
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, 53705 USA
- School of Pharmacy, University of Wisconsin-Madison, WI, 53705 USA
| | - Weiyuan John Kao
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, 53705 USA
- School of Pharmacy, University of Wisconsin-Madison, WI, 53705 USA
- Correspondence should be addressed to 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705. Tel: 608 263-2998, Fax: 608 262-5345,
| |
Collapse
|
1040
|
Ting JPY, Willingham SB, Bergstralh DT. NLRs at the intersection of cell death and immunity. Nat Rev Immunol 2008; 8:372-9. [PMID: 18362948 DOI: 10.1038/nri2296] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation is a crucial element of the host response to cellular insult. Pathogen-induced inflammation includes a molecular pathway which proceeds through activation of the protease caspase-1 to the release of the inflammatory cytokines interleukin-1 (IL-1) and IL-18. Importantly, pathogens may also induce forms of cell death that have inherently pro-inflammatory features. Here, we review recent evidence demonstrating that NLR (nucleotide-binding domain, leucine-rich repeat containing) family proteins serve as a common component of both caspase-1-activated apoptotic pathways and caspase-independent necrotic pathways. Parallels are drawn between NLR protein function and the activity of structurally similar proteins involved in cell death: the apoptotic mediator APAF1 (apoptotic-protease-activating factor 1) and the plant disease resistance NBS-LRR (nucleotide-binding site leucine-rich repeats) proteins.
Collapse
Affiliation(s)
- Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA.
| | | | | |
Collapse
|
1041
|
Youn JH, Oh YJ, Kim ES, Choi JE, Shin JS. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. THE JOURNAL OF IMMUNOLOGY 2008; 180:5067-74. [PMID: 18354232 DOI: 10.4049/jimmunol.180.7.5067] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS-binding protein (LBP) is a central mediator that transfers LPS to CD14 to initiate TLR4-mediated proinflammatory response. However, a possibility of another LPS transfer molecule has been suggested because LBP-deficient mice showed almost normal inflammatory response after LPS injection. In this study, we describe the novel finding that high mobility group box 1 protein (HMGB1) recently identified as a mediator of sepsis has a function of LPS transfer for a proinflammatory response. We used ELISA and surface plasmon resonance to show that HMGB1 binds LPS in a concentration-dependent manner and that the binding is stronger to lipid A moiety than to the polysaccharide moiety of LPS. This binding was inhibited by LBP and polymyxin B. Using native PAGE and fluorescence-based LPS transfer analyses, we show that HMGB1 can catalytically disaggregate and transfer LPS to both soluble CD14 protein and to human PBMCs in a dose-dependent manner. However, this effect was dramatically reduced to the baseline level when HMGB1 was heat inactivated. Furthermore, a mixture of HMGB1 and LPS treatment results in a higher increase in TNF-alpha production in human PBMCs and peripheral blood monocytes than LPS or HMGB1 treatment alone or their summation. Thus, we propose that HMGB1 plays an important role in Gram-negative sepsis by catalyzing movement of LPS monomers from LPS aggregates to CD14 to initiate a TLR4-mediated proinflammatory response.
Collapse
Affiliation(s)
- Ju Ho Youn
- Department of Microbiology, Brain Korea 21 Project for Medical Science, National Core Research Center for Nanomedical Technology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
1042
|
Fink MP. Bench-to-bedside review: High-mobility group box 1 and critical illness. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 11:229. [PMID: 17903310 PMCID: PMC2556731 DOI: 10.1186/cc6088] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-mobility group box 1 (HMGB1) is a DNA-binding protein that also exhibits proinflammatory cytokine-like activity. HMGB1 is passively released by necrotic cells and also is actively secreted by immunostimulated macrophages, dendritic cells, and enterocytes. Although circulating HMGB1 levels are increased relative to healthy controls in patients with infections and severe sepsis, plasma or serum HMGB1 concentrations do not discriminate reliably between infected and uninfected critically ill patients. Nevertheless, administration of drugs that block HMGB1 secretion or of anti-HMGB1 neutralizing antibodies has been shown to ameliorate organ dysfunction and/or improve survival in numerous animal models of critical illness. Because HMGB1 tends to be released relatively late in the inflammatory response (at least in animal models of endotoxemia or sepsis), this protein is an attractive target for the development of new therapeutic agents for the treatment of patients with various forms of critical illness.
Collapse
Affiliation(s)
- Mitchell P Fink
- Department of Critical Care Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
1043
|
Abstract
The outcome of sepsis and septic shock has not significantly improved in recent decades despite the development of numerous drugs and supportive care therapies. To reduce sepsis-related mortality, a better understanding of molecular mechanism(s) associated with the development of sepsis and sepsis-related organ injury is essential. There is increasing evidence that Toll-like receptors (TLRs) play a key role in the mediation of systemic responses to invading pathogens during sepsis. However, the role of TLRs in the development of sepsis and in sepsis-related organ injury remains debatable. In this review, we focus on the biological significance of TLRs during sepsis. Medline was searched for pertinent publications relating to TLRs, with emphasis on their clinical and pathophysiological importance in sepsis. In addition, a summary of the authors' own experimental data from this field was set in the context of current knowledge regarding TLRs. In both animal models and human sepsis, TLRs are highly expressed on monocytes/macrophages, and this TLR expression may not simply be a ligand-specific response in such an environment. The fact that TLR signaling enables TLRs to recognize harmful mediators induced by invading pathogens may be associated with a positive feedback loop for the inflammatory response among different cell populations. This mechanism(s) may contribute to the organ dysfunction and mortality that occurs in sepsis. A better understanding of TLR biology may unveil novel therapeutic approaches for sepsis.
Collapse
|
1044
|
High mobility group box 1 protein induction by Mycobacterium bovis BCG. Mediators Inflamm 2008; 2007:53805. [PMID: 18288272 PMCID: PMC2233895 DOI: 10.1155/2007/53805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/09/2007] [Indexed: 11/17/2022] Open
Abstract
High mobility group box 1 protein (HMGB1), a nuclear protein, is a critical cytokine that mediates the response to infection, injury, and inflammation. The aim of our study was to elaborate a reliable in vitro model to investigate whether Mycobacterium bovis BCG is able to induce HMGB1 secretion from the monocytic U-937 cells. Western blot technique was applied for the detection of HMGB1 from supernatants of cells, following induction with Mycobacterium bovis BCG. Densitometric analysis revealed higher concentrations of HMGB1 in cell supernatants stimulated with BCG than in the supernatants of the control, nonstimulated cells. Further quantitation of the secreted HMGB1 was performed by ELISA. The BCG strain resulted in a higher amount of secreted HMGB1 (450 ± 44 ng/mL) than that of LPS (84 ± 12 ng/mL) or Staphylococcus aureus (150 ± 14 ng/mL). BCG and Phorbol −12-myristate −13 acetate (PMA), added together, resulted in the highest HMGB1 secretion (645 ± 125 ng/mL).
The translocation of the HMGB1 towards the cytoplasm following infection of cells with BCG was demonstrated by immunofluorescence examinations.
Conclusion: Our pilot experiments draw attention to the HMGB1 inducing ability of Mycobacterium bovis. Assesment of the pathophysiological role of this late cytokine in mycobacterial infections demands further in vitro and in vivo examinations.
Collapse
|
1045
|
Ogier-Denis E, Mkaddem SB, Vandewalle A. NOX enzymes and Toll-like receptor signaling. Semin Immunopathol 2008; 30:291-300. [PMID: 18493762 DOI: 10.1007/s00281-008-0120-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 04/24/2008] [Indexed: 12/20/2022]
Abstract
Invading microorganisms are recognized by the host innate immune system through pattern recognition receptors. Among these receptors, Toll-like receptors (TLRs) are able to sense the molecular signatures of microbial pathogens, protozoa, fungi, and virus and activate proinflammatory signaling cascades. In addition to their role in bacterial killing by phagocytes, reactive oxygen species generated by NADPH oxidase (NOX) homologues also play key roles in signaling and host defense in a variety of cell types. Recent studies have demonstrated a link between TLR activation and NOX homologues following microbial recognition highlighting their important role in the innate immune response and host defense.
Collapse
Affiliation(s)
- Eric Ogier-Denis
- INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon, CRB3, BP 416, 75018 Paris, France.
| | | | | |
Collapse
|
1046
|
Koga K, Mor G. Expression and function of toll-like receptors at the maternal-fetal interface. Reprod Sci 2008; 15:231-42. [PMID: 18421019 DOI: 10.1177/1933719108316391] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Toll-like receptors (TLRs) form the major family of pattern recognition receptors that are involved in innate immunity. Innate immune responses against microorganisms at the maternal-fetal interface may have a significant impact on the success of pregnancy because intrauterine infections have been shown to be strongly associated with certain complications of pregnancy. At the maternal-fetal interface, TLRs are expressed not only in the immune cells but also in nonimmune cells such as trophoblasts and decidual cells. Moreover, their expression patterns vary according to the stage of pregnancy. Here we will describe potential functions of TLRs in these cells, their recognition and response to microorganisms, and their involvement in the innate immunity. The impact of TLR-mediated innate immune response will be discussed via animal model studies, as well as clinical observations.
Collapse
Affiliation(s)
- Kaori Koga
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
1047
|
Rock KL, Kono H. The inflammatory response to cell death. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:99-126. [PMID: 18039143 DOI: 10.1146/annurev.pathmechdis.3.121806.151456] [Citation(s) in RCA: 642] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When cells die in vivo, they trigger an inflammatory response. The ensuing hyperemia, leak of plasma proteins, and recruitment of leukocytes serve a number of useful functions in host defense and tissue repair. However, this response can also cause tissue damage and contribute to the pathogenesis of a number of diseases. Given the key role of inflammation in these processes, it is important to understand the underlying mechanisms that drive this response. Injured cells release danger signals that alert the host to cell death. Some of these molecules are recognized by cellular receptors that stimulate the generation of proinflammatory mediators. Other molecules released by dead cells stimulate the generation of mediators from extracellular sources. The resulting mediators then orchestrate the inflammatory response, eliciting its various vascular and cellular components. Dead cells also release danger signals that activate dendritic cells and promote the generation of immune responses to antigens. Here we review what is presently known about the sterile inflammatory response and its underlying mechanisms.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
1048
|
Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Tedder TF, Sato S. CD19 regulates skin and lung fibrosis via Toll-like receptor signaling in a model of bleomycin-induced scleroderma. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1650-63. [PMID: 18467694 DOI: 10.2353/ajpath.2008.071049] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mice subcutaneously injected with bleomycin, in an experimental model of human systemic sclerosis, develop cutaneous and lung fibrosis with autoantibody production. CD19 is a general "rheostat" that defines signaling thresholds critical for humoral immune responses, autoimmunity, and cytokine production. To determine the role of CD19 in the bleomycin-induced systemic sclerosis model, we investigated the development of fibrosis and autoimmunity in CD19-deficient mice. Bleomycin-treated wild-type mice exhibited dermal and lung fibrosis, hyper-gamma-globulinemia, autoantibody production, and enhanced serum and skin expression of various cytokines, including fibrogenic interleukin-4, interleukin-6, and transforming growth factor-beta1, all of which were inhibited by CD19 deficiency. Bleomycin treatment enhanced hyaluronan production in the skin, lung, and sera. Addition of hyaluronan, an endogenous ligand for Toll-like receptor (TLR) 2 and TLR4, stimulated B cells to produce various cytokines, primarily through TLR4; CD19 deficiency suppressed this stimulation. These results suggest that bleomycin induces fibrosis by enhancing hyaluronan production, which activates B cells to produce fibrogenic cytokines mainly via TLR4 and induce autoantibody production, and that CD19 deficiency suppresses fibrosis and autoantibody production by inhibiting TLR4 signals.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1049
|
Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 2008; 28:927-38. [PMID: 18000511 DOI: 10.1038/sj.jcbfm.9600582] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nuclear protein high-mobility group box 1 (HMGB-1) promotes inflammation in sepsis, but little is known about its role in brain ischemia-induced inflammation. We report that HMGB-1 and its receptors, receptor for advanced glycation end products (RAGE), Toll-like receptor 2 (TLR2), and TLR4, were expressed in normal brain and in cultured neurons, endothelia, and glial cells. During middle cerebral artery occlusion (MCAO), in mice, HMGB-1 immunostaining rapidly disappeared from all cells within the striatal ischemic core from 1 h after onset of occlusion. High-mobility group box 1 translocation from nucleus to cytoplasm was observed within the cortical periinfarct regions 2 h after ischemic reperfusion (2 h MCAO). High-mobility group box 1 predominantly translocated to the cytoplasm or disappeared in cells that colabeled with the neuronal marker NeuN. Furthermore, RAGE was robustly expressed in the periinfarct region after MCAO. Cellular release of HMGB-1 was detected by immunoblotting of cerebrospinal fluid as early as 2 h after ischemic reperfusion (2 h MCAO). High-mobility group box 1 released from neurons, in vitro, after glutamate excitotoxicity, maintained biologic activity and induced glial expression of tumor necrosis factor alpha (TNFalpha). Anti-HMGB-1 antibody suppressed TNFalpha upregulation in astrocytes exposed to conditioned media from glutamate-treated neurons. Moreover, TNFalpha and the cytokine intercellular adhesion molecule-1 increased in cultured glia and endothelial cells, respectively, after adding recombinant HMGB-1. In conclusion, HMGB-1 is released early after ischemic injury from neurons and may contribute to the initial stages of the inflammatory response.
Collapse
Affiliation(s)
- Jianhua Qiu
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1050
|
Acute neurodegeneration and the inflammasome: central processor for danger signals and the inflammatory response? J Cereb Blood Flow Metab 2008; 28:867-81. [PMID: 18212795 DOI: 10.1038/sj.jcbfm.9600609] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the inflammatory response is a crucial event in the adverse outcome of cerebral ischemia, which is promoted by proinflammatory cytokines such as interleukin (IL)-1beta. Although caspase-1 is necessary for IL-1beta processing, the 'upstream' signaling pathways were, until recently, essentially unknown. Fortunately, the inflammasome, a multiprotein complex responsible for activating caspase-1 and caspase-5, has recently been characterized. The activation of the inflammasome can result in one of several consequences such as cytokine secretion, cell death, or the development of a stress-resistant state. The significance of the inflammasome for the initiation of the inflammatory response during systemic diseases has already been shown and members of the inflammasome complex were recently found to be induced in acute brain injury. However, the specific pathophysiologic role of the inflammasome in neurodegenerative disorders still remains to be clarified. The underlying theories (e.g., danger signal theory) along with the signaling pathways that link the inflammasome to acute neurodegeneration will be discussed here. Furthermore, the stimuli that potentially activate the inflammasome in cerebral ischemia will be specified, as well as their relation to well-known pathways activating the innate immune response (e.g., Toll-like receptor signaling) and the consequences that result from their activation (beneficial versus deleterious).
Collapse
|