1001
|
Lee S, Yang WK, Song JH, Ra YM, Jeong JH, Choe W, Kang I, Kim SS, Ha J. Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3. Biochem Pharmacol 2013; 85:965-76. [PMID: 23337568 DOI: 10.1016/j.bcp.2012.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 11/30/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) plays a central role in cellular energy metabolism, and dysregulation of GSK-3 activity is implicated in a variety of metabolic disorders, including obesity, type 2 diabetes, and cancer. Hence, GSK-3 has emerged as an attractive target molecule for the treatment of metabolic disorders. Therefore, this research focused on identification and characterization of a novel small-molecule GSK-3 inhibitor. Compound 1a, a structure based on 3-hydroxychromone bearing isothiazolidine-1,1-dione, was identified from chemical library as a highly potent GSK-3 inhibitor. An in vitro kinase assay utilizing a panel of kinases demonstrated that compound 1a strongly inhibits GSK-3β. The potential effects of compound 1a on the inactivation of GSK-3 were confirmed in human liver HepG2 and human embryonic kidney HEK293 cells. Stabilization of glycogen synthase and β-catenin, which are direct targets of GSK-3, by compound 1a was assessed in comparison with two other GSK-3 inhibitors: LiCl and SB-415286. In mouse 3T3-L1 preadipocytes, compound 1a markedly blocked adipocyte differentiation. Consistently, intraperitoneal administration of compound 1a to diet-induced obese mice significantly ameliorated their key symptoms such as body weight gain, increased adiposity, dyslipidemia, and hepatic steatosis due to the marked reduction of whole-body lipid level. In vitro and in vivo effects were accompanied by upregulation of β-catenin stability and downregulation of the expression of several critical genes related to lipid metabolism. From these results, it can be concluded that compound 1a, a novel small-molecule inhibitor of GSK-3, has potential as a new class of therapeutic agent for obesity treatment.
Collapse
Affiliation(s)
- Sooho Lee
- Department of Biochemistry and Molecular Biology, Medical Research Center and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
1002
|
Lim JH, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, Xiang YK, Puigserver P. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. J Biol Chem 2013; 288:7117-26. [PMID: 23329830 DOI: 10.1074/jbc.m112.415729] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acids are essential components of the dynamic lipid metabolism in cells. Fatty acids can also signal to intracellular pathways to trigger a broad range of cellular responses. Oleic acid is an abundant monounsaturated omega-9 fatty acid that impinges on different biological processes, but the mechanisms of action are not completely understood. Here, we report that oleic acid stimulates the cAMP/protein kinase A pathway and activates the SIRT1-PGC1α transcriptional complex to modulate rates of fatty acid oxidation. In skeletal muscle cells, oleic acid treatment increased intracellular levels of cyclic adenosine monophosphate (cAMP) that turned on protein kinase A activity. This resulted in SIRT1 phosphorylation at Ser-434 and elevation of its catalytic deacetylase activity. A direct SIRT1 substrate is the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), which became deacetylated and hyperactive after oleic acid treatment. Importantly, oleic acid, but not other long chain fatty acids such as palmitate, increased the expression of genes linked to fatty acid oxidation pathway in a SIRT1-PGC1α-dependent mechanism. As a result, oleic acid potently accelerated rates of complete fatty acid oxidation in skeletal muscle cells. These results illustrate how a single long chain fatty acid specifically controls lipid oxidation through a signaling/transcriptional pathway. Pharmacological manipulation of this lipid signaling pathway might provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.
Collapse
Affiliation(s)
- Ji-Hong Lim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
1003
|
Swerdlow RH, E L, Aires D, Lu J. Glycolysis-respiration relationships in a neuroblastoma cell line. Biochim Biophys Acta Gen Subj 2013; 1830:2891-8. [PMID: 23313167 DOI: 10.1016/j.bbagen.2013.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although some reciprocal glycolysis-respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized. METHODS We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions. RESULTS Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased. CONCLUSIONS These data document a novel intracellular glycolysis-respiration effect in which restricting glycolysis flux increases mitochondrial respiration. GENERAL SIGNIFICANCE Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis-respiration effect can practically inform the development of new mitochondrial medicine approaches.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
1004
|
Zhang B, Kawachi E, Miura SI, Uehara Y, Matsunaga A, Kuroki M, Saku K. Therapeutic Approaches to the Regulation of Metabolism of High-Density Lipoprotein. Circ J 2013; 77:2651-63. [DOI: 10.1253/circj.cj-12-1584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
| | - Emi Kawachi
- Department of Cardiology, Fukuoka University School of Medicine
| | - Shin-ichiro Miura
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| | - Yoshinari Uehara
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| | - Akira Matsunaga
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Laboratory Medicine, Fukuoka University School of Medicine
| | - Masahide Kuroki
- Department of Biochemistry, Fukuoka University School of Medicine
| | - Keijiro Saku
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| |
Collapse
|
1005
|
Resveratrol Is Not as Effective as Physical Exercise for Improving Reproductive and Metabolic Functions in Rats with Dihydrotestosterone-Induced Polycystic Ovary Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:964070. [PMID: 23690868 PMCID: PMC3638597 DOI: 10.1155/2013/964070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/04/2013] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a reproductive and metabolic disorder associated with obesity and insulin resistance that often precedes the development of type-2 diabetes. Rats continuously exposed to dihydrotestosterone from prepuberty display typical reproductive and metabolic PCOS characteristics including anovulation, polycystic ovaries, insulin resistance, and obesity. Our aim was to investigate if resveratrol improves reproductive and metabolic functions in PCOS rats. The effect was compared to exercise. Control and PCOS rats were treated with vehicle or resveratrol (400 mg · kg−1 · day−1) for 5-6 weeks. Another group of PCOS rats received vehicle treatment and exercised for 5-6 weeks. Insulin sensitivity was determined by euglycemic-hyperinsulinemic clamp. The glucose infusion rate was lower in the PCOS-vehicle group compared to control-vehicle rats (P<0.05). Exercise increased insulin sensitivity compared with PCOS-vehicle rats (P<0.05), but resveratrol did not. Resveratrol treatment and exercise resulted in smaller adipocytes, upregulated estrogen-related receptorαgene expression in subcutaneous fat, and improved estrus cyclicity in the previously acyclic PCOS rats. Although resveratrol had positive effects on adiposity and cyclicity in a similar manner to exercise, resveratrol does not seem to be a good candidate for treating insulin resistance associated with PCOS because no improvement in insulin sensitivity was observed in PCOS rats on normal chow.
Collapse
|
1006
|
Bruckbauer A, Zemel MB. Synergistic effects of metformin, resveratrol, and hydroxymethylbutyrate on insulin sensitivity. Diabetes Metab Syndr Obes 2013; 6:93-102. [PMID: 23430507 PMCID: PMC3575126 DOI: 10.2147/dmso.s40840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine whether a mixture of the polyphenol, resveratrol, and the leucine metabolite, hydroxymethylbutyrate (HMB), acts synergistically with low doses of metformin to impact insulin sensitivity and AMP-activated protein kinase-dependent outcomes in cell culture and in diabetic mice. METHODS C2C12 skeletal myotubes and 3T3-L1 adipocytes were treated with resveratrol 0.2 μM, HMB 5 μM, and metformin 0.1 mM alone or in combination. db/db mice were treated for 2 weeks with high (1.5 g/kg diet), low (0.75 g/kg diet), or very low (0.25 g/kg diet) doses of metformin alone or in combination with a diet containing resveratrol 12.5 mg and CaHMB 2 g/kg. RESULTS The combination of metformin-resveratrol-HMB significantly increased fat oxidation, AMP-activated protein kinase, and Sirt1 activity in muscle cells compared with metformin or resveratrol-HMB alone. A similar trend was found in 3T3L1 adipocytes. In mice, the two lower doses of metformin exerted no independent effect but, when combined with resveratrol-HMB, both low-dose and very low-dose metformin improved insulin sensitivity (HOMA(IR)), plasma insulin levels, and insulin tolerance test response to a level comparable with that found for high-dose metformin. In addition, the metformin-resveratrol-HMB combination decreased visceral fat and liver weight in mice. CONCLUSION Resveratrol-HMB combined with metformin may act synergistically on AMP-activated protein kinase-dependent pathways, leading to increased insulin sensitivity, which may reduce the therapeutic doses of metformin necessary in the treatment of diabetes.
Collapse
Affiliation(s)
| | - Michael B Zemel
- NuSirt Sciences Inc, Knoxville, TN, USA
- Department of Nutrition, University of Tennessee, Knoxville, TN, USA
- Correspondence: Michael B Zemel 11020 Solway School Rd, Knoxville, TN 37931, USA, Tel +1 865 206 6154, Email
| |
Collapse
|
1007
|
Li G, Rivas P, Bedolla R, Thapa D, Reddick RL, Ghosh R, Kumar AP. Dietary resveratrol prevents development of high-grade prostatic intraepithelial neoplastic lesions: involvement of SIRT1/S6K axis. Cancer Prev Res (Phila) 2012; 6:27-39. [PMID: 23248098 DOI: 10.1158/1940-6207.capr-12-0349] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIRT1 (mammalian ortholog of the yeast silent information regulator 2) is a NAD-dependent histone deacetylase belonging to the multigene family of sirtuins. Anecdotal and epidemiologic observations provide evidence for beneficial effects of the calorie restriction mimetic resveratrol (RES), a SIRT1 activator in preventing cardiovascular diseases and cancer. Although SIRT1 possesses both tumorigenic and antitumorigenic potential, the molecular mechanisms underlying SIRT1-mediated tumor progression or inhibition are poorly understood. In this study, we investigated the role of SIRT1 in multiple human prostate cancer cell lines and prostate-specific PTEN knockout mouse model using resveratrol. Androgen-independent prostate cancer cell lines (C42B, PC3, and DU145) express higher levels of SIRT1 than androgen-responsive (LNCaP) and nontumorigenic prostate cells (RWPE-1). Resveratrol enhanced this expression without any significant effect on SIRT1 enzymatic activity. Inhibition of SIRT1 expression using shRNA enhanced cell proliferation and inhibited autophagy by repressing phosphorylation of S6K and 4E-BP1. These biologic correlates were reversed in the presence of resveratrol. Analysis of prostates from dietary intervention with resveratrol showed a significant reduction in prostate weight and reduction in the incidence of high-grade prostatic intraepithelial neoplastic (HGPIN) lesions by approximately 54% with no significant change in body weight. Consistent with the in vitro findings, resveratrol intervention in the PTEN knockout mouse model was associated with reduction in the prostatic levels of mTOR complex 1 (mTORC1) activity and increased expression of SIRT1. These data suggest that SIRT1/S6K-mediated inhibition of autophagy drives prostate tumorigenesis. Therefore, modulation of SIRT1/S6K signaling represents an effective strategy for prostate cancer prevention.
Collapse
Affiliation(s)
- Guiming Li
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
1008
|
Casalena G, Daehn I, Bottinger E. Transforming growth factor-β, bioenergetics, and mitochondria in renal disease. Semin Nephrol 2012; 32:295-303. [PMID: 22835461 DOI: 10.1016/j.semnephrol.2012.04.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transforming growth factor-β (TGF-β) family comprises more than 30 family members that are structurally related secreted dimeric cytokines, including TGF-β, activins, and bone morphogenetic proteins/growth and differentiation factors. TGF-β are pluripotent regulators of cell proliferation, differentiation, apoptosis, migration, and adhesion of many different cell types. TGF-β pathways are highly evolutionarily conserved and control embryogenesis, tissue repair, and tissue homeostasis in invertebrates and vertebrates. Aberrations in TGF-β activity and signaling underlie a broad spectrum of developmental disorders and major pathologies in human beings, including cancer, fibrosis, and autoimmune diseases. Recent observations have indicated an emerging role for TGF-β in the regulation of mitochondrial bioenergetics and oxidative stress responses characteristic of chronic degenerative diseases and aging. Conversely, energy and metabolic sensory pathways cross-regulate mediators of TGF-β signaling. Here, we review TGF-β and regulation of bioenergetic and mitochondrial functions, including energy and oxidant metabolism and apoptotic cell death, as well as their emerging relevance in renal biology and disease.
Collapse
Affiliation(s)
- Gabriella Casalena
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
1009
|
Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues. Exp Gerontol 2012; 47:925-35. [DOI: 10.1016/j.exger.2012.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022]
|
1010
|
Ju TC, Lin YS, Chern Y. Energy dysfunction in Huntington's disease: insights from PGC-1α, AMPK, and CKB. Cell Mol Life Sci 2012; 69:4107-20. [PMID: 22627493 PMCID: PMC11115139 DOI: 10.1007/s00018-012-1025-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/16/2012] [Accepted: 05/02/2012] [Indexed: 12/23/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. When the number of CAG repeats exceeds 36, the translated polyglutamine-expanded Htt protein interferes with the normal functions of many types of cellular machinery and causes cytotoxicity. Clinical symptoms include progressive involuntary movement disorders, psychiatric signs, cognitive decline, dementia, and a shortened lifespan. The most severe brain atrophy is observed in the striatum and cortex. Besides the well-characterized neuronal defects, recent studies showed that the functions of mitochondria and several key players in energy homeostasis are abnormally regulated during HD progression. Energy dysregulation thus is now recognized as an important pathogenic pathway of HD. This review focuses on the importance of three key molecular determinants (peroxisome proliferator-activated receptor-γ coactivator-1α, AMP-activated protein kinase, and creatine kinase B) of cellular energy homeostasis and their possible involvement in HD pathogenesis.
Collapse
Affiliation(s)
- Tz-Chuen Ju
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| | - Yow-Sien Lin
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| |
Collapse
|
1011
|
Hartl M, Finkemeier I. Plant mitochondrial retrograde signaling: post-translational modifications enter the stage. FRONTIERS IN PLANT SCIENCE 2012; 3:253. [PMID: 23162565 PMCID: PMC3495340 DOI: 10.3389/fpls.2012.00253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/22/2012] [Indexed: 05/23/2023]
Abstract
Beside their central function in respiration plant mitochondria play important roles in diverse processes such as redox homeostasis, provision of precursor molecules for essential biosynthetic pathways, and programmed cell death. These different functions require the organelle to communicate with the rest of the cell by perceiving, transducing, and emitting signals. As the vast majority of mitochondrial proteins are encoded in the nuclear genome, changes in mitochondrial status must be fed back to the nucleus to coordinate gene expression accordingly, a process termed retrograde signaling. However, the nature of these signaling pathways in plants and their underlying signaling molecules - or indirect metabolite or redox signals - are not completely resolved. We explore the potential of different post-translational modifications (PTMs) to contribute to mitochondrial retrograde signaling. Remarkably, the substrates used for modifying proteins in many major PTMs are either central metabolites or redox-active compounds, as for example ATP, acetyl-CoA, NAD(+), and glutathione. This suggests that the metabolic status of organelles and of the cell in general could be indirectly gaged by the enzymes catalyzing the various PTMs. We examine the evidence supporting this hypothesis with regard to three major PTMs, namely phosphorylation, lysine acetylation, and glutathionylation and assess their potential to regulate not only organellar processes by modifying metabolic enzymes but also to influence nuclear gene expression.
Collapse
Affiliation(s)
| | - Iris Finkemeier
- *Correspondence: Iris Finkemeier, Department Biology I, Ludwig Maximilians University Munich, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany. e-mail:
| |
Collapse
|
1012
|
Bottje W, Kong BW. Cell Biology Symposium: feed efficiency: mitochondrial function to global gene expression. J Anim Sci 2012; 91:1582-93. [PMID: 23148240 DOI: 10.2527/jas.2012-5787] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the cellular basis of feed efficiency (FE) is instrumental to helping poultry and livestock industries continue to provide high-quality protein for an increasingly crowded world. To understand relationships of FE and gene expression, global RNA transcription was investigated in breast muscle obtained from a male broiler line fed the same diet and individually phenotyped for FE. In these studies, RNA samples obtained from broilers that exhibited either high FE (0.65 ± 0.01) or low FE (0.46 ± 0.01) were analyzed with an Agilent 44K chicken oligoarray. A 1.3-fold cutoff in expression (30% difference between groups) resulted in 782 genes that were differentially expressed (P < 0.05) in muscle between the high- and low-FE phenotypes. Ingenuity Pathway Analysis, an online software program, was used to identify genes, gene networks, and pathways associated with the phenotypic expression of FE. The results indicate that the high-FE phenotype exhibited increased expression of genes associated with 1) signal transduction pathways, 2) anabolic activities, and 3) energy-sensing and energy coordination activities, all of which would likely be favorable to cell growth and development. In contrast, the low-FE broiler phenotype exhibited upregulation of genes 1) associated with actin-myosin filaments, cytoskeletal architecture, and muscle fibers and 2) stress-related or stress-responsive genes. Because the low-FE broiler phenotype exhibits greater oxidative stress, it would appear that the low-FE phenotype is the product of inherent gene expression that is modulated by oxidative stress. The results of these studies begin to provide a comprehensive picture of gene expression in muscle, a major organ of energy demand in an animal, associated with phenotypic expression of FE.
Collapse
Affiliation(s)
- W Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701, USA.
| | | |
Collapse
|
1013
|
Shiota A, Shimabukuro M, Fukuda D, Soeki T, Sato H, Uematsu E, Hirata Y, Kurobe H, Maeda N, Sakaue H, Masuzaki H, Shimomura I, Sata M. Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice. Cardiovasc Diabetol 2012; 11:139. [PMID: 23137106 PMCID: PMC3527353 DOI: 10.1186/1475-2840-11-139] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/18/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Telmisartan is a well-established angiotensin II type 1 receptor blocker that improves insulin sensitivity in animal models of obesity and insulin resistance, as well as in humans. Telmisartan has been reported to function as a partial agonist of the peroxisome proliferator-activated receptor (PPAR) γ, which is also targeted by the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase (SIRT1). Here, we investigated the pathways through which telmisartan acts on skeletal muscle, in vitro as well as in vivo. METHODS Nine-week-old male db/db mice were fed a 60% high-fat diet, with orally administrated either vehicle (carboxymethyl-cellulose, CMC), 5 mg/kg telmisartan, or 5 mg/kg telmisartan and 1 mg/kg GW9662, a selective irreversible antagonist of PPARγ, for 5 weeks. Effects of telmisartan on Sirt1 mRNA, AMPK phosphorylation, and NAD+/NADH ratio were determined in C2C12 cultured myocytes. RESULTS AND DISCUSSION Telmisartan treatment improved insulin sensitivity in obese db/db mice fed a high-fat diet and led to reduction in the size of hypertrophic pancreatic islets in these mice. Moreover, in vitro treatment with telmisartan led to increased expression of Sirt1 mRNA in C2C12 skeletal muscle cells; the increase in Sirt1 mRNA in telmisartan-treated C2C12 myoblasts occurred concomitantly with an increase in AMPK phosphorylation, an increase in NAD+/NADH ratio, and increases in the mRNA levels of PGC1α, FATP1, ACO, and GLUT4. CONCLUSIONS Our results indicate that telmisartan acts through a PPARγ-independent pathway, but at least partially exerts its effects by acting directly on skeletal muscle AMPK/SIRT1 pathways.
Collapse
Affiliation(s)
- Asuka Shiota
- Department of Cardio-Diabetes Medicine, University of Tokushima Graduate School of Health Biosciences, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1014
|
Abstract
Whether mild cognitive impairment (MCI) has a distinct neuropathological profile that reflects an intermediate state between no cognitive impairment and dementia is not clear. Identifying which biological events occur at the earliest stage of progressive disease and which are secondary to the neuropathological process is important for understating pathological pathways and for targeted disease prevention. Many studies have now reported on the neurobiology of this intermediate stage. In this systematic review, we synthesize current evidence on the neuropathological profile of MCI. A total of 162 studies were identified with varied definition of MCI, settings ranging from population to specialist clinics and a wide range of objectives. From these studies, it is clear that MCI is neuropathologically complex and cannot be understood within a single framework. Pathological changes identified include plaque and tangle formation, vascular pathologies, neurochemical deficits, cellular injury, inflammation, oxidative stress, mitochondrial changes, changes in genomic activity, synaptic dysfunction, disturbed protein metabolism and disrupted metabolic homeostasis. Determining which factors primarily drive neurodegeneration and dementia and which are secondary features of disease progression still requires further research. Standardization of the definition of MCI and reporting of pathology would greatly assist in building an integrated picture of the clinical and neuropathological profile of MCI.
Collapse
|
1015
|
Teng RJ, Du J, Afolayan AJ, Eis A, Shi Y, Konduri GG. AMP kinase activation improves angiogenesis in pulmonary artery endothelial cells with in utero pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012; 304:L29-42. [PMID: 23103561 DOI: 10.1152/ajplung.00200.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with in utero pulmonary hypertension (IPH) have phenotypical changes that lead to increased reactive oxygen species (ROS) formation and impaired angiogenesis. AMP-activated protein kinase (AMPK) is known to be activated by ROS, which is expected to help angiogenesis in IPH-PAEC. The objectives of this study were to investigate AMPK responses in IPH and its role in angiogenesis. We observed that, compared with control PAEC, IPH-PAEC have decreased phosphorylation of AMPKα catalytic subunit and AMPK downstream enzymes, indicating a decrease in AMPK activity. In addition, the expression of AMPK kinases is decreased, and protein phosphatase 2 is increased in IPH-PAEC, potentially contributing to the decreased AMPK activation. Metformin, an AMPK activator, improved IPH-PAEC angiogenesis while increasing endothelial NO synthase (eNOS) serine(1179) phosphorylation and decreasing the eNOS-caveolin-1 association. Metformin also increased MnSOD activity and the expression of both eNOS and MnSOD. The increase in angiogenesis by Metformin is abolished by pretreatment with AMPK inhibitor, Compound C. Expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor β (PDGFβ) are decreased in IPH-PAEC compared with control PAEC and were not altered by Metformin. These data indicate that Metformin improves angiogenesis through mechanisms independent of these angiogenic factors. In conclusion, activation of AMPK restores angiogenesis and increases the bioavailability of nitric oxide in IPH. Whether Metformin is beneficial in the management of pulmonary hypertension requires further investigation.
Collapse
Affiliation(s)
- Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, USA.
| | | | | | | | | | | |
Collapse
|
1016
|
Abstract
Acetylation, through the post-transcriptional modification of histones, is a well-established regulator of gene transcription. More recent research has also identified an important role for acetylation in the regulation of non-histone proteins, both inside and outside the nucleus. As a fast (and reversible) post-translational process, acetylation allows cells to rapidly alter the function of existing proteins, making it ideally suited to biological programmes that require an immediate response to changing conditions. Using metabolic programmes as an example, the present chapter looks at how reversible acetylation can be used to regulate important enzymes in an ever-changing cellular environment.
Collapse
|
1017
|
Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int 2012; 82:771-89. [DOI: 10.1038/ki.2012.188] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1018
|
Bryner RW, Woodworth-Hobbs ME, Williamson DL, Alway SE. Docosahexaenoic Acid protects muscle cells from palmitate-induced atrophy. ISRN OBESITY 2012; 2012:647348. [PMID: 24533207 PMCID: PMC3914282 DOI: 10.5402/2012/647348] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/29/2012] [Indexed: 12/31/2022]
Abstract
Background. Accumulation of free fatty acids leads to lipid-toxicity-associated skeletal muscle atrophy. Palmitate treatment reduces myoblast and myotube growth and causes apoptosis in vitro. It is not known if omega-3 fatty acids will protect muscle cells against palmitate toxicity. Therefore, we examined the effects of docosahexaenoic acid (DHA) on skeletal muscle growth. Methods. Mouse myoblasts (C2C12) were differentiated to myotubes, and then treated with 0 or 0.5 mM palmitic acid or 0 or 0.1 mM DHA. Results. Intramyocellular lipid was increased in palmitate-treated cells but was prevented by DHA-palmitate cotreatment. Total AMPK increased in DHA+ palmitate-treated compared to palmitate only cells. RpS6 phosphorylation decreased after palmitate (-55%) and this was blunted by DHA+ palmitate (-35%) treatment. Palmitate treatment decreased PGC1α protein expression by 69%, but was increased 165% with DHA+ palmitate (P = 0.017) versus palmitate alone. While palmitate induced 25% and 90% atrophy in myotubes (after 48 hours and 96 hours, resp.), DHA+ palmitate treatment caused myotube hypertrophy of ~50% and 100% after 48 and 96 hours, respectively. Conclusion. These data show that DHA is protective against palmitate-induced atrophy. Although DHA did not activate the AMPK pathway, DHA treatment restored growth-signaling (i.e., rpS6) and rescued palmitate-induced muscle atrophy.
Collapse
Affiliation(s)
- Randall W Bryner
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506-9227, USA
| | - Myra E Woodworth-Hobbs
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506-9227, USA
| | - David L Williamson
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506-9227, USA
| | - Stephen E Alway
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506-9227, USA
| |
Collapse
|
1019
|
Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ. Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 2012; 186:1140-9. [PMID: 23024021 DOI: 10.1164/rccm.201206-0982oc] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Mechanical ventilation (MV) is associated with adverse effects on the diaphragm, but the cellular basis for this phenomenon, referred to as ventilator-induced diaphragmatic dysfunction (VIDD), is poorly understood. OBJECTIVES To determine whether mitochondrial function and cellular energy status are disrupted in human diaphragms after MV, and the role of mitochondria-derived oxidative stress in the development of VIDD. METHODS Diaphragm and biceps specimens obtained from brain-dead organ donors who underwent MV (15-176 h) and age-matched control subjects were compared regarding mitochondrial enzymatic function, mitochondrial DNA integrity, lipid content, and metabolic gene and protein expression. In addition, diaphragmatic force and oxidative stress after exposure to MV for 6 hours were evaluated in mice under different conditions. MEASUREMENTS AND MAIN RESULTS In human MV diaphragms, mitochondrial biogenesis and content were down-regulated, with a more specific defect of respiratory chain cytochrome-c oxidase. Laser capture microdissection of cytochrome-c oxidase-deficient fibers revealed mitochondrial DNA deletions, consistent with damage from oxidative stress. Diaphragmatic lipid accumulation and responses of master cellular metabolic sensors (AMP-activated protein kinase and sirtuins) were consistent with energy substrate excess as a possible stimulus for these changes. In mice, induction of hyperlipidemia worsened diaphragmatic oxidative stress during MV, whereas transgenic overexpression of a mitochondria-localized antioxidant (peroxiredoxin-3) was protective against VIDD. CONCLUSIONS Our data suggest that mitochondrial dysfunction lies at the nexus between oxidative stress and the impaired diaphragmatic contractility that develops during MV. Energy substrate oversupply relative to demand, resulting from diaphragmatic inactivity during MV, could play an important role in this process.
Collapse
Affiliation(s)
- Martin Picard
- Meakins-Christie Laboratories, 3626 Saint Urbain Street, Montreal, PQ, H2X 2P2 Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1020
|
Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 2012; 92:1479-514. [PMID: 22811431 DOI: 10.1152/physrev.00022.2011] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The sirtuins are a family of highly conserved NAD(+)-dependent deacetylases that act as cellular sensors to detect energy availability and modulate metabolic processes. Two sirtuins that are central to the control of metabolic processes are mammalian sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), which are localized to the nucleus and mitochondria, respectively. Both are activated by high NAD(+) levels, a condition caused by low cellular energy status. By deacetylating a variety of proteins that induce catabolic processes while inhibiting anabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately maintain cellular energy homeostasis. Defects in the pathways controlled by SIRT1 and SIRT3 are known to result in various metabolic disorders. Consequently, activation of sirtuins by genetic or pharmacological means can elicit multiple metabolic benefits that protect mice from diet-induced obesity, type 2 diabetes, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ruben Nogueiras
- Department of Physiology, School of Medicine-Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1021
|
Abstract
Mitochondria have various essential functions in metabolism and in determining cell fate during apoptosis. In addition, mitochondria are also important nodes in a number of signaling pathways. For example, mitochondria can modulate signals transmitted by second messengers such as calcium. Because mitochondria are also major sources of reactive oxygen species (ROS), they can contribute to redox signaling--for example, by the production of ROS such as hydrogen peroxide that can reversibly modify cysteine residues and thus the activity of target proteins. Mitochondrial ROS production is thought to play a role in hypoxia signaling by stabilizing the oxygen-sensitive transcription factor hypoxia-inducible factor-1α. New evidence has extended the mechanism of mitochondrial redox signaling in cellular responses to hypoxia in interesting and unexpected ways. Hypoxia altered the microtubule-dependent transport of mitochondria so that the organelles accumulated in the perinuclear region, where they increased the intranuclear concentration of ROS. The increased ROS in turn enhanced the expression of hypoxia-sensitive genes such as VEGF (vascular endothelial growth factor) not by reversibly oxidizing a protein, but by oxidizing DNA sequences in the hypoxia response element of the VEGF promoter. This paper and other recent work suggest a new twist on mitochondrial signaling: that the redistribution of mitochondria within the cell can be a component of regulatory pathways.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council, Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
1022
|
Marosi K, Bori Z, Hart N, Sárga L, Koltai E, Radák Z, Nyakas C. Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience 2012; 226:21-8. [PMID: 22982624 DOI: 10.1016/j.neuroscience.2012.09.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/20/2012] [Accepted: 09/01/2012] [Indexed: 01/11/2023]
Abstract
Exercise can exert beneficial effects on cognitive functions of older subjects and it can also play an important role in the prevention of neurodegenerative diseases. At the same time it is perceivable that limited information is available on the nature of molecular pathways supporting the antioxidant effects of exercise in the brain. In this study 12-month old, middle-aged female Wistar rats were subjected to daily moderate intensity exercise on a rodent treadmill for a period of 15weeks which covered the early aging period unmasking already some aging-related molecular disturbances. The levels of reactive oxygen species (ROS), the amount of protein carbonyls, the levels of antioxidant intracellular enzymes superoxide dismutases (SOD-1, SOD-2) and glutathione peroxidase (GPx) were determined in the hippocampus. In addition, to identify the molecular pathways that may be involved in ROS metabolism and mitochondrial biogenesis, the activation of 5'-AMP-activated protein kinase (AMPK), the protein level of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (mtTFA) were measured. Our results revealed a lower level of ROS associated with a reduced amount of protein carbonyls in the hippocampus of physically trained rats compared to sedentary controls. Furthermore, exercise induced an up-regulation of SOD-1 and GPx enzymes, p-AMPK and PGC-1α, that can be related to an improved redox balance in the hippocampus. These results suggest that long-term physical exercise can comprises antioxidant properties and by this way protect neurons against oxidative stress at the early stage of aging.
Collapse
Affiliation(s)
- K Marosi
- Semmelweis University, Institute of Sport Science, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
1023
|
Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 2012; 10:515-9. [PMID: 22560075 DOI: 10.1016/j.stem.2012.04.002] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/26/2012] [Accepted: 04/03/2012] [Indexed: 01/13/2023]
Abstract
Calorie restriction (CR) extends life span and ameliorates age-related pathologies in most species studied, yet the mechanisms underlying these effects remain unclear. Using mouse skeletal muscle as a model, we show that CR acts in part by enhancing the function of tissue-specific stem cells. Even short-term CR significantly enhanced stem cell availability and activity in the muscle of young and old animals, in concert with an increase in mitochondrial abundance and induction of conserved metabolic and longevity regulators. Moreover, CR enhanced endogenous muscle repair and CR initiated in either donor or recipient animals improved the contribution of donor cells to regenerating muscle after transplant. These studies indicate that metabolic factors play a critical role in regulating stem cell function and that this regulation can influence the efficacy of recovery from injury and the engraftment of transplanted cells.
Collapse
|
1024
|
Williams CB, Gurd BJ. Skeletal muscle SIRT1 and the genetics of metabolic health: therapeutic activation by pharmaceuticals and exercise. APPLICATION OF CLINICAL GENETICS 2012; 5:81-91. [PMID: 23776383 PMCID: PMC3681195 DOI: 10.2147/tacg.s31276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Silent mating type information regulation 2 homolog 1 (SIRT1) is implicated in the control of skeletal muscle mitochondrial content and function through deacetylation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and participation in the SIRT1/PGC-1α axis. The SIRT1/PGC-1α axis control of skeletal muscle mitochondrial biogenesis is an important therapeutic target for obesity and obesity-related metabolic dysfunction, as skeletal muscle mitochondrial dysfunction is implicated in the pathogenesis of multiple metabolic diseases. This review will establish the importance of the SIRT1/PGC-1α axis in the control of skeletal muscle mitochondrial biogenesis, and explore possible pharmacological and physiological interventions designed to activate SIRT1 and the SIRT1/PGC-1α axis in order to prevent and/or treat obesity and obesity-related metabolic disease. The current evidence supports a role for therapeutic activation of SIRT1 and the SIRT1/PGC-1α axis by both pharmaceuticals and exercise in the treatment and prevention of metabolic disease. Future research should be directed toward the feasibility of pharmaceutical activation of SIRT1 in humans and refining exercise prescriptions for optimal SIRT1 activation.
Collapse
Affiliation(s)
- Cameron B Williams
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
1025
|
Blagih J, Krawczyk CM, Jones RG. LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Immunol Rev 2012; 249:59-71. [DOI: 10.1111/j.1600-065x.2012.01157.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Connie M. Krawczyk
- Department of Microbiology and Immunology; McGill University; Montreal; Quebec
| | | |
Collapse
|
1026
|
Robich MP, Chu LM, Burgess TA, Feng J, Han Y, Nezafat R, Leber MP, Laham RJ, Manning WJ, Sellke FW. Resveratrol preserves myocardial function and perfusion in remote nonischemic myocardium in a swine model of metabolic syndrome. J Am Coll Surg 2012; 215:681-9. [PMID: 22867714 DOI: 10.1016/j.jamcollsurg.2012.06.417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/24/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Resveratrol has been shown to reverse some of the detrimental effects of metabolic syndrome (MetS). We sought to define the impact of supplemental resveratrol on normal myocardium remote from an ischemic territory in a swine model of MetS and chronic myocardial ischemia. STUDY DESIGN Yorkshire swine were fed a normal diet (control), a high cholesterol diet (HCD), or a high cholesterol diet with orally supplemented resveratrol (HCD-R; 100 mg/kg/day). Four weeks after diet modification, myocardial ischemia was induced by ameroid constrictor placement. Seven weeks later, myocardial tissue from a territory remote from the ischemia was harvested. Animals in the HCD and HCD-R groups underwent functional cardiac MRI before ischemia and before sacrifice. Tissue was harvested for protein expression analysis. RESULTS After 7 weeks of ischemia, regional left ventricular systolic function was significantly increased in HCD-R as compared with HCD animals. During ventricular pacing the HCD group had significantly decreased flow (p = 0.03); perfusion in the HCD-R was preserved as compared with the control. There was no difference in microvascular relaxation. Expression of metabolic proteins Sirt-1 (p = 0.002), AMPkinase (p = 0.02), and carnitine palmitoyltransferase-I (p = 0.002) were upregulated in the HCD-R group. Levels of protein oxidative stress were significantly increased in the HCD and HCD-R groups, as compared with the controls (p = 0.003). Activated endothelial nitric oxide synthase (eNOS) was increased in the HCD-R group (p = 0.01). There was no difference in myocardial endothelial cell density between the groups; however, dividing endothelial cells were decreased in the HCD and HCD-R groups (p = 0.006). CONCLUSIONS Resveratrol supplementation improves regional left ventricular function and preserves perfusion to myocardium remote from an area of ischemia in an animal model of metabolic syndrome and chronic myocardial ischemia.
Collapse
Affiliation(s)
- Michael P Robich
- Department of Surgery, Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1027
|
Abstract
Non-alcoholic fatty liver disease (NAFLD), one of the most common liver diseases, is caused by the disruption of hepatic lipid homeostasis. It is associated with insulin resistance as seen in type 2 diabetes mellitus. Glucagon-like peptide-1 (GLP-1) is an incretin that increases insulin sensitivity and aids glucose metabolism. In recent in vivo and in vitro studies, GLP-1 presents a novel therapeutic approach against NAFLD by increasing fatty acid oxidation, decreasing lipogenesis, and improving hepatic glucose metabolism. In this report, we provide an overview of the role and mechanism of GLP-1 in relieving NAFLD.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
1028
|
Abstract
There has been considerable progress in our understanding of cardiac cell metabolism in health and disease, yet important gaps remain in basic knowledge and its translation to clinical care. AMP-activated protein kinase (AMPK) functions either to conserve ATP or to promote alternative methods of ATP generation. Since the discovery of AMPK more than three decades ago and demonstration of its expression in the heart, interest has grown exponentially in this major fuel gauge as a modulator of the cellular response to ischemia. Such pathway may potentially explain the strong association between metabolic syndrome and ischemic heart disease. Still missing from our most recent cardiology textbooks, this article aims to summarize our understanding so far of the role of AMPK in coordinating the cellular response to ischemic stress and reperfusion injury in the heart. We aim to provide a focused update on the pharmacological agents activating AMPK for treatment of diabetes that show potential cardioprotective effects. Our hope is to stimulate future researchers to the potential benefits of harnessing the AMPK signaling pathway, or better one of its novel downstream targets for the treatment of myocardial ischemia.
Collapse
|
1029
|
Kotarsky H, Keller M, Davoudi M, Levéen P, Karikoski R, Enot DP, Fellman V. Metabolite profiles reveal energy failure and impaired beta-oxidation in liver of mice with complex III deficiency due to a BCS1L mutation. PLoS One 2012; 7:e41156. [PMID: 22829922 PMCID: PMC3400604 DOI: 10.1371/journal.pone.0041156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022] Open
Abstract
Background & Aims Liver is a target organ in many mitochondrial disorders, especially if the complex III assembly factor BCS1L is mutated. To reveal disease mechanism due to such mutations, we have produced a transgenic mouse model with c.232A>G mutation in Bcs1l, the causative mutation for GRACILE syndrome. The homozygous mice develop mitochondrial hepatopathy with steatosis and fibrosis after weaning. Our aim was to assess cellular mechanisms for disease onset and progression using metabolomics. Methods With mass spectrometry we analyzed metabolite patterns in liver samples obtained from homozygotes and littermate controls of three ages. As oxidative stress might be a mechanism for mitochondrial hepatopathy, we also assessed H2O2 production and expression of antioxidants. Results Homozygotes had a similar metabolic profile at 14 days of age as controls, with the exception of slightly decreased AMP. At 24 days, when hepatocytes display first histopathological signs, increases in succinate, fumarate and AMP were found associated with impaired glucose turnover and beta-oxidation. At end stage disease after 30 days, these changes were pronounced with decreased carbohydrates, high levels of acylcarnitines and amino acids, and elevated biogenic amines, especially putrescine. Signs of oxidative stress were present in end-stage disease. Conclusions The findings suggest an early Krebs cycle defect with increases of its intermediates, which might play a role in disease onset. During disease progression, carbohydrate and fatty acid metabolism deteriorate leading to a starvation-like condition. The mouse model is valuable for further investigations on mechanisms in mitochondrial hepatopathy and for interventions.
Collapse
Affiliation(s)
- Heike Kotarsky
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden
| | - Matthias Keller
- Neonatology, Department of Pediatrics, University Hospital, Essen, Germany
| | - Mina Davoudi
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden
| | - Per Levéen
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden
| | - Riitta Karikoski
- Central Pathology Laboratory, Helsinki University Hospital Laboratory Diagnostics, Helsinki, Finland
| | - David P. Enot
- Neonatology, Department of Pediatrics, University Hospital, Essen, Germany
| | - Vineta Fellman
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- * E-mail:
| |
Collapse
|
1030
|
Mazzoccoli G, Pazienza V, Vinciguerra M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol Int 2012; 29:227-51. [PMID: 22390237 DOI: 10.3109/07420528.2012.658127] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Daily rotation of the Earth on its axis and yearly revolution around the Sun impose to living organisms adaptation to nyctohemeral and seasonal periodicity. Terrestrial life forms have developed endogenous molecular circadian clocks to synchronize their behavioral, biological, and metabolic rhythms to environmental cues, with the aim to perform at their best over a 24-h span. The coordinated circadian regulation of sleep/wake, rest/activity, fasting/feeding, and catabolic/anabolic cycles is crucial for optimal health. Circadian rhythms in gene expression synchronize biochemical processes and metabolic fluxes with the external environment, allowing the organism to function effectively in response to predictable physiological challenges. In mammals, this daily timekeeping is driven by the biological clocks of the circadian timing system, composed of master molecular oscillators within the suprachiasmatic nuclei of the hypothalamus, pacing self-sustained and cell-autonomous molecular oscillators in peripheral tissues through neural and humoral signals. Nutritional status is sensed by nuclear receptors and coreceptors, transcriptional regulatory proteins, and protein kinases, which synchronize metabolic gene expression and epigenetic modification, as well as energy production and expenditure, with behavioral and light-dark alternance. Physiological rhythmicity characterizes these biological processes and body functions, and multiple rhythms coexist presenting different phases, which may determine different ways of coordination among the circadian patterns, at both the cellular and whole-body levels. A complete loss of rhythmicity or a change of phase may alter the physiological array of rhythms, with the onset of chronodisruption or internal desynchronization, leading to metabolic derangement and disease, i.e., chronopathology.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital Casa Sollievo della Sofferenza, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy.
| | | | | |
Collapse
|
1031
|
Constant JP, Fraley GS, Forbes E, Hallas BH, Leheste JR, Torres G. Resveratrol protects neurons from cannulae implantation injury: implications for deep brain stimulation. Neuroscience 2012; 222:333-42. [PMID: 22796077 DOI: 10.1016/j.neuroscience.2012.06.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/07/2012] [Accepted: 06/29/2012] [Indexed: 12/17/2022]
Abstract
Brain-implantable electrodes such as those used in deep brain stimulation (DBS) have a promising future in end-stage Parkinson's disease therapy. However, there is considerable injury when electrodes penetrate brain tissue. For instance, broken blood vessels and glial scar formation may impede continual DBS or electrical recording from specific neurons. To begin addressing this key safety issue, we tested the therapeutic potential of resveratrol in reducing brain trauma caused by DBS-like surgery. Microinfusion of resveratrol (10 μM) directly applied to the sub-thalamic nucleus (STN) of the rat brain significantly minimized the formation of astrocytic gliosis in response to a 27-G precision-glide cannula implant. The therapeutic effects of resveratrol extended to the "kill zone", a boundary zone of about 100 μm comprising the cannula implant and surrounding neurons. We also found that resveratrol not only provided almost complete protection from mechanical injury to the brain, but that it also prevented undesirable motor deficits often seen in animals with lesions to the STN. Lastly, continuous infusion of resveratrol over a 4-week period led to the inhibition of pro-apoptotic, neurodegenerative and cell division cycle genes that may be associated with a reduction in astrocytic gliosis and glial scar formation within the STN. Taken together, these data suggest that application of resveratrol to the brain is an effective adjunct surgical procedure for minimizing acute neuronal injury when electrodes are implanted directly into the STN.
Collapse
Affiliation(s)
- J P Constant
- Department of Biology and Neuroscience Program, Hope College, Holland, MI 49422, USA
| | | | | | | | | | | |
Collapse
|
1032
|
Yoganathan P, Karunakaran S, Ho MM, Clee SM. Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner. Nutr Metab (Lond) 2012; 9:65. [PMID: 22781276 PMCID: PMC3537611 DOI: 10.1186/1743-7075-9-65] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/21/2012] [Indexed: 12/13/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have recently identified several new genetic variants associated with obesity. The majority of the variants are within introns or between genes, suggesting they affect gene expression, although it is not clear which of the nearby genes they affect. Understanding the regulation of these genes will be key to determining the role of these variants in the development of obesity and will provide support for a role of these genes in the development of obesity. Methods We examined the expression of 19 GWAS obesity genes in the brain and specifically the hypothalamus, adipose tissue and liver of mice by real-time quantitative PCR. To determine whether these genes are nutritionally regulated, as may be expected for genes affecting obesity, we compared tissues from fasting and non-fasting animals and tissues from mice consuming a high fat high sucrose diet in comparison to standard rodent chow. Results We found complex, tissue-dependent patterns of nutritional regulation of most of these genes. For example, Bat2 expression was increased ~10-fold in the brain of fed mice but was lower or unchanged in the hypothalamus and adipose tissue. Kctd15 expression was upregulated in the hypothalamus, brain and adipose tissue of fed mice and downregulated by high fat feeding in liver, adipose tissue and the hypothalamus but not the remainder of the brain. Sh2b1 expression in the brain and Faim2 expression in adipose tissue were specifically increased >20-fold in fed mice. Tmem18 expression in adipose tissue but not the brain was reduced 80% by high fat feeding. Few changes in the expression of these genes were observed in liver. Conclusions These data show nutritional regulation of nearly all these GWAS obesity genes, particularly in the brain and adipose tissue, and provide support for their role in the development of obesity. The complex patterns of nutritional and tissue-dependent regulation also highlight the difficulty that may be encountered in determining how the GWAS genetic variants affect gene expression and consequent obesity risk in humans where access to tissues is constrained.
Collapse
Affiliation(s)
- Piriya Yoganathan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
1033
|
Caloric Restriction and the Nutrient-Sensing PGC-1α in Mitochondrial Homeostasis: New Perspectives in Neurodegeneration. Int J Cell Biol 2012; 2012:759583. [PMID: 22829833 PMCID: PMC3399559 DOI: 10.1155/2012/759583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/08/2012] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial activity progressively declines during ageing and in many neurodegenerative diseases. Caloric restriction (CR) has been suggested as a dietary intervention that is able to postpone the detrimental aspects of aging as it ameliorates mitochondrial performance. This effect is partially due to increased mitochondrial biogenesis. The nutrient-sensing PGC-1α is a transcriptional coactivator that promotes the expression of mitochondrial genes and is induced by CR. It is believed that many of the mitochondrial and metabolic benefits of CR are due to increased PGC-1α activity. The increase of PGC-1α is also positively linked to neuroprotection and its decrement has been involved in the pathogenesis of many neurodegenerative diseases. This paper aims to summarize the current knowledge about the role of PGC-1α in neuronal homeostasis and the beneficial effects of CR on mitochondrial biogenesis and function. We also discuss how PGC-1α-governed pathways could be used as target for nutritional intervention to prevent neurodegeneration.
Collapse
|
1034
|
Pulla VK, Battu MB, Alvala M, Sriram D, Yogeeswari P. Can targeting SIRT-1 to treat type 2 diabetes be a good strategy? A review. Expert Opin Ther Targets 2012; 16:819-32. [PMID: 22762724 DOI: 10.1517/14728222.2012.703656] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Dysregulation of metabolic pathways, caused by imbalances in energy homeostasis, leads to type 2 diabetes characterized by high glucose concentration in the blood due to insulin resistance which is a major disorder in developed countries. AREAS COVERED One of the recent treatment strategies is using activators of SIRT1, which has been in clinical trials. Many of the cellular processes including insulin secretion, cell cycle, and apoptosis are imperatively regulated by a family of mediators called sirtuins. First known mammalian sirtuin, SIRT1 is a positive regulator of insulin secretion, which triggers glucose uptake and utilization. Since the past decade, a major outstanding question is whether SIRT1 activation is a safe therapy for human diseases such as type 2 diabetes? This review summarizes and discusses the advances of the past decade and the challenges that will brazen out perplexity about homeostasis and metabolic pathways linked to SIRT1 and type 2 diabetes. Furthermore, we described the interlink between SIRT1 metabolic pathways of various tissues such as pancreas, skeletal muscle, adipose tissue and liver. EXPERT OPINION However be the complexity of the pathways involved, T2DM regulated by SIRT1 affected metabolism is dropping down progressively due to profound research. In the context of interlinking all the SIRT1 pathways in T2DM we found various crucial intermediaries in metabolic tissues, which can also be targeted for future prospects.
Collapse
Affiliation(s)
- Venkat Koushik Pulla
- Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Department of Pharmacy, Drug Discovery Research Laboratory, R.R. District-500078, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
1035
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
1036
|
Abstract
PURPOSE OF REVIEW In this review, we show novel evidence about the role of the liver in the development of insulin resistance and suggest that abnormal hepatic triglyceride accumulation is not an innocent bystander comorbidity but adversely affects the peripheral insulin sensitivity. RECENT FINDINGS The core of this review is built up around the concept that liver DNA methylation of the peroxisome proliferative activated receptor gamma coactivator one alpha gene promoter modulates the status of peripheral insulin resistance and is strongly associated with plasma fasting insulin levels. We discuss about other mechanisms associated with peroxisome proliferative activated receptor gamma coactivator one alpha regulation, such as an acetylation and deacetylation switch and how these events impact on the liver metabolic function. We suggest a mitochondrial-centric approach to understand the connection between nonalcoholic fatty liver disease and insulin resistance. We finally show new data about how the liver epigenome is modulated by nutritional cues and introduce the role of epigenetics in liver metabolic programming. SUMMARY The implications of these findings for clinical practice are promising, as the inherent plasticity of epigenetic modifications, produced either physiologically or pathologically, suggests that early therapeutic intervention in patients with fatty liver can potentially revert the systemic phenotype associated with insulin resistance.
Collapse
Affiliation(s)
- Silvia Sookoian
- Department of Clinical and Molecular Hepatology, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
1037
|
Association Study of Sirtuin 1 Polymorphisms with Bone Mineral Density and Body Mass Index. Arch Med Res 2012; 43:363-8. [DOI: 10.1016/j.arcmed.2012.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 06/14/2012] [Indexed: 12/22/2022]
|
1038
|
Bremer K, Monk CT, Gurd BJ, Moyes CD. Transcriptional regulation of temperature-induced remodeling of muscle bioenergetics in goldfish. Am J Physiol Regul Integr Comp Physiol 2012; 303:R150-8. [PMID: 22621965 DOI: 10.1152/ajpregu.00603.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Central to mammalian mitochondrial biogenesis is the transcriptional master regulator peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), and a network of DNA-binding proteins it coactivates. We explored the role of this pathway in muscle mitochondrial biogenesis in response to thermal acclimation in goldfish (Carassius auratus). We investigated the transcriptional response of PGC-1α, PGC-1β, and their antagonist the nuclear receptor interacting protein 1 (RIP140), as well as the mRNA and protein patterns of DNA-binding proteins that bind PGC-1, including nuclear respiratory factors (NRF) 1 and 2, retinoid X receptor α (RXRα), estrogen-related receptor α (ERRα), thyroid receptor α-1 (TRα-1), PPARα, and PPARβ/δ, and the host cell factor 1 (HCF1), which links PGC-1 and NRF-2. Cold-acclimated (4°C) fish had higher COX activities (4.5-fold) and COX4-1 mRNA levels (3.5-fold per total RNA; 6.5-fold per gram tissue) than warm-acclimated (32°C) fish. The transcription factor patterns were profoundly influenced by changes in RNA per gram tissue (2-fold higher in cold fish) and nuclear protein content (2-fold higher in warm fish). In cold-acclimated fish, mRNA per gram tissue was elevated for PGC-1β, RIP140, NRF-1, HCF1, NRF-2α, NRF-2β-2, ERRα, PPAR β/δ, and RXRα, but other transcriptional regulators either did not change (PGC-1α, PPARα) or even decreased (TRα-1). Nuclear protein levels in cold-acclimated fish were higher only for NRF-1; other proteins were either unaffected (NRF-2α, ERRα) or decreased (NRF-2β1/2, TRα, RXRα). Collectively, these data support the role for NRF-1 in regulating cold-induced mitochondrial biogenesis in goldfish, with effects mediated by PGC-1β, rather than PGC-1α.
Collapse
Affiliation(s)
- Katharina Bremer
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
1039
|
Abstract
Progressive DNA damage and mitochondrial decline are both considered to be prime instigators of natural ageing. Traditionally, these two pathways have been viewed largely in isolation. However, recent studies have revealed a molecular circuit that directly links DNA damage to compromised mitochondrial biogenesis and function via p53. This axis of ageing may account for both organ decline and disease development associated with advanced age and could illuminate a path for the development of relevant therapeutics.
Collapse
|
1040
|
Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 2012; 26:3493-502. [PMID: 22593546 DOI: 10.1096/fj.12-208868] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disruption of circadian rhythms leads to obesity and metabolic disorders. Timed restricted feeding (RF) provides a time cue and resets the circadian clock, leading to better health. In contrast, a high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. We tested whether long-term (18 wk) clock resetting by RF can attenuate the disruptive effects of diet-induced obesity. Analyses included liver clock gene expression, locomotor activity, blood glucose, metabolic markers, lipids, and hormones around the circadian cycle for a more accurate assessment. Compared with mice fed the HF diet ad libitum, the timed HF diet restored the expression phase of the clock genes Clock and Cry1 and phase-advanced Per1, Per2, Cry2, Bmal1, Rorα, and Rev-erbα. Although timed HF-diet-fed mice consumed the same amount of calories as ad libitum low-fat diet-fed mice, they showed 12% reduced body weight, 21% reduced cholesterol levels, and 1.4-fold increased insulin sensitivity. Compared with the HF diet ad libitum, the timed HF diet led to 18% lower body weight, 30% decreased cholesterol levels, 10% reduced TNF-α levels, and 3.7-fold improved insulin sensitivity. Timed HF-diet-fed mice exhibited a better satiated and less stressed phenotype of 25% lower ghrelin and 53% lower corticosterone levels compared with mice fed the timed low-fat diet. Taken together, our findings suggest that timing can prevent obesity and rectify the harmful effects of a HF diet.
Collapse
Affiliation(s)
- Hadas Sherman
- Institute of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
1041
|
Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 2012; 16:1150-80. [PMID: 21967640 PMCID: PMC3315176 DOI: 10.1089/ars.2011.4085] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/01/2023]
Abstract
Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O₂, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O₂ utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis.
Collapse
Affiliation(s)
| | - María Eugenia Elguero
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- Department of Internal Medicine, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- Department of Clinical Biochemistry, INFIBIOC and School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
1042
|
Biasutto L, Mattarei A, Zoratti M. Resveratrol and health: the starting point. Chembiochem 2012; 13:1256-9. [PMID: 22581673 DOI: 10.1002/cbic.201200193] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Indexed: 12/20/2022]
Abstract
Cascade of youth? Resveratrol, the celebrated phytoalexin of red wine, was known to activate AMPK indirectly, but how this happened was unclear. In a paper recently published in Cell, S.-J. Park, J. H. Chung and co-workers identify the signalling cascade, which begins with the inhibition of phosphodiesterases, in particular PDE4. But questions remain, even while new perspectives open up.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Viale Giuseppe Colombo 3, 35131 Padova, Italy
| | | | | |
Collapse
|
1043
|
Liu TF, Brown CM, El Gazzar M, McPhail L, Millet P, Rao A, Vachharajani VT, Yoza BK, McCall CE. Fueling the flame: bioenergy couples metabolism and inflammation. J Leukoc Biol 2012; 92:499-507. [PMID: 22571857 DOI: 10.1189/jlb.0212078] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We review the emerging concept that changes in cellular bioenergetics concomitantly reprogram inflammatory and metabolic responses. The molecular pathways of this integrative process modify innate and adaptive immune reactions associated with inflammation, as well as influencing the physiology of adjacent tissue and organs. The initiating proinflammatory phase of inflammation is anabolic and requires glucose as the primary fuel, whereas the opposing adaptation phase is catabolic and requires fatty acid oxidation. The fuel switch to fatty acid oxidation depends on the sensing of AMP and NAD(+) by AMPK and the SirT family of deacetylases (e.g., SirT1, -6, and -3), respectively, which couple inflammation and metabolism by chromatin and protein reprogramming. The AMP-AMPK/NAD(+)-SirT axis proceeds sequentially during acute systemic inflammation associated with sepsis but ceases during chronic inflammation associated with diabetes, obesity, and atherosclerosis. Rebalancing bioenergetics resolves inflammation. Manipulating cellular bioenergetics is identifying new ways to treat inflammatory and immune diseases.
Collapse
Affiliation(s)
- Tie Fu Liu
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1044
|
Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J, Ratziu V, Serfaty L, Housset C, Capeau J, Girard J, Guillou H, Postic C. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012; 122:2176-94. [PMID: 22546860 DOI: 10.1172/jci41636] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/15/2012] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Although deposition of excess triglycerides within liver cells, a hallmark of NAFLD, is associated with a loss of insulin sensitivity, it is not clear which cellular abnormality arises first. We have explored this in mice overexpressing carbohydrate responsive element-binding protein (ChREBP). On a standard diet, mice overexpressing ChREBP remained insulin sensitive, despite increased expression of genes involved in lipogenesis/fatty acid esterification and resultant hepatic steatosis (simple fatty liver). Lipidomic analysis revealed that the steatosis was associated with increased accumulation of monounsaturated fatty acids (MUFAs). In primary cultures of mouse hepatocytes, ChREBP overexpression induced expression of stearoyl-CoA desaturase 1 (Scd1), the enzyme responsible for the conversion of saturated fatty acids (SFAs) into MUFAs. SFA impairment of insulin-responsive Akt phosphorylation was therefore rescued by the elevation of Scd1 levels upon ChREBP overexpression, whereas pharmacological or shRNA-mediated reduction of Scd1 activity decreased the beneficial effect of ChREBP on Akt phosphorylation. Importantly, ChREBP-overexpressing mice fed a high-fat diet showed normal insulin levels and improved insulin signaling and glucose tolerance compared with controls, despite having greater hepatic steatosis. Finally, ChREBP expression in liver biopsies from patients with nonalcoholic steatohepatitis was increased when steatosis was greater than 50% and decreased in the presence of severe insulin resistance. Together, these results demonstrate that increased ChREBP can dissociate hepatic steatosis from insulin resistance, with beneficial effects on both glucose and lipid metabolism.
Collapse
|
1045
|
Wenz T, Wang X, Marini M, Moraes CT. A metabolic shift induced by a PPAR panagonist markedly reduces the effects of pathogenic mitochondrial tRNA mutations. J Cell Mol Med 2012; 15:2317-25. [PMID: 21129152 PMCID: PMC3361135 DOI: 10.1111/j.1582-4934.2010.01223.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutations in mitochondrial DNA-encoded tRNA genes are associated with many human diseases. Activation of peroxisome proliferator-activated receptors (PPARs) by synthetic agonists stimulates oxidative metabolism, induces an increase in mitochondrial mass and partially compensates for oxidative phosphorylation system (OXPHOS) defects caused by single OXPHOS enzyme deficiencies in vitro and in vivo. Here, we analysed whether treatment with the PPAR panagonist bezafibrate in cybrids homoplasmic for different mitochondrial tRNA mutations could ameliorate the OXPHOS defect. We found that bezafibrate treatment increased mitochondrial mass, mitochondrial tRNA steady state levels and enhanced mitochondrial protein synthesis. This improvement resulted in increased OXPHOS activity and finally in enhanced mitochondrial ATP generating capacity. PPAR panagonists are known to increase the expression of PPAR gamma coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. Accordingly, we found that clones of a line harbouring a mutated mitochondrial tRNA gene mutation selected for the ability to grow in a medium selective for OXPHOS function had a 3-fold increase in PGC-1α expression, an increase that was similar to the one observed after bezafibrate treatment. These findings show that increasing mitochondrial mass and thereby boosting residual OXPHOS capacity can be beneficial to an important class of mitochondrial defects reinforcing the potential therapeutic use of approaches stimulating mitochondrial proliferation for mitochondrial disorders.
Collapse
Affiliation(s)
- Tina Wenz
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
1046
|
Onaka T, Takayanagi Y, Yoshida M. Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 2012; 24:587-98. [PMID: 22353547 DOI: 10.1111/j.1365-2826.2012.02300.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin neurones are activated by stressful stimuli, food intake and social attachment. Activation of oxytocin neurones in response to stressful stimuli or food intake is mediated, at least in part, by noradrenaline/prolactin-releasing peptide (PrRP) neurones in the nucleus tractus solitarius, whereas oxytocin neurones are activated after social stimuli via medial amygdala neurones. Activation of oxytocin neurones induces the release of oxytocin not only from their axon terminals, but also from their dendrites. Oxytocin acts locally where released or diffuses and acts on remote oxytocin receptors widely distributed within the brain, resulting in anxiolytic, anorexic and pro-social actions. The action sites of oxytocin appear to be multiple. Oxytocin shows anxiolytic actions, at least in part, via serotoninergic neurones in the median raphe nucleus, has anorexic actions via pro-opiomelanocortin neurones in the nucleus tractus solitarius and facilitates social recognition via the medial amygdala. Stress, obesity and social isolation are major risk factors for mortality in humans. Thus, the oxytocin-oxytocin receptor system is a therapeutic target for the promotion of human health.
Collapse
Affiliation(s)
- T Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shinotsuke-shi, Tochigi-ken, Japan.
| | | | | |
Collapse
|
1047
|
Yang SY, Zhao NJ, Li XJ, Zhang HJ, Chen KJ, Li CD. Ping-tang Recipe () improves insulin resistance and attenuates hepatic steatosis in high-fat diet-induced obese rats. Chin J Integr Med 2012; 18:262-8. [PMID: 22457136 DOI: 10.1007/s11655-012-1023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the therapeutic effects of Ping-tang Recipe (, PTR) on high-fat diet (HFD)-induced insulin resistance and non-alcoholic fatty liver disease (NAFLD), and to elucidate the underlying mechanisms. METHODS Forty male SD rats were included in the study. Ten rats were fed on normal diet as normal control, and thirty rats were fed on HFD for 8 weeks to induce obesity, followed with low dose (0.42 g/kg) or high dose (0.84 g/kg) of PTR or vehicle for 8 weeks with 10 animals for each group. Glucose metabolism and insulin sensitivity were evaluated by oral glucose tolerance test and insulin tolerance test. Hepatic steatosis was measured by immunohistochemistry. Liver lipid metabolic genes were analyzed by quantitative real-time polymerase chain reaction, while AMP-activated protein kinase (AMPK) expression was examined by Western blot. RESULTS Rats fed on HFD developed abdominal obesity, insulin resistance and NAFLD. PTR treatment reduced visceral fat (peri-epididymal and peri-renal) accumulation, improved glucose metabolism, and attenuated hepatic steatosis. The expressions of the key lipolytic regulating genes, including peroxisome proliferators-activated receptor γ co-activator 1α (PGC-1α), peroxisome proliferator-activated receptor γ (PRAR-γ) and α (PRAR-α), were up-regulated (P<0.05 or P<0.01), while the expressions of lipogenic genes such as sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FAS) and liver fatty acid-binding protein (L-FABP) were down-regulated (P<0.05 or P<0.01). In addition, PTR activated AMPK and promoted acetyl-CoA carboxylase phosphorylation in the liver. CONCLUSIONS PTR improves insulin resistance and reverse hepatic steatosis in the rat model of HFD-induced obesity through promotion of lipolysis and reduction of lipogenesis, which involves the AMPK signaling pathway, thus representing a new therapeutic intervention for obesity related insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Shu-Yu Yang
- Post-Graduate School, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | | | | | | | | | | |
Collapse
|
1048
|
Abbott MJ, Constantinescu S, Turcotte LP. AMP-activated protein kinase α2 is an essential signal in the regulation of insulin-stimulated fatty acid uptake in control-fed and high-fat-fed mice. Exp Physiol 2012; 97:603-17. [DOI: 10.1113/expphysiol.2012.064402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1049
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
1050
|
Complete failure of insulin-transmitted signaling, but not obesity-induced insulin resistance, impairs respiratory chain function in muscle. J Mol Med (Berl) 2012; 90:1145-60. [DOI: 10.1007/s00109-012-0887-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 01/22/2023]
|