1051
|
|
1052
|
Shang J, Körner C, Freeze H, Lehrman MA. Extension of lipid-linked oligosaccharides is a high-priority aspect of the unfolded protein response: endoplasmic reticulum stress in Type I congenital disorder of glycosylation fibroblasts. Glycobiology 2002; 12:307-17. [PMID: 12070073 DOI: 10.1093/glycob/12.5.307] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Asparagine (N)-linked glycans on endoplasmic reticulum (ER) glycoproteins have critical roles in multiple facets of protein folding and quality control. Inhibition of synthesis of lipid-linked oligosaccharides (LLOs), the precursors of N-linked glycans, causes glycoprotein misfolding. This results in ER stress and triggers the unfolded protein response (UPR), which consists of a set of adaptive events, or "aspects," including enhanced extension of LLO intermediates. Type I congenital disorders of glycosylation (CDGs) are characterized by diminished LLO synthesis and aberrant N-glycosylation. Such defects would be predicted to cause chronic ER stress with continuous UPR activation. We employed a quantitative pharmacological approach with dermal fibroblasts to show that (1) compared with three other well-known UPR aspects (transcriptional activation, inhibition of translation, and cell death), LLO extension was the most sensitive to ER stress; and (2) Type I CDG cells had a mild form of chronic ER stress in which LLO extension was continuously stress-activated, but other aspects of the UPR were unchanged. To our knowledge, Type I CDGs are the only human diseases shown to have chronic ER stress resulting from genetic defects in the ER quality control system. In conclusion, LLO extension has a high priority in the UPR of dermal fibroblasts. This suggests that cells stimulate N-glycosylation as part of a first line of defense against ER dysfunction. The broader implications of these results for the biological significance of the UPR are discussed.
Collapse
Affiliation(s)
- Jie Shang
- Department of Pharmacology, Univerity of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9041, USA
| | | | | | | |
Collapse
|
1053
|
Fernandez J, Bode B, Koromilas A, Diehl JA, Krukovets I, Snider MD, Hatzoglou M. Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem 2002; 277:11780-7. [PMID: 11781318 DOI: 10.1074/jbc.m110778200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cationic amino acid transporter, Cat-1, is a high affinity transporter of the essential amino acids, arginine and lysine. Expression of the cat-1 gene is known to be regulated by amino acid availability. It is shown here that cat-1 gene expression is also induced by Glc limitation, which causes a 7-fold increase in cat-1 mRNA, a 30-fold induction of Cat-1 protein levels, and a 4-fold stimulation of arginine uptake. Glc limitation is known to induce the unfolded protein response (UPR) by altering protein glycosylation in the endoplasmic reticulum (ER). The studies here demonstrate that synthesis of Cat-1 occurs during the UPR when global protein synthesis is inhibited. The 5'-UTR of the cat-1 mRNA contains an internal ribosomal entry site (IRES) that is activated by amino acid starvation by a mechanism that involves phosphorylation of the translation initiation factor, eukaryotic initiation factor 2alpha, by the GCN2 kinase. It is shown here that translation from the cat-1/IRES is also induced by Glc deprivation in a manner dependent upon phosphorylation of eukaryotic initiation factor 2alpha by the transmembrane ER kinase, PERK. Because PERK is a key constituent of the UPR, it is concluded that induction of cat-1 gene expression is part of the adaptive response of cells to ER stress. These results also demonstrate that regulation of IRES activity in cellular mRNAs is part of the mechanism by which the UPR protects cells from unfolded proteins in the ER.
Collapse
Affiliation(s)
- James Fernandez
- Department of Nutrition and Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4906, USA
| | | | | | | | | | | | | |
Collapse
|
1054
|
Ma Y, Hendershot LM. The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones 2002; 7:222-9. [PMID: 12380691 PMCID: PMC514821 DOI: 10.1379/1466-1268(2002)007<0222:tmeraa>2.0.co;2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Revised: 03/07/2002] [Accepted: 03/07/2002] [Indexed: 01/01/2023] Open
Abstract
The recent elucidation of the mammalian unfolded protein response pathway has revealed a unique and transcriptionally complex signal transduction pathway that protects cells from a variety of physical and biochemical stresses that can occur during normal development and in disease states. Although the stress conditions are monitored in the endoplasmic reticulum, the beneficial effects of this pathway are extended to other cellular organelles and to the organism itself.
Collapse
Affiliation(s)
- Yanjun Ma
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
1055
|
Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 2002. [PMID: 11854325 DOI: 10.1172/jci200214550] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Overload of pancreatic beta cells in conditions such as hyperglycemia, obesity, and long-term treatment with sulfonylureas leads to beta cell exhaustion and type 2 diabetes. Because beta cell mass declines under these conditions, apparently as a result of apoptosis, we speculated that overload kills beta cells as a result of endoplasmic reticulum (ER) stress. The Akita mouse, which carries a conformation-altering missense mutation (Cys96Tyr) in Insulin 2, likewise exhibits hyperglycemia and a reduced beta cell mass. In the development of diabetes in Akita mice, mRNAs for the ER chaperone Bip and the ER stress-associated apoptosis factor Chop were induced in the pancreas. Overexpression of the mutant insulin in mouse MIN6 beta cells induced Chop expression and led to apoptosis. Targeted disruption of the Chop gene delayed the onset of diabetes in heterozygous Akita mice by 8-10 weeks. We conclude that ER overload in beta cells causes ER stress and leads to apoptosis via Chop induction. Our findings suggest a new therapeutic approach for preventing the onset of diabetes by inhibiting Chop induction or by increasing chaperone capacity in the ER.
Collapse
Affiliation(s)
- Seiichi Oyadomari
- Department of Molecular Genetics, Kumamoto University School of Medicine, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
1056
|
Abstract
Protein synthesis is the ultimate step of gene expression and a key control point for regulation. In particular, it enables cells to rapidly manipulate protein production without new mRNA synthesis, processing, or export. Recent studies have enhanced our understanding of the translation initiation process and helped elucidate how modifications of the general translational machinery regulate gene-specific protein production.
Collapse
Affiliation(s)
- Thomas E Dever
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
1057
|
Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 2002; 109:525-32. [PMID: 11854325 PMCID: PMC150879 DOI: 10.1172/jci14550] [Citation(s) in RCA: 417] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Overload of pancreatic beta cells in conditions such as hyperglycemia, obesity, and long-term treatment with sulfonylureas leads to beta cell exhaustion and type 2 diabetes. Because beta cell mass declines under these conditions, apparently as a result of apoptosis, we speculated that overload kills beta cells as a result of endoplasmic reticulum (ER) stress. The Akita mouse, which carries a conformation-altering missense mutation (Cys96Tyr) in Insulin 2, likewise exhibits hyperglycemia and a reduced beta cell mass. In the development of diabetes in Akita mice, mRNAs for the ER chaperone Bip and the ER stress-associated apoptosis factor Chop were induced in the pancreas. Overexpression of the mutant insulin in mouse MIN6 beta cells induced Chop expression and led to apoptosis. Targeted disruption of the Chop gene delayed the onset of diabetes in heterozygous Akita mice by 8-10 weeks. We conclude that ER overload in beta cells causes ER stress and leads to apoptosis via Chop induction. Our findings suggest a new therapeutic approach for preventing the onset of diabetes by inhibiting Chop induction or by increasing chaperone capacity in the ER.
Collapse
MESH Headings
- Animals
- Apoptosis
- CCAAT-Enhancer-Binding Proteins/deficiency
- CCAAT-Enhancer-Binding Proteins/genetics
- Carrier Proteins/genetics
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/prevention & control
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum Chaperone BiP
- Heat-Shock Proteins
- Insulin/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Molecular Chaperones/genetics
- Mutation, Missense
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Transcription Factor CHOP
- Transcription Factors/deficiency
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Seiichi Oyadomari
- Department of Molecular Genetics, Kumamoto University School of Medicine, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
1058
|
Ron D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J Clin Invest 2002; 109:443-5. [PMID: 11854314 PMCID: PMC150880 DOI: 10.1172/jci15020] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- David Ron
- Skirball Institute of Biomolecular Medicine, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
1059
|
Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress–mediated diabetes. J Clin Invest 2002. [DOI: 10.1172/jci0214550] [Citation(s) in RCA: 622] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
1060
|
Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002; 16:452-66. [PMID: 11850408 PMCID: PMC155339 DOI: 10.1101/gad.964702] [Citation(s) in RCA: 836] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All eukaryotic cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER) by signaling an adaptive pathway termed the unfolded protein response (UPR). In yeast, a type-I ER transmembrane protein kinase, Ire1p, is the proximal sensor of unfolded proteins in the ER lumen that initiates an unconventional splicing reaction on HAC1 mRNA. Hac1p is a transcription factor required for induction of UPR genes. In higher eukaryotic cells, the UPR also induces site-2 protease (S2P)-mediated cleavage of ER-localized ATF6 to generate an N-terminal fragment that activates transcription of UPR genes. To elucidate the requirements for IRE1alpha and ATF6 for signaling the mammalian UPR, we identified a UPR reporter gene that was defective for induction in IRE1alpha-null mouse embryonic fibroblasts and S2P-deficient Chinese hamster ovary (CHO) cells. We show that the endoribonuclease activity of IRE1alpha is required to splice XBP1 (X-box binding protein) mRNA to generate a new C terminus, thereby converting it into a potent UPR transcriptional activator. IRE1alpha was not required for ATF6 cleavage, nuclear translocation, or transcriptional activation. However, ATF6 cleavage was required for IRE1alpha-dependent induction of UPR transcription. We propose that nuclear-localized IRE1alpha and cytoplasmic-localized ATF6 signaling pathways merge through regulation of XBP1 activity to induce downstream gene expression. Whereas ATF6 increases the amount of XBP1 mRNA, IRE1alpha removes an unconventional 26-nucleotide intron that increases XBP1 transactivation potential. Both processing of ATF6 and IRE1alpha-mediated splicing of XBP1 mRNA are required for full activation of the UPR.
Collapse
Affiliation(s)
- Kyungho Lee
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1061
|
Ron D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J Clin Invest 2002. [DOI: 10.1172/jci0215020] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
1062
|
DeGracia DJ, Kumar R, Owen CR, Krause GS, White BC. Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab 2002; 22:127-41. [PMID: 11823711 DOI: 10.1097/00004647-200202000-00001] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein synthesis inhibition occurs in neurons immediately on reperfusion after ischemia and involves at least alterations in eukaryotic initiation factors 2 (eIF2) and 4 (eIF4). Phosphorylation of the alpha subunit of eIF2 [eIF2(alphaP)] by the endoplasmic reticulum transmembrane eIF2alpha kinase PERK occurs immediately on reperfusion and inhibits translation initiation. PERK activation, along with depletion of endoplasmic reticulum Ca2+ and inhibition of the endoplasmic reticulum Ca2+ -ATPase, SERCA2b, indicate that an endoplasmic reticulum unfolded protein response occurs as a consequence of brain ischemia and reperfusion. In mammals, the upstream unfolded protein response components PERK, IRE1, and ATF6 activate prosurvivial mechanisms (e.g., transcription of GRP78, PDI, SERCA2b ) and proapoptotic mechanisms (i.e., activation of Jun N-terminal kinases, caspase-12, and CHOP transcription). Sustained eIF2(alphaP) is proapoptotic by inducing the synthesis of ATF4, the CHOP transcription factor, through "bypass scanning" of 5' upstream open-reading frames in ATF4 messenger RNA; these upstream open-reading frames normally inhibit access to the ATF4 coding sequence. Brain ischemia and reperfusion also induce mu-calpain-mediated or caspase-3-mediated proteolysis of eIF4G, which shifts message selection to m 7 G-cap-independent translation initiation of messenger RNAs containing internal ribosome entry sites. This internal ribosome entry site-mediated translation initiation (i.e., for apoptosis-activating factor-1 and death-associated protein-5) can also promote apoptosis. Thus, alterations in eIF2 and eIF4 have major implications for which messenger RNAs are translated by residual protein synthesis in neurons during brain reperfusion, in turn constraining protein expression of changes in gene transcription induced by ischemia and reperfusion. Therefore, our current understanding shifts the focus from protein synthesis inhibition to the molecular pathways that underlie this inhibition, and the role that these pathways play in prosurvival and proapoptotic processes that may be differentially expressed in vulnerable and resistant regions of the reperfused brain.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
1063
|
van Laar T, van der Eb AJ, Terleth C. A role for Rad23 proteins in 26S proteasome-dependent protein degradation? Mutat Res 2002; 499:53-61. [PMID: 11804604 DOI: 10.1016/s0027-5107(01)00291-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Treatment of cells with genotoxic agents affects protein degradation in both positive and negative ways. Exposure of S. cerevisiae to the alkylating agent MMS resulted in activation of genes that are involved in ubiquitin- and 26S proteasome-dependent protein degradation. This process partially overlaps with the activation of the ER-associated protein degradation pathway. The DNA repair protein Rad23p and its mammalian homologues have been shown to inhibit degradation of specific substrates in response to DNA damage. Particularly the recently identified inhibition of degradation by mouse Rad23 protein (mHR23) of the associated nucleotide excision repair protein XPC was shown to stimulate DNA repair.Recently, it was shown that Rad23p and the mouse homologue mHR23B also associate with Png1p, a deglycosylation enzyme. Png1p-mediated deglycosylation plays a role in ER-associated protein degradation after accumulation of malfolded proteins in the endoplasmic reticulum. Thus, if stabilization of proteins that are associated with the C-terminus of Rad23p is a general phenomenon, then Rad23 might be implicated in the stimulation of ER-associated protein degradation as well. Interestingly, the recently identified HHR23-like protein Mif1 is also thought to play a role in ER-associated protein degradation. The MIF1 gene is strongly activated in response to ER-stress. Mif1 contains a ubiquitin-like domain which is most probably involved in binding to S5a, a subunit of the 19S regulatory complex of the 26S proteasome. On the basis of its localization in the ER-membrane, it is hypothesized that Mif1 could play a role in the translocation of the 26S proteasome towards the ER-membrane, thereby enhancing ER-associated protein degradation.
Collapse
Affiliation(s)
- Theo van Laar
- MGC Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, P.O. Box 9503, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
1064
|
Fernandez J, Yaman I, Merrick WC, Koromilas A, Wek RC, Sood R, Hensold J, Hatzoglou M. Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2alpha phosphorylation and translation of a small upstream open reading frame. J Biol Chem 2002; 277:2050-8. [PMID: 11684693 DOI: 10.1074/jbc.m109199200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptation to amino acid deficiency is critical for cell survival. In yeast, this adaptation involves phosphorylation of the translation eukaryotic initiation factor (eIF) 2alpha by the kinase GCN2. This leads to the increased translation of the transcription factor GCN4, which in turn increases transcription of amino acid biosynthetic genes, at a time when expression of most genes decreases. Here it is shown that translation of the arginine/lysine transporter cat-1 mRNA increases during amino acid starvation of mammalian cells. This increase requires both GCN2 phosphorylation of eIF2alpha and the translation of a 48-amino acid upstream open reading frame (uORF) present within the 5'-leader of the transporter mRNA. When this 5'-leader was placed in a bicistronic mRNA expression vector, it functioned as an internal ribosomal entry sequence and its regulated activity was dependent on uORF translation. Amino acid starvation also induced translation of monocistronic mRNAs containing the cat-1 5'-leader, in a manner dependent on eIF2alpha phosphorylation and translation of the 48-amino acid uORF. This is the first example of mammalian regulation of internal ribosomal entry sequence-mediated translation by eIF2alpha phosphorylation during amino acid starvation, suggesting that the mechanism of induced Cat-1 protein synthesis is part of the adaptive response of cells to amino acid limitation.
Collapse
Affiliation(s)
- James Fernandez
- Departments of Nutrition and Biochemistry, the Veterans Affairs Medical Center, and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
1065
|
Tallóczy Z, Jiang W, Virgin HW, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci U S A 2002; 99:190-5. [PMID: 11756670 PMCID: PMC117537 DOI: 10.1073/pnas.012485299] [Citation(s) in RCA: 617] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eIF2alpha kinases are a family of evolutionarily conserved serine/threonine kinases that regulate stress-induced translational arrest. Here, we demonstrate that the yeast eIF2alpha kinase, GCN2, the target phosphorylation site of Gcn2p, Ser-51 of eIF2alpha, and the eIF2alpha-regulated transcriptional transactivator, GCN4, are essential for another fundamental stress response, starvation-induced autophagy. The mammalian IFN-inducible eIF2alpha kinase, PKR, rescues starvation-induced autophagy in GCN2-disrupted yeast, and pkr null and Ser-51 nonphosphorylatable mutant eIF2alpha murine embryonic fibroblasts are defective in autophagy triggered by herpes simplex virus infection. Furthermore, PKR and eIF2alpha Ser-51-dependent autophagy is antagonized by the herpes simplex virus neurovirulence protein, ICP34.5. Thus, autophagy is a novel evolutionarily conserved function of the eIF2alpha kinase pathway that is targeted by viral virulence gene products.
Collapse
Affiliation(s)
- Zsolt Tallóczy
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
1066
|
Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415:92-6. [PMID: 11780124 DOI: 10.1038/415092a] [Citation(s) in RCA: 2220] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unfolded protein response (UPR), caused by stress, matches the folding capacity of endoplasmic reticulum (ER) to the load of client proteins in the organelle. In yeast, processing of HAC1 mRNA by activated Ire1 leads to synthesis of the transcription factor Hac1 and activation of the UPR. The responses to activated IRE1 in metazoans are less well understood. Here we demonstrate that mutations in either ire-1 or the transcription-factor-encoding xbp-1 gene abolished the UPR in Caenorhabditis elegans. Mammalian XBP-1 is essential for immunoglobulin secretion and development of plasma cells, and high levels of XBP-1 messenger RNA are found in specialized secretory cells. Activation of the UPR causes IRE1-dependent splicing of a small intron from the XBP-1 mRNA both in C. elegans and mice. The protein encoded by the processed murine XBP-1 mRNA accumulated during the UPR, whereas the protein encoded by unprocessed mRNA did not. Purified mouse IRE1 accurately cleaved XBP-1 mRNA in vitro, indicating that XBP-1 mRNA is a direct target of IRE1 endonucleolytic activity. Our findings suggest that physiological ER load regulates a developmental decision in higher eukaryotes.
Collapse
Affiliation(s)
- Marcella Calfon
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
1067
|
Abstract
Surface and secreted proteins are synthesized in the endoplasmic reticulum where they must fold and assemble before being transported. Changes in the ER that interfere with their proper maturation initiate the unfolded protein response pathway. New studies have filled in a missing link between the yeast and mammalian pathways.
Collapse
Affiliation(s)
- Y Ma
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
1068
|
Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, Kaufman RJ. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 2001; 107:893-903. [PMID: 11779465 DOI: 10.1016/s0092-8674(01)00612-2] [Citation(s) in RCA: 563] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The unfolded protein response (UPR) is a transcriptional and translational intracellular signaling pathway activated by the accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER). We have used C. elegans as a genetic model system to dissect UPR signaling in a multicellular organism. C. elegans requires ire-1-mediated splicing of xbp-1 mRNA for UPR gene transcription and survival upon ER stress. In addition, ire-1/xbp-1 acts with pek-1, a protein kinase that mediates translation attenuation, in complementary pathways that are essential for worm development and survival. We propose that UPR transcriptional activation by ire-1 as well as translational attenuation by pek-1 maintain ER homeostasis. The results demonstrate that the UPR and ER homeostasis are essential for metazoan development.
Collapse
Affiliation(s)
- X Shen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1069
|
Affiliation(s)
- D Accili
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
1070
|
|
1071
|
Abstract
What do the regulation of translation initiation and glucose metabolism have to do with each other? Quite a lot, it seems, according to Sonenberg and Newgard in their Perspective. They discuss new findings that identify the kinase responsible for inactivating eIF2--a factor that is required for translation initiation (and hence protein synthesis)--when the endoplasmic reticulum is under stress. Loss of this kinase results in destruction of insulin-producing b cells in the pancreas and dysregulation of glucose homeostasis.
Collapse
|
1072
|
Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 2001; 7:1153-63. [PMID: 11430819 DOI: 10.1016/s1097-2765(01)00264-7] [Citation(s) in RCA: 960] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein kinase PERK couples protein folding in the endoplasmic reticulum (ER) to polypeptide biosynthesis by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha), attenuating translation initiation in response to ER stress. PERK is highly expressed in mouse pancreas, an organ active in protein secretion. Under physiological conditions, PERK was partially activated, accounting for much of the phosphorylated eIF2alpha in the pancreas. The exocrine and endocrine pancreas developed normally in Perk-/- mice. Postnatally, ER distention and activation of the ER stress transducer IRE1alpha accompanied increased cell death and led to progressive diabetes mellitus and exocrine pancreatic insufficiency. These findings suggest a special role for translational control in protecting secretory cells from ER stress.
Collapse
Affiliation(s)
- H P Harding
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 10016, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|