1051
|
Affiliation(s)
- Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K Copenhagen, Denmark.
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| |
Collapse
|
1052
|
Tunc-Ozcan E, Sittig LJ, Harper KM, Graf EN, Redei EE. Hypothesis: genetic and epigenetic risk factors interact to modulate vulnerability and resilience to FASD. Front Genet 2014; 5:261. [PMID: 25140173 PMCID: PMC4122175 DOI: 10.3389/fgene.2014.00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/15/2014] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) presents a collection of symptoms representing physiological and behavioral phenotypes caused by maternal alcohol consumption. Symptom severity is modified by genetic differences in fetal susceptibility and resistance as well as maternal genetic factors such as maternal alcohol sensitivity. Animal models demonstrate that both maternal and paternal genetics contribute to the variation in the fetus' vulnerability to alcohol exposure. Maternal and paternal genetics define the variations in these phenotypes even without the effect of alcohol in utero, as most of these traits are polygenic, non-Mendelian, in their inheritance. In addition, the epigenetic alterations that instigate the alcohol induced neurodevelopmental deficits can interact with the polygenic inheritance of respective traits. Here, based on specific examples, we present the hypothesis that the principles of non-Mendelian inheritance, or "exceptions" to Mendelian genetics, can be the driving force behind the severity of the prenatal alcohol-exposed individual's symptomology. One such exception is when maternal alleles lead to an altered intrauterine hormonal environment and, therefore, produce variations in the long-term consequences on the development of the alcohol-exposed fetus. Another exception is when epigenetic regulation of allele-specific gene expression generates disequilibrium between the maternal vs. paternal genetic contributions, and thereby, modifies the effect of prenatal alcohol exposure on the fetus. We propose that these situations in which one parent has an exaggerated influence over the offspring's vulnerability to prenatal alcohol are major contributing mechanisms responsible for the variations in the symptomology of FASD in the exposed generation and beyond.
Collapse
Affiliation(s)
- Elif Tunc-Ozcan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Laura J Sittig
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Kathryn M Harper
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Evan N Graf
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| |
Collapse
|
1053
|
Jung JH, Lee HJ, Park MJ, Park CM. Beyond ubiquitination: proteolytic and nonproteolytic roles of HOS1. TRENDS IN PLANT SCIENCE 2014; 19:538-45. [PMID: 24768209 DOI: 10.1016/j.tplants.2014.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/18/2014] [Accepted: 03/28/2014] [Indexed: 05/09/2023]
Abstract
The E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) functions as a cold signaling attenuator by degrading the INDUCER OF CBF EXPRESSION 1 transcription factor, which is a key regulator of the cold-induced transcriptome and freezing tolerance in plants. Recent studies demonstrate that HOS1 also plays nonproteolytic roles in gene expression regulation. HOS1 acts as a chromatin remodeling factor that modulates FLOWERING LOCUS C chromatin in cold regulation of flowering time. It associates with the nuclear pore complex to facilitate nucleocytoplasmic mRNA export to maintain circadian periodicity over a range of light and temperature conditions. In this review, we summarize recent advances in molecular mechanisms underlying HOS1 function during plant development in response to fluctuating environmental conditions.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Mi-Jeong Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
1054
|
Leter G, Consales C, Eleuteri P, Uccelli R, Specht IO, Toft G, Moccia T, Budillon A, Jönsson BAG, Lindh CH, Giwercman A, Pedersen HS, Ludwicki JK, Zviezdai V, Heederik D, Bonde JPE, Spanò M. Exposure to perfluoroalkyl substances and sperm DNA global methylation in Arctic and European populations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:591-600. [PMID: 24889506 DOI: 10.1002/em.21874] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
Perfluoroalkyl substances (PFASs) are widely used in a variety of industrial processes and products, and have been detected globally in humans and wildlife. PFASs are suspected to interfere with endocrine signaling and to adversely affect human reproductive health. The aim of the present study was to investigate the associations between exposure to PFASs and sperm global methylation levels in a population of non-occupationally exposed fertile men. Measurements of PFASs in serum from 262 partners of pregnant women from Greenland, Poland and Ukraine, were also carried out by liquid chromatography tandem mass spectrometry. Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) were detected in 97% of the blood samples. Two surrogate markers were used to assess DNA global methylation levels in semen samples from the same men: (a) average DNA methylation level in repetitive DNA sequences (Alu, LINE-1, Satα) quantified by PCR-pyrosequencing after bisulfite conversion; (b) flow cytometric immunodetection of 5-methyl-cytosines. After multivariate linear regression analysis, no major consistent associations between PFASs exposure and sperm DNA global methylation endpoints could be detected. However, since weak but statistically significant associations of different PFASs with DNA hypo- and hyper-methylation were found in some of the studied populations, effects of PFASs on sperm epigenetic processes cannot be completely excluded, and this issue warrants further investigation.
Collapse
Affiliation(s)
- Giorgio Leter
- Laboratory of Toxicology, Unit of Radiation Biology and Human Health, ENEA Casaccia Research Center, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1055
|
Global DNA hypomethylation: A potential mechanism in King pigeon nerve tissue damage induced by avermectin. Chem Biol Interact 2014; 219:113-22. [DOI: 10.1016/j.cbi.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/03/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022]
|
1056
|
Rissman EF, Adli M. Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology 2014; 155:2770-80. [PMID: 24885575 PMCID: PMC4098001 DOI: 10.1210/en.2014-1123] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The idea that what we eat, feel, and experience influences our physical and mental state and can be transmitted to our offspring and even to subsequent generations has been in the popular realm for a long time. In addition to classic gene mutations, we now recognize that some mechanisms for inheritance do not require changes in DNA. The field of epigenetics has provided a new appreciation for the variety of ways biological traits can be transmitted to subsequent generations. Thus, transgenerational epigenetic inheritance has emerged as a new area of research. We have four goals for this minireview. First, we describe the topic and some of the nomenclature used in the literature. Second, we explain the major epigenetic mechanisms implicated in transgenerational inheritance. Next, we examine some of the best examples of transgenerational epigenetic inheritance, with an emphasis on those produced by exposing the parental generation to endocrine-disrupting compounds (EDCs). Finally, we discuss how whole-genome profiling approaches can be used to identify aberrant epigenomic features and gain insight into the mechanism of EDC-mediated transgenerational epigenetic inheritance. Our goal is to educate readers about the range of possible epigenetic mechanisms that exist and encourage researchers to think broadly and apply multiple genomic and epigenomic technologies to their work.
Collapse
Affiliation(s)
- Emilie F Rissman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | |
Collapse
|
1057
|
Epigenetics of hematopoietic stem cell aging and disease. Int J Hematol 2014; 100:326-34. [DOI: 10.1007/s12185-014-1647-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
|
1058
|
Neonatal immunology: responses to pathogenic microorganisms and epigenetics reveal an "immunodiverse" developmental state. Immunol Res 2014; 57:246-57. [PMID: 24214026 DOI: 10.1007/s12026-013-8439-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal animals have heightened susceptibility to infectious agents and are at increased risk for the development of allergic diseases, such as asthma. Experimental studies using animal models have been quite useful for beginning to identify the cellular and molecular mechanisms underlying these sensitivities. In particular, results from murine neonatal models indicate that developmental regulation of multiple immune cell types contributes to the typically poor responses of neonates to pathogenic microorganisms. Surprisingly, however, animal studies have also revealed that responses at mucosal surfaces in early life may be protective against primary or secondary disease. Our understanding of the molecular events underlying these processes is less well developed. Emerging evidence indicates that the functional properties of neonatal immune cells and the subsequent maturation of the immune system in ontogeny may be regulated by epigenetic phenomena. Here, we review recent findings from our group and others describing cellular responses to infection and developmentally regulated epigenetic processes in the newborn.
Collapse
|
1059
|
Castillo-Fernandez JE, Spector TD, Bell JT. Epigenetics of discordant monozygotic twins: implications for disease. Genome Med 2014; 6:60. [PMID: 25484923 PMCID: PMC4254430 DOI: 10.1186/s13073-014-0060-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
Monozygotic (MZ) twins share nearly all of their genetic variants and many similar environments before and after birth. However, they can also show phenotypic discordance for a wide range of traits. Differences at the epigenetic level may account for such discordances. It is well established that epigenetic states can contribute to phenotypic variation, including disease. Epigenetic states are dynamic and potentially reversible marks involved in gene regulation, which can be influenced by genetics, environment, and stochastic events. Here, we review advances in epigenetic studies of discordant MZ twins, focusing on disease. The study of epigenetics and disease using discordant MZ twins offers the opportunity to control for many potential confounders encountered in general population studies, such as differences in genetic background, early-life environmental exposure, age, gender, and cohort effects. Recently, analysis of disease-discordant MZ twins has been successfully used to study epigenetic mechanisms in aging, cancer, autoimmune disease, psychiatric, neurological, and multiple other traits. Epigenetic aberrations have been found in a range of phenotypes, and challenges have been identified, including sampling time, tissue specificity, validation, and replication. The results have relevance for personalized medicine approaches, including the identification of prognostic, diagnostic, and therapeutic targets. The findings also help to identify epigenetic markers of environmental risk and molecular mechanisms involved in disease and disease progression, which have implications both for understanding disease and for future medical research.
Collapse
Affiliation(s)
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH UK
| |
Collapse
|
1060
|
O'Doherty AM, O'Gorman A, al Naib A, Brennan L, Daly E, Duffy P, Fair T. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows. Genomics 2014; 104:177-85. [PMID: 25084396 DOI: 10.1016/j.ygeno.2014.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022]
Abstract
Ovarian follicle development in post-partum, high-producing dairy cows, occurs in a compromised endogenous metabolic environment (referred to as negative energy balance, NEB). Key events that occur during oocyte/follicle growth, such as the vital process of genomic imprinting, may be detrimentally affected by this altered ovarian environment. Imprinting is crucial for placental function and regulation of fetal growth, therefore failure to establish and maintain imprints during oocyte growth may contribute to early embryonic loss. Using ovum pick-up (OPU), oocytes and follicular fluid samples were recovered from cows between days 20 and 115 post-calving, encompassing the NEB period. In a complimentary study, cumulus oocyte complexes were in vitro matured under high non-esterified fatty acid (NEFA) concentrations and in the presence of the methyl-donor S-adenosylmethionine (SAM). Pyrosequencing revealed the loss of methylation at several imprinted loci in the OPU derived oocytes. The loss of DNA methylation was observed at the PLAGL1 locus in oocytes, following in vitro maturation (IVM) in the presence of elevated NEFAs and SAM. Finally, metabolomic analysis of postpartum follicular fluid samples revealed significant differences in several branched chain amino acids, with fatty acid profiles bearing similarities to those characteristic of lactating dairy cows. These results provide the first evidence that (1) the postpartum ovarian environment may affect maternal imprint acquisition and (2) elevated NEFAs during IVM can lead to the loss of imprinted gene methylation in bovine oocytes.
Collapse
Affiliation(s)
- Alan M O'Doherty
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aoife O'Gorman
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Abdullah al Naib
- Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Edward Daly
- Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pat Duffy
- Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trudee Fair
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
1061
|
Wenzel MA, Piertney SB. Fine-scale population epigenetic structure in relation to gastrointestinal parasite load in red grouse (Lagopus lagopus scotica). Mol Ecol 2014; 23:4256-73. [PMID: 24943398 PMCID: PMC4282444 DOI: 10.1111/mec.12833] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/27/2022]
Abstract
Epigenetic modification of cytosine methylation states can be elicited by environmental stresses and may be a key process affecting phenotypic plasticity and adaptation. Parasites are potent stressors with profound physiological and ecological effects on their host, but there is little understanding in how parasites may influence host methylation states. Here, we estimate epigenetic diversity and differentiation among 21 populations of red grouse (Lagopus lagopus scotica) in north-east Scotland and test for association of gastrointestinal parasite load (caecal nematode Trichostrongylus tenuis) with hepatic genome-wide and locus-specific methylation states. Following methylation-sensitive AFLP (MSAP), 129 bands, representing 73 methylation-susceptible and 56 nonmethylated epiloci, were scored across 234 individuals. The populations differed significantly in genome-wide methylation levels and were also significantly epigenetically (FSC = 0.0227; P < 0.001) and genetically (FSC = 0.0058; P < 0.001) differentiated. Parasite load was not associated with either genome-wide methylation levels or epigenetic differentiation. Instead, we found eight disproportionately differentiated epilocus-specific methylation states (FST outliers) using bayescan software and significant positive and negative association of 35 methylation states with parasite load from bespoke generalized estimating equations (GEE), simple logistic regression (sam) and Bayesian environmental analysis (bayenv2). Following Sanger sequencing, genome mapping and geneontology (go) annotation, some of these epiloci were linked to genes involved in regulation of cell cycle, signalling, metabolism, immune system and notably rRNA methylation, histone acetylation and small RNAs. These findings demonstrate an epigenetic signature of parasite load in populations of a wild bird and suggest intriguing physiological effects of parasite-associated cytosine methylation.
Collapse
Affiliation(s)
- Marius A Wenzel
- Institute of Biological and Environmental Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | | |
Collapse
|
1062
|
Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 2014; 15:613-24. [DOI: 10.1038/nrg3685] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
1063
|
Consales C, Leter G, Bonde JPE, Toft G, Eleuteri P, Moccia T, Budillon A, Jonsson BAG, Giwercman A, Pedersen HS, Ludwicki JK, Zviezdai V, Heederik D, Spano M. Indices of methylation in sperm DNA from fertile men differ between distinct geographical regions. Hum Reprod 2014; 29:2065-72. [DOI: 10.1093/humrep/deu176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
1064
|
Roquis D, Lepesant JMJ, Villafan E, Boissier J, Vieira C, Cosseau C, Grunau C. Exposure to hycanthone alters chromatin structure around specific gene functions and specific repeats in Schistosoma mansoni. Front Genet 2014; 5:207. [PMID: 25076965 PMCID: PMC4099960 DOI: 10.3389/fgene.2014.00207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/18/2014] [Indexed: 11/23/2022] Open
Abstract
Schistosoma mansoni is a parasitic plathyhelminth responsible for intestinal schistosomiasis (or bilharzia), a disease affecting 67 million people worldwide and causing an important economic burden. The schistosomicides hycanthone, and its later proxy oxamniquine, were widely used for treatments in endemic areas during the twentieth century. Recently, the mechanism of action, as well as the genetic origin of a stably and Mendelian inherited resistance for both drugs was elucidated in two strains. However, several observations suggested early on that alternative mechanisms might exist, by which resistance could be induced for these two drugs in sensitive lines of schistosomes. This induced resistance appeared rapidly, within the first generation, but was metastable (not stably inherited). Epigenetic inheritance could explain such a phenomenon and we therefore re-analyzed the historical data with our current knowledge of epigenetics. In addition, we performed new experiments such as ChIP-seq on hycanthone treated worms. We found distinct chromatin structure changes between sensitive worms and induced resistant worms from the same strain. No specific pathway was discovered, but genes in which chromatin structure modifications were observed are mostly associated with transport and catabolism, which makes sense in the context of the elimination of the drug. Specific differences were observed in the repetitive compartment of the genome. We finally describe what types of experiments are needed to understand the complexity of heritability that can be based on genetic and/or epigenetic mechanisms for drug resistance in schistosomes.
Collapse
Affiliation(s)
- David Roquis
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions (2EI)Perpignan, France
| | - Julie M. J. Lepesant
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions (2EI)Perpignan, France
| | - Emanuel Villafan
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Département de Biologie, Université Lyon 1Villeurbane, France
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C.Xalapa, México
| | - Jérôme Boissier
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C.Xalapa, México
| | - Cristina Vieira
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Département de Biologie, Université Lyon 1Villeurbane, France
- Département de Biologie, Institut Universitaire de FranceParis, France
| | - Céline Cosseau
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions (2EI)Perpignan, France
| | - Christoph Grunau
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions (2EI)Perpignan, France
| |
Collapse
|
1065
|
Curthoys NP, Gstraunthaler G. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 2014; 307:F1-F11. [PMID: 24808535 PMCID: PMC4080158 DOI: 10.1152/ajprenal.00067.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/30/2014] [Indexed: 01/28/2023] Open
Abstract
Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase(+) cells, was isolated. LLC-PK1-FBPase(+) cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase(+) cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3 (-), pH 6.9), the LLC-PK1-FBPase(+) cells exhibit a gradual increase in NH4 (+) ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase(+) cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase(+) cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase(+) cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells.
Collapse
Affiliation(s)
- Norman P Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado; and
| | | |
Collapse
|
1066
|
Fitzsimons CP, van Bodegraven E, Schouten M, Lardenoije R, Kompotis K, Kenis G, van den Hurk M, Boks MP, Biojone C, Joca S, Steinbusch HWM, Lunnon K, Mastroeni DF, Mill J, Lucassen PJ, Coleman PD, van den Hove DLA, Rutten BPF. Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease. Mol Neurodegener 2014; 9:25. [PMID: 24964731 PMCID: PMC4080757 DOI: 10.1186/1750-1326-9-25] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/06/2014] [Indexed: 01/27/2023] Open
Abstract
Experimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex interplay between various epigenetic factors and cellular functions.Previous studies had indicated that in addition to the neuropathology in Alzheimer's disease (AD), plasticity-related changes are observed in brain areas with ongoing neurogenesis, like the hippocampus and subventricular zone. Given the role of stem cells e.g. in hippocampal functions like cognition, and given their potential for brain repair, we here review the epigenetic mechanisms relevant for NSCs and AD etiology. Understanding the molecular mechanisms involved in the epigenetic regulation of adult NSCs will advance our knowledge on the role of adult neurogenesis in degeneration and possibly regeneration in the AD brain.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Emma van Bodegraven
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Marijn Schouten
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Roy Lardenoije
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Konstantinos Kompotis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Mark van den Hurk
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Department Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Biojone
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Samia Joca
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Harry WM Steinbusch
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Diego F Mastroeni
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Jonathan Mill
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Paul D Coleman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Daniel LA van den Hove
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Bart PF Rutten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
1067
|
Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, Meduri E, Morange PE, Gagnon F, Grallert H, Waldenberger M, Peters A, Erdmann J, Hengstenberg C, Cambien F, Goodall AH, Ouwehand WH, Schunkert H, Thompson JR, Spector TD, Gieger C, Trégouët DA, Deloukas P, Samani NJ. DNA methylation and body-mass index: a genome-wide analysis. Lancet 2014; 383:1990-8. [PMID: 24630777 DOI: 10.1016/s0140-6736(13)62674-4] [Citation(s) in RCA: 588] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Obesity is a major health problem that is determined by interactions between lifestyle and environmental and genetic factors. Although associations between several genetic variants and body-mass index (BMI) have been identified, little is known about epigenetic changes related to BMI. We undertook a genome-wide analysis of methylation at CpG sites in relation to BMI. METHODS 479 individuals of European origin recruited by the Cardiogenics Consortium formed our discovery cohort. We typed their whole-blood DNA with the Infinium HumanMethylation450 array. After quality control, methylation levels were tested for association with BMI. Methylation sites showing an association with BMI at a false discovery rate q value of 0·05 or less were taken forward for replication in a cohort of 339 unrelated white patients of northern European origin from the MARTHA cohort. Sites that remained significant in this primary replication cohort were tested in a second replication cohort of 1789 white patients of European origin from the KORA cohort. We examined whether methylation levels at identified sites also showed an association with BMI in DNA from adipose tissue (n=635) and skin (n=395) obtained from white female individuals participating in the MuTHER study. Finally, we examined the association of methylation at BMI-associated sites with genetic variants and with gene expression. FINDINGS 20 individuals from the discovery cohort were excluded from analyses after quality-control checks, leaving 459 participants. After adjustment for covariates, we identified an association (q value ≤0·05) between methylation at five probes across three different genes and BMI. The associations with three of these probes--cg22891070, cg27146050, and cg16672562, all of which are in intron 1 of HIF3A--were confirmed in both the primary and second replication cohorts. For every 0·1 increase in methylation β value at cg22891070, BMI was 3·6% (95% CI 2·4-4·9) higher in the discovery cohort, 2·7% (1·2-4·2) higher in the primary replication cohort, and 0·8% (0·2-1·4) higher in the second replication cohort. For the MuTHER cohort, methylation at cg22891070 was associated with BMI in adipose tissue (p=1·72 × 10(-5)) but not in skin (p=0·882). We observed a significant inverse correlation (p=0·005) between methylation at cg22891070 and expression of one HIF3A gene-expression probe in adipose tissue. Two single nucleotide polymorphisms--rs8102595 and rs3826795--had independent associations with methylation at cg22891070 in all cohorts. However, these single nucleotide polymorphisms were not significantly associated with BMI. INTERPRETATION Increased BMI in adults of European origin is associated with increased methylation at the HIF3A locus in blood cells and in adipose tissue. Our findings suggest that perturbation of hypoxia inducible transcription factor pathways could have an important role in the response to increased weight in people. FUNDING The European Commission, National Institute for Health Research, British Heart Foundation, and Wellcome Trust.
Collapse
Affiliation(s)
- Katherine J Dick
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Loukia Tsaprouni
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; ISPAR Institute, University of Bedforshire, Bedford, UK
| | - Johanna K Sandling
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dylan Aïssi
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013, Paris, France; INSERM, UMR_S 1166, F-75013, Paris, France; ICAN Institute for Cardiometabolism And Nutrition, F-75013, Paris, France
| | - Simone Wahl
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Eshwar Meduri
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Harald Grallert
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Jeanette Erdmann
- Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany; German Centre for Cardiovascular Research, Hamburg/Kiel/Lübeck, Germany
| | - Christian Hengstenberg
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Francois Cambien
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013, Paris, France; INSERM, UMR_S 1166, F-75013, Paris, France; ICAN Institute for Cardiometabolism And Nutrition, F-75013, Paris, France
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Willem H Ouwehand
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; Department of Haematology, University of Cambridge, Cambridge, UK; National Health Service Blood and Transplant, Cambridge, UK
| | - Heribert Schunkert
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - John R Thompson
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013, Paris, France; INSERM, UMR_S 1166, F-75013, Paris, France; ICAN Institute for Cardiometabolism And Nutrition, F-75013, Paris, France
| | - Panos Deloukas
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
1068
|
Ueda J, Maehara K, Mashiko D, Ichinose T, Yao T, Hori M, Sato Y, Kimura H, Ohkawa Y, Yamagata K. Heterochromatin dynamics during the differentiation process revealed by the DNA methylation reporter mouse, MethylRO. Stem Cell Reports 2014; 2:910-24. [PMID: 24936475 PMCID: PMC4050349 DOI: 10.1016/j.stemcr.2014.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022] Open
Abstract
In mammals, DNA is methylated at CpG sites, which play pivotal roles in gene silencing and chromatin organization. Furthermore, DNA methylation undergoes dynamic changes during development, differentiation, and in pathological processes. The conventional methods represent snapshots; therefore, the dynamics of this marker within living organisms remains unclear. To track this dynamics, we made a knockin mouse that expresses a red fluorescent protein (RFP)-fused methyl-CpG-binding domain (MBD) protein from the ROSA26 locus ubiquitously; we named it MethylRO (methylation probe in ROSA26 locus). Using this mouse, we performed RFP-mediated methylated DNA immunoprecipitation sequencing (MeDIP-seq), whole-body section analysis, and live-cell imaging. We discovered that mobility and pattern of heterochromatin as well as DNA methylation signal intensity inside the nuclei can be markers for cellular differentiation status. Thus, the MethylRO mouse represents a powerful bioresource and technique for DNA methylation dynamics studies in developmental biology, stem cell biology, as well as in disease states. Changes in DNA methylation are tracked in living mice Heterochromatin structure changes dynamically during development and differentiation Heterochromatin of preimplantation embryonic cells is highly dynamic than ESCs Heterochromatin pattern in nucleus can be a marker for cell differentiation states
Collapse
Affiliation(s)
- Jun Ueda
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Daisuke Mashiko
- Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takako Ichinose
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka 536-8523, Japan
| | - Mayuko Hori
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Yuko Sato
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuo Yamagata
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Corresponding author
| |
Collapse
|
1069
|
Okada S, Morinobu S, Fuchikami M, Segawa M, Yokomaku K, Kataoka T, Okamoto Y, Yamawaki S, Inoue T, Kusumi I, Koyama T, Tsuchiyama K, Terao T, Kokubo Y, Mimura M. The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. J Psychiatr Res 2014; 53:47-53. [PMID: 24657235 DOI: 10.1016/j.jpsychires.2014.02.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/25/2022]
Abstract
We examined the utility of DNA methylation profiles at the CpG island of SLC6A4 (DMS) as a diagnostic biomarker for major depression (MD). In addition, the relationship between DMS and the serotonin transporter gene-linked polymorphic region (5-HTTLPR) allele, the severity of symptoms, number of early adversities, and therapeutic responses to antidepressants were examined. Genomic DNA was extracted from peripheral blood of Japanese healthy controls and patients with MD before and after treatment. DMS was analyzed using a MassARRAY Compact System. The severity of depression was evaluated using the Hamilton Rating Scale for Depression, and early adversity was evaluated using the Early Trauma Inventory. We were unable to distinguish between and healthy controls, or between unmedicated patients and medicated patients using DMS. The 5-HTTLPR allele had no significant effect on DMS. The methylation rates for several CpGs differed significantly after treatment. Notably, the methylation rate of CpG 3 in patients with better therapeutic responses was significantly higher than that in patients with poorer responses. Although further studies examining the function of specific CpG units of SLC6A4 are required, these results suggest that the pre-treatment methylation rate of SLC6A4 is associated with therapeutic responses to antidepressants in unmedicated patients with MD.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Psychiatry and Neurosciences, Applied Life Sciences Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Psychiatry and Neurosciences, Applied Life Sciences Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan; Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, Japan.
| | - Manabu Fuchikami
- Department of Psychiatry and Neurosciences, Applied Life Sciences Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Masahiro Segawa
- Department of Psychiatry and Neurosciences, Applied Life Sciences Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Kana Yokomaku
- Department of Psychiatry and Neurosciences, Applied Life Sciences Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Tsutomu Kataoka
- Department of Psychiatry and Neurosciences, Applied Life Sciences Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Applied Life Sciences Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Applied Life Sciences Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tsukasa Koyama
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kounosuke Tsuchiyama
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Takeshi Terao
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Yosuke Kokubo
- Department of Psychiatry, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Masaru Mimura
- Department of Psychiatry, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| |
Collapse
|
1070
|
Miousse IR, Chalbot MCG, Aykin-Burns N, Wang X, Basnakian A, Kavouras IG, Koturbash I. Epigenetic alterations induced by ambient particulate matter in mouse macrophages. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:428-35. [PMID: 24535919 PMCID: PMC4162398 DOI: 10.1002/em.21855] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/22/2014] [Indexed: 05/25/2023]
Abstract
Respiratory mortality and morbidity has been associated with exposure to particulate matter (PM). Experimental evidence suggests involvement of cytotoxicity, oxidative stress, and inflammation in the development of PM-associated pathological states; however, the exact mechanisms remain unclear. In the current study, we analyzed short-term epigenetic response to PM10 (particles with aerodynamic diameter less than 10 μm) exposure in mouse ascitic RAW264.7 macrophages (BALB/C Abelson murine leukemia virus-induced tumor). Ambient PM10 was collected using a high volume sampler in Little Rock, AR. Analysis revealed that PM10 was composed mainly of Al and Fe, and the water soluble organic fraction was dominated by aliphatic and carbohydrate fragments and minor quantities of aromatic components. Exposure to PM10 compromised the cellular epigenome at concentrations 10-200 µg/ml. Specifically, epigenetic alterations were evident as changes in the methylation and expression of repetitive element-associated DNA and associated DNA methylation machinery. These results suggest that epigenetic alterations, in concert with cytotoxicity, oxidative stress, and inflammation, might contribute to the pathogenesis of PM-associated respiratory diseases.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marie-Cécile G. Chalbot
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nükhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Xiaoying Wang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alexei Basnakian
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ilias G. Kavouras
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
1071
|
Joensen H, Grahl-Nielsen O. Distinction among North Atlantic cod Gadus morhua stocks by tissue fatty acid profiles. JOURNAL OF FISH BIOLOGY 2014; 84:1904-1925. [PMID: 24890408 DOI: 10.1111/jfb.12407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/14/2014] [Indexed: 06/03/2023]
Abstract
The fatty acid (FA) profiles of the white muscle and heart tissues of cod Gadus morhua from five locations, Faroe Bank, Faroe Plateau, North-West Iceland, Norway-Barents Sea and Denmark-Skagerrak, were population dependent. The interregional differences of FAs were significantly dissimilar (P < 0.01) in most cases. By way of a rapid and simple analytical method, the stock dependence and harvest location of individual G. morhua were chemometrically determined by multivariate principal component analysis. The difference among the stocks was correlated with the average water temperature at the harvest locations. It thus appears that the tissue FA profile is a phenotypic trait that is partly temperature driven.
Collapse
Affiliation(s)
- H Joensen
- Department of Science and Technology, University of the Faroe Islands, Nóatún 3, FO-100 Tórshavn, Faroe Islands
| | | |
Collapse
|
1072
|
Meloni M. The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology. Front Hum Neurosci 2014; 8:309. [PMID: 24904353 PMCID: PMC4033168 DOI: 10.3389/fnhum.2014.00309] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/27/2014] [Indexed: 11/13/2022] Open
Abstract
The rise of molecular epigenetics over the last few years promises to bring the discourse about the sociality and susceptibility to environmental influences of the brain to an entirely new level. Epigenetics deals with molecular mechanisms such as gene expression, which may embed in the organism "memories" of social experiences and environmental exposures. These changes in gene expression may be transmitted across generations without changes in the DNA sequence. Epigenetics is the most advanced example of the new postgenomic and context-dependent view of the gene that is making its way into contemporary biology. In my article I will use the current emergence of epigenetics and its link with neuroscience research as an example of the new, and in a way unprecedented, sociality of contemporary biology. After a review of the most important developments of epigenetic research, and some of its links with neuroscience, in the second part I reflect on the novel challenges that epigenetics presents for the social sciences for a re-conceptualization of the link between the biological and the social in a postgenomic age. Although epigenetics remains a contested, hyped, and often uncritical terrain, I claim that especially when conceptualized in broader non-genecentric frameworks, it has a genuine potential to reformulate the ossified biology/society debate.
Collapse
Affiliation(s)
- Maurizio Meloni
- School of Sociology and Social Policy, Institute for Science and Society, University of Nottingham Nottingham, UK
| |
Collapse
|
1073
|
Pulido Fontes L, Quesada Jimenez P, Mendioroz Iriarte M. Epigenetics and epilepsy. Neurologia 2014; 30:111-8. [PMID: 24851699 DOI: 10.1016/j.nrl.2014.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Epigenetics is the study of heritable modifications in gene expression that do not change the DNA nucleotide sequence. Some of the most thoroughly studied epigenetic mechanisms at present are DNA methylation, post-transcriptional modifications of histones, and the effect of non-coding RNA molecules. Gene expression is regulated by means of these mechanisms and disruption of these molecular pathways may elicit development of diseases. DEVELOPMENT We describe the main epigenetic regulatory mechanisms and review the most recent literature about epigenetic mechanisms and how those mechanisms are involved in different epileptic syndromes. CONCLUSION Identifying the epigenetic mechanisms involved in epilepsy is a promising line of research that will deliver more in-depth knowledge of epilepsy pathophysiology and treatments.
Collapse
Affiliation(s)
- L Pulido Fontes
- Servicio de Neurología, Complejo Hospitalario de Navarra, Pamplona, Navarra, España; Navarrabiomed, Pamplona, Navarra, España.
| | - P Quesada Jimenez
- Servicio de Neurología, Complejo Hospitalario de Navarra, Pamplona, Navarra, España
| | - M Mendioroz Iriarte
- Servicio de Neurología, Complejo Hospitalario de Navarra, Pamplona, Navarra, España; Navarrabiomed, Pamplona, Navarra, España
| |
Collapse
|
1074
|
Tobler M, Henpita C, Bassett B, Kelley JL, Shaw JH. H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:7-14. [PMID: 24813672 DOI: 10.1016/j.cbpa.2014.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Disentangling the effects of plasticity, genetic variation, and their interactions on organismal responses to environmental stressors is a key objective in ecological physiology. We quantified the expression of five candidate genes in response to hydrogen sulfide (H2S) exposure in fish (Poecilia mexicana, Poeciliidae) from a naturally sulfide-rich environment as well as an ancestral, non-sulfidic population to test for constitutive and environmentally dependent population differences in gene expression patterns. Common garden raised individuals that had never encountered environmental H2S during their lifetime were subjected to short or long term H2S exposure treatments or respective non-sulfidic controls. The expression of genes involved in responses to H2S toxicity (cytochrome c oxidase, vascular endothelial growth factor, and cytochrome P450-2J6), H2S detoxification (sulfide:quinone oxidoreductase), and endogenous H2S production (cystathionine γ lyase) was determined in both gill and liver tissues by real time PCR. The results indicated complex changes in expression patterns that--depending on the gene--not only differed between organs and populations, but also on the type of H2S exposure. Populations differences, both constitutive and H2S exposure dependent (i.e., plastic), in gene expression were particularly evident for sulfide:quinone oxidoreductase, vascular endothelial growth factor, and to a lesser degree for cytochrome P450-2J6. Our study uncovered putatively adaptive modifications in gene regulation that parallel previously documented adaptive changes in phenotypic traits.
Collapse
Affiliation(s)
- Michael Tobler
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Chathurika Henpita
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Brandon Bassett
- Center for Veterinary Health Sciences, Oklahoma State University, 205 McElroy Hall, Stillwater, OK 74078, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - Jennifer H Shaw
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA.
| |
Collapse
|
1075
|
Shenderov BA, Midtvedt T. Epigenomic programing: a future way to health? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2014; 25:24145. [PMID: 24829553 PMCID: PMC4016746 DOI: 10.3402/mehd.v25.24145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022]
Abstract
It is now generally accepted that the ‘central genome dogma’ (i.e. a causal chain going from DNA to RNA to proteins and downstream to biological functions) should be replaced by the ‘fluid genome dogma’, that is, complex feed-forward and feed-back cycles that interconnect organism and environment by epigenomic programing – and reprograming – throughout life and at all levels, sometimes also down the generations. The epigenomic programing is the net sum of interactions derived from own metabolism and microbiota as well as external factors such as diet, pharmaceuticals, environmental compounds, and so on. It is a growing body of results indicating that many chronic metabolic and degenerative disorders and diseases – often called ‘civilization diseases’ – are initiated and/or influenced upon by non-optimal epigenomic programing, often taking place early in life. In this context, the first 1,000 days of life – from conception into early infancy – is often called the most important period of life. The following sections present some major mechanisms for epigenomic programing as well as some factors assumed to be of importance. The need for more information about own genome and metagenome, as well as a substantial lack of adequate information regarding dietary and environmental databases are also commented upon. However, the mere fact that we can influence epigenomic health programing opens up the way for prophylactic and therapeutic interventions. The authors underline the importance of creating a ‘Human Gut Microbiota and Epigenomic Platform’ in order to facilitate interdisciplinary collaborations among scientists and clinicians engaged in host microbial ecology, nutrition, metagenomics, epigenomics and metabolomics as well as in disease epidemiology, prevention and treatment.
Collapse
Affiliation(s)
- Boris A Shenderov
- Laboratory of Biology of Bifidobacteria, Moscow Research Institute of Epidemiology and Microbiology after G.N. Gabrichevsky, Moscow, Russia
| | - Tore Midtvedt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
1076
|
Burton T, Metcalfe NB. Can environmental conditions experienced in early life influence future generations? Proc Biol Sci 2014; 281:20140311. [PMID: 24807254 PMCID: PMC4024293 DOI: 10.1098/rspb.2014.0311] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different 'internal' and 'external' cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions.
Collapse
Affiliation(s)
- Tim Burton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, , Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
1077
|
Sheikh BN. Crafting the brain - role of histone acetyltransferases in neural development and disease. Cell Tissue Res 2014; 356:553-73. [PMID: 24788822 DOI: 10.1007/s00441-014-1835-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023]
Abstract
The human brain is a highly specialized organ containing nearly 170 billion cells with specific functions. Development of the brain requires adequate proliferation, proper cell migration, differentiation and maturation of progenitors. This is in turn dependent on spatial and temporal coordination of gene transcription, which requires the integration of both cell intrinsic and environmental factors. Histone acetyltransferases (HATs) are one family of proteins that modulate expression levels of genes in a space- and time-dependent manner. HATs and their molecular complexes are able to integrate multiple molecular inputs and mediate transcriptional levels by acetylating histone proteins. In mammals, 19 HATs have been described and are separated into five families (p300/CBP, MYST, GNAT, NCOA and transcription-related HATs). During embryogenesis, individual HATs are expressed or activated at specific times and locations to coordinate proper development. Not surprisingly, mutations in HATs lead to severe developmental abnormalities in the nervous system and increased neurodegeneration. This review focuses on our current understanding of HATs and their biological roles during neural development.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Division of Development and Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Victoria, Australia,
| |
Collapse
|
1078
|
The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 2014; 80:115-32. [DOI: 10.1016/j.neuropharm.2014.01.013] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
|
1079
|
The first mouse mutants of D14Abb1e (Fam208a) show that it is critical for early development. Mamm Genome 2014; 25:293-303. [PMID: 24781204 PMCID: PMC4105592 DOI: 10.1007/s00335-014-9516-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/01/2014] [Indexed: 01/09/2023]
Abstract
An ENU mutagenesis screen to identify novel epigenetic modifiers was established in mice carrying a multi-copy GFP transgene, which is expressed in a variegated manner in erythrocytes and is highly sensitive to epigenetic silencing. The screen has produced mouse mutants of both known modifiers of epigenetic state, such as Dnmt1 and Smarca5, and novel modifiers, such as Smchd1 and Rlf. Here we report two mouse lines generated from the screen, MommeD6 and MommeD20, with point mutations in D14Abb1e. These are the first mouse mutants of D14Abb1e (alsoknownasFam208a), a gene about which little is known. Heterozygous intercrosses show that homozygous mutants from both the MommeD6 and MommeD20 lines are not viable beyond gastrulation, demonstrating an important role for D14Abb1e in development. We demonstrate that haploinsufficiency for D14Abb1e effects transgene expression at the RNA level. Analysis of the predicted D14Abb1e protein sequence reveals that it contains putative nuclear localisation signals and a domain of unknown function, DUF3715. Our studies reveal that D14Abb1e is localised to the nucleus and is expressed in skin and testes.
Collapse
|
1080
|
Norouzitallab P, Baruah K, Vandegehuchte M, Van Stappen G, Catania F, Bussche JV, Vanhaecke L, Sorgeloos P, Bossier P. Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic
Artemia
model. FASEB J 2014; 28:3552-63. [DOI: 10.1096/fj.14-252049] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Parisa Norouzitallab
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| | - Kartik Baruah
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| | - Michiel Vandegehuchte
- Laboratory of Environmental Toxicology and Aquatic EcologyGhent UniversityGhentBelgium
| | - Gilbert Van Stappen
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| | - Francesco Catania
- Institute for Evolution and Biodiversity, University of MünsterMünsterGermany
| | | | - Lynn Vanhaecke
- Laboratory of Chemical AnalysisGhent UniversityMerelbekeBelgium
| | - Patrick Sorgeloos
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| | - Peter Bossier
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| |
Collapse
|
1081
|
Wang Z, Fan Y, Xu J, Li L, Heng D, Han S, Yin J, Peng B, Liu W, He X. Transcriptome analysis of the hippocampus in novel rat model of febrile seizures. PLoS One 2014; 9:e95237. [PMID: 24736375 PMCID: PMC3988142 DOI: 10.1371/journal.pone.0095237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/24/2014] [Indexed: 01/12/2023] Open
Abstract
Febrile seizures (FS) are the most common type of convulsive events in infants and young children, but the precise underlying genetic mechanism remains to be explored. To investigate the underlying pathogenic factors in FS and subsequent epilepsy, alterations in gene expression between the two new strains of rats (hyperthermia-prone [HP] vs hyperthermia-resistant [HR]), were investigated by using the Whole Rat Genome Oligo Microarray. This process identified 1,140 differentially expressed genes (DEGs; 602 upregulated and 538 downregulated), which were analyzed to determine significant Gene Ontology (GO) categories, signaling pathways and gene networks. Based on the GO analyses, the modified genes are closely related to various FS pathogenesis factors, including immune and inflammatory responses and ion transport. Certain DEGs identified have not been previously examined in relation to FS pathogenesis. Among these genes is dipeptidyl peptidase 4 (DPP4), a gene closely linked to interleukin 6 (IL-6), which played a key role in the gene network analysis. Furthermore, sitagliptin, a DPP4 inhibitor significantly decreased epileptic discharge in rats, observed via electroencephalogram, suggesting an important role for DPP4 in FS. The effectiveness of sitagliptin in reducing seizure activity may occur through a mechanism that stabilizes cellular Ca2+ homeostasis. In addition, DPP4 expression may be regulated by DNA methylation. The hippocampal gene expression profiles in novel rat models of FS provides a large database of candidate genes and pathways, which will be useful for researchers interested in disorders of neuronal excitability.
Collapse
Affiliation(s)
- Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yuanteng Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jian Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Liang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Duanhe Heng
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- * E-mail: (WL); (XH)
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- * E-mail: (WL); (XH)
| |
Collapse
|
1082
|
Cid E, Gomez-Dominguez D, Martin-Lopez D, Gal B, Laurent F, Ibarz JM, Francis F, Menendez de la Prida L. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations. Front Syst Neurosci 2014; 8:50. [PMID: 24782720 PMCID: PMC3995045 DOI: 10.3389/fnsys.2014.00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/18/2014] [Indexed: 11/13/2022] Open
Abstract
Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.
Collapse
Affiliation(s)
- Elena Cid
- Laboratorio de Circuitos Neuronales, Instituto Cajal, CSIC Madrid, Spain
| | | | - David Martin-Lopez
- Laboratorio de Circuitos Neuronales, Instituto Cajal, CSIC Madrid, Spain ; Servicio de Neurofisiologia Clínica, Hospital General Universitario Gregorio Marañón Madrid, Spain
| | - Beatriz Gal
- Laboratorio de Circuitos Neuronales, Instituto Cajal, CSIC Madrid, Spain ; Universidad Europea de Madrid, Ciencias Biomédicas Básicas Madrid, Spain
| | - François Laurent
- Laboratorio de Circuitos Neuronales, Instituto Cajal, CSIC Madrid, Spain
| | - Jose M Ibarz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Fiona Francis
- Institut du Fer à Moulin Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut National de la Santé et de la Recherche Médicale UMRS 839 Paris, France
| | | |
Collapse
|
1083
|
Hotaling J, Carrell DT. Clinical genetic testing for male factor infertility: current applications and future directions. Andrology 2014; 2:339-50. [PMID: 24711280 DOI: 10.1111/j.2047-2927.2014.00200.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 01/24/2014] [Accepted: 02/03/2014] [Indexed: 01/06/2023]
Abstract
Spermatogenesis involves the aggregated action of up to 2300 genes, any of which, could, potentially, provide targets for diagnostic tests of male factor infertility. Contrary to the previously proposed common variant hypothesis for common diseases such as male infertility, genome-wide association studies and targeted gene sequencing in cohorts of infertile men have identified only a few gene polymorphisms that are associated with male infertility. Unfortunately, the search for genetic variants associated with male infertility is further hampered by the lack of viable animal models of human spermatogenesis, difficulty in robustly phenotyping infertile men and the complexity of pedigree studies in male factor infertility. In this review, we describe basic genetic principles involved in understanding the genetic basis of male infertility and examine the utility and proper clinical use of the proven genetic assays of male factor infertility, specifically Y chromosome microdeletions, chromosomal translocations, karyotype, cystic fibrosis transmembrane conductance regulator mutation analysis and sperm genetic tests. Unfortunately, these tests are only able to diagnose the cause of about 20% of male factor infertility. The remainder of the review will be devoted to examining novel tests and diagnostic tools that have the potential to explain the other 80% of male factor infertility that is currently classified as idiopathic. Those tests include epigenetic analysis of the spermatozoa and the evaluation of rare genetic variants and copy number variations in patients. Success in advancing to the implementation of such areas is not only dependent on technological advances in the laboratory, but also improved phenotyping in the clinic.
Collapse
Affiliation(s)
- J Hotaling
- Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
1084
|
Epigenetics in an ecotoxicological context. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 764-765:36-45. [DOI: 10.1016/j.mrgentox.2013.08.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/23/2022]
|
1085
|
Affiliation(s)
- Matthias Zilbauer
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke's Hospital, Cambridge University Hospital NHS Trust, , Cambridge, UK
| |
Collapse
|
1086
|
Zufferey F, Williams FM, Spector TD. Epigenetics and methylation in the rheumatic diseases. Semin Arthritis Rheum 2014; 43:692-700. [DOI: 10.1016/j.semarthrit.2013.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/01/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022]
|
1087
|
Mensaert K, Denil S, Trooskens G, Van Criekinge W, Thas O, De Meyer T. Next-generation technologies and data analytical approaches for epigenomics. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:155-70. [PMID: 24327356 DOI: 10.1002/em.21841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 05/18/2023]
Abstract
Epigenetics refers to the collection of heritable features that modulate the genome-environment interaction without being encoded in the actual DNA sequence. While being mitotically and sometimes even meiotically transmitted, epigenetic traits often demonstrate extensive flexibility. This allows cells to acquire diverse gene expression patterns during differentiation, but also to adapt to a changing environment. However, epigenetic alterations are not always beneficial to the organism, as they are, for example, frequently identified in human diseases such as cancer. Accurate and cost-efficient genome-scale profiling of epigenetic features is thus of major importance to pinpoint these "epimutations," for example, to monitor the epigenetic impact of environmental exposure. Over the last decade, the field of epigenetics has been revolutionized by several innovative "epigenomics" technologies exactly addressing this need. In this review, we discuss and compare widely used next-generation methods to assess DNA methylation and hydroxymethylation, noncoding RNA expression, histone modifications, and nucleosome positioning. Although recent methods are typically based on "second-generation" sequencing, we also pay attention to still commonly used array- and PCR-based methods, and look forward to the additional advantages of single-molecule sequencing. As the current bottleneck in epigenomics research is the analysis rather than generation of data, the basic difficulties and problem-solving strategies regarding data preprocessing and statistical analysis are introduced for the different technologies. Finally, we also consider the complications associated with epigenomic studies of species with yet unsequenced genomes and possible solutions.
Collapse
Affiliation(s)
- Klaas Mensaert
- Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
1088
|
Langevin SM, Houseman EA, Accomando WP, Koestler DC, Christensen BC, Nelson HH, Karagas MR, Marsit CJ, Wiencke JK, Kelsey KT. Leukocyte-adjusted epigenome-wide association studies of blood from solid tumor patients. Epigenetics 2014; 9:884-95. [PMID: 24671036 DOI: 10.4161/epi.28575] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenome-wide studies of DNA methylation using blood-derived DNA from cancer patients are complicated by the heterogeneity of cell types within blood and the associated cell lineage specification of DNA methylation signatures. Here, we applied a novel set of analytic approaches to assess the association between cancer case-status and DNA methylation adjusted for leukocyte variation using blood specimens from three case-control cancer studies (bladder: 223 cases, 205 controls; head and neck: 92 cases, 92 controls; and ovarian: 131 cases, 274 controls). Using previously published data on leukocyte-specific CpG loci and a recently described approach to deconvolute subject-specific blood composition, we performed an epigenome-wide analysis to examine the association between blood-based DNA methylation patterns and each of the three aforementioned solid tumor types adjusted for cellular heterogeneity in blood. After adjusting for leukocyte profile in our epigenome-wide analysis, the omnibus association between case-status and methylation was significant for all three studies (bladder cancer: P = 0.047; HNSCC: P = 0.013; ovarian cancer: P = 0.0002). Subsequent analyses revealed that CpG sites associated with cancer were enriched for transcription factor binding motifs involved with cancer-associated pathways. These results support the existence of cancer-associated DNA methylation profiles in the blood of solid tumor patients that are independent of alterations in normal leukocyte distributions. Adoption of the methods developed here will make it feasible to rigorously assess the influence of variability of normal leukocyte profiles when investigating cancer related changes in blood-based epigenome-wide association studies.
Collapse
Affiliation(s)
- Scott M Langevin
- Department of Environmental Health; University of Cincinnati College of Medicine; Cincinnati, OH USA; Department of Epidemiology; Brown University; Providence, RI USA
| | - E Andres Houseman
- Department of Biostatistics; Oregon State University College of Public Health and Human Sciences; Corvallis, OR USA
| | - William P Accomando
- Department of Pathology & Laboratory Medicine; Brown University; Providence, RI USA
| | - Devin C Koestler
- Department of Community and Family Medicine; Section of Biostatistics and Epidemiology; Dartmouth Medical School; Lebanon, NH USA
| | - Brock C Christensen
- Department of Community and Family Medicine; Section of Biostatistics and Epidemiology; Dartmouth Medical School; Lebanon, NH USA; Department of Pharmacology and Toxicology; Dartmouth Medical School; Lebanon, NH USA
| | - Heather H Nelson
- Division of Epidemiology and Community Health; University of Minnesota Masonic Cancer Center; Minneapolis, MN USA
| | - Margaret R Karagas
- Department of Community and Family Medicine; Section of Biostatistics and Epidemiology; Dartmouth Medical School; Lebanon, NH USA
| | - Carmen J Marsit
- Department of Community and Family Medicine; Section of Biostatistics and Epidemiology; Dartmouth Medical School; Lebanon, NH USA; Department of Pharmacology and Toxicology; Dartmouth Medical School; Lebanon, NH USA
| | - John K Wiencke
- Department of Neurological Surgery; University of California San Francisco; San Francisco, CA USA
| | - Karl T Kelsey
- Department of Epidemiology; Brown University; Providence, RI USA; Department of Pathology & Laboratory Medicine; Brown University; Providence, RI USA
| |
Collapse
|
1089
|
Azad GK, Singh V, Tomar RS. Assessment of the biological pathways targeted by isocyanate using N-succinimidyl N-methylcarbamate in budding yeast Saccharomyces cerevisiae. PLoS One 2014; 9:e92993. [PMID: 24664350 PMCID: PMC3963962 DOI: 10.1371/journal.pone.0092993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/27/2014] [Indexed: 02/05/2023] Open
Abstract
Isocyanates, a group of low molecular weight aromatic and aliphatic compounds possesses the functional isocyanate group. They are highly toxic in nature hence; we used N-succinimidyl N-methylcarbamate (NSNM), a surrogate chemical containing a functional isocyanate group to understand the mode of action of this class of compounds. We employed budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by NSNM. Our screening with yeast mutants revealed that it affects chromatin, DNA damage response, protein-ubiquitylation and chaperones, oxidative stress, TOR pathway and DNA repair processes. We also show that NSNM acts as an epigenetic modifier as its treatment causes reduction in global histone acetylation and formation of histone adducts. Cells treated with NSNM exhibited increase in mitochondrial membrane potential as well as intracellular ROS levels and the effects were rescued by addition of reduced glutathione to the medium. We also report that deletion of SOD1 and SOD2, the superoxide dismutase in Saccharomyces cerevisiae displayed hypersensitivity to NSNM. Furthermore, NSNM treatment causes rapid depletion of total glutathione and reduced glutathione. We also demonstrated that NSNM induces degradation of Sml1, a ribonucleotide reductase inhibitor involved in regulating dNTPs production. In summary, we define the various biological pathways targeted by isocyanates.
Collapse
Affiliation(s)
- Gajendra Kumar Azad
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikash Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
1090
|
Barciszewska AM, Nowak S, Naskręt-Barciszewska MZ. The degree of global DNA hypomethylation in peripheral blood correlates with that in matched tumor tissues in several neoplasia. PLoS One 2014; 9:e92599. [PMID: 24651295 PMCID: PMC3961436 DOI: 10.1371/journal.pone.0092599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022] Open
Abstract
There are no good blood and serum biomarkers for detection, follow up, or prognosis of brain tumors. However, they are needed for more detailed tumor classification, better prognosis estimation and selection of an efficient therapeutic strategy. The aim of this study was to use the epigenetic changes in DNA of peripheral blood samples as a molecular marker to diagnose brain tumors as well as other diseases. We have applied a very precise thin-layer chromatography (TLC) analysis of the global amount of 5-methylcytosine (m5C) in DNA from brain tumors, colon and breast cancer tissues and peripheral blood samples of the same patients. The m5C level in tissue DNA from different brain tumor types, expressed as R coefficient, changes within the range of 0.2–1.6 and overlaps with R of that of blood samples. It negatively correlates with the WHO malignancy grade. The global DNA hypomethylation quantitative measure in blood, demonstrates a big potential for development of non-invasive applications for detection of a low and a high grade brain tumors. We have also used this approach to analyze patients with breast and colon cancers. In all these cases the m5C amount in DNA cancer tissue match with data of blood. This study is the first to demonstrate the potential role of global m5C content in blood DNA for early detection of brain tumors and others diseases. So, genomic DNA hypomethylation is a promising marker for prognosis of various neoplasms as well as other pathologies.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
- * E-mail:
| | - Stanisław Nowak
- Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
1091
|
Abstract
Autoimmune disease manifests in numerous forms, but as a disease group is relatively common in the population. It is complex in aetiology, with genetic and environmental determinants. The involvement of gene variants in autoimmune disease is well established, and evidence for significant involvement of the environment in various disease forms is growing. These factors may act independently, or they may interact, with the effect of one factor influenced by the presence of another. Identifying combinations of genetic and environmental factors that interact in autoimmune disease has the capacity to more fully explain disease risk profile, and to uncover underlying molecular mechanisms contributing to disease pathogenesis. In turn, such knowledge is likely to contribute significantly to the development of personalised medicine, and targeted preventative approaches. In this review, we consider the current evidence for gene-environment (G-E) interaction in autoimmune disease. Large-scale G-E interaction research efforts, while well-justified, face significant practical and methodological challenges. However, it is clear from the evidence that has already been generated that knowledge on how genes and environment interact at a biological level will be crucial in fully understanding the processes that manifest as autoimmunity.
Collapse
|
1092
|
Varela-Rey M, Iruarrizaga-Lejarreta M, Lozano JJ, Aransay AM, Fernandez AF, Lavin JL, Mósen-Ansorena D, Berdasco M, Turmaine M, Luka Z, Wagner C, Lu SC, Esteller M, Mirsky R, Jessen KR, Fraga MF, Martínez-Chantar ML, Mato JM, Woodhoo A. S-adenosylmethionine levels regulate the schwann cell DNA methylome. Neuron 2014; 81:1024-1039. [PMID: 24607226 PMCID: PMC3960855 DOI: 10.1016/j.neuron.2014.01.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
Axonal myelination is essential for rapid saltatory impulse conduction in the nervous system, and malformation or destruction of myelin sheaths leads to motor and sensory disabilities. DNA methylation is an essential epigenetic modification during mammalian development, yet its role in myelination remains obscure. Here, using high-resolution methylome maps, we show that DNA methylation could play a key gene regulatory role in peripheral nerve myelination and that S-adenosylmethionine (SAMe), the principal methyl donor in cytosine methylation, regulates the methylome dynamics during this process. Our studies also point to a possible role of SAMe in establishing the aberrant DNA methylation patterns in a mouse model of diabetic neuropathy, implicating SAMe in the pathogenesis of this disease. These critical observations establish a link between SAMe and DNA methylation status in a defined biological system, providing a mechanism that could direct methylation changes during cellular differentiation and in diverse pathological situations.
Collapse
Affiliation(s)
- Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain
| | - Marta Iruarrizaga-Lejarreta
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain
| | - Juan José Lozano
- Bioinformatic Platform, CIBERehd, Centre Esther Koplovitz (CEK), C/Rosselló 153 Subsuelo, 08036 Barcelona, Spain
| | - Ana María Aransay
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain
| | - Agustín F Fernandez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - José Luis Lavin
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain
| | - David Mósen-Ansorena
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 09908 Catalonia, Spain
| | - Marc Turmaine
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Shelly C Lu
- Division of Gastrointestinal and Liver Diseases, USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 09908 Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010 Catalonia, Spain
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33006 Oviedo, Spain; Department of Immunology and Oncology, National Center for Biotechnology, CNB-CSIC, Cantoblanco, E-28049Madrid, Spain
| | - María L Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain
| | - Ashwin Woodhoo
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
1093
|
Wilson GA, Butcher LM, Foster HR, Feber A, Roos C, Walter L, Woszczek G, Beck S, Bell CG. Human-specific epigenetic variation in the immunological Leukotriene B4 Receptor (LTB4R/BLT1) implicated in common inflammatory diseases. Genome Med 2014; 6:19. [PMID: 24598577 PMCID: PMC4062055 DOI: 10.1186/gm536] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/24/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Common human diseases are caused by the complex interplay of genetic susceptibility as well as environmental factors. Due to the environment's influence on the epigenome, and therefore genome function, as well as conversely the genome's facilitative effect on the epigenome, analysis of this level of regulation may increase our knowledge of disease pathogenesis. METHODS In order to identify human-specific epigenetic influences, we have performed a novel genome-wide DNA methylation analysis comparing human, chimpanzee and rhesus macaque. RESULTS We have identified that the immunological Leukotriene B4 receptor (LTB4R, BLT1 receptor) is the most epigenetically divergent human gene in peripheral blood in comparison with other primates. This difference is due to the co-ordinated active state of human-specific hypomethylation in the promoter and human-specific increased gene body methylation. This gene is significant in innate immunity and the LTB4/LTB4R pathway is involved in the pathogenesis of the spectrum of human inflammatory diseases. This finding was confirmed by additional neutrophil-only DNA methylome and lymphoblastoid H3K4me3 chromatin comparative data. Additionally we show through functional analysis that this receptor has increased expression and a higher response to the LTB4 ligand in human versus rhesus macaque peripheral blood mononuclear cells. Genome-wide we also find human species-specific differentially methylated regions (human s-DMRs) are more prevalent in CpG island shores than within the islands themselves, and within the latter are associated with the CTCF motif. CONCLUSIONS This result further emphasises the exclusive nature of the human immunological system, its divergent adaptation even from very closely related primates, and the power of comparative epigenomics to identify and understand human uniqueness.
Collapse
Affiliation(s)
- Gareth A Wilson
- Medical Genomics, UCL Cancer Institute, University College London, London, UK ; Current address: Translational Cancer Therapeutics, CR-UK London Research Institute, Lincoln's Inn Fields, London, UK
| | - Lee M Butcher
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | - Holly R Foster
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| | - Andrew Feber
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | - Christian Roos
- Genebank of Primates and Primate Genetics Laboratory, German Primate Centre, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lutz Walter
- Genebank of Primates and Primate Genetics Laboratory, German Primate Centre, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Grzegorz Woszczek
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | - Christopher G Bell
- Medical Genomics, UCL Cancer Institute, University College London, London, UK ; Current address: Department of Twin Research & Genetic Epidemiology, St Thomas' Hospital, King's College London, London, UK
| |
Collapse
|
1094
|
Gustafsson M, Edström M, Gawel D, Nestor CE, Wang H, Zhang H, Barrenäs F, Tojo J, Kockum I, Olsson T, Serra-Musach J, Bonifaci N, Pujana MA, Ernerudh J, Benson M. Integrated genomic and prospective clinical studies show the importance of modular pleiotropy for disease susceptibility, diagnosis and treatment. Genome Med 2014; 6:17. [PMID: 24571673 PMCID: PMC4064311 DOI: 10.1186/gm534] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
Background Translational research typically aims to identify and functionally validate individual, disease-specific genes. However, reaching this aim is complicated by the involvement of thousands of genes in common diseases, and that many of those genes are pleiotropic, that is, shared by several diseases. Methods We integrated genomic meta-analyses with prospective clinical studies to systematically investigate the pathogenic, diagnostic and therapeutic roles of pleiotropic genes. In a novel approach, we first used pathway analysis of all published genome-wide association studies (GWAS) to find a cell type common to many diseases. Results The analysis showed over-representation of the T helper cell differentiation pathway, which is expressed in T cells. This led us to focus on expression profiling of CD4+ T cells from highly diverse inflammatory and malignant diseases. We found that pleiotropic genes were highly interconnected and formed a pleiotropic module, which was enriched for inflammatory, metabolic and proliferative pathways. The general relevance of this module was supported by highly significant enrichment of genetic variants identified by all GWAS and cancer studies, as well as known diagnostic and therapeutic targets. Prospective clinical studies of multiple sclerosis and allergy showed the importance of both pleiotropic and disease specific modules for clinical stratification. Conclusions In summary, this translational genomics study identified a pleiotropic module, which has key pathogenic, diagnostic and therapeutic roles.
Collapse
Affiliation(s)
- Mika Gustafsson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Måns Edström
- Clinical and Experimental Medicine, Faculty of Health Sciences, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, 58185 Linköping, Sweden
| | - Danuta Gawel
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Colm E Nestor
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Hui Wang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Huan Zhang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Fredrik Barrenäs
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - James Tojo
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, 17177 Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, 17177 Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, 17177 Stockholm, Sweden
| | - Jordi Serra-Musach
- Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Núria Bonifaci
- Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Miguel Angel Pujana
- Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Jan Ernerudh
- Clinical and Experimental Medicine, Faculty of Health Sciences, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, 58185 Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
1095
|
Díaz-Freije E, Gestal C, Castellanos-Martínez S, Morán P. The role of DNA methylation on Octopus vulgaris development and their perspectives. Front Physiol 2014; 5:62. [PMID: 24605101 PMCID: PMC3932432 DOI: 10.3389/fphys.2014.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/31/2014] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is a common regulator of gene expression and development in mammalian and other vertebrate genomes. DNA methylation has been studied so far in a few bivalve mollusk species, finding a wide spectrum of levels. We focused our study in the common octopus, Octopus vulgaris, an important organism for neuroscience, physiology and ethology research as well as for human consumption. We aim to confirm the existence of DNA methylation in O. vulgaris and ultimately, if methylation plays a role in gene regulation during octopus development. We used a genome-wide approach, methylation-sensitive amplified polymorphism (MSAP), firstly in four different tissues from the same specimens from adult benthonic individuals to test whether gene expression is regulated by methylation. Secondly, we tested the hypothesis that methylation underlies development by assessing MSAP patters from paralarvae to adult developmental stages. Our data indicate that octopus genome is widely methylated since clear differences can be observed, and the methylation pattern changes with the development. The statistical analyses showed significant differences in methylation pattern between paralarvae, where higher internal cytosine methylation is observed, and the three other post-hatching stages. This suggests an important role of cytosine methylation during the first step of development, when major morphological changes take place. However, methylation seems to have little effect on gene expression during the benthonic phase, since no significant effect was revealed in the analyses of molecular variance (AMOVA) performed. Our observations highlight the importance of epigenetic mechanisms in the first developmental steps of the common octopus and opens new perspectives to overcome high mortality rate during paralarvae growth. Thus, better understanding the molecular regulation patterns could lead to new approaches that increase the efficiency of husbandry of this emergent species for aquaculture.
Collapse
Affiliation(s)
- Eva Díaz-Freije
- Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| | - Camino Gestal
- Aquatic Molecular Pathobiology Group, Instituto de Investigaciones Marinas (IIM-CSIC) Vigo, Spain
| | | | - Paloma Morán
- Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| |
Collapse
|
1096
|
Williams SD, Hughes TE, Adler CJ, Brook AH, Townsend GC. Epigenetics: a new frontier in dentistry. Aust Dent J 2014; 59 Suppl 1:23-33. [DOI: 10.1111/adj.12155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- SD Williams
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - TE Hughes
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - CJ Adler
- Institute of Dental Research; Westmead Millennium Institute; Faculty of Dentistry; The University of Sydney; New South Wales Australia
| | - AH Brook
- School of Dentistry; The University of Adelaide; South Australia Australia
- Institute of Dentistry; Queen Mary University of London; United Kingdom
| | - GC Townsend
- School of Dentistry; The University of Adelaide; South Australia Australia
| |
Collapse
|
1097
|
Xie Q, Bai Q, Zou LY, Zhang QY, Zhou Y, Chang H, Yi L, Zhu JD, Mi MT. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer 2014; 53:422-31. [DOI: 10.1002/gcc.22154] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Qi Xie
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Qian Bai
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Ling-Yun Zou
- Department of Nutrition and Food Hygiene; Bioinformatics Center; Third Military Medical University; Chongqing China
| | - Qian-Yong Zhang
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Yong Zhou
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Hui Chang
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Long Yi
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Jun-Dong Zhu
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Man-Tian Mi
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| |
Collapse
|
1098
|
Abstract
Extracellular cues play critical roles in the establishment of the epigenome during development and may also contribute to epigenetic perturbations found in disease states. The direct role of the local tissue environment on the post-development human epigenome, however, remains unclear due to limitations in studies of human subjects. Here, we use an isogenic human ileal neobladder surgical model and compare global DNA methylation levels of intestinal epithelial cells pre- and post-neobladder construction using the Infinium HumanMethylation450 BeadChip. Our study is the first to quantify the effect of environmental cues on the human epigenome and show that the local tissue environment directly modulates DNA methylation patterns in normal differentiated cells in vivo. In the neobladder, the intestinal epithelial cells lose their tissue-specific epigenetic landscape in a time-dependent manner following the tissue’s exposure to a bladder environment. We find that de novo methylation of many intestine-specific enhancers occurs at the rate of 0.41% per month (P < 0.01, Pearson = 0.71), while demethylation of primarily non-intestine-specific transcribed regions occurs at the rate of −0.37% per month (P < 0.01, Pearson = −0.57). The dynamic resetting of the DNA methylome in the neobladder not only implicates local environmental cues in the shaping and maintenance of the epigenome but also illustrates an unexpected cross-talk between the epigenome and the cellular environment.
Collapse
|
1099
|
Abstract
Post-traumatic stress disorder (PTSD) is increasingly recognized as both a disorder of enormous mental health and societal burden, but also as an anxiety disorder that may be particularly understandable from a scientific perspective. Specifically, PTSD can be conceptualized as a disorder of fear and stress dysregulation, and the neural circuitry underlying these pathways in both animals and humans are becoming increasingly well understood. Furthermore, PTSD is the only disorder in psychiatry in which the initiating factor, the trauma exposure, can be identified. Thus, the pathophysiology of the fear and stress response underlying PTSD can be examined and potentially interrupted. Twin studies have shown that the development of PTSD following a trauma is heritable, and that genetic risk factors may account for up to 30-40% of this heritability. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review will examine gene pathways that have recently been analysed, primarily through candidate gene studies (including neuroimaging studies of candidate genes), in addition to genome-wide associations and the epigenetic regulation of PTSD. Future and on-going studies are utilizing larger and collaborative cohorts to identify novel gene candidates through genome-wide association and other powerful genomic approaches. Identification of PTSD biological pathways strengthens the hope of progress in the mechanistic understanding of a model psychiatric disorder and allows for the development of targeted treatments and interventions.
Collapse
|
1100
|
Brent LJN, Semple S, MacLarnon A, Ruiz-Lambides A, Gonzalez-Martinez J, Platt ML. Personality Traits in Rhesus Macaques ( Macaca mulatta) Are Heritable but Do Not Predict Reproductive Output. INT J PRIMATOL 2014; 35:188-209. [PMID: 24659840 PMCID: PMC3960078 DOI: 10.1007/s10764-013-9724-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is growing evidence that behavioral tendencies, or "personalities," in animals are an important aspect of their biology, yet their evolutionary basis is poorly understood. Specifically, how individual variation in personality arises and is subsequently maintained by selection remains unclear. To address this gap, studies of personality require explicit incorporation of genetic information. Here, we explored the genetic basis of personality in rhesus macaques by determining the heritability of personality components and by examining the fitness consequences of those components. We collected observational data for 108 adult females living in three social groups in a free-ranging population via focal animal sampling. We applied principal component analysis to nine spontaneously occurring behaviors and identified six putative personality components, which we named Meek, Bold, Aggressive, Passive, Loner, and Nervous. All components were repeatable and heritable, with heritability estimates ranging from 0.14 to 0.35. We found no evidence of an association with reproductive output, measured either by infant survival or by interbirth interval, for any of the personality components. This finding suggests either that personality does not have fitness-related consequences in this population or that selection has acted to reduce fitness-associated variation in personality.
Collapse
Affiliation(s)
- Lauren J. N. Brent
- Duke Institute for Brain Sciences and Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708; and Centre for Research in Evolutionary and Environmental Anthropology, University of Roehampton, London, U.K
| | - Stuart Semple
- Centre for Research in Evolutionary and Environmental Anthropology, University of Roehampton, London, U.K
| | - Ann MacLarnon
- Centre for Research in Evolutionary and Environmental Anthropology, University of Roehampton, London, U.K
| | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, University of Puerto Rico, Medical Sciences Campus, Punta Santiago, PR
| | - Janis Gonzalez-Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Medical Sciences Campus, Punta Santiago, PR
| | - Michael L. Platt
- Duke Institute for Brain Sciences and Center for Cognitive Neuroscience; and Departments of Neurobiology, Evolutionary Anthropology, and Psychology & Neuroscience, Duke University, Durham, North Carolina 27708
| |
Collapse
|