1151
|
Kobayashi H, Shiba T, Yoshida T, Bolidong D, Kato K, Sato Y, Mochizuki M, Seto T, Kawashiri S, Hanayama R. Precise analysis of single small extracellular vesicles using flow cytometry. Sci Rep 2024; 14:7465. [PMID: 38553534 PMCID: PMC10980769 DOI: 10.1038/s41598-024-57974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
Methods that enable specific and sensitive quantification of small extracellular vesicles (sEVs) using flow cytometry are still under development. Aggregation or adsorption of antibodies causes sub-nano sized particles or non-specific binding and largely affects the results of flow cytometric analysis of single sEVs. Comparison of control IgG and target-specific IgG is inappropriate because they have different characters. Here, we evaluate four preparation methods for flow cytometry, including ultracentrifugation, density gradient centrifugation, size exclusion chromatography (SEC), and the TIM4-affinity method by using tetraspanin-deficient sEVs. The ultracentrifugation or density gradient centrifugation preparation method has large false-positive rates for tetraspanin staining. Conversely, preparation methods using SEC or the TIM4-affinity method show specific detection of single sEVs, which elucidate the roles of sEV biogenesis regulators in the generation of sEV subpopulations. The methods are also useful for the detection of rare disease-related markers, such as PD-L1. Flow cytometric analysis using SEC or the TIM4-affinity method could accelerate research into sEV biogenesis and the development of sEV-based diagnostics and therapies.
Collapse
Affiliation(s)
- Hisano Kobayashi
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayuki Shiba
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Faculty of Frontier Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeshi Yoshida
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Dilireba Bolidong
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Koroku Kato
- Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | - Takafumi Seto
- Institute of Science and Engineering, Faculty of Frontier Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shuichi Kawashiri
- Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
1152
|
Nwamekang Belinga L, Espourteille J, Wepnyu Njamnshi Y, Zafack Zeukang A, Rouaud O, Kongnyu Njamnshi A, Allali G, Richetin K. Circulating Biomarkers for Alzheimer's Disease: Unlocking the Diagnostic Potential in Low- and Middle-Income Countries, Focusing on Africa. NEURODEGENER DIS 2024; 24:26-40. [PMID: 38555638 PMCID: PMC11251669 DOI: 10.1159/000538623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is emerging as a significant public health challenge in Africa, with predictions indicating a tripling in incidence by 2050. The diagnosis of AD on the African continent is notably difficult, leading to late detection that severely limits treatment options and significantly impacts the quality of life for patients and their families. SUMMARY This review focuses on the potential of high-sensitivity specific blood biomarkers as promising tools for improving AD diagnosis and management globally, particularly in Africa. These advances are particularly pertinent in the continent, where access to medical and technical resources is often limited. KEY MESSAGES Identifying precise, sensitive, and specific blood biomarkers could contribute to the biological characterization and management of AD in Africa. Such advances promise to improve patient care and pave the way for new regional opportunities in pharmaceutical research and drug trials on the continent for AD.
Collapse
Affiliation(s)
- Luc Nwamekang Belinga
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Geneva, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Jeanne Espourteille
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Yembe Wepnyu Njamnshi
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Geneva, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Division of Health Operations Research, Ministry of Public Health, Yaoundé, Cameroon
| | - Ariole Zafack Zeukang
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Geneva, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Olivier Rouaud
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alfred Kongnyu Njamnshi
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Geneva, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Clinical Neuroscience and Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Gilles Allali
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Kevin Richetin
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
1153
|
Lundy DJ, Szomolay B, Liao CT. Systems Approaches to Cell Culture-Derived Extracellular Vesicles for Acute Kidney Injury Therapy: Prospects and Challenges. FUNCTION 2024; 5:zqae012. [PMID: 38706963 PMCID: PMC11065115 DOI: 10.1093/function/zqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.
Collapse
Affiliation(s)
- David J Lundy
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Taipei 235603, Taiwan
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 235603, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
1154
|
Avalos PN, Wong LL, Forsthoefel DJ. Extracellular vesicles promote proliferation in an animal model of regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586206. [PMID: 38712279 PMCID: PMC11071309 DOI: 10.1101/2024.03.22.586206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury. Here, using transmission electron microscopy, nanoparticle tracking analysis, and protein content examination, we showed that EVs enriched from the tissues of the planarian Schmidtea mediterranea had similar morphology and size as other eukaryotic EVs, and that these EVs carried orthologs of the conserved EV biogenesis regulators ALIX and TSG101. PKH67-labeled EVs were taken up more quickly by S/G2 neoblasts than G1 neoblasts/early progeny and differentiated cells. When injected into living planarians, EVs from regenerating tissue fragments enhanced upregulation of neoblast-associated transcripts. In addition, EV injection increased the number of F-ara-EdU-labelled cells by 49% as compared to buffer injection only. Our findings demonstrate that regenerating planarians produce EVs that promote stem cell proliferation, and suggest the planarian as an amenable in vivo model for the study of EV function during regeneration.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Lily L. Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J. Forsthoefel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
1155
|
Hejenkowska ED, Yavuz H, Swiatecka-Urban A. Beyond Borders of the Cell: How Extracellular Vesicles Shape COVID-19 for People with Cystic Fibrosis. Int J Mol Sci 2024; 25:3713. [PMID: 38612524 PMCID: PMC11012075 DOI: 10.3390/ijms25073713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The interaction between extracellular vesicles (EVs) and SARS-CoV-2, the virus causing COVID-19, especially in people with cystic fibrosis (PwCF) is insufficiently studied. EVs are small membrane-bound particles involved in cell-cell communications in different physiological and pathological conditions, including inflammation and infection. The CF airway cells release EVs that differ from those released by healthy cells and may play an intriguing role in regulating the inflammatory response to SARS-CoV-2. On the one hand, EVs may activate neutrophils and exacerbate inflammation. On the other hand, EVs may block IL-6, a pro-inflammatory cytokine associated with severe COVID-19, and protect PwCF from adverse outcomes. EVs are regulated by TGF-β signaling, essential in different disease states, including COVID-19. Here, we review the knowledge, identify the gaps in understanding, and suggest future research directions to elucidate the role of EVs in PwCF during COVID-19.
Collapse
|
1156
|
Kolenc A, Maličev E. Current Methods for Analysing Mesenchymal Stem Cell-Derived Extracellular Vesicles. Int J Mol Sci 2024; 25:3439. [PMID: 38542411 PMCID: PMC10970230 DOI: 10.3390/ijms25063439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 11/11/2024] Open
Abstract
The use of extracellular vesicles (EVs) generated by mesenchymal stem cells (MSCs) holds great promise as a novel therapeutic approach. Although their immunomodulatory and regeneration potential has been reported to be similar to that of MSCs, the use of MSC-derived EVs in clinical settings will require several problems to be resolved. It is necessary to develop a standardised and widely accepted isolation technology and to improve methods such as the quantification and characterisation of MSC-derived EVs. In this way, EV studies can be compared, the acquired knowledge can be safely transferred to clinical platforms and the clinical results can be evaluated appropriately. There are many procedures for the collection and analysis of vesicles derived from different cells; however, this review provides an overview of methods for the determination of the total protein amount, specific proteins, particle number, non-protein markers like lipids and RNA, microscopy and other methods focusing on MSC-derived EVs.
Collapse
Affiliation(s)
- Ana Kolenc
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| | - Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
1157
|
Wu Y, Fu H, Hao J, Yang Z, Qiao X, Li Y, Zhao R, Lin T, Wang Y, Wang M. Tumor-derived exosomal PD-L1: a new perspective in PD-1/PD-L1 therapy for lung cancer. Front Immunol 2024; 15:1342728. [PMID: 38562933 PMCID: PMC10982384 DOI: 10.3389/fimmu.2024.1342728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes play a crucial role in facilitating intercellular communication within organisms. Emerging evidence indicates that a distinct variant of programmed cell death ligand-1 (PD-L1), found on the surface of exosomes, may be responsible for orchestrating systemic immunosuppression that counteracts the efficacy of anti-programmed death-1 (PD-1) checkpoint therapy. Specifically, the presence of PD-L1 on exosomes enables them to selectively target PD-1 on the surface of CD8+ T cells, leading to T cell apoptosis and impeding T cell activation or proliferation. This mechanism allows tumor cells to evade immune pressure during the effector stage. Furthermore, the quantification of exosomal PD-L1 has the potential to serve as an indicator of the dynamic interplay between tumors and immune cells, thereby suggesting the promising utility of exosomes as biomarkers for both cancer diagnosis and PD-1/PD-L1 inhibitor therapy. The emergence of exosomal PD-L1 inhibitors as a viable approach for anti-tumor treatment has garnered significant attention. Depleting exosomal PD-L1 may serve as an effective adjunct therapy to mitigate systemic immunosuppression. This review aims to elucidate recent insights into the role of exosomal PD-L1 in the field of immune oncology, emphasizing its potential as a diagnostic, prognostic, and therapeutic tool in lung cancer.
Collapse
Affiliation(s)
- Yunjiao Wu
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Huichao Fu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin, China
| | - Jingwei Hao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Zhaoyang Yang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Xinyi Qiao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Yingjie Li
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Rui Zhao
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| | - Tie Lin
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin, China
| | - Yicun Wang
- Department of Medical Research Center, Second Hospital of Jilin University, Jilin, Changchun, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, Harbin, China
| |
Collapse
|
1158
|
Boudna M, Campos AD, Vychytilova-Faltejskova P, Machackova T, Slaby O, Souckova K. Strategies for labelling of exogenous and endogenous extracellular vesicles and their application for in vitro and in vivo functional studies. Cell Commun Signal 2024; 22:171. [PMID: 38461237 PMCID: PMC10924393 DOI: 10.1186/s12964-024-01548-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
This review presents a comprehensive overview of labelling strategies for endogenous and exogenous extracellular vesicles, that can be utilised both in vitro and in vivo. It covers a broad spectrum of approaches, including fluorescent and bioluminescent labelling, and provides an analysis of their applications, strengths, and limitations. Furthermore, this article presents techniques that use radioactive tracers and contrast agents with the ability to track EVs both spatially and temporally. Emphasis is also placed on endogenous labelling mechanisms, represented by Cre-lox and CRISPR-Cas systems, which are powerful and flexible tools for real-time EV monitoring or tracking their fate in target cells. By summarizing the latest developments across these diverse labelling techniques, this review provides researchers with a reference to select the most appropriate labelling method for their EV based research.
Collapse
Affiliation(s)
- Marie Boudna
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Andres Delgado Campos
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | | | - Tana Machackova
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Kamila Souckova
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
1159
|
Saadh MJ, Mohamed AH, Almoyad MAA, Allela OQB, Amin AH, Malquisto AA, Jin WT, Sârbu I, AlShamsi F, Elsaid FG, Akhavan-Sigari R. Dual role of mesenchymal stem/stromal cells and their cell-free extracellular vesicles in colorectal cancer. Cell Biochem Funct 2024; 42:e3962. [PMID: 38491792 DOI: 10.1002/cbf.3962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell-cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, Iraq
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Mushait, Saudi Arabia
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - April Ann Malquisto
- Abuyog Community College, Abuyog Leyte, Philippines
- ESL Science Teacher, Tacloban City, Tacloban, Philippines
- Department of Art Sciences and Education, Tacloban City, Philippines
| | - Wong Tze Jin
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Sarawak, Malaysia
- Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, Romania
| | - Faisal AlShamsi
- Dubai Health Authority, Primary Health Care Department, Dubai, United Arab Emirates
| | - Fahmy Gad Elsaid
- Biology Department, College of Science, King Khalid University, Asir, Abha, Al-Faraa, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
1160
|
Pando-Caciano A, Trivedi R, Pauwels J, Nowakowska J, Cavina B, Falkman L, Debattista J, Belényesi SK, Radhakrishnan P, Molina MA. Unlocking the promise of liquid biopsies in precision oncology. THE JOURNAL OF LIQUID BIOPSY 2024; 3:100151. [PMID: 40026562 PMCID: PMC11863887 DOI: 10.1016/j.jlb.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/05/2025]
Abstract
Liquid biopsies have emerged as a promising and minimally invasive alternative to traditional tissue biopsies for detecting and monitoring cancer. Liquid biopsies offer a comprehensive analysis of cancer genetics and tumor burden by examining circulating cells and cell-derived analytes using a variety of assays, including conventional PCR methods and cutting-edge tools like long-read sequencing and nanotechnology. However, there are still some limitations and challenges that need to be overcome for their implementation in clinical routine, including the need for further research on their sensitivity and specificity, cost-effectiveness, standardization, and regulatory approval. Despite these challenges, liquid biopsies have the potential to become widely used tools in oncology. Here we provide an overview of the current state of liquid biopsies, highlighting recent advancements in the field and their potential benefits in clinical settings for cancer patients. The article further discusses the challenges that need to be addressed in order to facilitate their application worldwide. Prompt resolution of these challenges can be achieved by fostering international research collaborations and establishing standardized guidelines for liquid biopsy sample management and studies.
Collapse
Affiliation(s)
- Alejandra Pando-Caciano
- Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, 15102, Peru
- Subunit of Research and Technological Innovation, Instituto Nacional de Salud del Niño San Borja, Av. Javier Prado Este 3101, Lima, 15037, Peru
| | - Rakesh Trivedi
- Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, VIB, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052, Ghent, Belgium
| | - Joanna Nowakowska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138, Bologna, Italy
| | - Lovisa Falkman
- Department of Medical Sciences, Endocrine Tumor Biology, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Jessica Debattista
- Pathology Department, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Szilárd-Krisztián Belényesi
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Trinity St. James’s Cancer Institute, Trinity College Dublin, Ireland
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mariano A. Molina
- Department of Pathology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
- Instituto de Ciencias Médicas, Las Tablas, Panama
| |
Collapse
|
1161
|
Welsh JA, Goberdhan DC, O'Driscoll L, Théry C, Witwer KW. MISEV2023: An updated guide to EV research and applications. J Extracell Vesicles 2024; 13:e12416. [PMID: 38400602 PMCID: PMC10891433 DOI: 10.1002/jev2.12416] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular VesiclesInstitut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
1162
|
Nelson H, Qu S, Franklin JL, Liu Q, Pua HH, Vickers KC, Weaver AM, Coffey RJ, Patton JG. Extracellular RNA in oncogenesis, metastasis and drug resistance. RNA Biol 2024; 21:17-31. [PMID: 39107918 PMCID: PMC11639457 DOI: 10.1080/15476286.2024.2385607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024] Open
Abstract
Extracellular vesicles and nanoparticles (EVPs) are now recognized as a novel form of cell-cell communication. All cells release a wide array of heterogeneous EVPs with distinct protein, lipid, and RNA content, dependent on the pathophysiological state of the donor cell. The overall cargo content in EVPs is not equivalent to cellular levels, implying a regulated pathway for selection and export. In cancer, release and uptake of EVPs within the tumour microenvironment can influence growth, proliferation, invasiveness, and immune evasion. Secreted EVPs can also have distant, systemic effects that can promote metastasis. Here, we review current knowledge of EVP biogenesis and cargo selection with a focus on the role that extracellular RNA plays in oncogenesis and metastasis. Almost all subtypes of RNA have been identified in EVPs, with miRNAs being the best characterized. We review the roles of specific miRNAs that have been detected in EVPs and that play a role in oncogenesis and metastasis.
Collapse
Affiliation(s)
- Hannah Nelson
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sherman Qu
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeffrey L. Franklin
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Qi Liu
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather H. Pua
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kasey C. Vickers
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alissa M. Weaver
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J. Coffey
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
1163
|
Wang W, Ou Z, Huang X, Wang J, Li Q, Wen M, Zheng L. Microbiota and glioma: a new perspective from association to clinical translation. Gut Microbes 2024; 16:2394166. [PMID: 39185670 DOI: 10.1080/19490976.2024.2394166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas pose a significant challenge in oncology due to their malignant nature, aggressive growth, frequent recurrence, and complications posed by the blood-brain barrier. Emerging research has revealed the critical role of gut microbiota in influencing health and disease, indicating its possible impact on glioma pathogenesis and treatment responsiveness. This review focused on existing evidence and hypotheses on the relationship between microbiota and glioma from progression to invasion. By discussing possible mechanisms through which microbiota may affect glioma biology, this paper offers new avenues for targeted therapies and precision medicine in oncology.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixin Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbei Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Wen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
1164
|
Zimmerman AJ, Greguš M, Ivanov AR. Comprehensive Micro-SPE-Based Bottom-Up Proteomic Workflow for Sensitive Analysis of Limited Samples. Methods Mol Biol 2024; 2817:19-31. [PMID: 38907144 DOI: 10.1007/978-1-0716-3934-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Clinical and biological samples are often scarce and precious (e.g., rare cell isolates, microneedle tissue biopsies, small-volume liquid biopsies, and even single cells or organelles). Typical large-scale proteomic methods, where significantly higher protein amounts are analyzed, are not directly transferable to the analysis of limited samples due to their incompatibility with pg-, ng-, and low-μg-level protein sample amounts. Here, we report the on-microsolid-phase extraction tip (OmSET)-based sample preparation workflow for sensitive analysis of limited biological samples to address this challenge. The developed platform was successfully tested for the analysis of 100-10,000 typical mammalian cells and is scalable to allow for lower and larger protein amounts and more samples to be analyzed (i.e., higher throughput of analysis).
Collapse
Affiliation(s)
- Alan J Zimmerman
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Michal Greguš
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA.
| |
Collapse
|
1165
|
Robinson SD, de Boisanger J, Pearl FMG, Critchley G, Rosenfelder N, Giamas G. A brain metastasis liquid biopsy: Where are we now? Neurooncol Adv 2024; 6:vdae066. [PMID: 38770219 PMCID: PMC11102938 DOI: 10.1093/noajnl/vdae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Brain metastases remain a challenging and feared complication for patients with cancer and research in this area has lagged behind research into metastases to other organs. Due to their location and the risks associated with neurosurgical biopsies, the biology underpinning brain metastases response to treatment and evolution over time remains poorly understood. Liquid biopsies are proposed to overcome many of the limitations present with tissue biopsies, providing a better representation of tumor heterogeneity, facilitating repeated sampling, and providing a noninvasive assessment of tumor biology. Several different liquid biopsy approaches have been investigated including circulating tumor cells, circulating tumor DNA, extracellular vesicles, and tumor-educated platelets; however, these have generally been less effective in assessing brain metastases compared to metastases to other organs requiring improved techniques to investigate these approaches, studies combining different liquid biopsy approaches and/or novel liquid biopsy approaches. Through this review, we highlight the current state of the art and define key unanswered questions related to brain metastases liquid biopsies.
Collapse
Affiliation(s)
- Stephen David Robinson
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - James de Boisanger
- Neuro-Oncology Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Frances M G Pearl
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Giles Critchley
- Department of Neurosurgery, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Nicola Rosenfelder
- Neuro-Oncology Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|