1151
|
Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2002; 277:5411-7. [PMID: 11724769 DOI: 10.1074/jbc.m105326200] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction has been associated with Parkinson's disease. However, the role of mitochondrial defects in the formation of Lewy bodies, a pathological hallmark of Parkinson's disease has not been addressed directly. In this report, we investigated the effects of inhibitors of the mitochondrial electron-transport chain on the aggregation of alpha-synuclein, a major protein component of Lewy bodies. Treatment with rotenone, an inhibitor of complex I, resulted in an increase of detergent-resistant alpha-synuclein aggregates and a reduction in ATP level. Another inhibitor of the electron-transport chain, oligomycin, also showed temporal correlation between the formation of aggregates and ATP reduction. Microscopic analyses showed a progressive evolution of small aggregates of alpha-synuclein to a large perinuclear inclusion body. The inclusions were co-stained with ubiquitin, 20 S proteasome, gamma-tubulin, and vimentin. The perinuclear inclusion bodies, but not the small cytoplasmic aggregates, were thioflavin S-positive, suggesting the amyloid-like conformation. Interestingly, the aggregates disappeared when the cells were replenished with inhibitor-free medium. Disappearance of aggregates coincided with the recovery of mitochondrial metabolism and was partially inhibited by proteasome inhibitors. These results suggest that the formation of alpha-synuclein inclusions could be initiated by an impaired mitochondrial function and be reversed by restoring normal mitochondrial metabolism.
Collapse
Affiliation(s)
- He-Jin Lee
- Parkinson's Institute, Sunnyvale, California 94089, USA
| | | | | | | | | |
Collapse
|
1152
|
Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA. Multiple phosphorylation of alpha-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J 2002; 16:210-2. [PMID: 11744621 DOI: 10.1096/fj.01-0517fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presence of aggregated alpha-synuclein molecules is a common denominator in a variety of neurodegenerative disorders. Here, we show that alpha-synuclein (alpha-syn) is an outstanding substrate for the protein tyrosine kinase p72syk (Syk), which phosphorylates three tyrosyl residues in its C-terminal domain (Y-125, Y-133, and Y-136), as revealed from experiments with mutants where these residues have been individually or multiply replaced by phenylalanine. In contrast, only Y-125 is phosphorylated by Lyn and c-Fgr. Eosin-induced multimerization is observed with wild-type alpha-syn, either phosphorylated or not by Lyn, and with all its Tyr to Phe mutants but not with the protein previously phosphorylated by Syk. Syk-mediated phosphorylation also counteracts alpha-syn assembly into filaments as judged from the disappearance of alpha-syn precipitated upon centrifugation at 100,000 x g. We also show that Syk and alpha-syn colocalize in the brain, and upon cotransfection in Chinese hamster ovary cells, alpha-syn becomes Tyr-phosphorylated by Syk. Moreover, Syk and alpha-syn interact with each other as judged from the mammalian two-hybrid system approach. These data suggest that Syk or tyrosine kinase(s) with similar specificity may play an antineurodegenerative role by phosphorylating a-syn, thereby preventing its aggregation.
Collapse
Affiliation(s)
- Alessandro Negro
- Dipartimento di Chimica Biologica and Centro di Studio delle Biomembrane del C.N.R., University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
1153
|
Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002; 4:160-4. [PMID: 11813001 DOI: 10.1038/ncb748] [Citation(s) in RCA: 1558] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The deposition of the abundant presynaptic brain protein alpha-synuclein as fibrillary aggregates in neurons or glial cells is a hallmark lesion in a subset of neurodegenerative disorders. These disorders include Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, collectively referred to as synucleinopathies. Importantly, the identification of missense mutations in the alpha-synuclein gene in some pedigrees of familial PD has strongly implicated alpha-synuclein in the pathogenesis of PD and other synucleinopathies. However, specific post-translational modifications that underlie the aggregation of alpha-synuclein in affected brains have not, as yet, been identified. Here, we show by mass spectrometry analysis and studies with an antibody that specifically recognizes phospho-Ser 129 of alpha-synuclein, that this residue is selectively and extensively phosphorylated in synucleinopathy lesions. Furthermore, phosphorylation of alpha-synuclein at Ser 129 promoted fibril formation in vitro. These results highlight the importance of phosphorylation of filamentous proteins in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hideo Fujiwara
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1154
|
Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE. Defective membrane interactions of familial Parkinson's disease mutant A30P alpha-synuclein. J Mol Biol 2002; 315:799-807. [PMID: 11812148 DOI: 10.1006/jmbi.2001.5269] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha-Synuclein (alpha-Syn) is an abundant presynaptic protein of unknown function, which has been implicated in the pathogenesis of Parkinson's disease. Alpha-Syn has been suggested to play a role in lipid transport and synaptogenesis, and growing evidence suggests that alpha-Syn interactions with cellular membranes are physiologically important. In the current study, we demonstrate that the familial Parkinson's disease-linked A30P mutant alpha-Syn is defective in binding to phospholipid vesicles in vitro as determined by vesicle ultracentrifugation, circular dichroism spectroscopy, and low-angle X-ray diffraction. Interestingly, our data also suggest that alpha-Syn may bind to the lipid vesicles as a dimer, which suggest that this species could be a physiologically relevant and functional entity. In contrast, the naturally occurring murine A53T substitution, which is also linked to Parkinson's disease, displayed a normal membrane-binding activity that was comparable to wild-type alpha-Syn. A double mutant A53T/A30P alpha-Syn showed defective membrane binding similar to the A30P protein, indicating that the proline mutation is dominant in terms of impairing the membrane-binding activity. With these observations, we suggest that the A53T and A30P mutants may have different physiological consequences in vivo and could possibly contribute to early onset Parkinson's disease via unique mechanisms.
Collapse
Affiliation(s)
- Euijung Jo
- Centre for Research in Neurodegenerative Diseases, 6 Queen's Park Crescent West, Toronto, Ontario, M5S 3H2, Canada.
| | | | | | | | | |
Collapse
|
1155
|
Abstract
The identification of three genes and several additional loci associated with inherited forms of levodopa-responsive PD has confirmed that this is not a single disorder. Yet, analyses of the structure and function of these gene products point to the critical role of protein aggregation in dopaminergic neurons of the substantia nigra as the common mechanism leading to neurodegeneration in all known forms of this disease. The three specific genes identified to date--alpha-synuclein, Parkin, and ubiquitin C terminal hydrolase L1--are either closely involved in the proper functioning of the ubiquitin-proteasome pathway or are degraded by this protein-clearing machinery of cells. Knowledge gained from genetically transmitted PD also has clear implications for nonfamilial forms of the disease. Lewy bodies, even in sporadic PD, contain these three gene products, particularly abundant amounts of fibrillar alpha-synuclein. Increased aggregation of alpha-synuclein by oxidative stress, as well as oxidant-induced proteasomal dysfunction, link genetic and potential environmental factors in the onset and progression of the disease. The biochemical and molecular cascades elucidated from genetic studies in PD can provide novel targets for curative therapies.
Collapse
Affiliation(s)
- M Maral Mouradian
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1406, USA.
| |
Collapse
|
1156
|
Watanabe KI, Nakamura K, Akikusa S, Okada T, Kodaka M, Konakahara T, Okuno H. Inhibitors of fibril formation and cytotoxicity of beta-amyloid peptide composed of KLVFF recognition element and flexible hydrophilic disrupting element. Biochem Biophys Res Commun 2002; 290:121-4. [PMID: 11779142 DOI: 10.1006/bbrc.2001.6191] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-Amyloid peptide (Abeta) is the main protein components of neuritic plaques and its neurotoxicity would be exposed by formation of aggregate. The aggregation inhibitors composed of an Abeta recognition element (KLVFF) and a flexible hydrophilic disrupting element (aminoethoxy ethoxy acetate and aspartate) are designed and chemically synthesized. The inhibitory effects are examined by a pigment binding assay using Congo red or thioflavin T. The present compounds suppress the formation of aggregate, and the compound DDX3 is an especially effective inhibitor. In addition, the synthesized compounds efficiently suppress the cytotoxicity of Abeta against IMR-32 neuroblastoma cells in vitro.
Collapse
Affiliation(s)
- Ken-ichi Watanabe
- National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
1157
|
Lee HJ, Choi C, Lee SJ. Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 2002; 277:671-8. [PMID: 11679584 DOI: 10.1074/jbc.m107045200] [Citation(s) in RCA: 355] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha-synuclein exists as at least two structural isoforms: a helix-rich, membrane-bound form and a disordered, cytosolic form. Here, we investigated the role of membrane-bound alpha-synuclein in the aggregation process. In a cell-free system consisting of isolated brain fractions, spontaneous and progressive aggregation of alpha-synuclein was observed in membranes starting at day 1, whereas no aggregation was observed in the cytosolic fraction in a 3-day period. The addition of antioxidants reduced the aggregation in the membrane fraction, implicating the role of oxidative modifications. When excess cytosolic alpha-synuclein was added to brain membranes, the rate of aggregation was increased, while the lag time was unaffected. Incorporation of cytosolic alpha-synuclein into membrane-associated aggregates was demonstrated by fractionation and co-immunoprecipitation experiments. In our recent study, we showed that mitochondrial inhibitors such as rotenone, induced alpha-synuclein aggregation in cells. In the present study using rotenone-treated cells, the earliest appearance of alpha-synuclein oligomeric species was observed in membranous compartments. Furthermore, alpha-synuclein-positive inclusions were co-stained with DiI, a membrane-partitioning fluorescent dye, confirming the presence of lipid components in alpha-synuclein aggregates. These results suggest that membrane-bound alpha-synuclein can generate nuclei that seed the aggregation of the more abundant cytosolic form.
Collapse
Affiliation(s)
- He-Jin Lee
- Parkinson's Institute, Sunnyvale, California 94089, USA
| | | | | |
Collapse
|
1158
|
Affiliation(s)
- Robin W Carrell
- Department of Hematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom.
| | | |
Collapse
|
1159
|
Abstract
Aggregates of dysfunctional proteins and peptides in or between brain neurons are key neuropathological features of dementia and are believed to directly cause or substantially contribute to the development of these diseases. Fundamental parts of the mechanisms underlying the dysregulation of proteins in Alzheimer's disease, frontotemporal dementia, prion diseases and other dementing disorders are now well characterized, mainly due to the discovery of genes causing dominantly inherited disease forms (Table 1). As of today, no efficient pharmacotherapies are available, but new insights into the underlying molecular mechanisms are providing strategies to prevent or even cure these devastating disorders.
Collapse
Affiliation(s)
- Martin Ingelsson
- Harvard Medical School, Massachusetts General Hospital, Charlestown 02129, USA
| | | |
Collapse
|
1160
|
Chakrabartty A. Progress in transthyretin fibrillogenesis research strengthens the amyloid hypothesis. Proc Natl Acad Sci U S A 2001; 98:14757-9. [PMID: 11752419 PMCID: PMC64929 DOI: 10.1073/pnas.261596398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- A Chakrabartty
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
1161
|
Bussell R, Eliezer D. Residual structure and dynamics in Parkinson's disease-associated mutants of alpha-synuclein. J Biol Chem 2001; 276:45996-6003. [PMID: 11590151 DOI: 10.1074/jbc.m106777200] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Synuclein (alpha S) is a pre-synaptic protein that has been implicated as a possible causative agent in the pathogenesis of Parkinson's disease (PD). Two autosomal dominant missense mutations in the alpha S gene are associated with early onset PD. Because alpha S is found in an aggregated fibrillar form in the Lewy body deposits characteristic of Parkinson's patients, aggregation of the protein is believed to be related to its involvement in the disease process. The wild type (WT) and early onset mutants A30P and A53T display diverse in vitro aggregation kinetics even though the gross physicochemical and morphological properties of the mutants are highly similar. We used high resolution solution NMR spectroscopy to compare the structural and dynamic properties of the A53T and A30P mutants with those of WT alpha S in the free state. We found that the A30P mutation disrupts a region of residual helical structure that exists in the WT protein, whereas the A53T mutation results in a slight enhancement of a small region around the site of mutation with a preference for extended conformations. Based on these results and on the anticipated effects of these mutations on elements of secondary structure, we proposed a model of how these two PD-linked mutations influence alpha S fibril formation that is consistent with the documented differences in the fibrillization kinetics of the two mutants.
Collapse
Affiliation(s)
- R Bussell
- Department of Physiology, Biophysics, and Molecular Medicine Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
1162
|
Ramsden DB, Parsons RB, Ho SL, Waring RH. The aetiology of idiopathic Parkinson's disease. Mol Pathol 2001; 54:369-80. [PMID: 11724911 PMCID: PMC1187126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2001] [Indexed: 02/22/2023]
Abstract
Agents potentially involved in the aetiology of idiopathic Parkinson's disease are discussed. These include factors regulating dopaminergic neurogenesis (Nurr 1, Ptx-3, and Lmx1b) and related proteins, together with genes involved in familial Parkinson's disease (alpha synuclein, parkin, and ubiquitin carboxy terminal hydroxylase L1), and endogenous and environmental agents.
Collapse
Affiliation(s)
- D B Ramsden
- Department of Medicine, Division of Medical Science, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TH, UK.
| | | | | | | |
Collapse
|
1163
|
|
1164
|
|
1165
|
Abstract
The effect of the natural osmolyte trimethylamine-N-oxide (TMAO) on the structural properties and fibril formation of the natively unfolded protein human alpha-synuclein was studied using several physico-chemical methods. TMAO induced folding of alpha-synuclein: at moderate concentrations, a partially folded intermediate with enhanced propensity for fibrillation accumulated; at higher concentrations, alpha-synuclein was tightly folded and underwent self-association to form oligomers. The latter conformation was significantly helical and probably represents the physiologically folded form of the protein.
Collapse
Affiliation(s)
- V N Uversky
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | | | | |
Collapse
|
1166
|
Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure. J Biol Chem 2001; 276:44284-96. [PMID: 11553618 DOI: 10.1074/jbc.m105343200] [Citation(s) in RCA: 830] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease involves the aggregation of alpha-synuclein to form fibrils, which are the major constituent of intracellular protein inclusions (Lewy bodies and Lewy neurites) in dopaminergic neurons of the substantia nigra. Occupational exposure to specific metals, especially manganese, copper, lead, iron, mercury, zinc, aluminum, appears to be a risk factor for Parkinson's disease based on epidemiological studies. Elevated levels of several of these metals have also been reported in the substantia nigra of Parkinson's disease subjects. We examined the effect of various metals on the kinetics of fibrillation of recombinant alpha-synuclein and in inducing conformational changes, as monitored by biophysical techniques. Several di- and trivalent metal ions caused significant accelerations in the rate of alpha-synuclein fibril formation. Aluminum was the most effective, along with copper(II), iron(III), cobalt(III), and manganese(II). The effectiveness correlated with increasing ion charge density. A correlation was noted between efficiency in stimulating fibrillation and inducing a conformational change, ascribed to formation of a partially folded intermediate. The potential for ligand bridging by polyvalent metal ions is proposed to be an important factor in the metal-induced conformational changes of alpha-synuclein. The results indicate that low concentrations of some metals can directly induce alpha-synuclein fibril formation.
Collapse
Affiliation(s)
- V N Uversky
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
1167
|
Uversky VN, Lee HJ, Li J, Fink AL, Lee SJ. Stabilization of partially folded conformation during alpha-synuclein oligomerization in both purified and cytosolic preparations. J Biol Chem 2001; 276:43495-8. [PMID: 11590163 DOI: 10.1074/jbc.c100551200] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggregation of alpha-synuclein is tightly associated with many neurodegenerative diseases, such as Parkinson's disease, dementia with Lewy body, Lewy body variant of Alzheimer's disease, multiple system atrophy, and Hallervorden-Spatz disease, implicating a crucial role of aggregated forms of alpha-synuclein in the pathogenesis. Here, we examined the effect of elevated temperature on the oligomerization and structural changes of alpha-synuclein in the early stage of aggregation and show that self-assembly is crucial for the stabilization of a partially folded conformation. The efficiency of alpha-synuclein oligomerization increased proportional to the temperature increase, both in purified form and in crude cytosolic preparation. This oligomerization coincided with a small but reproducible change in the circular dichroism spectrum and an increase in the 1-anilinonaphthalene-8-sulfonic acid binding. The hydrodynamic dimensions of the dimer measured by size exclusion chromatography suggest a pre-molten globule-like structure. These data suggest that partially folded alpha-synuclein, which is unstable in the monomeric form, is stabilized by self-assembly and that these oligomers may evolve into the fibril nucleus.
Collapse
Affiliation(s)
- V N Uversky
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
1168
|
Perrin RJ, Woods WS, Clayton DF, George JM. Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J Biol Chem 2001; 276:41958-62. [PMID: 11553616 DOI: 10.1074/jbc.m105022200] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detergent-stable multimers of alpha-synuclein have been found specifically in the brains of patients with Parkinson's disease and other neurodegenerative diseases. Here we show that recombinant alpha-synuclein forms multimers in vitro upon exposure to vesicles containing certain polyunsaturated fatty acid (PUFA) acyl groups, including arachidonoyl and docosahexaenoyl. This process occurs at physiological concentrations and much faster than in aqueous solution. PUFA-induced aggregation involves physical association with the vesicle surface via the large apolipoprotein-like lipid-binding domain that constitutes the majority of the protein. beta- and gamma-synucleins, as well as the Parkinson's disease-associated alpha-synuclein variants A30P and A53T, show similar tendencies to multimerize in the presence of PUFAs. Multimerization does not require the presence of any tyrosine residues in the sequence. The membrane-based interaction of the synucleins with specific long chain polyunsaturated phospholipids may be relevant to the protein family's physiological functions and may also contribute to the aggregation of alpha-synuclein observed in neurodegenerative disease.
Collapse
Affiliation(s)
- R J Perrin
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
1169
|
Abstract
Brain lesions containing filamentous and aggregated alpha-synuclein are hallmarks of neurodegenerative synucleinopathies. Oxidative stress has been implicated in the formation of these lesions. Using HEK 293 cells stably transfected with wild-type and mutant alpha-synuclein, we demonstrated that intracellular generation of nitrating agents results in the formation of alpha-synuclein aggregates. Cells were exposed simultaneously to nitric oxide- and superoxide-generating compounds, and the intracellular formation of peroxynitrite was demonstrated by monitoring the oxidation of dihydrorhodamine 123 and the nitration of alpha-synuclein. Light microscopy using antibodies against alpha-synuclein and electron microscopy revealed the presence of perinuclear aggregates under conditions in which peroxynitrite was generated but not when cells were exposed to nitric oxide- or superoxide-generating compounds separately. alpha-Synuclein aggregates were observed in 20-30% of cells expressing wild-type or A53T mutant alpha-synuclein and in 5% of cells expressing A30P mutant alpha-synuclein. No evidence of synuclein aggregation was observed in untransfected cells or cells expressing beta-synuclein. In contrast, selective inhibition of the proteasome resulted in the formation of aggregates detected with antibodies to ubiquitin in the majority of the untransfected cells and cells expressing alpha-synuclein. However, alpha-synuclein did not colocalize with these aggregates, indicating that inhibition of the proteasome does not promote alpha-synuclein aggregation. In addition, proteasome inhibition did not alter the steady-state levels of alpha-synuclein, but addition of the lysosomotropic agent ammonium chloride significantly increased the amount of alpha-synuclein, indicating that lysosomes are involved in degradation of alpha-synuclein. Our data indicate that nitrative and oxidative insult may initiate pathogenesis of alpha-synuclein aggregates.
Collapse
|
1170
|
Barbieri S, Hofele K, Wiederhold KH, Probst A, Mistl C, Danner S, Kauffmann S, Sommer B, Spooren W, Tolnay M, Bilbe G, van der Putten H. Mouse models of alpha-synucleinopathy and Lewy pathology. Alpha-synuclein expression in transgenic mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 487:147-67. [PMID: 11403156 DOI: 10.1007/978-1-4615-1249-3_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- S Barbieri
- Nervous System Research, Novartis Pharma Inc., Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1171
|
Kad NM, Thomson NH, Smith DP, Smith DA, Radford SE. Beta(2)-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. J Mol Biol 2001; 313:559-71. [PMID: 11676539 DOI: 10.1006/jmbi.2001.5071] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid fibrils formed by incubation of recombinant wild-type human beta(2)-microglobulin (beta(2)M) ab initio in vitro at low pH and high ionic strength are short and highly curved. By contrast, fibrils extracted from patients suffering from haemodialysis-related amyloidosis and those formed by seeding growth of the wild-type protein in vitro with fibrils ex vivo are longer and straighter than those previously produced ab initio in vitro. Here we explore the effect of growth conditions on morphology of beta(2)M fibrils formed ab initio in vitro from the wild-type protein, as well as a variant form of beta(2)M in which Asn17 is deamidated to Asp (N17D). We show that deamidation results in significant destabilisation of beta(2)M at neutral pH. Despite this, acidification is still necessary to form amyloid from the mutant protein in vitro. Interestingly, at low pH and low ionic strength long, straight fibrils of recombinant beta(2)M are formed in vitro. The fibrils comprise three distinct morphological types when examined using electron microscopy (EM) and atomic force microscopy (AFM) that vary in periodicity and the number of constituent protofibrils. Using kinetic experiments we suggest that the immature fibrils observed previously do not represent intermediates in the assembly of fully mature amyloid, at least under the conditions studied here.
Collapse
Affiliation(s)
- N M Kad
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | |
Collapse
|
1172
|
Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM, Trojanowski JQ, Lee VM, Ischiropoulos H. Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci 2001; 21:8053-61. [PMID: 11588178 PMCID: PMC6763872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Brain lesions containing filamentous and aggregated alpha-synuclein are hallmarks of neurodegenerative synucleinopathies. Oxidative stress has been implicated in the formation of these lesions. Using HEK 293 cells stably transfected with wild-type and mutant alpha-synuclein, we demonstrated that intracellular generation of nitrating agents results in the formation of alpha-synuclein aggregates. Cells were exposed simultaneously to nitric oxide- and superoxide-generating compounds, and the intracellular formation of peroxynitrite was demonstrated by monitoring the oxidation of dihydrorhodamine 123 and the nitration of alpha-synuclein. Light microscopy using antibodies against alpha-synuclein and electron microscopy revealed the presence of perinuclear aggregates under conditions in which peroxynitrite was generated but not when cells were exposed to nitric oxide- or superoxide-generating compounds separately. alpha-Synuclein aggregates were observed in 20-30% of cells expressing wild-type or A53T mutant alpha-synuclein and in 5% of cells expressing A30P mutant alpha-synuclein. No evidence of synuclein aggregation was observed in untransfected cells or cells expressing beta-synuclein. In contrast, selective inhibition of the proteasome resulted in the formation of aggregates detected with antibodies to ubiquitin in the majority of the untransfected cells and cells expressing alpha-synuclein. However, alpha-synuclein did not colocalize with these aggregates, indicating that inhibition of the proteasome does not promote alpha-synuclein aggregation. In addition, proteasome inhibition did not alter the steady-state levels of alpha-synuclein, but addition of the lysosomotropic agent ammonium chloride significantly increased the amount of alpha-synuclein, indicating that lysosomes are involved in degradation of alpha-synuclein. Our data indicate that nitrative and oxidative insult may initiate pathogenesis of alpha-synuclein aggregates.
Collapse
Affiliation(s)
- E Paxinou
- Stokes Research Institute and Department of Biochemistry and Biophysics, Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1173
|
Kirkitadze MD, Condron MM, Teplow DB. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 2001; 312:1103-19. [PMID: 11580253 DOI: 10.1006/jmbi.2001.4970] [Citation(s) in RCA: 567] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid beta-protein (Abeta) assembly into toxic oligomeric and fibrillar structures is a seminal event in Alzheimer's disease, therefore blocking this process could have significant therapeutic benefit. A rigorous mechanistic understanding of Abeta assembly would facilitate the targeting and design of fibrillogenesis inhibitors. Prior studies have shown that Abeta fibrillogenesis involves conformational changes leading to the formation of extended beta-sheets and that an alpha-helix-containing intermediate may be involved. However, the significance of this intermediate has been a matter of debate. We report here that the formation of an oligomeric, alpha-helix-containing assembly is a key step in Abeta fibrillogenesis. The generality of this phenomenon was supported by conformational studies of 18 different Abeta peptides, including wild-type Abeta(1-40) and Abeta(1-42), biologically relevant truncated and chemically modified Abeta peptides, and Abeta peptides causing familial forms of cerebral amyloid angiopathy. Without exception, fibrillogenesis of these peptides involved an oligomeric alpha-helix-containing intermediate and the kinetics of formation of the intermediate and of fibrils was temporally correlated. The kinetics varied depending on amino acid sequence and the extent of peptide N- and C-terminal truncation. The pH dependence of helix formation suggested that Asp and His exerted significant control over this process and over fibrillogenesis in general. Consistent with this idea, Abeta peptides containing Asp-->Asn or His-->Gln substitutions showed altered fibrillogenesis kinetics. These data emphasize the importance of the dynamic interplay between Abeta monomer conformation and oligomerization state in controlling fibrillogenesis kinetics.
Collapse
Affiliation(s)
- M D Kirkitadze
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
1174
|
Allsopp TE. Untangling the enigmatic tau. Trends Neurosci 2001; 24:567. [PMID: 11576656 DOI: 10.1016/s0166-2236(00)02011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
1175
|
Choi P, Golts N, Snyder H, Chong M, Petrucelli L, Hardy J, Sparkman D, Cochran E, Lee JM, Wolozin B. Co-association of parkin and alpha-synuclein. Neuroreport 2001; 12:2839-43. [PMID: 11588587 DOI: 10.1097/00001756-200109170-00017] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Parkin and alpha-synuclein are two proteins that are associated with the pathophysiology of Parkinson's disease (PD). Parkin is present in Lewy bodies and axonal spheroids in brains affected by PD, and mutations in parkin cause hereditary forms of Parkinsonism. Alpha-synuclein is a major component of Lewy bodies and is associated with rare cases of PD. We now show that parkin binds to alpha-synuclein, including conditions associated with alpha-synuclein aggregation. Parkin and alpha-synuclein complexes were observed in BE-M17 cells under basal conditions, in BE- M17 cells under oxidative conditions and in brains from control or PD donors. Double staining of PD brains shows parkin and alpha-synuclein co-localize to the same pathological structures (both Lewy bodies and axonal spheroids). These results suggest that parkin interacts with alpha-synuclein and could contribute to the pathophysiology of PD more generally than was previously considered.
Collapse
Affiliation(s)
- P Choi
- Department of Pharmacology, Loyola University Medical Center, Bldg. 102, Rm. 3634, 2160 S. 1st Ave., Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1176
|
Bitan G, Lomakin A, Teplow DB. Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 2001; 276:35176-84. [PMID: 11441003 DOI: 10.1074/jbc.m102223200] [Citation(s) in RCA: 321] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of the amyloid beta-protein (Abeta) into neurotoxic oligomers and fibrils is a seminal event in Alzheimer's disease. Understanding the earliest phases of Abeta assembly, including prenucleation and nucleation, is essential for the development of rational therapeutic strategies. We have applied a powerful new method, photoinduced cross-linking of unmodified proteins (PICUP), to the study of Abeta oligomerization. Significant advantages of this method include an extremely short reaction time, enabling the identification and quantification of short lived metastable assemblies, and the fact that no pre facto structural modification of the native peptide is required. Using PICUP, the distribution of Abeta oligomers existing prior to assembly was defined. A rapid equilibrium was observed involving monomer, dimer, trimer, and tetramer. A similar distribution was seen in studies of an unrelated amyloidogenic peptide, whereas nonamyloidogenic peptides yielded distributions indicative of a lack of monomer preassociation. These results suggest that simple nucleation-dependent polymerization models are insufficient to describe the dynamic equilibria associated with prenucleation phases of Abeta assembly.
Collapse
Affiliation(s)
- G Bitan
- Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology (Neuroscience), Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
1177
|
Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Näslund J, Lannfelt L. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat Neurosci 2001; 4:887-93. [PMID: 11528419 DOI: 10.1038/nn0901-887] [Citation(s) in RCA: 869] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Several pathogenic Alzheimer's disease (AD) mutations have been described, all of which cause increased amyloid beta-protein (Abeta) levels. Here we present studies of a pathogenic amyloid precursor protein (APP) mutation, located within the Abeta sequence at codon 693 (E693G), that causes AD in a Swedish family. Carriers of this 'Arctic' mutation showed decreased Abeta42 and Abeta40 levels in plasma. Additionally, low levels of Abeta42 were detected in conditioned media from cells transfected with APPE693G. Fibrillization studies demonstrated no difference in fibrillization rate, but Abeta with the Arctic mutation formed protofibrils at a much higher rate and in larger quantities than wild-type (wt) Abeta. The finding of increased protofibril formation and decreased Abeta plasma levels in the Arctic AD may reflect an alternative pathogenic mechanism for AD involving rapid Abeta protofibril formation leading to accelerated buildup of insoluble Abeta intra- and/or extracellularly.
Collapse
Affiliation(s)
- C Nilsberth
- Karolinska Institutet, Department of Neurotec, Geriatric Medicine, Novum KFC, S-141 86 Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1178
|
Haass C, Steiner H. Protofibrils, the unifying toxic molecule of neurodegenerative disorders? Nat Neurosci 2001; 4:859-60. [PMID: 11528409 DOI: 10.1038/nn0901-859] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1179
|
Zou WQ, Yang DS, Fraser PE, Cashman NR, Chakrabartty A. All or none fibrillogenesis of a prion peptide. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4885-91. [PMID: 11559357 DOI: 10.1046/j.1432-1327.2001.02415.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyloid proteins and peptides comprise a diverse group of molecules that vary both in size and amino-acid sequence, yet assemble into amyloid fibrils that have a common core structure. Kinetic studies of amyloid fibrillogenesis have revealed that certain amyloid proteins form oligomeric intermediates prior to fibril formation. We have investigated fibril formation with a peptide corresponding to residues 195-213 of the human prion protein. Through a combination of kinetic and equilibrium studies, we have found that the fibrillogenesis of this peptide proceeds as an all-or-none reaction where oligomeric intermediates are not stably populated. This variation in whether oligomeric intermediates are stably populated during fibril formation indicates that amyloid proteins assemble into a common fibrillar structure; however, they do so through different pathways.
Collapse
Affiliation(s)
- W Q Zou
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
1180
|
Abstract
The discovery of widely distributed Lewy bodies (LBs) in the brains of patients with dementia has stimulated much clinical and pathologic inquiry. This clinico-pathologic syndrome is now referred to as dementia with Lewy bodies (DLB). Diagnostic criteria for DLB proposed at a workshop in 1995 are receiving detailed scrutiny. The criteria are complex to apply, and appear to have high specificity, but variable sensitivity. Neuropathologic studies have been aided by the development of probes against alpha-synuclein, a key component of LBs. Widespread LBs in limbic or cortical areas contribute to dementia. Pharmacologic management of cognitive and behavioral symptoms in patients with DLB is being explored. There is evidence that cholinesterase inhibitors may have beneficial effects.
Collapse
Affiliation(s)
- D Galasko
- Department of Neurology, Veterans Affairs Medical Center, 127, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
1181
|
McLean PJ, Kawamata H, Hyman BT. Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 2001; 104:901-12. [PMID: 11440819 DOI: 10.1016/s0306-4522(01)00113-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alpha-synuclein accumulates in the brains of sporadic Parkinson's disease patients as a major component of Lewy bodies, and mutations in alpha-synuclein are associated with familial forms of Parkinson's disease. The pathogenic mechanisms that precede and promote the aggregation of alpha-synuclein into Lewy bodies in neurons remain to be determined. Here, we constructed a series of alpha-synuclein-enhanced green fluorescent protein (alpha-synucleinEGFP, SynEGFP) fusion proteins to address whether the Parkinson's disease-associated mutations alter the subcellular distribution of alpha-synuclein, and to use as a tool for experimental manipulations to induce aggregate formation. When transfected into mouse cultured primary neurons, the 49-kDa alpha-synucleinEGFP fusion proteins are partially truncated to a approximately 27-kDa form. This non-fluorescent carboxy-terminally modified fusion protein spontaneously forms inclusions in the neuronal cytoplasm. A marked increase in the accumulation of inclusions is detected following treatment with each of three proteasome inhibitors, n-acetyl-leu-leu-norleucinal, lactacystin and MG132. Interestingly, Ala30Pro alpha-synucleinEGFP does not form the cytoplasmic inclusions that are characteristic of wild-type and Ala53Thr alpha-synucleinEGFP, supporting the idea that the Ala30Pro alpha-synuclein protein conformation differs from wild-type alpha-synuclein. Similar inclusions are formed if alpha-synuclein carboxy-terminus is modified by the addition of a V5/6xHistidine epitope tag. By contrast, overexpression of unmodified alpha-synuclein does not lead to aggregate formation. Furthermore, synphilin-1, an alpha-synuclein interacting protein also found in Lewy bodies, colocalizes with the carboxy-terminally truncated alpha-synuclein fusion protein in discrete cytoplasmic inclusions.Our finding that manipulations of the carboxy-terminus of alpha-synuclein lead to inclusion formation may provide a model for studies of the pathogenic mechanisms of alpha-synuclein aggregation in Lewy bodies.
Collapse
Affiliation(s)
- P J McLean
- Alzheimer's Disease Research Unit, Department of Neurology, Rm 6405, Massachusetts General Hospital East, 149, 13th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
1182
|
Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J, Selkoe DJ. alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci U S A 2001; 98:9110-5. [PMID: 11481478 PMCID: PMC55381 DOI: 10.1073/pnas.171300598] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
alpha-Synuclein (alphaS) is a 140-residue neuronal protein that forms insoluble cytoplasmic aggregates in Parkinson's disease (PD) and several other neurodegenerative disorders. Two missense mutations (A53T and A30P) are linked to rare forms of familial PD. The normal function of alphaS is unknown, and cultured cell systems that model its modification from soluble monomers to aggregated forms have not been reported. Through a systematic centrifugal fractionation of mesencephalic neuronal cell lines and transgenic mouse brains expressing wild-type or A53T human alphaS, we observed unusual, previously unrecognized species of alphaS that migrate well above the 17-kDa monomeric form in denaturing gels. Incubation at 65 degrees C of high-speed cytosols from cells or brains revealed a modified alphaS species migrating at approximately 36 kDa and an extensive higher molecular mass alphaS-reactive smear. Extraction of the cytosols with chloroform/methanol or with a resin (Lipidex 1000) that binds fatty acids resulted in a similar pattern of higher molecular mass alphaS forms. On the basis of this effect of delipidation, we reexamined the primary structure of alphaS and detected a motif at the N and C termini that is homologous to a fatty acid-binding protein signature. In accord, we found that purified human alphaS binds oleic acid, with an apparent K(d) of 12.5 microM. We also observed an enhanced association of A53T alphaS with microsomal membranes in both mesencephalic cells and transgenic mouse brains. We conclude that alphaS has biochemical properties and a structural motif that suggest it is a novel member of the fatty acid-binding protein family and may thus transport fatty acids between the aqueous and membrane phospholipid compartments of the neuronal cytoplasm.
Collapse
Affiliation(s)
- R Sharon
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
1183
|
Kim YS, Lee D, Lee EK, Sung JY, Chung KC, Kim J, Paik SR. Multiple ligand interaction of alpha-synuclein produced various forms of protein aggregates in the presence of Abeta25-35, copper, and eosin. Brain Res 2001; 908:93-8. [PMID: 11457435 DOI: 10.1016/s0006-8993(01)02575-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Various protein aggregates of alpha-synuclein developed by way of the common protein self-oligomerization in the presence of Abeta25-35, copper, and eosin were examined. All the aggregates exhibited congo red birefringence although the actual amounts of the aggregates were varied as determined by thioflavin T binding fluorescence. When their morphologies were analyzed in relation to in vitro cytotoxicity, the smallest granular aggregates obtained with copper exhibited the highest cytotoxicity, while the fibrous structures by eosin did not affect the cell.
Collapse
Affiliation(s)
- Y S Kim
- Department of Pathology, Korea University Ansan Hospital, Gojan-Dong, 425-020, Ansan, South Korea
| | | | | | | | | | | | | |
Collapse
|
1184
|
Gustafsson M, Griffiths WJ, Furusjö E, Johansson J. The palmitoyl groups of lung surfactant protein C reduce unfolding into a fibrillogenic intermediate. J Mol Biol 2001; 310:937-50. [PMID: 11453699 DOI: 10.1006/jmbi.2001.4810] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lung surfactant protein C (SP-C) is a lipophilic peptide that converts from a monomeric alpha-helical state into beta-sheet conformation and forms amyloid fibrils, a process which appears to be accelerated by removal of its two S-palmitoyl groups, and elevated amounts of non-palmitoylated SP-C are found in pulmonary alveolar proteinosis. Here, we used mass spectrometry to study the first step in fibrillogenesis of di-, mono- and non-palmitoylated SP-C. First, the individual decreases in concentration of monomeric alpha-helical forms of the three peptides in an acidified aqueous organic solvent mixture were monitored by electrospray (ES) mass spectrometry. Dipalmitoylated SP-C disappeared with a first-order rate constant of 0.01 h(-1), corresponding to a t(1/2) of 70 hours, while SP-C missing one or two palmitoyl groups disappeared with a rate constant of 0.02 h(-1), t(1/2)=35 hours. This supports the suggestion that the acyl chains stabilise helical SP-C, and that small differences in helix stability can influence fibril formation. The rates of disappearance of the monomeric alpha-helical peptides are much faster than the disappearance of total soluble SP-C (t(1/2)=15 days for SP-C forms soluble after centrifugation at 20,000 g), which suggests that fibril formation is preceded by formation of soluble aggregates. Next, we used matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry to measure hydrogen-->deuterium (H/(2)H) exchange in di-, mono- and non-palmitoylated SP-C in acidified aqueous organic solvents. All three species contain a rigid alpha-helix in their monomeric forms and no difference in deuterium uptake between SP-C with and without palmitoyl groups could be detected. The decreased stability of mono- and non-palmitoylated SP-C observed by ES mass spectrometry is thus not associated with partial unwinding of the helix in solution. Finally, SP-C was shown to unfold during the ES process (where ions are transferred from the solution to the gas phase) and the unfolded forms of di-, mono- and non-palmitoylated SP-C undergo H/(2)H exchange. This, together with the findings from MALDI H/(2)H experiments that the alpha-helix does not exchange, indicates that no partly helical intermediates exist and that the unfolding is highly cooperative.
Collapse
Affiliation(s)
- M Gustafsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, S-171 77, Sweden.
| | | | | | | |
Collapse
|
1185
|
Affiliation(s)
- M Goedert
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
1186
|
El-Agnaf OM, Nagala S, Patel BP, Austen BM. Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 2001; 310:157-68. [PMID: 11419943 DOI: 10.1006/jmbi.2001.4743] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Familial British dementia (FBD) is an autosomal dominant neurodegenerative disorder, with biochemical and pathological similarities to Alzheimer's disease. FBD is associated with a point mutation in the stop codon of the BRI gene. The mutation extends the length of the wild-type protein by 11 amino acids, and following proteolytic cleavage, results in the production of a cyclic peptide (ABri) 11 amino acids longer than the wild-type (WT) peptide produced from the normal gene BRI. ABri was found to be the main component of amyloid deposits in FBD brains. However, pathological examination of FBD brains has shown the presence of ABri as non-fibrillar deposits as well as amyloid fibrils. Taken together, the genetic, pathological and biochemical data support the hypothesis that ABri deposits play a central role in the pathogenesis of FBD. Here we report that ABri, but not WT peptide, can oligomerise and form amyloid-like fibrils. We show for the first time that ABri induces apoptotic cell death, whereas WT is not toxic to cells. Moreover, we report the novel findings that non-fibrillar oligomeric species of ABri are more toxic than protofibrils and mature fibrils. These findings provide evidence that non-fibrillar oligomeric species are likely to play a critical role in the pathogenesis of FBD and suggest that a similar process may also operate in other neurodegenerative diseases.
Collapse
Affiliation(s)
- O M El-Agnaf
- Department of Surgery, Neurodegeneration Unit, St. George's Hospital Medical School, Cranmer Terrace, London, Tooting, SW17 0RE, UK.
| | | | | | | |
Collapse
|
1187
|
Nielsen MS, Vorum H, Lindersson E, Jensen PH. Ca2+ binding to alpha-synuclein regulates ligand binding and oligomerization. J Biol Chem 2001; 276:22680-4. [PMID: 11312271 DOI: 10.1074/jbc.m101181200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Synuclein is a protein normally involved in presynaptic vesicle homeostasis. It participates in the development of Parkinson's disease, in which the nerve cell lesions, Lewy bodies, accumulate alpha-synuclein filaments. The synaptic neurotransmitter release is primarily dependent on Ca(2+)-regulated processes. A microdialysis technique was applied showing that alpha-synuclein binds Ca(2+) with an IC(50) of about 2-300 microm and in a reaction uninhibited by a 50-fold excess of Mg(2+). The Ca(2+)-binding site consists of a novel C-terminally localized acidic 32-amino acid domain also present in the homologue beta-synuclein, as shown by Ca(2+) binding to truncated recombinant and synthetic alpha-synuclein peptides. Ca(2+) binding affects the functional properties of alpha-synuclein. First, the ligand binding of (125)I-labeled bovine microtubule-associated protein 1A is stimulated by Ca(2+) ions in the 1-500 microm range and is dependent on an intact Ca(2+) binding site in alpha-synuclein. Second, the Ca(2+) binding stimulates the proportion of (125)I-alpha-synuclein-containing oligomers. This suggests that Ca(2+) ions may both participate in normal alpha-synuclein functions in the nerve terminal and exercise pathological effects involved in the formation of Lewy bodies.
Collapse
Affiliation(s)
- M S Nielsen
- Department of Medical Biochemistry, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
1188
|
Kawamata H, McLean PJ, Sharma N, Hyman BT. Interaction of alpha-synuclein and synphilin-1: effect of Parkinson's disease-associated mutations. J Neurochem 2001; 77:929-34. [PMID: 11331421 DOI: 10.1046/j.1471-4159.2001.00301.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
alpha-Synuclein is a major component of Lewy bodies, a neuropathological feature of Parkinson's disease. Two alpha-synuclein mutations, Ala53Thr and Ala30Pro, are associated with early onset, familial forms of the disease. Recently, synphilin-1, a protein found to interact with alpha-synuclein by yeast two hybrid techniques, was detected in Lewy bodies. In this study we report the interaction of alpha-synuclein and synphilin-1 in human neuroglioma cells using a sensitive fluorescence resonance energy transfer technique. We demonstrate that the C-terminus of alpha-synuclein is closely associated with the C-terminus of synphilin-1. A weak interaction occurs between the N-terminus of alpha-synuclein and synphilin-1. The familial Parkinson's disease associated mutations of alpha-synuclein (Ala53Thr and Ala30Pro) also demonstrate a strong interaction between their C-terminal regions and synphilin-1. However, compared with wild-type alpha-synuclein, significantly less energy transfer occurs between the C-terminus of Ala53Thr alpha-synuclein and synphilin-1, suggesting that the Ala53Thr mutation alters the conformation of alpha-synuclein in relation to synphilin-1.
Collapse
Affiliation(s)
- H Kawamata
- Alzheimer's Disease Research Unit, Department of Neurology, Massachusetts General Hospital East, Charlestown 02129, USA
| | | | | | | |
Collapse
|
1189
|
Walsh DM, Hartley DM, Condron MM, Selkoe DJ, Teplow DB. In vitro studies of amyloid beta-protein fibril assembly and toxicity provide clues to the aetiology of Flemish variant (Ala692-->Gly) Alzheimer's disease. Biochem J 2001; 355:869-77. [PMID: 11311152 PMCID: PMC1221805 DOI: 10.1042/bj3550869] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a Flemish kindred, an Ala(692)-->Gly amino acid substitution in the amyloid beta-protein precursor (AbetaPP) causes a form of early-onset Alzheimer's disease (AD) which displays prominent amyloid angiopathy and unusually large senile plaque cores. The mechanistic basis of this Flemish form of AD is unknown. Previous in vitro studies of amyloid beta-protein (Abeta) production in HEK-293 cells transfected with cDNA encoding Flemish AbetaPP have shown that full-length [Abeta(1-40)] and truncated [Abeta(5-40) and Abeta(11-40)] forms of Abeta are produced. In an effort to determine how these peptides might contribute to the pathogenesis of the Flemish disease, comparative biophysical and neurotoxicity studies were performed on wild-type and Flemish Abeta(1-40), Abeta(5-40) and Abeta(11-40). The results revealed that the Flemish amino acid substitution increased the solubility of each form of peptide, decreased the rate of formation of thioflavin-T-positive assemblies, and increased the SDS-stability of peptide oligomers. Although the kinetics of peptide assembly were altered by the Ala(21)-->Gly substitution, all three Flemish variants formed fibrils, as did the wild-type peptides. Importantly, toxicity studies using cultured primary rat cortical cells showed that the Flemish assemblies were as potent a neurotoxin as were the wild-type assemblies. Our results are consistent with a pathogenetic process in which conformational changes in Abeta induced by the Ala(21)-->Gly substitution would facilitate peptide adherence to the vascular endothelium, creating nidi for amyloid growth. Increased peptide solubility and assembly stability would favour formation of larger deposits and inhibit their elimination. In addition, increased concentrations of neurotoxic assemblies would accelerate neuronal injury and death.
Collapse
Affiliation(s)
- D M Walsh
- Center for Neurologic Diseases, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston MA 02115, USA
| | | | | | | | | |
Collapse
|
1190
|
Hatters DM, Lawrence LJ, Howlett GJ. Sub-micellar phospholipid accelerates amyloid formation by apolipoprotein C-II. FEBS Lett 2001; 494:220-4. [PMID: 11311244 DOI: 10.1016/s0014-5793(01)02355-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid-free human apolipoprotein C-II (apoC-II) forms amyloid fibrils with characteristic beta-structure. This conformation is distinct from the alpha-helical fold of lipid-bound apoC-II. We have investigated the effect of the short-chain phospholipid, dihexanoylphosphatidylcholine (DHPC) on amyloid formation by apoC-II. The alpha-helical content of apoC-II increases in the presence of micellar DHPC (16 mM) and amyloid formation is inhibited. However, at sub-micellar DHPC concentrations (below 8 mM) amyloid formation is accelerated 6 fold. These results suggest that individual phospholipid molecules in vivo may exert significant effects on amyloid folding pathways.
Collapse
Affiliation(s)
- D M Hatters
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Vic. 3010, Australia
| | | | | |
Collapse
|
1191
|
Eliezer D, Kutluay E, Bussell R, Browne G. Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 2001; 307:1061-73. [PMID: 11286556 DOI: 10.1006/jmbi.2001.4538] [Citation(s) in RCA: 879] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
alpha-Synuclein (alphaS) is a presynaptic terminal protein that is believed to play an important role in the pathogenesis of Parkinson's disease (PD). We have used NMR spectroscopy to characterize the conformational properties of alphaS in solution as a free monomer and when bound to lipid vesicles and lipid-mimetic detergent micelles. Free wild-type alphaS is largely unfolded in solution, but exhibits a region with a preference for helical conformations that may be important in the aggregation of alphaS into fibrils. The N-terminal region of alphaS binds to synthetic lipid vesicles and detergent micelles in vitro and adopts a highly helical conformation, consistent with predictions based on sequence analysis. The C-terminal part of the protein does not associate with either vesicles or micelles, remaining free and unfolded. These results suggest that one function of alphaS may be to tether as of yet unidentified partners to lipid surfaces via interactions with its C-terminal tail.
Collapse
Affiliation(s)
- D Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Medical College of Cornell University, New York, NY, 10021, USA.
| | | | | | | |
Collapse
|
1192
|
Abstract
Parkinson's disease is the most common movement disorder and the second most common neurodegenerative disease. Neuropathologically, it is characterized by the degeneration of nerve cells that develop filamentous inclusions in the form of Lewy bodies and Lewy neurites. Recent work has shown that rare, familial forms of Parkinson's disease are caused by missense mutations in the alpha-synuclein gene and that the filamentous lesions of Parkinson's disease are made of alpha-synuclein. The same is true of the Lewy body pathology that is associated with other neurodegenerative diseases, such as dementia with Lewy bodies. The filamentous inclusions of multiple system atrophy have also been found to be made of alpha-synuclein, thus providing an unexpected molecular link with Lewy body diseases. Recombinant alpha-synuclein assembles into filaments with similar morphologies to those found in the human diseases and with a cross-beta diffraction pattern characteristic of amyloid. The related proteins beta-synuclein and gamma-synuclein are poor at assembling into filaments. They are not present in the pathological filamentous lesions and have not been found to be linked to genetic disease. The new work has established the alpha-synucleinopathies as a major class of neurodegenerative disease.
Collapse
Affiliation(s)
- M Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
1193
|
Conway KA, Lee SJ, Rochet JC, Ding TT, Harper JD, Williamson RE, Lansbury PT. Accelerated oligomerization by Parkinson's disease linked alpha-synuclein mutants. Ann N Y Acad Sci 2001; 920:42-5. [PMID: 11193175 DOI: 10.1111/j.1749-6632.2000.tb06903.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K A Conway
- Center for Neurologic Diseases, Brigham and Women's Hospital and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
1194
|
Goedert M, Spillantini MG, Serpell LC, Berriman J, Smith MJ, Jakes R, Crowther RA. From genetics to pathology: tau and alpha-synuclein assemblies in neurodegenerative diseases. Philos Trans R Soc Lond B Biol Sci 2001; 356:213-27. [PMID: 11260802 PMCID: PMC1088427 DOI: 10.1098/rstb.2000.0767] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The most common degenerative diseases of the human brain are characterized by the presence of abnormal filamentous inclusions in affected nerve cells and glial cells. These diseases can be grouped into two classes, based on the identity of the major proteinaceous components of the filamentous assemblies. The filaments are made of either the microtubule-associated protein tau or the protein alpha-synuclein. Importantly, the discovery of mutations in the tau gene in familial forms of frontotemporal dementia and of mutations in the alpha-synuclein gene in familial forms of Parkinson's disease has established that dysfunction of tau protein and alpha-synuclein can cause neurodegeneration.
Collapse
Affiliation(s)
- M Goedert
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | | | | | |
Collapse
|
1195
|
Sommer B, Barbieri S, Hofele K, Wiederhold K, Probst A, Mistl C, Danner S, Kauffmann S, Spooren W, Tolnay M, Bilbe G, Kafmann S, Caromi P, Ruegg MA. Mouse models of alpha-synucleinopathy and Lewy pathology. Exp Gerontol 2000; 35:1389-403. [PMID: 11113617 DOI: 10.1016/s0531-5565(00)00181-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The discovery of two missense mutations (A53T and A30P) in the gene encoding the presynaptic protein alpha-synuclein (alphaSN) that are genetically linked to rare familial forms of Parkinson's disease and its accumulation in Lewy bodies and Lewy neurites has triggered several attempts to generate transgenic mice overexpressing human alphaSN. Analogous to a successful strategy for the production of transgenic animal models for Alzheimer's disease we generated mice expressing wildtype and the A53T mutant of human alphaSN in the nervous system under control of mouse Thy1 regulatory sequences. These animals develop neuronal alpha-synucleinopathy, striking features of Lewy pathology, neuronal degeneration and motor defects. Neurons in brainstem and motor neurons appeared particularly vulnerable. Motor neuron pathology included axonal damage and denervation of neuromuscular junctions, suggesting that alphaSN may interfere with a universal mechanism of synapse maintenance. Thy1-transgene expression of wildtype human alphaSN resulted in comparable pathological changes thus supporting a central role for mutant and wildtype alphaSN in familial and idiopathic forms of diseases with neuronal alpha-synucleinopathy and Lewy pathology. The mouse models provide means to address fundamental aspects of alpha-synucleinopathy and to test therapeutic strategies.
Collapse
Affiliation(s)
- B Sommer
- Nervous System Research, Novartis Pharma Inc., CH 4002, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1196
|
Kim TD, Paik SR, Yang CH, Kim J. Structural changes in alpha-synuclein affect its chaperone-like activity in vitro. Protein Sci 2000; 9:2489-96. [PMID: 11206070 PMCID: PMC2144529 DOI: 10.1110/ps.9.12.2489] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alpha-synuclein, a major constituent of Lewy bodies (LBs) in Parkinson's disease (PD), has been implicated to play a critical role in synaptic events, such as neuronal plasticity during development, learning, and degeneration under pathological conditions, although the physiological function of alpha-synuclein has not yet been established. We here present biochemical evidence that recombinant alpha-synuclein has a chaperone-like function against thermal and chemical stress in vitro. In our experiments, alpha-synuclein protected glutathione S-transferase (GST) and aldolase from heat-induced precipitation, and alpha-lactalbumin and bovine serum albumin from dithiothreitol (DTT)-induced precipitation like other molecular chaperones. Moreover, preheating of alpha-synuclein, which is believed to reorganize the molecular surface of alpha-synuclein, increased the chaperone-like activity. Interestingly, in organic solvents, which promotes the formation of secondary structure, alpha-synuclein aggregated more easily than in its native condition, which eventually might abrogate the chaperone-like function of the protein. In addition, alpha-synuclein was also rapidly and significantly precipitated by heat in the presence of Zn2+ in vitro, whereas it was not affected by the presence of Ca2+ or Mg2+. Circular dichroism spectra confirmed that alpha-synuclein underwent conformational change in the presence of Zn2+. Taken together, our data suggest that alpha-synuclein could act as a molecular chaperone, and that the conformational change of the alpha-synuclein could explain the aggregation kinetics of alpha-synuclein, which may be related to the abolishment of the chaperonic-like activity.
Collapse
Affiliation(s)
- T D Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
1197
|
Biere AL, Wood SJ, Wypych J, Steavenson S, Jiang Y, Anafi D, Jacobsen FW, Jarosinski MA, Wu GM, Louis JC, Martin F, Narhi LO, Citron M. Parkinson's disease-associated alpha-synuclein is more fibrillogenic than beta- and gamma-synuclein and cannot cross-seed its homologs. J Biol Chem 2000; 275:34574-9. [PMID: 10942772 DOI: 10.1074/jbc.m005514200] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies. Recently, two point mutations in alpha-synuclein were found to be associated with familial PD, but as of yet no mutations have been described in the homologous genes beta- and gamma-synuclein. alpha-Synuclein forms the major fibrillar component of Lewy bodies, but these do not stain for beta- or gamma-synuclein. This result is very surprising, given the extent of sequence conservation and the high similarity in expression and subcellular localization, in particular between alpha- and beta-synuclein. Here we compare in vitro fibrillogenesis of all three purified synucleins. We show that fresh solutions of alpha-, beta-, and gamma- synuclein show the same natively unfolded structure. While over time alpha-synuclein forms the previously described fibrils, no fibrils could be detected for beta- and gamma-synuclein under the same conditions. Most importantly, beta- and gamma-synuclein could not be cross-seeded with alpha-synuclein fibrils. However, under conditions that drastically accelerate aggregation, gamma-synuclein can form fibrils with a lag phase roughly three times longer than alpha-synuclein. These results indicate that beta- and gamma-synuclein are intrinsically less fibrillogenic than alpha-synuclein and cannot form mixed fibrils with alpha-synuclein, which may explain why they do not appear in the pathological hallmarks of PD, although they are closely related to alpha-synuclein and are also abundant in brain.
Collapse
Affiliation(s)
- A L Biere
- Amgen, Inc., Thousand Oaks, California 91320-1789, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1198
|
Krampert M, Bernhagen J, Schmucker J, Horn A, Schmauder A, Brunner H, Voelter W, Kapurniotu A. Amyloidogenicity of recombinant human pro-islet amyloid polypeptide (ProIAPP). CHEMISTRY & BIOLOGY 2000; 7:855-71. [PMID: 11094339 DOI: 10.1016/s1074-5521(00)00034-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pancreatic amyloid has been associated with type II diabetes. The major constituent of pancreatic amyloid is the 37-residue peptide islet amyloid polypeptide (IAPP). IAPP is expressed as a 67-residue pro-peptide called ProIAPP which is processed to IAPP following stimulation. While the molecular events underlying IAPP amyloid formation in vitro have been studied, little is known about the role of ProIAPP in the formation of pancreatic amyloid. This has been due in part to the limited availability of purified ProIAPP for conformational and biochemical studies. RESULTS We present a method for efficient recombinant expression and purification of ProIAPP and a processing site mutant, mutProIAPP, as thioredoxin (Trx) fusion proteins. Conformation and amyloidogenicity of cleaved ProIAPP and mutProIAPP and the fusion proteins were assessed by circular dichroism, electron microscopy and Congo red staining. We find that ProIAPP and mutProIAPP exhibit strong self-association potentials and are capable of forming amyloid. However, the conformational transitions of ProIAPP and mutProIAPP during aging and amyloidogenesis are distinct from the random coil-to-beta-sheet transition of IAPP. Both proteins are found to be less amyloidogenic than IAPP and besides fibrils a number of non-fibrillar but ordered aggregates form during aging of ProIAPP. ProIAPP aggregates are cytotoxic on pancreatic cells but less cytotoxic than IAPP while mutProIAPP aggregates essentially lack cytotoxicity. The Trx fusion proteins are neither amyloidogenic nor cytotoxic. CONCLUSIONS Our studies suggest that ProIAPP has typical properties of an amyloidogenic polypeptide but also indicate that the pro-region suppresses the amyloidogenic and cytotoxic potentials of IAPP.
Collapse
Affiliation(s)
- M Krampert
- Physiological-Chemical Institute, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1199
|
Abstract
The presynaptic protein alpha-synuclein is a prime suspect for contributing to Lewy pathology and clinical aspects of diseases, including Parkinson's disease, dementia with Lewy bodies, and a Lewy body variant of Alzheimer's disease. alpha-Synuclein accumulates in Lewy bodies and Lewy neurites, and two missense mutations (A53T and A30P) in the alpha-synuclein gene are genetically linked to rare familial forms of Parkinson's disease. Under control of mouse Thy1 regulatory sequences, expression of A53T mutant human alpha-synuclein in the nervous system of transgenic mice generated animals with neuronal alpha-synucleinopathy, features strikingly similar to those observed in human brains with Lewy pathology, neuronal degeneration, and motor defects, despite a lack of transgene expression in dopaminergic neurons of the substantia nigra pars compacta. Neurons in brainstem and motor neurons appeared particularly vulnerable. Motor neuron pathology included axonal damage and denervation of neuromuscular junctions in several muscles examined, suggesting that alpha-synuclein interfered with a universal mechanism of synapse maintenance. Thy1 transgene expression of wild-type human alpha-synuclein resulted in similar pathological changes, thus supporting a central role for mutant and wild-type alpha-synuclein in familial and idiotypic forms of diseases with neuronal alpha-synucleinopathy and Lewy pathology. These mouse models provide a means to address fundamental aspects of alpha-synucleinopathy and test therapeutic strategies.
Collapse
|
1200
|
Abstract
Parkinson's disease (PD) is the most common motor disorder affecting the elderly. PD is characterized by the formation of Lewy bodies and death of dopaminergic neurons. The mechanisms underlying PD are unknown, but the discoveries that mutations in alpha-synuclein can cause familial PD and that alpha-synuclein accumulates in Lewy bodies suggest that alpha-synuclein participates in the pathophysiology of PD. Using human BE-M17 neuroblastoma cells overexpressing wild-type, A53T, or A30P alpha-synuclein, we now show that iron and free radical generators, such as dopamine or hydrogen peroxide, stimulate the production of intracellular aggregates that contain alpha-synuclein and ubiquitin. The aggregates can be identified by immunocytochemistry, electron microscopy, or the histochemical stain thioflavine S. The amount of aggregation occurring in the cells is dependent on the amount of alpha-synuclein expressed and the type of alpha-synuclein expressed, with the amount of alpha-synuclein aggregation following a rank order of A53T > A30P > wild-type > untransfected. In addition to stimulating aggregate formation, alpha-synuclein also appears to induce toxicity. BE-M17 neuroblastoma cells overexpressing alpha-synuclein show up to a fourfold increase in vulnerability to toxicity induced by iron. The vulnerability follows the same rank order as for aggregation. These data raise the possibility that alpha-synuclein acts in concert with iron and dopamine to induce formation of Lewy body pathology in PD and cell death in PD.
Collapse
|