1301
|
Abstract
Among the 3 billion base pairs of the human genome, there are approximately 30,000-40,000 protein-coding genes, but the function of at least half of them remains unknown. A new tool - short interfering RNAs (siRNAs) - has now been developed for systematically deciphering the functions and interactions of these thousands of genes. siRNAs are an intermediate of RNA interference, the process by which double-stranded RNA silences homologous genes. Although the use of siRNAs to silence genes in vertebrate cells was only reported a year ago, the emerging literature indicates that most vertebrate genes can be studied with this technology.
Collapse
Affiliation(s)
- Michael T McManus
- Center for Cancer Research, Massachusetts Institute of Technology, 40 Ames Street E17-526, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
1302
|
Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002; 16:2497-508. [PMID: 12368261 PMCID: PMC187455 DOI: 10.1101/gad.1022002] [Citation(s) in RCA: 445] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fragile X syndrome is a common form of inherited mental retardation caused by the loss of FMR1 expression. The FMR1 gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. In Drosophila, the fly homolog of the FMR1 protein (dFMR1) binds to and represses the translation of an mRNA encoding of the microtuble-associated protein Futsch. We have isolated a dFMR1-associated complex that includes two ribosomal proteins, L5 and L11, along with 5S RNA. The dFMR1 complex also contains Argonaute2 (AGO2) and a Drosophila homolog of p68 RNA helicase (Dmp68). AGO2 is an essential component for the RNA-induced silencing complex (RISC), a sequence-specific nuclease complex that mediates RNA interference (RNAi) in Drosophila. We show that Dmp68 is also required for efficient RNAi. We further show that dFMR1 is associated with Dicer, another essential component of the RNAi pathway, and microRNAs (miRNAs) in vivo, suggesting that dFMR1 is part of the RNAi-related apparatus. Our findings suggest a model in which the RNAi and dFMR1-mediated translational control pathways intersect in Drosophila. Our findings also raise the possibility that defects in an RNAi-related machinery may cause human disease.
Collapse
Affiliation(s)
- Akira Ishizuka
- Institute for Genome Research, Graduate School of Nutrition, University of Tokushima, Tokushima 770-8503, Japan
| | | | | |
Collapse
|
1303
|
Golden TA, Schauer SE, Lang JD, Pien S, Mushegian AR, Grossniklaus U, Meinke DW, Ray A. SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. PLANT PHYSIOLOGY 2002; 130:808-22. [PMID: 12376646 PMCID: PMC166608 DOI: 10.1104/pp.003491] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2002] [Revised: 04/03/2002] [Accepted: 06/24/2002] [Indexed: 05/18/2023]
Abstract
The importance of maternal cells in controlling early embryogenesis is well understood in animal development, yet in plants the precise role of maternal cells in embryogenesis is unclear. We demonstrated previously that maternal activity of the SIN1 (SHORT INTEGUMENTS1) gene of Arabidopsis is essential for embryo pattern formation and viability, and that its postembryonic activity is required for several processes in reproductive development, including flowering time control and ovule morphogenesis. Here, we report the cloning of SIN1, and demonstrate its identity to the CAF (CARPEL FACTORY) gene important for normal flower morphogenesis and to the SUS1 (SUSPENSOR1) gene essential for embryogenesis. SIN1/SUS1/CAF has sequence similarity to the Drosophila melanogaster gene Dicer, which encodes a multidomain ribonuclease specific for double-stranded RNA, first identified by its role in RNA silencing. The Dicer protein is essential for temporal control of development in animals, through the processing of small RNA hairpins that in turn inhibit the translation of target mRNAs. Structural modeling of the wild-type and sin1 mutant proteins indicates that the RNA helicase domain of SIN1/SUS1/CAF is important for function. The mRNA was detected in floral meristems, ovules, and early embryos, consistent with the mutant phenotypes. A 3.3-kb region 5' of the SIN1/SUS1/CAF gene shows asymmetric parent-of-origin activity in the embryo: It confers transcriptional activation of a reporter gene in early embryos only when transmitted through the maternal gamete. These results suggest that maternal SIN1/SUS1/CAF functions early in Arabidopsis development, presumably through posttranscriptional regulation of specific mRNA molecules.
Collapse
Affiliation(s)
- Teresa A Golden
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | | | | | | | |
Collapse
|
1304
|
Abstract
RNAi is routinely used to eliminate gene activity for experimental purposes. However, the precise molecular mechanism of RNAi is unknown. Recent papers partially illuminate this mechanism in human cells, advancing the potential application of RNAi toward the treatment of human disease.
Collapse
Affiliation(s)
- Gopalakrishna Ramaswamy
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | |
Collapse
|
1305
|
Caudy AA, Myers M, Hannon GJ, Hammond SM. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 2002; 16:2491-6. [PMID: 12368260 PMCID: PMC187452 DOI: 10.1101/gad.1025202] [Citation(s) in RCA: 464] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA interference (RNAi) is a flexible gene silencing mechanism that responds to double-stranded RNA by suppressing homologous genes. Here, we report the characterization of RNAi effector complexes (RISCs) that contain small interfering RNAs and microRNAs (miRNAs). We identify two putative RNA-binding proteins, the Drosophila homolog of the fragile X mental retardation protein (FMRP), dFXR, and VIG (Vasa intronic gene), through their association with RISC. FMRP, the product of the human fragile X locus, regulates the expression of numerous mRNAs via an unknown mechanism. The possibility that dFXR, and potentially FMRP, use, at least in part, an RNAi-related mechanism for target recognition suggests a potentially important link between RNAi and human disease.
Collapse
Affiliation(s)
- Amy A Caudy
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
1306
|
Abstract
Adenosine deaminases that act on RNA (ADARs) are RNA-editing enzymes that deaminate adenosines to create inosines in double-stranded RNA (dsRNA). Here we demonstrate that ADARs are not required for RNA interference (RNAi) and that they do not antagonize the pathway to a detectable level when RNAi is initiated by injecting dsRNA. We find, however, that transgenes expressed in the somatic tissues of wild-type animals are silenced in strains with deletions in the two genes encoding ADARs, adr-1 and adr-2. Transgene-induced gene silencing in adr-1;adr-2 mutants depends on genes required for RNAi, suggesting that a dsRNA intermediate is involved. In wild-type animals we detect edited dsRNA corresponding to transgenes, and we propose that editing of this dsRNA prevents somatic transgenes from initiating RNAi in wild-type animals.
Collapse
Affiliation(s)
- Scott W Knight
- Department of Biochemistry and Howard Hughes Medical Institute, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
1307
|
Abstract
In animals, the double-stranded RNA-specific endonuclease Dicer produces two classes of functionally distinct, tiny RNAs: microRNAs (miRNAs) and small interfering RNAs (siRNAs). miRNAs regulate mRNA translation, whereas siRNAs direct RNA destruction via the RNA interference (RNAi) pathway. Here we show that, in human cell extracts, the miRNA let-7 naturally enters the RNAi pathway, which suggests that only the degree of complementarity between a miRNA and its RNA target determines its function. Human let-7 is a component of a previously identified, miRNA-containing ribonucleoprotein particle, which we show is an RNAi enzyme complex. Each let-7-containing complex directs multiple rounds of RNA cleavage, which explains the remarkable efficiency of the RNAi pathway in human cells.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Argonaute Proteins
- Base Pairing
- Base Sequence
- Cell Extracts
- Cytoplasm/metabolism
- DEAD Box Protein 20
- DEAD-box RNA Helicases
- Drosophila melanogaster/genetics
- Endoribonucleases/metabolism
- Eukaryotic Initiation Factor-2
- Eukaryotic Initiation Factors
- Gene Silencing
- HeLa Cells
- Humans
- MicroRNAs
- Minor Histocompatibility Antigens
- Models, Genetic
- Nuclear Proteins/metabolism
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA Helicases/metabolism
- RNA, Antisense/chemistry
- RNA, Antisense/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- RNA-Induced Silencing Complex
- Ribonuclease III
- Ribonucleoproteins/metabolism
- Ribonucleoproteins, Small Nuclear
Collapse
Affiliation(s)
- György Hutvágner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Lazare Research Building, Room 825, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
1308
|
Tijsterman M, Okihara KL, Thijssen K, Plasterk RHA. PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans. Curr Biol 2002; 12:1535-40. [PMID: 12225671 DOI: 10.1016/s0960-9822(02)01110-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the remarkable aspects about RNA interference (RNAi) in Caenorhabditis elegans is that the trigger molecules, dsRNA, can be administered via the animal's food. We assayed whether this feature is a universal property of the species by testing numerous strains that have been isolated from different parts of the globe. We found that one isolate from Hawaii had a defect in RNAi that was specific to the germline and was a result of multiple mutations in a PAZ/PIWI domain-containing protein, which we named PPW-1. Deleting ppw-1 in the canonical C. elegans strain Bristol N2 makes it resistant to feeding of dsRNA directed against germline-expressed genes. PPW-1 belongs to the Argonaute family of proteins, which act in posttranscriptional gene silencing and development, and is homologous to the RNAi gene rde-1. Our data indicate that at least two members of this family are required for complete and effective RNAi in C. elegans.
Collapse
Affiliation(s)
- Marcel Tijsterman
- Hubrecht Laboratory, Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
1309
|
Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 2002; 12:1484-95. [PMID: 12225663 PMCID: PMC5137372 DOI: 10.1016/s0960-9822(02)01017-5] [Citation(s) in RCA: 880] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND In metazoans, microRNAs, or miRNAs, constitute a growing family of small regulatory RNAs that are usually 19-25 nucleotides in length. They are processed from longer precursor RNAs that fold into stem-loop structures by the ribonuclease Dicer and are thought to regulate gene expression by base pairing with RNAs of protein-coding genes. In Arabidopsis thaliana, mutations in CARPEL FACTORY (CAF), a Dicer homolog, and those in a novel gene, HEN1, result in similar, multifaceted developmental defects, suggesting a similar function of the two genes, possibly in miRNA metabolism. RESULTS To investigate the potential functions of CAF and HEN1 in miRNA metabolism, we aimed to isolate miRNAs from Arabidopsis and examine their accumulation during plant development in wild-type plants and in hen1-1 and caf-1 mutant plants. We have isolated 11 miRNAs, some of which have potential homologs in tobacco, rice, and maize. The putative precursors of these miRNAs have the capacity to form stable stem-loop structures. The accumulation of these miRNAs appears to be spatially or temporally controlled in plant development, and their abundance is greatly reduced in caf-1 and hen1-1 mutants. HEN1 homologs are found in bacterial, fungal, and metazoan genomes. CONCLUSIONS miRNAs are present in both plant and animal kingdoms. An evolutionarily conserved mechanism involving a protein, known as Dicer in animals and CAF in Arabidopsis, operates in miRNA metabolism. HEN1 is a new player in miRNA accumulation in Arabidopsis, and HEN1 homologs in metazoans may have a similar function. The developmental defects associated with caf-1 and hen1-1 mutations and the patterns of miRNA accumulation suggest that miRNAs play fundamental roles in plant development.
Collapse
|
1310
|
Affiliation(s)
- Richard A Jorgensen
- Department of Plant Sciences and Interdisciplinary Program in Genetics, University of Arizona, Tucson, AZ 85721-0036, USA
| |
Collapse
|
1311
|
Hamilton A, Voinnet O, Chappell L, Baulcombe D. Two classes of short interfering RNA in RNA silencing. EMBO J 2002; 21:4671-9. [PMID: 12198169 PMCID: PMC125409 DOI: 10.1093/emboj/cdf464] [Citation(s) in RCA: 676] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2002] [Revised: 07/05/2002] [Accepted: 07/16/2002] [Indexed: 11/14/2022] Open
Abstract
RNA silencing is a eukaryotic genome defence system that involves processing of double-stranded RNA (dsRNA) into 21-26 nt, short interfering RNA (siRNA). The siRNA mediates suppression of genes corresponding to the dsRNA through targeted RNA degradation. In some plant systems there are additional silencing processes, involving systemic spread of silencing and RNA-directed methylation/transcriptional suppression of homologous genomic DNA. We show here that siRNAs produced in plants from a green fluorescent protein (GFP) transgene are in short (21-22 nt) and long (24-26 nt) size classes, whereas those from endogenous retroelements are only in the long class. Viral suppressors of RNA silencing and mutations in Arabidopsis indicate that these classes of siRNA have different roles. The long siRNA is dispensable for sequence-specific mRNA degradation, but correlates with systemic silencing and methylation of homologous DNA. Conversely, the short siRNA class correlates with mRNA degradation but not with systemic signalling or methylation. These findings reveal an unexpected level of complexity in the RNA silencing pathway in plants that may also apply in animals.
Collapse
MESH Headings
- Adaptation, Physiological
- Agrobacterium tumefaciens/genetics
- Arabidopsis/genetics
- Caulimovirus/genetics
- Gene Silencing
- Genes, Reporter
- Genes, Viral
- Green Fluorescent Proteins
- Luminescent Proteins/biosynthesis
- Plant Leaves/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Plant/classification
- RNA, Plant/physiology
- RNA, Small Interfering
- RNA, Untranslated/classification
- RNA, Untranslated/physiology
- RNA, Viral/genetics
- Recombinant Fusion Proteins/biosynthesis
- Retroelements/genetics
- Nicotiana/genetics
- Transgenes
Collapse
Affiliation(s)
- Andrew Hamilton
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
Present address: Department of Pathology, Glasgow University, Western Infirmary, Glasgow G11 6NT, UK Corresponding author e-mail: A.Hamilton and O.Voinnet contributed equally to this work
| | | | | | - David Baulcombe
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
Present address: Department of Pathology, Glasgow University, Western Infirmary, Glasgow G11 6NT, UK Corresponding author e-mail: A.Hamilton and O.Voinnet contributed equally to this work
| |
Collapse
|
1312
|
Lee Y, Jeon K, Lee JT, Kim S, Kim V. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21:4663-70. [PMID: 12198168 PMCID: PMC126204 DOI: 10.1093/emboj/cdf476] [Citation(s) in RCA: 1599] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) constitute a novel, phylogenetically extensive family of small RNAs ( approximately 22 nucleotides) with potential roles in gene regulation. Apart from the finding that miRNAs are produced by Dicer from the precursors of approximately 70 nucleotides (pre-miRNAs), little is known about miRNA biogenesis. Some miRNA genes have been found in close conjunction, suggesting that they are expressed as single transcriptional units. Here, we present in vivo and in vitro evidence that these clustered miRNAs are expressed polycistronically and are processed through at least two sequential steps: (i) generation of the approximately 70 nucleotide pre-miRNAs from the longer transcripts (termed pri-miRNAs); and (ii) processing of pre-miRNAs into mature miRNAs. Subcellular localization studies showed that the first and second steps are compartmentalized into the nucleus and cytoplasm, respectively, and that the pre-miRNA serves as the substrate for nuclear export. Our study suggests that the regulation of miRNA expression may occur at multiple levels, including the two processing steps and the nuclear export step. These data will provide a framework for further studies on miRNA biogenesis.
Collapse
Affiliation(s)
- Yoontae Lee
- Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National University, Seoul 151-742, Korea Corresponding author e-mail:
| | - Kipyoung Jeon
- Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National University, Seoul 151-742, Korea Corresponding author e-mail:
| | - Jun-Tae Lee
- Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National University, Seoul 151-742, Korea Corresponding author e-mail:
| | - Sunyoung Kim
- Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National University, Seoul 151-742, Korea Corresponding author e-mail:
| | - V.Narry Kim
- Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National University, Seoul 151-742, Korea Corresponding author e-mail:
| |
Collapse
|
1313
|
Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002; 76:9225-31. [PMID: 12186906 PMCID: PMC136455 DOI: 10.1128/jvi.76.18.9225-9231.2002] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthetic small interfering RNAs (siRNAs) have been shown to induce the degradation of specific mRNA targets in human cells by inducing RNA interference (RNAi). Here, we demonstrate that siRNA duplexes targeted against the essential Tat and Rev regulatory proteins encoded by human immunodeficiency virus type 1 (HIV-1) can specifically block Tat and Rev expression and function. More importantly, we show that these same siRNAs can effectively inhibit HIV-1 gene expression and replication in cell cultures, including those of human T-cell lines and primary lymphocytes. These observations demonstrate that RNAi can effectively block virus replication in human cells and raise the possibility that RNAi could provide an important innate protective response, particularly against viruses that express double-stranded RNAs as part of their replication cycle.
Collapse
MESH Headings
- Cell Line
- Cells, Cultured
- Gene Expression Regulation, Viral
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Genes, rev
- Genes, tat
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Jurkat Cells
- Leukocytes, Mononuclear/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering
- RNA, Untranslated/chemical synthesis
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- T-Lymphocytes/virology
- Virus Replication/drug effects
- Virus Replication/physiology
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Glen A Coburn
- Howard Hughes Medical Institute and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
1314
|
Schwarz DS, Hutvágner G, Haley B, Zamore PD. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 2002; 10:537-48. [PMID: 12408822 DOI: 10.1016/s1097-2765(02)00651-2] [Citation(s) in RCA: 332] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Drosophila, two features of small interfering RNA (siRNA) structure--5' phosphates and 3' hydroxyls--are reported to be essential for RNA interference (RNAi). Here, we show that as in Drosophila, a 5' phosphate is required for siRNA function in human HeLa cells. In contrast, we find no evidence in flies or humans for a role in RNAi for the siRNA 3' hydroxyl group. Our in vitro data suggest that in both flies and mammals, each siRNA guides endonucleolytic cleavage of the target RNA at a single site. We conclude that the underlying mechanism of RNAi is conserved between flies and mammals and that RNA-dependent RNA polymerases are not required for RNAi in these organisms.
Collapse
Affiliation(s)
- Dianne S Schwarz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
1315
|
Malhotra P, Dasaradhi PVN, Kumar A, Mohmmed A, Agrawal N, Bhatnagar RK, Chauhan VS. Double-stranded RNA-mediated gene silencing of cysteine proteases (falcipain-1 and -2) of Plasmodium falciparum. Mol Microbiol 2002; 45:1245-54. [PMID: 12207693 DOI: 10.1046/j.1365-2958.2002.03105.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malaria remains a public health problem of enormous magnitude, affecting over 500 million people every year. Lack of success in the past in the development of new drug/vaccines has mainly been attributed to poor understanding of the functions of different parasite proteins. Recently, RNA interference (RNAi) has emerged as a simple and incisive technique to study gene functions in a variety of organisms. In this study, we report the results of RNAi by double-stranded RNA of cysteine protease genes (falcipain-1 and -2) in the malaria parasite, Plasmodium falciparum. Using RNAi directed towards falcipain genes, we demonstrate that blocking the expression of these genes results in severe morphological abnormalities in parasites, inhibition of parasite growth in vitro and substantial accumulation of haemoglobin in the parasite. The inhibitory effects produced by falcipain double-stranded (ds)RNAs are reminiscent of the effects observed upon administering E-64, a cysteine protease inhibitor. The parasites treated with falcipain's dsRNAs also show marked reduction in the levels of corresponding endogenous falcipain mRNAs. We also demonstrate that dsRNAs of falcipains are broken into short interference RNAs approximately 25 nucleotides in size, a characteristic of RNAi, which in turn activates sequence-specific nuclease activity in the malaria parasites. These results thus provide more evidence for the existence of RNAi in P. falciparum and also suggest possibilities for using RNAi as an effective tool to determine the functions of the genes identified from the P. falciparum genome sequencing project.
Collapse
Affiliation(s)
- Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology, PPO Box 10504, Aruna Asaf Ali Marg, New Delhi 110 065, India.
| | | | | | | | | | | | | |
Collapse
|
1316
|
Colaiácovo MP, Stanfield GM, Reddy KC, Reinke V, Kim SK, Villeneuve AM. A Targeted RNAi Screen for Genes Involved in Chromosome Morphogenesis and Nuclear Organization in theCaenorhabditis elegansGermline. Genetics 2002; 162:113-28. [PMID: 12242227 PMCID: PMC1462232 DOI: 10.1093/genetics/162.1.113] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractWe have implemented a functional genomics strategy to identify genes involved in chromosome morphogenesis and nuclear organization during meiotic prophase in the Caenorhabditis elegans germline. This approach took advantage of a gene-expression survey that used DNA microarray technology to identify genes preferentially expressed in the germline. We defined a subset of 192 germline-enriched genes whose expression profiles were similar to those of previously identified meiosis genes and designed a screen to identify genes for which inhibition by RNA interference (RNAi) elicited defects in function or development of the germline. We obtained strong germline phenotypes for 27% of the genes tested, indicating that this targeted approach greatly enriched for genes that function in the germline. In addition to genes involved in key meiotic prophase events, we identified genes involved in meiotic progression, germline proliferation, and chromosome organization and/or segregation during mitotic growth.
Collapse
Affiliation(s)
- M P Colaiácovo
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | | | | | | | | | |
Collapse
|
1317
|
Abstract
We predict regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity. Complementary sites within predicted targets are conserved in rice. Of the 49 predicted targets, 34 are members of transcription factor gene families involved in developmental patterning or cell differentiation. The near-perfect complementarity between plant miRNAs and their targets suggests that many plant miRNAs act similarly to small interfering RNAs and direct mRNA cleavage. The targeting of developmental transcription factors suggests that many plant miRNAs function during cellular differentiation to clear key regulatory transcripts from daughter cell lineages.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Differentiation/genetics
- Cell Division/genetics
- Cell Lineage/genetics
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Plant/genetics
- Genes, Regulator/genetics
- MicroRNAs
- Models, Biological
- Molecular Sequence Data
- Predictive Value of Tests
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Signal Transduction/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Matthew W Rhoades
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
1318
|
Bateman A. The SGS3 protein involved in PTGS finds a family. BMC Bioinformatics 2002; 3:21. [PMID: 12162795 PMCID: PMC119857 DOI: 10.1186/1471-2105-3-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 08/05/2002] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Post transcriptional gene silencing (PTGS) is a recently discovered phenomenon that is an area of intense research interest. Components of the PTGS machinery are being discovered by genetic and bioinformatics approaches, but the picture is not yet complete. RESULTS The gene for the PTGS impaired Arabidopsis mutant sgs3 was recently cloned and was not found to have similarity to any other known protein. By a detailed analysis of the sequence of SGS3 we have defined three new protein domains: the XH domain, the XS domain and the zf-XS domain, that are shared with a large family of uncharacterised plant proteins. This work implicates these plant proteins in PTGS. CONCLUSION The enigmatic SGS3 protein has been found to contain two predicted domains in common with a family of plant proteins. The other members of this family have been predicted to be transcription factors, however this function seems unlikely based on this analysis. A bioinformatics approach has implicated a new family of plant proteins related to SGS3 as potential candidates for PTGS related functions.
Collapse
Affiliation(s)
- Alex Bateman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
1319
|
Kennerdell JR, Yamaguchi S, Carthew RW. RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev 2002; 16:1884-9. [PMID: 12154120 PMCID: PMC186417 DOI: 10.1101/gad.990802] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene silencing by double-stranded RNA is a widespread phenomenon called RNAi, involving homology-dependent degradation of mRNAs. Here we show that RNAi is established in the Drosophila female germ line. mRNA transcripts are translationally quiescent at the arrested oocyte stage and are insensitive to RNAi. Upon oocyte maturation, transcripts that are translated become sensitive to degradation while untranslated transcripts remain resistant. Mutations in aubergine and spindle-E, members of the PIWI/PAZ and DE-H helicase gene families, respectively, block RNAi activation during egg maturation and perturb translation control during oogenesis, supporting a connection between gene silencing and translation in the oocyte.
Collapse
Affiliation(s)
- Jason R Kennerdell
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
1320
|
|
1321
|
Abstract
A conserved biological response to double-stranded RNA, known variously as RNA interference (RNAi) or post-transcriptional gene silencing, mediates resistance to both endogenous parasitic and exogenous pathogenic nucleic acids, and regulates the expression of protein-coding genes. RNAi has been cultivated as a means to manipulate gene expression experimentally and to probe gene function on a whole-genome scale.
Collapse
|
1322
|
Affiliation(s)
- Bryan R Cullen
- Howard Hughes Medical Institute and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3025, Durham, NC 27710, USA.
| |
Collapse
|
1323
|
Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp PA. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002; 8:681-6. [PMID: 12042777 DOI: 10.1038/nm725] [Citation(s) in RCA: 585] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RNA interference silences gene expression through short interfering 21 23-mer double-strand RNA segments that guide mRNA degradation in a sequence-specific fashion. Here we report that siRNAs inhibit virus production by targeting the mRNAs for either the HIV-1 cellular receptor CD4, the viral structural Gag protein or green fluorescence protein substituted for the Nef regulatory protein. siRNAs effectively inhibit pre- and/or post-integration infection events in the HIV-1 life cycle. Thus, siRNAs may have potential for therapeutic intervention in HIV-1 and other viral infections.
Collapse
Affiliation(s)
- Carl D Novina
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1324
|
Abstract
MicroRNAs (miRNAs) are an extensive class of ~22-nucleotide noncoding RNAs thought to regulate gene expression in metazoans. We find that miRNAs are also present in plants, indicating that this class of noncoding RNA arose early in eukaryotic evolution. In this paper 16 Arabidopsis miRNAs are described, many of which have differential expression patterns in development. Eight are absolutely conserved in the rice genome. The plant miRNA loci potentially encode stem-loop precursors similar to those processed by Dicer (a ribonuclease III) in animals. Mutation of an Arabidopsis Dicer homolog, CARPEL FACTORY, prevents the accumulation of miRNAs, showing that similar mechanisms direct miRNA processing in plants and animals. The previously described roles of CARPEL FACTORY in the development of Arabidopsis embryos, leaves, and floral meristems suggest that the miRNAs could play regulatory roles in the development of plants as well as animals.
Collapse
Affiliation(s)
- Brenda J Reinhart
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
1325
|
Abstract
RNAi is evolving into a powerful tool for manipulating gene expression in mammalian cells with potential utility for investigating gene function, for high-throughput, function-based genetic screens and potentially for development as a therapeutic tool.
Collapse
Affiliation(s)
- Patrick J Paddison
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
1326
|
Tabara H, Yigit E, Siomi H, Mello CC. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 2002; 109:861-71. [PMID: 12110183 DOI: 10.1016/s0092-8674(02)00793-6] [Citation(s) in RCA: 349] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Double-stranded (ds) RNA induces potent gene silencing, termed RNA interference (RNAi). At an early step in RNAi, an RNaseIII-related enzyme, Dicer (DCR-1), processes long-trigger dsRNA into small interfering RNAs (siRNAs). DCR-1 is also required for processing endogenous regulatory RNAs called miRNAs, but how DCR-1 recognizes its endogenous and foreign substrates is not yet understood. Here we show that the C. elegans RNAi pathway gene, rde-4, encodes a dsRNA binding protein that interacts during RNAi with RNA identical to the trigger dsRNA. RDE-4 protein also interacts in vivo with DCR-1, RDE-1, and a conserved DExH-box helicase. Our findings suggest a model in which RDE-4 and RDE-1 function together to detect and retain foreign dsRNA and to present this dsRNA to DCR-1 for processing.
Collapse
Affiliation(s)
- Hiroaki Tabara
- Program in Molecular Medicine, University of Massachusetts Meidcal School, Worcester, MA 1605, USA
| | | | | | | |
Collapse
|
1327
|
Abstract
Recent discoveries have revealed that there is a myriad of RNAs and associated RNA-binding proteins that spatially and temporally appear in the cells of all organisms. The structures of these RNA-protein complexes are providing valuable insights into the binding modes and functional implications of these interactions. Even the common RNA-binding domains (RBDs) and the double stranded RNA binding motifs (dsRBMs) have been shown to exhibit a plethora of binding modes.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
1328
|
Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002; 9:1327-33. [PMID: 12086629 DOI: 10.1016/s1097-2765(02)00541-5] [Citation(s) in RCA: 597] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Animal cells have recently been shown to express a range of approximately 22 nucleotide noncoding RNAs termed micro RNAs (miRNAs). Here, we show that the human mir-30 miRNA can be excised from irrelevant, endogenously transcribed mRNAs encompassing the predicted 71 nucleotide mir-30 precursor. Expression of the mir-30 miRNA specifically blocked the translation in human cells of an mRNA containing artificial mir-30 target sites. Similarly, designed miRNAs were also excised from transcripts encompassing artificial miRNA precursors and could inhibit the expression of mRNAs containing a complementary target site. These data indicate that novel miRNAs can be readily produced in vivo and can be designed to specifically inactivate the expression of selected target genes in human cells.
Collapse
Affiliation(s)
- Yan Zeng
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
1329
|
Williams RW, Rubin GM. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci U S A 2002; 99:6889-94. [PMID: 12011447 PMCID: PMC124499 DOI: 10.1073/pnas.072190799] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Double-stranded RNA (dsRNA) triggers homology-dependent posttranscriptional gene interference (RNAi) in a diverse range of eukaryotic organisms, in a process mechanistically related to viral and transgene-mediated cosuppression. RNAi is characterized by the conversion of long dsRNA into approximately 21-25-nt small interfering RNAs (siRNA) that guide the degradation of homologous mRNA. Many of the genes required for siRNA production and target mRNA degradation are widely conserved. Notably, members of the Argonaute-like gene family from Arabidopsis, Caenorhabditis elegans, Drosophila, and Neurospora have been genetically and/or biochemically identified as components of the RNAi/cosuppression pathway. We show here that mutations in the Drosophila Argonaute1 (AGO1) gene suppress RNAi in embryos. This defect corresponds to a reduced ability to degrade mRNA in response to dsRNA in vitro. Furthermore, AGO1 is not required for siRNA production in vitro nor can the introduction of siRNA bypass AGO1 mutants in vivo. These data suggest that AGO1 functions downstream of siRNA production.
Collapse
Affiliation(s)
- Robert W Williams
- Department of Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
1330
|
Abstract
For a long time, RNA has been merely regarded as a molecule that can either function as a messenger (mRNA) or as part of the translational machinery (tRNA, rRNA). Meanwhile, it became clear that RNAs are versatile molecules that do not only play key roles in many important biological processes like splicing, editing, protein export and others, but can also--like enzymes--act catalytically. Two important aspects of RNA function--antisense-RNA control and RNA interference (RNAi)--are emphasized in this review. Antisense-RNA control functions in all three kingdoms of life--although the majority of examples are known from bacteria. In contrast, RNAi, gene silencing triggered by double-stranded RNA, the oldest and most ubiquitous antiviral system, is exclusively found in eukaryotes. Our current knowledge about occurrence, biological roles and mechanisms of action of antisense RNAs as well as the recent findings about involved genes/enzymes and the putative mechanism of RNAi are summarized. An interesting intersection between both regulatory mechanisms is briefly discussed.
Collapse
Affiliation(s)
- Sabine Brantl
- Institut für Molekularbiologie, Friedrich Schiller Univ. Jena, Winzerlaer Str. 10, D-07745 Jena, Germany.
| |
Collapse
|
1331
|
Affiliation(s)
- Dianne S Schwarz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
1332
|
Abstract
In recent years, systematic searches of both prokaryote and eukaryote genomes have identified a staggering number of small RNAs, the biological functions of which remain unknown. Small RNA-based regulators are well known from bacterial plasmids. They act on target RNAs by sequence complementarity; that is, they are antisense RNAs. Recent findings suggest that many of the novel orphan RNAs encoded by bacterial and eukaryotic chromosomes might also belong to a ubiquitous, heterogeneous class of antisense regulators of gene expression.
Collapse
|
1333
|
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12:735-9. [PMID: 12007417 DOI: 10.1016/s0960-9822(02)00809-6] [Citation(s) in RCA: 2581] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are a new class of noncoding RNAs, which are encoded as short inverted repeats in the genomes of invertebrates and vertebrates. It is believed that miRNAs are modulators of target mRNA translation and stability, although most target mRNAs remain to be identified. Here we describe the identification of 34 novel miRNAs by tissue-specific cloning of approximately 21-nucleotide RNAs from mouse. Almost all identified miRNAs are conserved in the human genome and are also frequently found in nonmammalian vertebrate genomes, such as pufferfish. In heart, liver, or brain, it is found that a single, tissue-specifically expressed miRNA dominates the population of expressed miRNAs and suggests a role for these miRNAs in tissue specification or cell lineage decisions. Finally, a miRNA was identified that appears to be the fruitfly and mammalian ortholog of C. elegans lin-4 stRNA.
Collapse
Affiliation(s)
- Mariana Lagos-Quintana
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
1334
|
Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16:948-58. [PMID: 11959843 PMCID: PMC152352 DOI: 10.1101/gad.981002] [Citation(s) in RCA: 1122] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) was first recognized in Caenorhabditis elegans as a biological response to exogenous double-stranded RNA (dsRNA), which induces sequence-specific gene silencing. RNAi represents a conserved regulatory motif, which is present in a wide range of eukaryotic organisms. Recently, we and others have shown that endogenously encoded triggers of gene silencing act through elements of the RNAi machinery to regulate the expression of protein-coding genes. These small temporal RNAs (stRNAs) are transcribed as short hairpin precursors (approximately 70 nt), processed into active, 21-nt RNAs by Dicer, and recognize target mRNAs via base-pairing interactions. Here, we show that short hairpin RNAs (shRNAs) can be engineered to suppress the expression of desired genes in cultured Drosophila and mammalian cells. shRNAs can be synthesized exogenously or can be transcribed from RNA polymerase III promoters in vivo, thus permitting the construction of continuous cell lines or transgenic animals in which RNAi enforces stable and heritable gene silencing.
Collapse
Affiliation(s)
- Patrick J Paddison
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
1335
|
Dudley NR, Labbé JC, Goldstein B. Using RNA interference to identify genes required for RNA interference. Proc Natl Acad Sci U S A 2002; 99:4191-6. [PMID: 11904378 PMCID: PMC123624 DOI: 10.1073/pnas.062605199] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2001] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a phenomenon in which double-stranded RNA (dsRNA) silences endogenous gene expression. By injecting pools of dsRNAs into Caenorhabditis elegans, we identified a dsRNA that acts as a potent suppressor of the RNAi mechanism. We have used coinjection of dsRNAs to identify four additional candidates for genes involved in the RNAi mechanism in C. elegans. Three of the genes are C. elegans mes genes, some of which encode homologs of the Drosophila chromatin-binding Polycomb-group proteins. We have used loss-of-function mutants to confirm a role for mes-3, -4, and -6 in RNAi. Interestingly, introducing very low levels of dsRNA can bypass a requirement for these genes in RNAi. The finding that genes predicted to encode proteins that associate with chromatin are involved in RNAi in C. elegans raises the possibility that chromatin may play a role in RNAi in animals, as it does in plants.
Collapse
Affiliation(s)
- Nathaniel R Dudley
- Biology Department, University of North Carolina, CB#3280, 616 Fordham Hall, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
1336
|
Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V. The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev Biol 2002; 244:170-9. [PMID: 11900466 DOI: 10.1006/dbio.2002.0594] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Caenorhabditis elegans, the heterochronic pathway controls the timing of developmental events during the larval stages. A component of this pathway, the let-7 small regulatory RNA, is expressed at the late stages of development and promotes the transition from larval to adult (L/A) stages. The stage-specificity of let-7 expression, which is crucial for the proper timing of the worm L/A transition, is conserved in Drosophila melanogaster and other invertebrates. In Drosophila, pulses of the steroid hormone 20-hydroxyecdysone (ecdysone) control the timing of the transition from larval to pupal to adult stages. To test whether let-7 expression is regulated by ecdysone in Drosophila, we used Northern blot analysis to examine the effect of altered ecdysone levels on let-7 expression in mutant animals, organ cultures, and S2 cultured cells. Experiments were conducted to test the role of Broad-Complex (BR-C), an essential component in the ecdysone pathway, in let-7 expression. We show that ecdysone and BR-C are required for let-7 expression, indicating that the ecdysone pathway regulates the temporal expression of let-7 in Drosophila. These results demonstrate an interaction between steroid hormone signaling and the heterochronic pathway in insects.
Collapse
Affiliation(s)
- Lorenzo F Sempere
- Department of Genetics, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
1337
|
Catalanotto C, Azzalin G, Macino G, Cogoni C. Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev 2002; 16:790-5. [PMID: 11937487 PMCID: PMC186333 DOI: 10.1101/gad.222402] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Small RNA molecules have been found to be specifically associated with posttranscriptional gene silencing (PTGS) in both plants and animals. Here, we find that small sense and antisense RNAs are also involved in PTGS in Neurospora crassa. The accumulation of these RNA molecules depends on the presence of functional qde-1 and qde-3 genes previously shown to be essential for gene silencing, but does not depend on a functional qde-2, indicating that this gene is involved in a downstream step of the gene silencing pathway. Supporting this idea, a purified QDE2 protein complex was found to contain small RNA molecules, suggesting that QDE2 could be part of a small RNA-directed ribonuclease complex involved in sequence-specific mRNA degradation.
Collapse
Affiliation(s)
- Caterina Catalanotto
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, 00161 Roma, Italy
| | | | | | | |
Collapse
|
1338
|
Boutla A, Kalantidis K, Tavernarakis N, Tsagris M, Tabler M. Induction of RNA interference in Caenorhabditis elegans by RNAs derived from plants exhibiting post-transcriptional gene silencing. Nucleic Acids Res 2002; 30:1688-94. [PMID: 11917031 PMCID: PMC101830 DOI: 10.1093/nar/30.7.1688] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 01/04/2002] [Accepted: 02/04/2002] [Indexed: 11/13/2022] Open
Abstract
The term 'gene silencing' refers to transcriptional and post-transcriptional control of gene expression. Related processes are found across kingdoms in plants and animals. We intended to test whether particular RNA constituents of a silenced plant can induce silencing in an animal. We generated Nicotiana benthamiana lines that expressed green fluorescent protein (GFP) from a transgene. Plants in which GFP expression was spontaneously silenced showed siRNAs characteristic of post-transcriptional gene silencing (PTGS). RNA extracts prepared from silenced plants were injected into a GFP-expressing strain of Caenorhabditis elegans, where they induced RNA interference (RNAi). Extracts from non-silenced plants were inactive. This directly demonstrates a relationship and a mechanistic link between PTGS and RNAi. Controls confirmed that the silencing agent was an RNA. Size fractionation on denaturing gels revealed that an RNA of approximately 85 nt was most active in inducing silencing in the worm. Northern blot analysis of the region in question did not detect a prominent GFP-specific RNA of sense or antisense polarity, indicating that the RNA species which induced silencing was present only in low concentration or did not hybridize due to formation of an intramolecular double strand. In view of its high activity, it is possible that this agent is responsible for the systemic spread of silencing in plants and it might represent the aberrant RNA, a previously postulated inducer of silencing.
Collapse
Affiliation(s)
- Alexandra Boutla
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, PO Box 1527, GR-71110 Heraklion/Crete, Greece
| | | | | | | | | |
Collapse
|
1339
|
Abstract
Almost ten years ago, the Ambros laboratory made the extraordinary discovery that a gene essential for development in Caenorhabditis elegans encoded a 22-nucleotide, untranslated RNA. Further genetic studies in this nematode revealed the existence of a second tiny RNA gene that turned out to be conserved in animals as diverse as flies and humans. Now, the Ambros, Bartel and Tuschl laboratories have proven that those odd RNAs were just the first examples of a large family of RNAs, termed microRNAs (miRNAs). Although untranslated RNA genes, such as transfer RNAs and ribosomal RNAs, perform essential housekeeping roles in all living organisms, growing numbers of other RNAs, some widely conserved across phyla and others limited to certain species, are being uncovered and shown to fulfill specific duties. The discovery of miRNAs establishes a new class of regulatory RNAs and highlights the existence of unexpected RNA genes that, although ancient, are not extinct.
Collapse
Affiliation(s)
- Amy E Pasquinelli
- Dept of Molecular Biology, Wellman 8, Massachusetts General Hospital, 50 Blossom St, Boston, MA 02114, USA.
| |
Collapse
|
1340
|
Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 2002; 30:1427-64. [PMID: 11917006 PMCID: PMC101826 DOI: 10.1093/nar/30.7.1427] [Citation(s) in RCA: 400] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA metabolism, broadly defined as the compendium of all processes that involve RNA, including transcription, processing and modification of transcripts, translation, RNA degradation and its regulation, is the central and most evolutionarily conserved part of cell physiology. A comprehensive, genome-wide census of all enzymatic and non-enzymatic protein domains involved in RNA metabolism was conducted by using sequence profile analysis and structural comparisons. Proteins related to RNA metabolism comprise from 3 to 11% of the complete protein repertoire in bacteria, archaea and eukaryotes, with the greatest fraction seen in parasitic bacteria with small genomes. Approximately one-half of protein domains involved in RNA metabolism are present in most, if not all, species from all three primary kingdoms and are traceable to the last universal common ancestor (LUCA). The principal features of LUCA's RNA metabolism system were reconstructed by parsimony-based evolutionary analysis of all relevant groups of orthologous proteins. This reconstruction shows that LUCA possessed not only the basal translation system, but also the principal forms of RNA modification, such as methylation, pseudouridylation and thiouridylation, as well as simple mechanisms for polyadenylation and RNA degradation. Some of these ancient domains form paralogous groups whose evolution can be traced back in time beyond LUCA, towards low-specificity proteins, which probably functioned as cofactors for ribozymes within the RNA world framework. The main lineage-specific innovations of RNA metabolism systems were identified. The most notable phase of innovation in RNA metabolism coincides with the advent of eukaryotes and was brought about by the merge of the archaeal and bacterial systems via mitochondrial endosymbiosis, but also involved emergence of several new, eukaryote-specific RNA-binding domains. Subsequent, vast expansions of these domains mark the origin of alternative splicing in animals and probably in plants. In addition to the reconstruction of the evolutionary history of RNA metabolism, this analysis produced numerous functional predictions, e.g. of previously undetected enzymes of RNA modification.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Building 389, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
1341
|
Abstract
In organisms as diverse as nematodes, trypanosomes, plants, and fungi, double-stranded RNA triggers the destruction of homologous mRNAs, a phenomenon known as RNA interference. RNA interference begins with the transformation of the double-stranded RNA into small RNAs that then guide a protein nuclease to destroy their mRNA targets.
Collapse
Affiliation(s)
- György Hutvágner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
1342
|
Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002; 16:720-8. [PMID: 11914277 PMCID: PMC155365 DOI: 10.1101/gad.974702] [Citation(s) in RCA: 801] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gemin3 is a DEAD-box RNA helicase that binds to the Survival of Motor Neurons (SMN) protein and is a component of the SMN complex, which also comprises SMN, Gemin2, Gemin4, Gemin5, and Gemin6. Reduction in SMN protein results in Spinal muscular atrophy (SMA), a common neurodegenerative disease. The SMN complex has critical functions in the assembly/restructuring of diverse ribonucleoprotein (RNP) complexes. Here we report that Gemin3 and Gemin4 are also in a separate complex that contains eIF2C2, a member of the Argonaute protein family. This novel complex is a large approximately 15S RNP that contains numerous microRNAs (miRNAs). We describe 40 miRNAs, a few of which are identical to recently described human miRNAs, a class of small endogenous RNAs. The genomic sequences predict that miRNAs are likely to be derived from larger precursors that have the capacity to form stem-loop structures.
Collapse
MESH Headings
- Animals
- Argonaute Proteins
- Blotting, Western
- Centrifugation, Density Gradient
- Cloning, Molecular
- DEAD Box Protein 20
- DEAD-box RNA Helicases
- Eukaryotic Initiation Factors
- HeLa Cells
- Humans
- Mice
- MicroRNAs
- Minor Histocompatibility Antigens
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Peptide Initiation Factors/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA Helicases/metabolism
- RNA, Antisense/chemistry
- RNA, Antisense/classification
- RNA, Messenger/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/classification
- RNA-Binding Proteins
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
- Ribonucleoproteins, Small Nuclear
- SMN Complex Proteins
Collapse
Affiliation(s)
- Zissimos Mourelatos
- Howard Hughes Medical Institute, Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1343
|
Abstract
Genes for tiny RNAs have been found to be plentiful in the genomes of worms, flies, humans and probably all animals. Some of these microRNAs have been conserved through evolution, and many are expressed only at specific times or places. How they act is just beginning to be understood, but their importance to biology is likely to be great.
Collapse
Affiliation(s)
- Eric G Moss
- Cell and Developmental Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
1344
|
Paddison PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A 2002; 99:1443-8. [PMID: 11818553 PMCID: PMC122210 DOI: 10.1073/pnas.032652399] [Citation(s) in RCA: 399] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In a diverse group of organisms including plants, Caenorhabditis elegans, Drosophila, and trypanosomes, double-stranded RNA (dsRNA) is a potent trigger of gene silencing. In several model systems, this natural response has been developed into a powerful tool for the investigation of gene function. Use of RNA interference (RNAi) as a genetic tool has recently been extended to mammalian cells, being inducible by treatment with small, approximately 22-nt RNAs that mimic those produced in the first step of the silencing process. Here, we show that some cultured murine cells specifically silence gene expression upon treatment with long dsRNAs (approximately 500 nt). This response shows hallmarks of conventional RNAi including silencing at the posttranscriptional level and the endogenous production of approximately 22-nt small RNAs. Furthermore, enforced expression of long, hairpin dsRNAs induced stable gene silencing. The ability to create stable "knock-down" cell lines expands the utility of RNAi in mammalian cells by enabling examination of phenotypes that develop over long time periods and lays the groundwork for by using RNAi in phenotype-based, forward genetic selections.
Collapse
Affiliation(s)
- Patrick J Paddison
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
1345
|
Guo HS, Ding SW. A viral protein inhibits the long range signaling activity of the gene silencing signal. EMBO J 2002; 21:398-407. [PMID: 11823432 PMCID: PMC125836 DOI: 10.1093/emboj/21.3.398] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/30/2001] [Accepted: 12/03/2001] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional gene silencing (PTGS) provides protection against viruses in plants by homology-dependent RNA degradation. PTGS initiated locally produces a mobile signal that instructs specific RNA degradation at a distance. Here we show that this signal-mediated intercellular spread of PTGS does not occur after PTGS initiation in cells expressing cucumber mosaic virus 2b protein (Cmv2b), a nucleus-localized plant viral PTGS suppressor. Silencing spread via the signal was also effectively blocked in independent assays by expressing Cmv2b only in tissues through which the signal must travel to induce PTGS in the target cells. Furthermore, the signal imported externally into the Cmv2b-expressing cells was not active in triggering degradation of the target RNA and loss of signal activity in these cells was associated with a significantly reduced transgene DNA methylation. These findings indicate that Cmv2b inhibits the activity of the mobile signal and interferes with DNA methylation in the nucleus. Signal inactivation provides a mechanistic basis for the known role of Cmv2b in facilitating virus spread to tissues outside of the primarily infected sites.
Collapse
Affiliation(s)
- Hui Shan Guo
- Molecular Virology Laboratory, Institute of Molecular Agrobiology, National University of Singapore, Singapore and Department of Plant Pathology, University of California, Riverside, CA 92521, USA Corresponding author e-mail:
| | - Shou Wei Ding
- Molecular Virology Laboratory, Institute of Molecular Agrobiology, National University of Singapore, Singapore and Department of Plant Pathology, University of California, Riverside, CA 92521, USA Corresponding author e-mail:
| |
Collapse
|
1346
|
|
1347
|
Pal-Bhadra M, Bhadra U, Birchler JA. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 2002; 9:315-27. [PMID: 11864605 DOI: 10.1016/s1097-2765(02)00440-9] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two types of transgene silencing were found for the Alcohol dehydrogenase (Adh) transcription unit. Transcriptional gene silencing (TGS) is Polycomb dependent and occurs when Adh is driven by the white eye color gene promoter. Full-length Adh transgenes are silenced posttranscriptionally at high copy number or by a pulsed increase over a threshold. The posttranscriptional gene silencing (PTGS) exhibits molecular hallmarks typical of RNA interference (RNAi), including the production of 21--25 bp length sense and antisense RNAs homologous to the silenced RNA. Mutations in piwi, which belongs to a gene family with members required for RNAi, block PTGS and one aspect of TGS, indicating a connection between the two types of silencing.
Collapse
Affiliation(s)
- Manika Pal-Bhadra
- Division of Biological Sciences, 117 Tucker Hall, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
1348
|
Banerjee D, Slack F. Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. Bioessays 2002; 24:119-29. [PMID: 11835276 DOI: 10.1002/bies.10046] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heterochronic genes control the timing of developmental programs. In C. elegans, two key genes in the heterochronic pathway, lin-4 and let-7, encode small temporally expressed RNAs (stRNAs) that are not translated into protein. These stRNAs exert negative post-transcriptional regulation by binding to complementary sequences in the 3' untranslated regions of their target genes. stRNAs are transcribed as longer precursor RNAs that are processed by the RNase Dicer/DCR-1 and members of the RDE-1/AGO1 family of proteins, which are better known for their roles in RNA interference (RNAi). However, stRNA function appears unrelated to RNAi. Both sequence and temporal regulation of let-7 stRNA is conserved in other animal species suggesting that this is an evolutionarily ancient gene. Indeed, C. elegans, Drosophila and humans encode at least 86 other RNAs with similar structural features to lin-4 and let-7. We postulate that other small non-coding RNAs may function as stRNAs to control temporal identity during development in C. elegans and other organisms.
Collapse
Affiliation(s)
- Diya Banerjee
- Department of Molecular, Cellular and Development Biology, Yale University, 266 Whitney Ave., New Haven, CT 06520, USA
| | | |
Collapse
|
1349
|
Tijsterman M, Ketting RF, Okihara KL, Sijen T, Plasterk RHA. RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science 2002; 295:694-7. [PMID: 11809977 DOI: 10.1126/science.1067534] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Posttranscriptional gene silencing in Caenorhabditis elegans results from exposure to double-stranded RNA (dsRNA), a phenomenon designated as RNA interference (RNAi), or from co-suppression, in which transgenic DNA leads to silencing of both the transgene and the endogenous gene. Here we show that single-stranded RNA oligomers of antisense polarity can also be potent inducers of gene silencing. As is the case for co-suppression, antisense RNAs act independently of the RNAi genes rde-1 and rde-4 but require the mutator/RNAi gene mut-7 and a putative DEAD box RNA helicase, mut-14. Our data favor the hypothesis that gene silencing is accomplished by RNA primer extension using the mRNA as template, leading to dsRNA that is subsequently degraded.
Collapse
Affiliation(s)
- Marcel Tijsterman
- Hubrecht Laboratory, Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
1350
|
Abstract
Two small temporally regulated RNAs (stRNAs)* of approximately 22 nucleotides regulate timing of gene expression during development of the nematode C. elegans. This regulation occurs at a posttranscriptional, presumably translational, level and is distinct from RNA interference (RNAi). One of the two stRNAs, let-7, as well as its target gene, lin-41, are highly conserved even in humans, suggesting a wide employment of stRNA-mediated gene regulation. Recent reports indicate that these two stRNAs are indeed likely to represent only the tip of an iceberg with hundreds or more of additional micro-RNAs (miRNAs) existing in metazoans. miRNAs might thus be previously underestimated key participants in the field of gene regulation.
Collapse
Affiliation(s)
- Helge Grosshans
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|