1351
|
Croissant JG, Brinker CJ. Biodegradable Silica-Based Nanoparticles: Dissolution Kinetics and Selective Bond Cleavage. Enzymes 2018; 43:181-214. [PMID: 30244807 DOI: 10.1016/bs.enz.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Silica-based nanomaterials are extensively used in industrial applications and academic biomedical research, thus properly assessing their toxicity and biodegradability is essential for their safe and effective formulation and use. Unfortunately, there is often a lot of confusion in the literature with respect to the toxicity and biodegradability of silica since various studies have yielded contradictory results. In this contribution, we first endeavor to underscore that the simplistic model of silica should be discarded in favor of a more realistic model recognizing that all silicas are not created equal and should thus be considered in the plural as silicas and silica hybrids, which indeed hold various biocompatibility and biodegradability profiles. We then demonstrated that all silicas are-as displayed in Nature-degradable in water by dissolution, as governed by the laws of kinetics. Lastly, we explore the vast potential of tuning the degradability of silica by materials design using various silica hybrids for redox-, pH-, enzymatic-, and biochelation-mediated lysis mechanisms.
Collapse
Affiliation(s)
- Jonas G Croissant
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States.
| | - C Jeffrey Brinker
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
1352
|
Anastasova EI, Prilepskii AY, Fakhardo AF, Drozdov AS, Vinogradov VV. Magnetite Nanocontainers: Toward Injectable Highly Magnetic Materials for Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30040-30044. [PMID: 30137958 DOI: 10.1021/acsami.8b10129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocontainers based solely on magnetite NPs have been synthesized by indirect gelation of stable magnetite hydrosol at ambient temperature using the microemulsion-assisted sol-gel method. Containers synthesized have adjustable size and consist of ∼10 nm magnetite nanoparticles linked by Fe-O-Fe interparticle bonds. The material demonstrates high magnetization values up to 60 emu/g and low cytotoxicity against both HeLa and postnatal human fibroblast (up to 260 μg/mL). The systems developed are perspective as a drug depot, particularly for magnetically controlled thrombolysis.
Collapse
Affiliation(s)
- Elizaveta I Anastasova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies , ITMO University , St. Petersburg , 197101 , Russian Federation
| | - Artur Y Prilepskii
- Laboratory of Solution Chemistry of Advanced Materials and Technologies , ITMO University , St. Petersburg , 197101 , Russian Federation
| | - Anna F Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and Technologies , ITMO University , St. Petersburg , 197101 , Russian Federation
| | - Andrey S Drozdov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies , ITMO University , St. Petersburg , 197101 , Russian Federation
| | - Vladimir V Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies , ITMO University , St. Petersburg , 197101 , Russian Federation
| |
Collapse
|
1353
|
Bejarano J, Navarro-Marquez M, Morales-Zavala F, Morales JO, Garcia-Carvajal I, Araya-Fuentes E, Flores Y, Verdejo HE, Castro PF, Lavandero S, Kogan MJ. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics 2018; 8:4710-4732. [PMID: 30279733 PMCID: PMC6160774 DOI: 10.7150/thno.26284] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Despite preventive efforts, early detection of atherosclerosis, the common pathophysiological mechanism underlying cardiovascular diseases remains elusive, and overt coronary artery disease or myocardial infarction is often the first clinical manifestation. Nanoparticles represent a novel strategy for prevention, diagnosis, and treatment of atherosclerosis, and new multifunctional nanoparticles with combined diagnostic and therapeutic capacities hold the promise for theranostic approaches to this disease. This review focuses on the development of nanosystems for therapy and diagnosis of subclinical atherosclerosis, coronary artery disease, and myocardial infarction and the evolution of nanosystems as theranostic tools. We also discuss the use of nanoparticles in noninvasive imaging, targeted drug delivery, photothermal therapies together with the challenges faced by nanosystems during clinical translation.
Collapse
Affiliation(s)
- Julian Bejarano
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Mario Navarro-Marquez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Francisco Morales-Zavala
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Javier O. Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
- Pharmaceutical Biomaterial Research Group, Department of Health Sciences, Luleå University of Technology, Luleå 97187, Sweden
| | - Ivonne Garcia-Carvajal
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Eyleen Araya-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Republica 275, 8370146, Santiago, Chile
| | - Yvo Flores
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Hugo E. Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), & Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marcelo J. Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
| |
Collapse
|
1354
|
Cong VT, Gaus K, Tilley RD, Gooding JJ. Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opin Drug Deliv 2018; 15:881-892. [PMID: 30173560 DOI: 10.1080/17425247.2018.1517748] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Interest in mesoporous silica nanoparticles for drug delivery has resulted in a good understanding of the impact of size and surface chemistry of these nanoparticles on their performance as drug carriers. Shape has emerged as an additional factor that can have a significant effect on delivery efficacy. Rod-shaped mesoporous silica nanoparticles show improvements in drug delivery relative to spherical mesoporous silica nanoparticles. AREAS COVERED This review summarises the synthesis methods for producing rod-shaped mesoporous silica nanoparticles for use in nanomedicine. The second part covers recent progress of mesoporous silica nanorods by comparing the impact of sphere and rod-shape on drug delivery efficiency. EXPERT OPINION As hollow mesoporous silica nanorods are capable of higher drug loads than most other drug delivery vehicles, such particles will reduce the amount of mesoporous silica in the body for efficient therapy. However, the importance of nanoparticle shape on drug delivery efficiency is not well understood for mesoporous silica. Studies that visualize and quantify the uptake pathway of mesoporous silica nanorods in specific cell types and compare the cellular uptake to the well-studied nanospheres should be the focus of research to better understand the role of shape in uptake.
Collapse
Affiliation(s)
- Vu Thanh Cong
- a School of Chemistry, Australian of NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of New South Wales , Sydney , Australia
| | - Katharina Gaus
- b EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging , University of New South Wales , Sydney , Australia
| | - Richard D Tilley
- a School of Chemistry, Australian of NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of New South Wales , Sydney , Australia
| | - J Justin Gooding
- a School of Chemistry, Australian of NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of New South Wales , Sydney , Australia
| |
Collapse
|
1355
|
Karabasz A, Szczepanowicz K, Cierniak A, Bereta J, Bzowska M. In vitro toxicity studies of biodegradable, polyelectrolyte nanocapsules. Int J Nanomedicine 2018; 13:5159-5172. [PMID: 30233178 PMCID: PMC6135212 DOI: 10.2147/ijn.s169120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Toxicity of nanomaterials is one of the most important factors limiting their medical application. Evaluation of in vitro nanotoxicity allows for the identification and elimination of most of the toxic materials prior to animal testing. The current knowledge of the possible side effects of biodegradable nanomaterials, such as liposomes and polymeric organic nanoparticles, is limited. Previously, we developed a potential drug delivery system in the form of nanocapsules with polyelectrolyte, biodegradable shells consisting of poly-l-lysine and poly-l-glutamic acid (PGA), formed by the layer-by-layer adsorption technique. Methods Hemolysis assay, viability tests, flow cytometry analysis of vascular cell adhesion molecule-1 expression on endothelium, analysis of nitric oxide production, measurement of intracellular reactive oxygen species levels, detection of antioxidant enzyme activity, and analysis of DNA damage with comet assay were performed to study the in vitro toxicity of nanocapsules. Results In this work, we present the results of an in vitro analysis of toxicity of five-layer positively charged poly-l-lysine–terminated nanocapsules (NC5), six-layer negatively charged PGA-terminated nanocapsules (NC6) and five-layer PEGylated nanocapsules (NC5-PEG). PGA and polyethylene glycol (PEG) were used as two different “stealth” polymers. Of all the polyelectrolyte nanocapsules tested for blood compatibility, only cationic NC5 showed acute toxicity toward blood cells, expressed as hemolysis and aggregation. Neither NC6 nor NC5-PEG had proinflammatory activity evaluated through changes in the expression of NF-κB–dependent genes, iNOS and vascular cell adhesion molecule-1, induced oxidative stress, or promoted DNA damage in various cells. Conclusion Our studies clearly indicate that PGA-coated (negatively charged) and PEGylated polyelectrolyte nanocapsules do not show in vitro toxicity, and their potential as a drug delivery system may be safely studied in vivo.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland,
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Cierniak
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland, .,Department of Biochemistry, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Kraków University, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland,
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland,
| |
Collapse
|
1356
|
Jiao M, Zhang P, Meng J, Li Y, Liu C, Luo X, Gao M. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater Sci 2018; 6:726-745. [PMID: 29308496 DOI: 10.1039/c7bm01020f] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to their intrinsic physical properties potentially useful for imaging and therapy as well as their highly engineerable surface, biocompatible inorganic nanoparticles offer novel platforms to develop advanced diagnostic and therapeutic agents for improved detection and more efficacious treatment of major diseases. The in vivo application of inorganic nanoparticles was demonstrated more than two decades ago, however it turns out to be very complicated as nanomaterials exhibit much more sophisticated pharmacokinetic properties than conventional drugs. In this review, we first discuss the in vivo behavior of inorganic nanoparticles after systematic administration, including the basic requirements for nanoparticles to be used in vivo, the impact of the particles' physicochemical properties on their pharmacokinetics, and the effects of the protein corona formed across the nano-bio interface. Next, we summarize the state-of-the-art of the preparation of biocompatible inorganic nanoparticles and bioconjugation strategies for obtaining target-specific nanoprobes. Then, the advancements in sensitive tumor imaging towards diagnosis and visualization of the abnormal signatures in the tumor microenvironment, together with recent studies on atherosclerosis imaging are highlighted. Finally, the future challenges and the potential for inorganic nanoparticles to be translated into clinical applications are discussed.
Collapse
Affiliation(s)
- Mingxia Jiao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
1357
|
Chen L, Glass JJ, De Rose R, Sperling C, Kent SJ, Houston ZH, Fletcher NL, Rolfe BE, Thurecht KJ. Influence of Charge on Hemocompatibility and Immunoreactivity of Polymeric Nanoparticles. ACS APPLIED BIO MATERIALS 2018; 1:756-767. [DOI: 10.1021/acsabm.8b00220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Joshua J. Glass
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Robert De Rose
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Melbourne, Victoria 3800, Australia
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden D-01069, Germany
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
1358
|
Siegrist S, Cörek E, Detampel P, Sandström J, Wick P, Huwyler J. Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology 2018; 13:73-99. [PMID: 30182784 DOI: 10.1080/17435390.2018.1505000] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The increasing nanomedicine usage has raised concerns about their possible impact on human health. Present evaluation strategies for nanomaterials rely on a case-by-case hazard assessment. They take into account material properties, biological interactions, and toxicological responses. Authorities have also emphasized that exposure route and intended use should be considered in the safety assessment of nanotherapeutics. In contrast to an individual assessment of nanomaterial hazards, we propose in the present work a novel and unique evaluation strategy designed to uncover potential adverse effects of such materials. We specifically focus on spherical engineered nanoparticles used as parenterally administered nanomedicines. Standardized assay protocols from the US Nanotechnology Characterization Laboratory as well as the EU Nanomedicine Characterisation Laboratory can be used for experimental data generation. We focus on both cellular uptake and intracellular persistence as main indicators for nanoparticle hazard potentials. Based on existing regulatory specifications defined by authorities such as the European Medicines Agency and the United States Food and Drug Administration, we provide a robust framework for application-oriented classification paired with intuitive decision making. The Hazard Evaluation Strategy (HES) for injectable nanoparticles is a three-tiered concept covering physicochemical characterization, nanoparticle (bio)interactions, and hazard assessment. It is cost-effective and can assist in the design and optimization of nanoparticles intended for therapeutic use. Furthermore, this concept is designed to be adaptable for alternative exposure and application scenarios. To the knowledge of the authors, the HES is unique in its methodology based on exclusion criteria. It is the first hazard evaluation strategy designed for nanotherapeutics.
Collapse
Affiliation(s)
- Stefan Siegrist
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| | - Emre Cörek
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| | - Pascal Detampel
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| | - Jenny Sandström
- b Swiss Centre for Applied Human Toxicology , Basel , Switzerland
| | - Peter Wick
- c Laboratory for Patricles-Biology Interactions , Empa Swiss Federal Laboratories for Materials Science and Technology , St. Gallen , Switzerland
| | - Jörg Huwyler
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| |
Collapse
|
1359
|
Promdet P, Rodríguez-García B, Henry A, Nguyen C, Khuu T, Galan-Mascaros JR, Sorasaenee K. Multimodal Prussian blue analogs as contrast agents for X-ray computed tomography. Dalton Trans 2018; 47:11960-11967. [PMID: 30074599 DOI: 10.1039/c8dt01687a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prussian blue analogs (PBAs) are versatile materials with a wide range of applications. Due to their tunability, intrinsic biocompatibility, as well as low toxicity, these nanoscale coordination polymers have been successfully studied as multimodal contrast agents for multiple imaging techniques. Herein, we report the expanded biomedical application of PBAs to X-ray computed tomography (CT). In our systematic study of the series A{MnII[FeIII(CN)6]} (A = K+, Rb+, Cs+), we showed that derivatives incorporating Rb+ and Cs+ ions in the tetrahedral sites of the parent face-centered cubic cyano-bridged networks exhibited substantially increased X-ray attenuation coefficients, thus yielding significant contrast compared to the clinically approved X-ray contrast agent iohexol at the same concentrations. Additionally, our μ-CT studies revealed that these PBAs could be useful as dual-energy CT contrast agents for different biological specimens by using the lower varying scanning X-ray tube voltages. Finally, in vitro studies using U87-Luc cells treated with PBAs, including cellular CT imaging and bioluminescence cell viability assays, revealed that PBAs were taken up by the glioblastoma cells, with moderate biocompatibility at concentrations below the mM range.
Collapse
Affiliation(s)
- Premrudee Promdet
- Translational Biomedical Imaging Laboratory, Department of Radiology, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
1360
|
Faria M, Björnmalm M, Thurecht KJ, Kent SJ, Parton RG, Kavallaris M, Johnston APR, Gooding JJ, Corrie SR, Boyd BJ, Thordarson P, Whittaker AK, Stevens MM, Prestidge CA, Porter CJH, Parak WJ, Davis TP, Crampin EJ, Caruso F. Minimum information reporting in bio-nano experimental literature. NATURE NANOTECHNOLOGY 2018; 13:777-785. [PMID: 30190620 PMCID: PMC6150419 DOI: 10.1038/s41565-018-0246-4] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/24/2018] [Indexed: 04/14/2023]
Abstract
Studying the interactions between nanoengineered materials and biological systems plays a vital role in the development of biological applications of nanotechnology and the improvement of our fundamental understanding of the bio-nano interface. A significant barrier to progress in this multidisciplinary area is the variability of published literature with regards to characterizations performed and experimental details reported. Here, we suggest a 'minimum information standard' for experimental literature investigating bio-nano interactions. This standard consists of specific components to be reported, divided into three categories: material characterization, biological characterization and details of experimental protocols. Our intention is for these proposed standards to improve reproducibility, increase quantitative comparisons of bio-nano materials, and facilitate meta analyses and in silico modelling.
Collapse
Affiliation(s)
- Matthew Faria
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Systems Biology Laboratory, School of Mathematics and Statistics and Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Kristofer J Thurecht
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Robert G Parton
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - Maria Kavallaris
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Tumour Biology and Targeting Program, Children's Cancer Institute, Lowy Cancer Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Angus P R Johnston
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - J Justin Gooding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Simon R Corrie
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Ben J Boyd
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Pall Thordarson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew K Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Molly M Stevens
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Clive A Prestidge
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- School of Pharmacy and Medical Science, The University of South Australia, Adelaide, South Australia, Australia
| | - Christopher J H Porter
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Wolfgang J Parak
- Fachbereich Physik und Chemie, CHyN, Universität Hamburg, Hamburg, Germany
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Edmund J Crampin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia, .
- Systems Biology Laboratory, School of Mathematics and Statistics and Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia, .
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
1361
|
Ran R, Wang H, Liu Y, Hui Y, Sun Q, Seth A, Wibowo D, Chen D, Zhao CX. Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting. Eur J Pharm Biopharm 2018; 130:1-10. [DOI: 10.1016/j.ejpb.2018.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/29/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
1362
|
Nomoto T, Nishiyama N. Design of drug delivery systems for physical energy-induced chemical surgery. Biomaterials 2018; 178:583-596. [DOI: 10.1016/j.biomaterials.2018.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 01/03/2023]
|
1363
|
Agrawal G, Agrawal R. Functional Microgels: Recent Advances in Their Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801724. [PMID: 30035853 DOI: 10.1002/smll.201801724] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Here, a spotlight is shown on aqueous microgel particles which exhibit a great potential for various biomedical applications such as drug delivery, cell imaging, and tissue engineering. Herein, different synthetic methods to develop microgels with desirable functionality and properties along with degradable strategies to ensure their renal clearance are briefly presented. A special focus is given on the ability of microgels to respond to various stimuli such as temperature, pH, redox potential, magnetic field, light, etc., which helps not only to adjust their physical and chemical properties, and degradability on demand, but also the release of encapsulated bioactive molecules and thus making them suitable for drug delivery. Furthermore, recent developments in using the functional microgels for cell imaging and tissue regeneration are reviewed. The results reviewed here encourage the development of a new class of microgels which are able to intelligently perform in a complex biological environment. Finally, various challenges and possibilities are discussed in order to achieve their successful clinical use in future.
Collapse
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur, 247001, Uttar Pradesh, India
| | - Rahul Agrawal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1500, USA
| |
Collapse
|
1364
|
Coty JB, Varenne F, Benmalek A, Garsaa O, Le Potier I, Taverna M, Smadja C, Vauthier C. Characterization of nanomedicines’ surface coverage using molecular probes and capillary electrophoresis. Eur J Pharm Biopharm 2018; 130:48-58. [DOI: 10.1016/j.ejpb.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022]
|
1365
|
Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater 2018; 77:1-14. [PMID: 30031162 DOI: 10.1016/j.actbio.2018.07.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Calcium phosphate is applied in many products in biomedicine, but also in toothpastes and cosmetics. In some cases, it is present in nanoparticulate form, either on purpose or after degradation or mechanical abrasion. Possible concerns are related to the biological effect of such nanoparticles. A thorough literature review shows that calcium phosphate nanoparticles as such have no inherent toxicity but can lead to an increase of the intracellular calcium concentration after endosomal uptake and lysosomal degradation. However, cells are able to clear the calcium from the cytoplasm within a few hours, unless very high doses of calcium phosphate are applied. The observed cytotoxicity in some cell culture studies, mainly for unfunctionalized particles, is probably due to particle agglomeration and subsequent sedimentation onto the cell layer, leading to a very high local particle concentration, a high particle uptake, and subsequent cell death. There is no risk from an oral uptake of calcium phosphate nanoparticles due to their rapid dissolution in the stomach. The risk from dermal or mucosal uptake is very low. Calcium phosphate nanoparticles can enter the bloodstream by inhalation, but no adverse effects have been observed, except for a prolonged exposition to high particle doses. Calcium phosphate nanoparticles inside the body (e.g. after implantation or due to abrasion) do not pose a risk as they are typically resorbed and dissolved by osteoclasts and macrophages. There is no indication for a significant influence of the calcium phosphate phase or the particle shape (e.g. spherical or rod-like) on the biological response. In summary, the risk associated with an exposition to nanoparticulate calcium phosphate in doses that are usually applied in biomedicine, health care products, and cosmetics is very low and most likely not present at all. STATEMENT OF SIGNIFICANCE Calcium phosphate is a well-established biomaterial. However, there are occasions when it occurs in a nanoparticulate form (e.g. as nanoparticle or as nanoparticulate bone substitution material) or after abrasion from a calcium phosphate-coated metal implant. In the light of the current discussion on the safety of nanoparticles, there have been concerns about potential adverse effects of nano-calcium phosphate, e.g. in a statement of a EU study group from 2016 about possible dangers associated with non-spherical nano-hydroxyapatite in cosmetics. In the US, there was a discussion in 2016 about the dangers of nano-calcium phosphate in babyfood. In this review, the potential exposition routes for nano-calcium phosphate are reviewed, with special emphasis on its application as biomaterial.
Collapse
|
1366
|
Castillo PM, Jimenez-Ruiz A, Carnerero JM, Prado-Gotor R. Exploring Factors for the Design of Nanoparticles as Drug Delivery Vectors. Chemphyschem 2018; 19:2810-2828. [DOI: 10.1002/cphc.201800388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Paula M. Castillo
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Aila Jimenez-Ruiz
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Jose M. Carnerero
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Rafael Prado-Gotor
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| |
Collapse
|
1367
|
Enrichment of liposomal nanomedicines using monolithic solid phase extraction discs following preactivation with bivalent metal ion solutions. J Chromatogr A 2018; 1564:224-227. [PMID: 29907411 DOI: 10.1016/j.chroma.2018.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 11/22/2022]
Abstract
Silicate is an excellent adsorbent because of its large surface area and amenability to surface modification. In this study, the representative liposome nanomedicines DOXIL® and AmBisome® were enriched using a silica monolith disc (diameter 4.2 mm, length 1.5 mm) with bimodal pores. Although the nanoparticles passed through the disc without retention when water was used as the preactivation solution, they were strongly retained by the disc when a 1 M bivalent metal (such as Mg2+, Ca2+, and Ni2+) solution was used. Notably, strong affinity was observed to DOXIL, a pegylated liposomal nanoparticle, by the disc composed of 5 μm and 10 nm through- and meso pores, respectively, and nearly 100% of DOXIL was recovered from a 40× diluted solution. Overall, the results demonstrate that monolithic discs are effective for the enrichment of liposomal nanomedicines.
Collapse
|
1368
|
Zhao Y, Fletcher NL, Liu T, Gemmell AC, Houston ZH, Blakey I, Thurecht KJ. In vivo therapeutic evaluation of polymeric nanomedicines: effect of different targeting peptides on therapeutic efficacy against breast cancer. Nanotheranostics 2018; 2:360-370. [PMID: 30324082 PMCID: PMC6170333 DOI: 10.7150/ntno.27142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
Targeted nanomedicines offer many advantages over macromolecular therapeutics that rely only on passive accumulation within the tumour environment. The aim of this work was to investigate the in vivo anticancer efficiency of polymeric nanomedicines that were conjugated with peptide aptamers that show high affinity for receptors on many cancer cells. In order to assess the ability for the nanomedicine to treat cancer and investigate how structure affected the behavior of the nanomedicine, three imaging modalities were utilized, including in vivo optical imaging, multispectral optoacoustic tomography (MSOT) and ex vivo confocal microscopy. An 8-mer (A8) or 13-mer (A13) peptide aptamer that have been shown to exhibit high affinity for heat shock protein 70 (HSP70) was covalently-bound to hyperbranched polymer (HBP) nanoparticles with the purpose of both cellular targeting, as well as the potential to impart some level of chemo-sensitization to the cells. Furthermore, doxorubicin was bound to the polymeric carrier as the anticancer drug, and Cyanine-5.5 (Cy5.5) was incorporated into the polymer as a monomeric fluorophore to aid in monitoring the behavior of the nanomedicine. Enhanced tumour regression was observed in nude mice bearing MDA-MB-468 xenografts when the nanocarriers were targeted using the peptide ligands, compared to control groups treated with free DOX or HBP without aptamer. The accumulated DOX level in solid tumours was 5.5 times higher in mice treated with the targeted therapeutic, than mice treated with free DOX, and 2.6 times higher than the untargeted nanomedicine that relied only on passive accumulation. The results suggest that aptamer-targeted therapeutics have great potential for improving accumulation of nanomedicines in tumours for therapy.
Collapse
Affiliation(s)
- Yongmei Zhao
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Tianqing Liu
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Anna C Gemmell
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Zachary H Houston
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Idriss Blakey
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| |
Collapse
|
1369
|
Extracts of Clove ( Syzygium aromaticum) Potentiate FMSP-Nanoparticles Induced Cell Death in MCF-7 Cells. Int J Biomater 2018; 2018:8479439. [PMID: 30210543 PMCID: PMC6126062 DOI: 10.1155/2018/8479439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Both nanoparticles and cloves (Syzygium aromaticum) possess anticancer properties, but they do not elicit a significant response on cancer cells when treated alone. In the present study, we have tested fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles) in combination with crude clove extracts on human breast cancer cells (MCF-7) to examine whether the combination approach enhance the cancer cell death. The MCF-7 cells were treated with different concentrations (1.25 μg/mL, 12.5 μg/mL, 50 μg/mL, 75 μg/mL, and 100 μg/mL) of FMSP-nanoparticles alone and in combination with 50 μg/mL crude clove extracts. The effects of FMSP-nanoparticles alone and combined with clove extracts were observed after 24 hrs and 48 hrs intervals. The response of FMSP-nanoparticles-treated cells was evaluated by Trypan Blue, 4',6-diamidino-2-phenylindole (DAPI), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. We have demonstrated that cancer cell viability was decreased to 55.40% when treated with FMSP-nanoparticles alone, whereas when cancer cells were treated with FMSP-nanoparticles along with crude clove extracts, the cell viability was drastically decreased to 8.50%. Both morphological and quantitative data suggest that the combination of FMSP-nanoparticles plus crude clove extracts are more effective in treating cancer cells and we suggest that the combination treatment of nanoparticles along with clove extracts hold a great promise for the cancer treatments.
Collapse
|
1370
|
Deng T, Wang J, Li Y, Han Z, Peng Y, Zhang J, Gao Z, Gu Y, Deng D. Quantum Dots-Based Multifunctional Nano-Prodrug Fabricated by Ingenious Self-Assembly Strategies for Tumor Theranostic. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27657-27668. [PMID: 30016068 DOI: 10.1021/acsami.8b08512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The rapid developments of quantum dots (QDs)-based nanoagents for imaging tumor and tracking drug delivery have been proven to be reliable nanodiagnostic techniques. Although abundant types of QD nanoagents have been developed for fighting against cancer, it still is a challenge to control their quality and achieve prefect repetition due to the complicated synthetic steps. The precise intermolecular self-assembly (SA) may afford a facile and low-cost strategy for this challenge. Herein, a pH and H2O2 dual-sensitive Sb-cyclodextrin (CD)-doxorubicin (DOX) molecule was designed to construct a QD-based theranostic prodrug (named as Sb-CD-DOX-ZAISe/ZnS) via host-guest strategy (1st SA strategy), in which QDs water-transfer and drug-uploading were integrated well. That is, the nano-prodrug (NPD) inherited highly luminescent properties from "host" QDs for bioimaging, as well as environment sensitivities from "guest" Sb-CD-DOX for drug release. Experimental results indicate that the Sb-CD-DOX-ZAISe/ZnS exhibited effectively passive tumor-targeting and could provide clear imaging for malignant tumors in metaphase or advanced stages; meanwhile, after coating with folic acid (FA) through electric attraction (2nd SA strategy), the final Sb-CD-DOX-ZAISe/ZnS@FA NPD showed expected pH-controlled negative-to-positive charge reversal ability and a better curative effect compared with free DOX. Hence, fabricating nanocomposites by highly efficient self-assembly strategies is favorable toward inorganic nanoparticles-based prodrug delivery system for tumor-targeting theranostic.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | | | | |
Collapse
|
1371
|
d'Amora M, Cassano D, Pocoví-Martínez S, Giordani S, Voliani V. Biodistribution and biocompatibility of passion fruit-like nano-architectures in zebrafish. Nanotoxicology 2018; 12:914-922. [PMID: 30132360 DOI: 10.1080/17435390.2018.1498551] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Passion fruit-like nano-architectures (NAs) are all-in-one platforms of increasing interest for the translation of metal nanoparticles into clinics. NAs are nature-inspired disassembling inorganic theranostics, which jointly combine most of the appealing behaviors of noble metal nanoparticles with their potential organism excretion. Despite their unique and promising properties, NAs in vivo interactions and potential adverse effects have not yet been investigated. In this study, we employ zebrafish (Danio Rerio) to assess the development toxicity of NAs as well as their uptake and bioaccumulation at different stages of growth. The evaluation of multiple endpoints related to the toxicity clearly indicates that NAs do not induce mortality, developmental defects, or alterations on the hatching rate and behavior of zebrafish. Moreover, the analysis of nanostructures uptake and biodistribution demonstrates that NAs are successfully internalized and present a specific localization. Overall, our results demonstrate that NAs are able to pass through the embryos chorion and accumulate in specific tissues, exhibiting an impressive biocompatibility.
Collapse
Affiliation(s)
- Marta d'Amora
- a Nano Carbon Materials , Istituto Italiano di Tecnologia , Turin , Italy
| | - Domenico Cassano
- b Center for Nanotechnology Innovation@NEST , Istituto Italiano di Tecnologia , Pisa , Italy.,c NEST-Scuola Normale Superiore , Pisa , Italy
| | | | - Silvia Giordani
- a Nano Carbon Materials , Istituto Italiano di Tecnologia , Turin , Italy.,e Department of Chemistry , University of Turin , Turin , Italy
| | - Valerio Voliani
- b Center for Nanotechnology Innovation@NEST , Istituto Italiano di Tecnologia , Pisa , Italy
| |
Collapse
|
1372
|
Shin H, Park SJ, Yim Y, Kim J, Choi C, Won C, Min DH. Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800065] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hojeong Shin
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Se-Jin Park
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Yeajee Yim
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Jungho Kim
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Chulwon Choi
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Dal-Hee Min
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| |
Collapse
|
1373
|
Golder MR, Liu J, Andersen JN, Shipitsin MV, Vohidov F, Nguyen HVT, Ehrlich DC, Huh SJ, Vangamudi B, Economides KD, Neenan AM, Ackley JC, Baddour J, Paramasivan S, Brady SW, Held EJ, Reiter LA, Saucier-Sawyer JK, Kopesky PW, Chickering DE, Blume-Jensen P, Johnson JA. Reduction of liver fibrosis by rationally designed macromolecular telmisartan prodrugs. Nat Biomed Eng 2018; 2:822-830. [PMID: 30918745 PMCID: PMC6433387 DOI: 10.1038/s41551-018-0279-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
At present there are no drugs for the treatment of chronic liver fibrosis that have been approved by the Food and Drug administration of the United States. Telmisartan, a small-molecule antihypertensive drug, displays antifibrotic activity, but its clinical use is limited because it causes systemic hypotension. Here, we report the scalable and convergent synthesis of macromolecular telmisartan prodrugs optimized for preferential release in diseased liver tissue. We optimized the release of active telmisartan in fibrotic liver to be depot-like (that is, a constant therapeutic concentration) through the molecular design of telmisartan brush-arm star polymers, and show that these lead to improved efficacy and to the avoidance of dose-limiting hypotension in both metabolically and chemically induced mouse models of hepatic fibrosis, as determined by histopathology, enzyme levels in the liver, intact-tissue protein markers, hepatocyte necrosis protection, and gene-expression analyses. In rats and dogs, the prodrugs are retained long-term in liver tissue and have a well-tolerated safety profile. Our findings support the further development of telmisartan prodrugs that enable infrequent dosing in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Matthew R Golder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jenny Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,XTuit Pharmaceuticals, Waltham, MA, USA
| | | | | | - Farrukh Vohidov
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hung V-T Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Deborah C Ehrlich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter Blume-Jensen
- XTuit Pharmaceuticals, Waltham, MA, USA. .,Acrivon Therapeutics, Lab Central, Cambridge, MA, USA.
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
1374
|
Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018; 13:4727-4745. [PMID: 30154657 PMCID: PMC6108334 DOI: 10.2147/ijn.s168053] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in nanomedicine have become indispensable for targeted drug delivery, early detection, and increasingly personalized approaches to cancer treatment. Nanoparticle-based drug-delivery systems have overcome some of the limitations associated with traditional cancer-therapy administration, such as reduced drug solubility, chemoresistance, systemic toxicity, narrow therapeutic indices, and poor oral bioavailability. Advances in the field of nanomedicine include “smart” drug delivery, or multiple levels of targeting, and extended-release drug-delivery systems that provide additional methods of overcoming these limitations. More recently, the idea of combining smart drug delivery with extended-release has emerged in hopes of developing highly efficient nanoparticles with improved delivery, bioavailability, and safety profiles. Although functionalized and extended-release drug-delivery systems have been studied extensively, there remain gaps in the literature concerning their application in cancer treatment. We aim to provide an overview of smart and extended-release drug-delivery systems for the delivery of cancer therapies, as well as to introduce innovative advancements in nanoparticle design incorporating these principles. With the growing need for increasingly personalized medicine in cancer treatment, smart extended-release nanoparticles have the potential to enhance chemotherapy delivery, patient adherence, and treatment outcomes in cancer patients.
Collapse
Affiliation(s)
| | - Komal Bajwa
- Postgraduate Medical Education, Graduate Diploma and Professional Master in Medical Sciences, School of Medicine, Queen's University
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University,
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University,
| |
Collapse
|
1375
|
Shin JM, Song SH, Vijayakameswara Rao N, Lee ES, Ko H, Park JH. A carboxymethyl dextran-based polymeric conjugate as the antigen carrier for cancer immunotherapy. Biomater Res 2018; 22:21. [PMID: 30128166 PMCID: PMC6092827 DOI: 10.1186/s40824-018-0131-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Antigen-specific cytotoxic T lymphocytes (CTLs), which eliminate target cells bearing antigenic peptides presented by surface major histocompatibility complex (MHC) class I molecules, play a key role in cancer immunotherapy. However, the majority of tumors are not immunologically rejected since they express self-antigens which are not recognized by CTLs as foreign. To foreignize these tumors for CTL-mediated immunological rejection, it is essential to develop carriers that can effectively deliver foreign antigens to cancer cells. METHODS A polymeric conjugate, composed of a carboxymethyl dextran (CMD) as the backbone and ovalbumin (OVA) as a model foreign antigen, was prepared to investigate its potential as the antigen carrier for cancer immunotherapy. RESULTS An in vitro cellular uptake study showed that the conjugate was successfully taken up by TC-1 cervical cancer cells. When CMD-OVA was systemically administered to tumor-bearing mice, the strong fluorescence signal was observed at the tumor site over the whole period of time period, suggesting high tumor targetability of the conjugate. Compared to free OVA, CMD-OVA induced significantly higher antigen presentation at the tumor site. CONCLUSIONS The CMD-OVA conjugate can effectively deliver the antigen to the tumor site, implying its high potential as the antigen carrier for cancer immunotherapy.
Collapse
Affiliation(s)
- Jung Min Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | | | - Eun Sook Lee
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Suwon, 16419 Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
| |
Collapse
|
1376
|
Tuwahatu CA, Yeung CC, Lam YW, Roy VAL. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J Control Release 2018; 287:24-34. [PMID: 30110614 DOI: 10.1016/j.jconrel.2018.08.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
The development of polymeric materials as drug delivery systems has advanced from systems that rely on classical passive targeting to carriers that can sustain the precisely controlled release of payloads upon physicochemical triggers in desired microenvironment. Molecularly imprinted polymers (MIP), materials designed to capture specific molecules based on their molecular shape and charge distribution, are attractive candidates for fulfilling these purposes. In particular, drug-imprinted polymers coupled with active targeting mechanisms have been explored as potential drug delivery systems. In this review, we have curated important recent efforts in the development of drug-imprinted polymers in a variety of clinical applications, especially oncology and ophthalmology. MIP possesses properties that may complement the traditional delivery systems of these two disciplines, such as passive enhanced permeability and retention effect (EPR) in cancer tumors, and passive drug diffusion in delivering ophthalmic therapeutics. Furthermore, the prospects of MIP integration with the emerging gene therapies will be discussed.
Collapse
Affiliation(s)
- Christian Antonio Tuwahatu
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chi Chung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Vellaisamy Arul Lenus Roy
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
1377
|
Willmann W, Dringen R. How to Study the Uptake and Toxicity of Nanoparticles in Cultured Brain Cells: The Dos and Don't Forgets. Neurochem Res 2018; 44:1330-1345. [PMID: 30088236 DOI: 10.1007/s11064-018-2598-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Due to their exciting properties, engineered nanoparticles have obtained substantial attention over the last two decades. As many types of nanoparticles are already used for technical and biomedical applications, the chances that cells in the brain will encounter nanoparticles have strongly increased. To test for potential consequences of an exposure of brain cells to engineered nanoparticles, cell culture models for different types of neural cells are frequently used. In this review article we will discuss experimental strategies and important controls that should be used to investigate the physicochemical properties of nanoparticles for the cell incubation conditions applied as well as for studies on the biocompatibility and the cellular uptake of nanoparticles in neural cells. The main focus of this article will be the interaction of cultured neural cells with iron oxide nanoparticles, but similar considerations are important for studying the consequences of an exposure of other types of cultured cells with other types of nanoparticles. Our article aims to improve the understanding of the special technical challenges of working with nanoparticles on cultured neural cells, to identify potential artifacts and to prevent misinterpretation of data on the potential adverse or beneficial consequences of a treatment of cultured cells with nanoparticles.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
1378
|
Sun C, Zhang H, Li S, Zhang X, Cheng Q, Ding Y, Wang LH, Wang R. Polymeric Nanomedicine with "Lego" Surface Allowing Modular Functionalization and Drug Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25090-25098. [PMID: 29993234 DOI: 10.1021/acsami.8b06598] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface functionalization of nanoparticles (NPs) is of pivotal importance in nanomedicine. However, current strategies often require covalent conjugation that involves laborious design and synthesis. Herein, cucurbit[7]uril (CB[7])-decorated poly(lactic acid) (PLA)/poly(lactic-co-glycolic acid) (PLGA) NPs are developed and exploited for the first time as a novel, biocompatible, and versatile drug delivery platform with a noncovalently tailorable surface. CB[7] on the surface of NPs, acting as a "Lego" base block, allowed facile, modular surface modification with a variety of functional moieties or tags that are linked with amantadine (a complementary "Lego" piece to the base block), including amantadine-conjugated folate, polyethylene glycol, and fluorescein isothiocyanate. In addition, surface CB[7] also provided an opportunity for encapsulation of a secondary drug, such as oxaliplatin, into the cavity of the base block CB[7], in addition to a primary drug (e.g., paclitaxel) loaded into PLA/PLGA NPs, for a possible synergistic chemotherapy. This proof of concept not only provides the first versatile PLA/PLGA nanomedicine platform with "Lego" surface for modular functionalization and improved drug delivery but also offers new insights into the design and development of novel nanomedicine with a modular surface.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa , Macau 999078 , China
| | - Haipeng Zhang
- Department of Gynaecology , The First Hospital of Jilin University , Changchun 130012 , China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa , Macau 999078 , China
| | - Xiangjun Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa , Macau 999078 , China
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa , Macau 999078 , China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa , Macau 999078 , China
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Lian-Hui Wang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa , Macau 999078 , China
| |
Collapse
|
1379
|
Controlled-release nanotherapeutics: State of translation. J Control Release 2018; 284:39-48. [DOI: 10.1016/j.jconrel.2018.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/04/2018] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
|
1380
|
Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: A review. J Control Release 2018; 283:1-19. [DOI: 10.1016/j.jconrel.2018.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022]
|
1381
|
Abstract
The focus of nanoparticle research is on exploring its application in all kinds of field. Among these, multifunctional nanoparticle attracts increasing interest due to its fittest property and adjustable property. Herein, a multifunctional and multistage nanoparticle considering the advantage of both nanogel and pH-responsive property has been designed and synthesized in the research. The composite nanoparticle was obtained by in situ processing and polymerization technique using acetylated β-cyclodextrin and gelatin as materials. Gelatin was first encapsulated into Ac-β-CD nanoparticle in order to investigate optimal fabrication conditions of W/O/W technique. The results showed that the nanoparticle had monodisperse characteristic and coarse spherical morphology, which was influenced by factors such as PVA concentration and water/oil ratio. In further step, two-phase composite nanoparticle could be obtained by combined W/O/W technique and in situ polymerization using optimal preparative parameters of W/O/W technique. Two-phase structure could be confirmed by TEM images and DLS results. Fabrication temperature had no effect on the diameters of composite nanoparticle, but influenced the encapsulated efficiency of nanogel. Finally, composite nanoparticle showed quick pH response property at mild acid medium and no obvious cytotoxicity.
Collapse
|
1382
|
Yan X, Remond M, Zheng Z, Hoibian E, Soulage C, Chambert S, Andraud C, Van der Sanden B, Ganachaud F, Bretonnière Y, Bernard J. General and Scalable Approach to Bright, Stable, and Functional AIE Fluorogen Colloidal Nanocrystals for in Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25154-25165. [PMID: 29979019 DOI: 10.1021/acsami.8b07859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fluorescent nanoparticles built from aggregation-induced emission-active organic molecules (AIE-FONs) have emerged as powerful tools in life science research for in vivo bioimaging of organs, biosensing, and therapy. However, the practical use of such biotracers has been hindered owing to the difficulty of designing bright nanoparticles with controlled dimensions (typically below 200 nm), narrow size dispersity and long shelf stability. In this article, we present a very simple yet effective approach to produce monodisperse sub-200 nm AIE fluorescent organic solid dispersions with excellent redispersibility and colloidal stability in aqueous medium by combination of nanoprecipitation and freeze-drying procedures. By selecting polymer additives that simultaneously act as stabilizers, promoters of amorphous-crystalline transition, and functionalization/cross-linking platforms, we demonstrate a straightforward access to stable nanocrystalline FONs that exhibit significantly higher brightness than their amorphous precursors and constitute efficient probes for in vivo imaging of the normal and tumor vasculature. FONs design principles reported here are universal, applicable to a range of fluorophores with different chemical structures and crystallization abilities, and are suitable for high-throughput production and manufacturing of functional imaging probes.
Collapse
Affiliation(s)
- Xibo Yan
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| | - Maxime Remond
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Zheng Zheng
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Elsa Hoibian
- CarMeN Laboratory , Univ-Lyon, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1 , F-69621 Villeurbanne , France
| | - Christophe Soulage
- CarMeN Laboratory , Univ-Lyon, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1 , F-69621 Villeurbanne , France
| | - Stéphane Chambert
- Univ Lyon, INSA-Lyon, CNRS, Université Lyon 1, CPE Lyon, ICBMS, UMR 5246 , Bâtiment Jules Verne, 20 Avenue Albert Einstein , F-69621 Villeurbanne , France
| | - Chantal Andraud
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Boudewijn Van der Sanden
- Intravital Microscopy Plateform, France Life Imaging, Unit Biomedical Radio-Pharmaceutics, Medical Faculty , INSERM U1039 and University Grenoble Alpes , 38706 La Tronche , France
| | - François Ganachaud
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| | - Yann Bretonnière
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Julien Bernard
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| |
Collapse
|
1383
|
Hickey JW, Kosmides AK, Schneck JP. Engineering Platforms for T Cell Modulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:277-362. [PMID: 30262034 DOI: 10.1016/bs.ircmb.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cells are crucial contributors to mounting an effective immune response and increasingly the focus of therapeutic interventions in cancer, infectious disease, and autoimmunity. Translation of current T cell immunotherapies has been hindered by off-target toxicities, limited efficacy, biological variability, and high costs. As T cell therapeutics continue to develop, the application of engineering concepts to control their delivery and presentation will be critical for their success. Here, we outline the engineer's toolbox and contextualize it with the biology of T cells. We focus on the design principles of T cell modulation platforms regarding size, shape, material, and ligand choice. Furthermore, we review how application of these design principles has already impacted T cell immunotherapies and our understanding of T cell biology. Recent, salient examples from protein engineering, synthetic particles, cellular and genetic engineering, and scaffolds and surfaces are provided to reinforce the importance of design considerations. Our aim is to provide a guide for immunologists, engineers, clinicians, and the pharmaceutical sector for the design of T cell-targeting platforms.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan P Schneck
- Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
1384
|
Chee HL, Gan CRR, Ng M, Low L, Fernig DG, Bhakoo KK, Paramelle D. Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging. ACS NANO 2018; 12:6480-6491. [PMID: 29979569 DOI: 10.1021/acsnano.7b07572] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The biocompatibility and performance of reagents for in vivo contrast-enhanced magnetic resonance imaging (MRI) are essential for their translation to the clinic. The quality of the surface coating of nanoparticle-based MRI contrast agents, such as ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs), is critical to ensure high colloidal stability in biological environments, improved magnetic performance, and dispersion in circulatory fluids and tissues. Herein, we report the design of a library of 21 peptides and ligands and identify highly stable self-assembled monolayers on the USPIONs' surface. A total of 86 different peptide-coated USPIONs are prepared and selected using several stringent criteria, such as stability against electrolyte-induced aggregation in physiological conditions, prevention of nonspecific binding to cells, and absence of cellular toxicity and contrast-enhanced in vivo MRI. The bisphosphorylated peptide 2PG-S*VVVT-PEG4-ol provides the highest biocompatibility and performance for USPIONs, with no detectable toxicity or adhesion to live cells. The 2PG-S*VVVT-PEG4-ol-coated USPIONs show enhanced magnetic resonance properties, r1 (2.4 mM-1·s-1) and r2 (217.8 mM-1·s-1) relaxivities, and greater r2/ r1 relaxivity ratios (>90) when compared to those of commercially available MRI contrast agents. Furthermore, we demonstrate the utility of 2PG-S*VVVT-PEG4-ol-coated USPIONs as a T2 contrast agent for in vivo MRI applications. High contrast enhancement of the liver is achieved as well as detection of liver tumors, with significant improvement of the contrast-to-noise ratio of tumor-to-liver contrast. It is envisaged that the reported peptide-coated USPIONs have the potential to allow for the specific targeting of tumors and hence early detection of cancer by MRI.
Collapse
Affiliation(s)
- Heng Li Chee
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way , Innovis #08-03, 138634 Singapore
| | - Ching Ruey R Gan
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way , Innovis #08-03, 138634 Singapore
| | - Michael Ng
- Singapore Bioimaging Consortium, A*STAR (Agency for Science, Technology and Research) , 11 Biopolis Way , 138667 Singapore
| | - Lionel Low
- Singapore Immunology Network , A*STAR (Agency for Science, Technology and Research) , 8a Biomedical Grove , 138648 Singapore
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology , University of Liverpool , Liverpool L69 7ZB , United Kingdom
| | - Kishore K Bhakoo
- Singapore Bioimaging Consortium, A*STAR (Agency for Science, Technology and Research) , 11 Biopolis Way , 138667 Singapore
| | - David Paramelle
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way , Innovis #08-03, 138634 Singapore
| |
Collapse
|
1385
|
Tang H, Jiang Z, He H, Li X, Hu H, Zhang N, Dai Y, Zhou Z. Uptake and transport of pullulan acetate nanoparticles in the BeWo b30 placental barrier cell model. Int J Nanomedicine 2018; 13:4073-4082. [PMID: 30034233 PMCID: PMC6047610 DOI: 10.2147/ijn.s161319] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Nanomedicine has shown a great potential in perinatal medicine because of its characteristics of sustained, controlled release and targeting ability; on the other hand, it may also lead to unexpected toxicities such as embryotoxicity and even malformation after crossing the placental barrier, but data concerning transplacental transport are scarce. Pullulan acetate (PA) nanoparticles (NPs) are a promising nanocarrier derived from natural polysaccharide; however, their transplacental transport ability and mechanism are unknown. MATERIALS AND METHODS In this study, fluorescein isothiocyanate (FITC) conjugated PA (PA-FITC) was synthesized. PA-FITC NPs were characterized by dynamic light scattering, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The cytotoxicity of PA-FITC NPs at concentrations of 15, 30, 60, 125, 250, 500, 1,000 and 2,000 μg/mL was studied by cell counting kit-8. The human chorionic gonadotrophin (HCG) cytokine assay was conducted to evaluate the biological function of BeWo b30 cells. Endocytic mechanisms of PA-FITC NPs were investigated via fluorescence analysis. The monolayer properties were characterized by TEM, tight junction staining, transepithelial electrical resistance and fluorescein sodium transportation. The transport ability was measured in the cell based transwell model by confocal imaging and SEM. RESULTS PA-FITC NPs were almost spherical shape with a size range of 200-300 nm. Cell viability of BeWo b30 cells was up to 100% in all groups. The concentrations of HCG increased with increasing numbers of cells and culture time, which showed the good biological function of BeWo b30 cells. PA-FITC NPs were rapidly endocytosed through caveolae-mediated endocytosis and pinocytosis, with uptake inhibition rates with nystatin (NY) and colchicines (Col) of 55% and 51% respectively. BeWo b30 cell monolayer was formed over 5 days. PA-FITC NPs were found in the cytoplasm of cells on the transwell membranes; while some NPs were found in the basolateral (fetal) compartment over 24 h. CONCLUSION In summary, PA-FITC NPs are nontoxic, can cross the blood-placental barrier, and show mainly internalization to BeWo b30 cells through caveolae-mediated endocytosis and pinocytosis pathways, major via the former pathway. The results could benefit the adjustment and control of the transplacental transport of nanomedicines.
Collapse
Affiliation(s)
- Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, People's Republic of China
| | - Ziwen Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, People's Republic of China,
| | - Haibo He
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Xiaoqin Li
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Haipeng Hu
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, People's Republic of China
| | - Ning Zhang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, People's Republic of China
| | - Yinmei Dai
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, People's Republic of China,
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin, 300192, People's Republic of China,
| |
Collapse
|
1386
|
Wang D, Yu C, Xu L, Shi L, Tong G, Wu J, Liu H, Yan D, Zhu X. Nucleoside Analogue-Based Supramolecular Nanodrugs Driven by Molecular Recognition for Synergistic Cancer Therapy. J Am Chem Soc 2018; 140:8797-8806. [PMID: 29940110 DOI: 10.1021/jacs.8b04556] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The utilization of nanotechnology for the delivery of a wide range of anticancer drugs has the potential to reduce adverse effects of free drugs and improve the anticancer efficacy. However, carrier materials and/or chemical modifications associated with drug delivery make it difficult for nanodrugs to achieve clinical translation and final Food and Drug Administration (FDA) approvals. We have discovered a molecular recognition strategy to directly assemble two FDA-approved small-molecule hydrophobic and hydrophilic anticancer drugs into well-defined, stable nanostructures with high and quantitative drug loading. Molecular dynamics simulations demonstrate that purine nucleoside analogue clofarabine and folate analogue raltitrexed can self-assemble into stable nanoparticles through molecular recognition. In vitro studies exemplify how the clofarabine:raltitrexed nanoparticles could greatly improve synergistic combination effects by arresting more G1 phase of the cell cycle and reducing intracellular deoxynucleotide pools. More importantly, the nanodrugs increase the blood retention half-life of the free drugs, improve accumulation of drugs in tumor sites, and promote the synergistic tumor suppression property in vivo.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Li Xu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Jieli Wu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Hong Liu
- Institute of Theoretical Chemistry , State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130021 , People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| |
Collapse
|
1387
|
Gao C, Lin Z, Lin X, He Q. Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| |
Collapse
|
1388
|
Roberts S, Andreou C, Choi C, Donabedian P, Jayaraman M, Pratt EC, Tang J, Pérez-Medina C, Jason de la Cruz M, Mulder WJM, Grimm J, Kircher M, Reiner T. Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chem Sci 2018; 9:5646-5657. [PMID: 30061998 PMCID: PMC6049522 DOI: 10.1039/c8sc01706a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Optoacoustic imaging offers the promise of high spatial resolution and, at the same time, penetration depths well beyond the conventional optical imaging technologies, advantages that would be favorable for a variety of clinical applications. However, similar to optical fluorescence imaging, exogenous contrast agents, known as sonophores, need to be developed for molecularly targeted optoacoustic imaging. Despite numerous optoacoustic contrast agents that have been reported, there is a need for more rational design of sonophores. Here, using a library screening approach, we systematically identified and evaluated twelve commercially available near-infrared (690-900 nm) and highly absorbing dyes for multi-spectral optoacoustic tomography (MSOT). In order to achieve more accurate spectral deconvolution and precise data quantification, we sought five practical mathematical methods, namely direct classical least squares based on UV-Vis (UV/Vis-DCLS) or optoacoustic (OA-DCLS) spectra, non-negative LS (NN-LS), independent component analysis (ICA) and principal component analysis (PCA). We found that OA-DCLS is the most suitable method, allowing easy implementation and sufficient accuracy for routine analysis. Here, we demonstrate for the first time that our biocompatible nanoemulsions (NEs), in combination with near-infrared and highly absorbing dyes, enable non-invasive in vivo MSOT detection of tumors. Specifically, we found that NE-IRDye QC1 offers excellent optoacoustic performance and detection compared to related near-infrared NEs. We demonstrate that when loaded with low fluorescent or dark quencher dyes, NEs represent a flexible and new class of exogenous sonophores suitable for non-invasive pre-clinical optoacoustic imaging.
Collapse
Affiliation(s)
- Sheryl Roberts
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Chrysafis Andreou
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Crystal Choi
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Patrick Donabedian
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Madhumitha Jayaraman
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Edwin C Pratt
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
| | - Jun Tang
- Cancer Research Institute (CRI) , 29 Broadway , New York , NY 10006 , USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute , Department of Radiology , Mount Sinai School of Medicine , New York , NY 10029 , USA
| | - M Jason de la Cruz
- Structural Biology Program , Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , USA
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute , Department of Radiology , Mount Sinai School of Medicine , New York , NY 10029 , USA
- Department of Medical Biochemistry , Academic Medical Center , Amsterdam , The Netherlands
| | - Jan Grimm
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
- Pharmacology Program , Weill Cornell Medical College , New York , NY 10065 , USA
| | - Moritz Kircher
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
| | - Thomas Reiner
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
| |
Collapse
|
1389
|
Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. Int J Mol Sci 2018; 19:ijms19071979. [PMID: 29986450 PMCID: PMC6073740 DOI: 10.3390/ijms19071979] [Citation(s) in RCA: 551] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
The application of nanotechnology for the treatment of cancer is mostly based on early tumor detection and diagnosis by nanodevices capable of selective targeting and delivery of chemotherapeutic drugs to the specific tumor site. Due to the remarkable properties of gold nanoparticles, they have long been considered as a potential tool for diagnosis of various cancers and for drug delivery applications. These properties include high surface area to volume ratio, surface plasmon resonance, surface chemistry and multi-functionalization, facile synthesis, and stable nature. Moreover, the non-toxic and non-immunogenic nature of gold nanoparticles and the high permeability and retention effect provide additional benefits by enabling easy penetration and accumulation of drugs at the tumor sites. Various innovative approaches with gold nanoparticles are under development. In this review, we provide an overview of recent progress made in the application of gold nanoparticles in the treatment of cancer by tumor detection, drug delivery, imaging, photothermal and photodynamic therapy and their current limitations in terms of bioavailability and the fate of the nanoparticles.
Collapse
|
1390
|
Capasso Palmiero U, Kaczmarek JC, Fenton OS, Anderson DG. Poly(β-amino ester)-co-poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. Adv Healthc Mater 2018; 7:e1800249. [PMID: 29761648 DOI: 10.1002/adhm.201800249] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/12/2018] [Indexed: 12/31/2022]
Abstract
The production of new proteins with messenger RNA (mRNA) has gained a broad interest due to its potential for addressing a wide range of diseases. Here, the design and characterization of novel ionizable poly(β-amino ester)-co-poly(caprolactone) terpolymers, synthesized via the combination of the ring opening polymerization and the Michael step-growth polymerization, are reported. The versatility of this method is demonstrated by varying the number of caprolactone units attached to each poly(β-amino ester) (PBAE) terpolymer. The ability of the novel poly-caprolactone (PCL)-based PBAE materials to deliver mRNA is shown to depend on the physiochemical characteristics of the material, such as lipophilicity, as well as the formulation method used to complex the polymer with the oligonucleotide. This latter variable represents a previously unstudied aspect of PBAE library screens that can play an important role in identifying true top candidates for nucleic acid delivery. The most stable terpolymer is injected intravenously (IV) in mice and shows a transfection efficacy several times higher than the polyethylenimine (PEI) which is focused in the spleen, opening the possibility to use these biodegradable carriers in the intravenous delivery of antigen-encoding mRNA for cancer immunotherapy and vaccination.
Collapse
Affiliation(s)
- Umberto Capasso Palmiero
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry Materials and Chemical Engineering Politecnico di Milano Via Mancinelli 7 20131 Milano Italy
| | - James C. Kaczmarek
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Owen S. Fenton
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Harvard and MIT Division of Health Science and Technology Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
1391
|
Chen CH, Chen CJ, Elzoghby AO, Yeh TS, Fang JY. Self-assembly and directed assembly of lipid nanocarriers for prevention of liver fibrosis in obese rats: a comparison with the therapy of bariatric surgery. Nanomedicine (Lond) 2018; 13:1551-1566. [DOI: 10.2217/nnm-2018-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: Whether the obesity prevention by chemicals or surgeries in already obese patients is the better choice remains controversial. We aimed to compare the effect of orally silibinin-loaded nanocarriers and Roux-en-Y gastric bypass surgery on hepatic fibrosis in high-fat feeding-induced obese rats. Methodology: The developed nanocarriers included self-emulsifying drug delivery system (SNEDDS) and nanostructured lipid carriers (NLC). Results: A significant decrease in collagen production and lipid droplet formation was observed upon nanosystem and bariatric surgery than the rats treated with silibinin control suspension. Stage 3 fibrosis was present in 33% of the obese rats. This percentage could be minimized to 0% by SNEDDS and NLC. Following oral administration, SNEDDS and NLC resulted in 3.5- and 2.9-fold increase, respectively, in bioavailability compared with the reference suspension. Conclusion: Nanomedicine prevention provided a comparable efficiency to ameliorate liver steatosis as Roux-en-Y gastric bypass due to the improvement of silibinin dissolution and gastrointestinal permeation.
Collapse
Affiliation(s)
- Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing & Management, Miaoli, Taiwan
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Kwei shan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kwei shan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kwei shan, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kwei shan, Taoyuan, Taiwan
- Research Center for Food & Cosmetic Safety & Research Center for Chinese Herbal Medicine, Chang Gung University of Science & Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kwei shan, Taoyuan, Taiwan
| |
Collapse
|
1392
|
Wang W, Yang R, Zhang F, Yuan B, Yang K, Ma Y. Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico. NANOSCALE 2018; 10:11670-11678. [PMID: 29897087 DOI: 10.1039/c8nr01204k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transmembrane penetration of nanoparticles (NPs) promises an effective pathway for cargo delivery into cells, and offers the possibility of organelle-specific targeting for biomedical applications. However, a full understanding of the underlying NP-membrane interaction mechanism is still lacking. In this work, the membrane penetration behavior of NPs is statistically analyzed based on the simulations of over 2.2 ms, which are performed with dissipative particle dynamics (DPD). Influences from multiple factors including the NP concentration, shape and surface chemistry are taken into account. It is interesting to find that, the introduction of a partner NP would greatly facilitate the transmembrane penetration of a host spherical NP. This is probably due to the membrane-mediated cooperation between the NPs. Moreover, the proper selection of a partner NP with specific surface chemistry is of great significance. For example, the best partner for a hydrophilic NP to achieve transmembrane penetration is a Janus-like one, in comparison with the hydrophilic, hydrophobic or randomly surface-decorated NPs. Furthermore, such a partner-facilitating effect in NP translocation also works for a shaped NP although less pronounced. Our results are helpful for a better understanding of the complicated nano-bio interactions, and offer a practical guide to the NP-based drug delivery strategy with high efficiency.
Collapse
Affiliation(s)
- W Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China.
| | | | | | | | | | | |
Collapse
|
1393
|
Choi JM, Bourassa V, Hong K, Shoga M, Lim EY, Park A, Apaydin K, Udit AK. Polyvalent Hybrid Virus-Like Nanoparticles with Displayed Heparin Antagonist Peptides. Mol Pharm 2018; 15:2997-3004. [DOI: 10.1021/acs.molpharmaceut.8b00135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justin M. Choi
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Valerie Bourassa
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Kevin Hong
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Michael Shoga
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Elizabeth Y. Lim
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Andrew Park
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Kazim Apaydin
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Andrew K. Udit
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| |
Collapse
|
1394
|
Gill MR, Menon JU, Jarman PJ, Owen J, Skaripa-Koukelli I, Able S, Thomas JA, Carlisle R, Vallis KA. 111In-labelled polymeric nanoparticles incorporating a ruthenium-based radiosensitizer for EGFR-targeted combination therapy in oesophageal cancer cells. NANOSCALE 2018; 10:10596-10608. [PMID: 29808844 PMCID: PMC5994990 DOI: 10.1039/c7nr09606b] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/17/2018] [Indexed: 05/14/2023]
Abstract
Radiolabelled, drug-loaded nanoparticles may combine the theranostic properties of radionuclides, the controlled release of chemotherapy and cancer cell targeting. Here, we report the preparation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles surface conjugated to DTPA-hEGF (DTPA = diethylenetriaminepentaacetic acid, hEGF = human epidermal growth factor) and encapsulating the ruthenium-based DNA replication inhibitor and radiosensitizer Ru(phen)2(tpphz)2+ (phen = 1,10-phenanthroline, tpphz = tetrapyridophenazine) Ru1. The functionalized PLGA surface incorporates the metal ion chelator DTPA for radiolabelling and the targeting ligand for EGF receptor (EGFR). Nanoparticles radiolabelled with 111In are taken up preferentially by EGFR-overexpressing oesophageal cancer cells, where they exhibit radiotoxicity through the generation of cellular DNA damage. Moreover, nanoparticle co-delivery of Ru1 alongside 111In results in decreased cell survival compared to single-agent formulations; an effect that occurs through DNA damage enhancement and an additive relationship between 111In and Ru1. Substantially decreased uptake and radiotoxicity of nanoparticles towards normal human fibroblasts and oesophageal cancer cells with normal EGFR levels is observed. This work demonstrates nanoparticle co-delivery of a therapeutic radionuclide plus a ruthenium-based radiosensitizer can achieve combinational and targeted therapeutic effects in cancer cells that overexpress EGFR.
Collapse
Affiliation(s)
- Martin R. Gill
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology
, University of Oxford
,
Oxford
, UK
.
| | - Jyothi U. Menon
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology
, University of Oxford
,
Oxford
, UK
.
- Institute of Biomedical Engineering
, Department of Engineering Science
, University of Oxford
, Old Road Campus Research Building
,
Oxford OX3 7DQ
, UK
| | - Paul J. Jarman
- Department of Chemistry
, University of Sheffield
,
Sheffield
, UK
| | - Joshua Owen
- Institute of Biomedical Engineering
, Department of Engineering Science
, University of Oxford
, Old Road Campus Research Building
,
Oxford OX3 7DQ
, UK
| | - Irini Skaripa-Koukelli
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology
, University of Oxford
,
Oxford
, UK
.
- Institute of Biomedical Engineering
, Department of Engineering Science
, University of Oxford
, Old Road Campus Research Building
,
Oxford OX3 7DQ
, UK
| | - Sarah Able
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology
, University of Oxford
,
Oxford
, UK
.
| | - Jim A. Thomas
- Department of Chemistry
, University of Sheffield
,
Sheffield
, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering
, Department of Engineering Science
, University of Oxford
, Old Road Campus Research Building
,
Oxford OX3 7DQ
, UK
| | - Katherine A. Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology
, University of Oxford
,
Oxford
, UK
.
| |
Collapse
|
1395
|
Gal N, Schroffenegger M, Reimhult E. Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry. J Phys Chem B 2018; 122:5820-5834. [PMID: 29726682 PMCID: PMC5994724 DOI: 10.1021/acs.jpcb.8b02338] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/24/2018] [Indexed: 01/10/2023]
Abstract
Core-shell nanoparticles receive much attention for their current and potential applications in life sciences. Commonly, a dense shell of hydrated polymer, a polymer brush, is grafted to improve colloidal stability of functional nanoparticles and to prevent protein adsorption, aggregation, cell recognition, and uptake. Until recently, it was widely assumed that a polymer brush shell indeed prevents strong association of proteins and that this leads to their superior "stealth" properties in vitro and in vivo. We show using T-dependent isothermal titration calorimetry on well-characterized monodisperse superparamagnetic iron oxide nanoparticles with controlled dense stealth polymer brush shells that "stealth" core-shell nanoparticles display significant attractive exothermic and enthalpic interactions with serum proteins, despite having excellent colloidal stability and negligible nonspecific cell uptake. This observation is at room temperature shown to depend only weakly on variation of iron oxide core diameter and type of grafted stealth polymer: poly(ethylene glycol), poly(ethyl oxazoline), poly(isopropyl oxazoline), and poly( N-isopropyl acrylamide). Polymer brush shells with a critical solution temperature close to body temperature showed a strong temperature dependence in their interactions with proteins with a significant increase in protein binding energy with increased temperature. The stoichiometry of interaction is estimated to be near 1:1 for PEGylated nanoparticles and up to 10:1 for larger thermoresponsive nanoparticles, whereas the average free energy of interaction is enthalpically driven and comparable to a weak hydrogen bond.
Collapse
Affiliation(s)
- Noga Gal
- Institute for Biologically Inspired
Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11-II, A-1190 Vienna, Austria
| | - Martina Schroffenegger
- Institute for Biologically Inspired
Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11-II, A-1190 Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired
Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11-II, A-1190 Vienna, Austria
| |
Collapse
|
1396
|
Abstract
Melanoma represents the most aggressive and the deadliest form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. The therapeutic strategy can include single agents or combined therapies, depending on the patient’s health, stage, and location of the tumor. The efficiency of these treatments can be decreased due to the development of diverse resistance mechanisms. New therapeutic targets have emerged from studies of the genetic profile of melanocytes and from the identification of molecular factors involved in the pathogenesis of the malignant transformation. In this review, we aim to survey therapies approved and under evaluation for melanoma treatment and relevant research on the molecular mechanisms underlying melanomagenesis.
Collapse
Affiliation(s)
- Beatriz Domingues
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Hospital S João, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Helena Pópulo
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
1397
|
|
1398
|
Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater 2018; 73:38-51. [PMID: 29653217 DOI: 10.1016/j.actbio.2018.04.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
Abstract
Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. STATEMENT OF SIGNIFICANCE Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.
Collapse
|
1399
|
Field LD, Walper SA, Susumu K, Lasarte-Aragones G, Oh E, Medintz IL, Delehanty JB. A Quantum Dot-Protein Bioconjugate That Provides for Extracellular Control of Intracellular Drug Release. Bioconjug Chem 2018; 29:2455-2467. [DOI: 10.1021/acs.bioconjchem.8b00357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lauren D. Field
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Guillermo Lasarte-Aragones
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- George Mason University, College of Sciences, Fairfax, Virginia 22030 United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
1400
|
Steiert E, Radi L, Fach M, Wich PR. Protein-Based Nanoparticles for the Delivery of Enzymes with Antibacterial Activity. Macromol Rapid Commun 2018; 39:e1800186. [DOI: 10.1002/marc.201800186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/26/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Elena Steiert
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudingerweg 5 55128 Mainz Germany
| | - Lydia Radi
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudingerweg 5 55128 Mainz Germany
| | - Matthias Fach
- Department of Micro and Nanotechnology; Technical University of Denmark; Produktionstorvet Building 423 2800 Lyngby Denmark
| | - Peter R. Wich
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|