1351
|
Tang Y, Tan B, Li G, Li J, Ji P, Yin Y. The Regulatory Role of MeAIB in Protein Metabolism and the mTOR Signaling Pathway in Porcine Enterocytes. Int J Mol Sci 2018; 19:ijms19030714. [PMID: 29498661 PMCID: PMC5877575 DOI: 10.3390/ijms19030714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022] Open
Abstract
Amino acid transporters play an important role in cell growth and metabolism. MeAIB, a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral amino acid transporter 2 (SNAT2), which may act as a receptor and regulate cellular amino acid contents, therefore modulating cellular downstream signaling. The aim of this study was to investigate the effects of MeAIB to SNAT2 on cell proliferation, protein turnover, and the mammalian target of rapamycin (mTOR) signaling pathway in porcine enterocytes. Intestinal porcine epithelial cells (IPEC)-J2 cells were cultured in a high-glucose Dulbecco’s modified Eagle’s (DMEM-H) medium with 0 or 5 mmoL/L System A amino acid analogue (MeAIB) for 48 h. Cells were collected for analysis of proliferation, cell cycle, protein synthesis and degradation, intracellular free amino acids, and the expression of key genes involved in the mTOR signaling pathway. The results showed that SNAT2 inhibition by MeAIB depleted intracellular concentrations of not only SNAT2 amino acid substrates but also of indispensable amino acids (methionine and leucine), and suppressed cell proliferation and impaired protein synthesis. MeAIB inhibited mTOR phosphorylation, which might be involved in three translation regulators, EIF4EBP1, IGFBP3, and DDIT4 from PCR array analysis of the 84 genes related to the mTOR signaling pathway. These results suggest that SNAT2 inhibition treated with MeAIB plays an important role in regulating protein synthesis and mTOR signaling, and provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine.
Collapse
Affiliation(s)
- Yulong Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
- Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha 410128, China.
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
- Department of Nutrition, University of California, Davis, CA 95616, USA.
| | - Guangran Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Peng Ji
- Department of Nutrition, University of California, Davis, CA 95616, USA.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
1352
|
Teh JLF, Cheng PF, Purwin TJ, Nikbakht N, Patel P, Chervoneva I, Ertel A, Fortina PM, Kleiber I, HooKim K, Davies MA, Kwong LN, Levesque MP, Dummer R, Aplin AE. In Vivo E2F Reporting Reveals Efficacious Schedules of MEK1/2-CDK4/6 Targeting and mTOR-S6 Resistance Mechanisms. Cancer Discov 2018; 8:568-581. [PMID: 29496664 DOI: 10.1158/2159-8290.cd-17-0699] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/24/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
Abstract
Targeting cyclin-dependent kinases 4/6 (CDK4/6) represents a therapeutic option in combination with BRAF inhibitor and/or MEK inhibitor (MEKi) in melanoma; however, continuous dosing elicits toxicities in patients. Using quantitative and temporal in vivo reporting, we show that continuous MEKi with intermittent CDK4/6 inhibitor (CDK4/6i) led to more complete tumor responses versus other combination schedules. Nevertheless, some tumors acquired resistance that was associated with enhanced phosphorylation of ribosomal S6 protein. These data were supported by phospho-S6 staining of melanoma biopsies from patients treated with CDK4/6i plus targeted inhibitors. Enhanced phospho-S6 in resistant tumors provided a therapeutic window for the mTORC1/2 inhibitor AZD2014. Mechanistically, upregulation or mutation of NRAS was associated with resistance in in vivo models and patient samples, respectively, and mutant NRAS was sufficient to enhance resistance. This study utilizes an in vivo reporter model to optimize schedules and supports targeting mTORC1/2 to overcome MEKi plus CDK4/6i resistance.Significance: Mutant BRAF and NRAS melanomas acquire resistance to combined MEK and CDK4/6 inhibition via upregulation of mTOR pathway signaling. This resistance mechanism provides the preclinical basis to utilize mTORC1/2 inhibitors to improve MEKi plus CDK4/6i drug regimens. Cancer Discov; 8(5); 568-81. ©2018 AACR.See related commentary by Sullivan, p. 532See related article by Romano et al., p. 556This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Jessica L F Teh
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Phil F Cheng
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Neda Nikbakht
- Department of Cutaneous Biology and Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Prem Patel
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Ertel
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paolo M Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ines Kleiber
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Kim HooKim
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitch P Levesque
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Cutaneous Biology and Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
1353
|
Lee KA, Cho KC, Kim B, Jang IH, Nam K, Kwon YE, Kim M, Hyeon DY, Hwang D, Seol JH, Lee WJ. Inflammation-Modulated Metabolic Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila. Cell Host Microbe 2018; 23:338-352.e5. [DOI: 10.1016/j.chom.2018.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/07/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
|
1354
|
Shen Y, Sherman JW, Chen X, Wang R. Phosphorylation of CDC25C by AMP-activated protein kinase mediates a metabolic checkpoint during cell-cycle G 2/M-phase transition. J Biol Chem 2018; 293:5185-5199. [PMID: 29467227 PMCID: PMC5892595 DOI: 10.1074/jbc.ra117.001379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Indexed: 12/30/2022] Open
Abstract
From unicellular to multicellular organisms, cell-cycle progression is tightly coupled to biosynthetic and bioenergetic demands. Accumulating evidence has demonstrated the G1/S-phase transition as a key checkpoint where cells respond to their metabolic status and commit to replicating the genome. However, the mechanism underlying the coordination of metabolism and the G2/M-phase transition in mammalian cells remains unclear. Here, we show that the activation of AMP-activated protein kinase (AMPK), a highly conserved cellular energy sensor, significantly delays mitosis entry. The cell-cycle G2/M-phase transition is controlled by mitotic cyclin-dependent kinase complex (CDC2-cyclin B), which is inactivated by WEE1 family protein kinases and activated by the opposing phosphatase CDC25C. AMPK directly phosphorylates CDC25C on serine 216, a well-conserved inhibitory phosphorylation event, which has been shown to mediate DNA damage–induced G2-phase arrest. The acute induction of CDC25C or suppression of WEE1 partially restores mitosis entry in the context of AMPK activation. These findings suggest that AMPK-dependent phosphorylation of CDC25C orchestrates a metabolic checkpoint for the cell-cycle G2/M-phase transition.
Collapse
Affiliation(s)
- Yuqing Shen
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and.,the Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - John William Sherman
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and
| | - Xuyong Chen
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and
| | - Ruoning Wang
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and
| |
Collapse
|
1355
|
Jiang J, Li H, Qaed E, Zhang J, Song Y, Wu R, Bu X, Wang Q, Tang Z. Salinomycin, as an autophagy modulator-- a new avenue to anticancer: a review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:26. [PMID: 29433536 PMCID: PMC5809980 DOI: 10.1186/s13046-018-0680-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
Abstract
Since Salinomycin (Sal) emerged its ability to target breast cancer stem cells in 2009, numerous experiments have been carried out to test Sal’s anticancer effects. What deserve to be mentioned is that Sal can efficiently induce proliferation inhibition, cell death and metastasis suppression against human cancers from different origins both in vivo and in vitro without causing serious side effects as the conventional chemotherapeutical drugs on the body. There may be novel cell death pathways involving the anticancer effects of Sal except the conventional pathways, such as autophagic pathway. This review is focused on how autophagy involves the effects of Sal, trying to describe clearly and systematically why autophagy plays a vital role in predominant anticancer effects of Sal, including its distinctive characteristic. Based on recent advances, we present evidence that a dual role of Sal involving in autophagy may account for its unique anticancer effects - the preference for cancer cells. Further researches are required to confirm the authenticity of this suppose in order to develop an ideal anticancer drug.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Hailong Li
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Jing Zhang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Yushu Song
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Rong Wu
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Xinmiao Bu
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Qinyan Wang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| |
Collapse
|
1356
|
Babaev VR, Huang J, Ding L, Zhang Y, May JM, Linton MF. Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front Immunol 2018; 9:215. [PMID: 29487597 PMCID: PMC5816794 DOI: 10.3389/fimmu.2018.00215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 12/23/2022] Open
Abstract
Background Rictor is an essential component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2), a conserved serine/threonine kinase that may play a role in cell proliferation, survival and innate or adaptive immune responses. Genetic loss of Rictor inactivates mTORC2, which directly activates Akt S473 phosphorylation and promotes pro-survival cell signaling and proliferation. Methods and results To study the role of mTORC2 signaling in monocytes and macrophages, we generated mice with myeloid lineage-specific Rictor deletion (MRictor−/−). These MRictor−/− mice exhibited dramatic reductions of white blood cells, B-cells, T-cells, and monocytes but had similar levels of neutrophils compared to control Rictor flox-flox (Rictorfl/fl) mice. MRictor−/− bone marrow monocytes and peritoneal macrophages expressed reduced levels of mTORC2 signaling and decreased Akt S473 phosphorylation, and they displayed significantly less proliferation than control Rictorfl/fl cells. In addition, blood monocytes and peritoneal macrophages isolated from MRictor−/− mice were significantly more sensitive to pro-apoptotic stimuli. In response to LPS, MRictor−/− macrophages exhibited the M1 phenotype with higher levels of pro-inflammatory gene expression and lower levels of Il10 gene expression than control Rictorfl/fl cells. Further suppression of LPS-stimulated Akt signaling with a low dose of an Akt inhibitor, increased inflammatory gene expression in macrophages, but genetic inactivation of Raptor reversed this rise, indicating that mTORC1 mediates this increase of inflammatory gene expression. Next, to elucidate whether mTORC2 has an impact on atherosclerosis in vivo, female and male Ldlr null mice were reconstituted with bone marrow from MRictor−/− or Rictorfl/fl mice. After 10 weeks of the Western diet, there were no differences between the recipients of the same gender in body weight, blood glucose or plasma lipid levels. However, both female and male MRictor−/− → Ldlr−/− mice developed smaller atherosclerotic lesions in the distal and proximal aorta. These lesions contained less macrophage area and more apoptosis than lesions of control Rictorfl/fl → Ldlr−/− mice. Thus, loss of Rictor and, consequently, mTORC2 significantly compromised monocyte/macrophage survival, and this markedly diminished early atherosclerosis in Ldlr−/− mice. Conclusion Our results demonstrate that mTORC2 is a key signaling regulator of macrophage survival and its depletion suppresses early atherosclerosis.
Collapse
Affiliation(s)
- Vladimir R Babaev
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jiansheng Huang
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Lei Ding
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Youmin Zhang
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - James M May
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - MacRae F Linton
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
1357
|
Stuttfeld E, Aylett CH, Imseng S, Boehringer D, Scaiola A, Sauer E, Hall MN, Maier T, Ban N. Architecture of the human mTORC2 core complex. eLife 2018; 7:33101. [PMID: 29424687 PMCID: PMC5837792 DOI: 10.7554/elife.33101] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a key protein kinase controlling cellular metabolism and growth. It is part of the two structurally and functionally distinct multiprotein complexes mTORC1 and mTORC2. Dysregulation of mTOR occurs in diabetes, cancer and neurological disease. We report the architecture of human mTORC2 at intermediate resolution, revealing a conserved binding site for accessory proteins on mTOR and explaining the structural basis for the rapamycin insensitivity of the complex. To grow and multiply, a living cell must take a variety of factors into account, such as its own energy levels and the availability of nutrients. A protein called mTOR sits at the core of a signaling pathway that integrates these and other sources information. Problems with the mTOR pathway contribute to several diseases including diabetes and cancer. The mTOR protein occurs in two distinct protein complexes, called mTORC1 and mTORC2. These complexes contain a mix of other proteins – known as accessory proteins. They also sense different cues and act upon distinct targets in the cell. Recent research reported the structure of mTORC1, which provided clues about how this complex works. Yet, much less was known about the mTORC2 complex. Stuttfeld, Aylett et al. have now used a technique called cryo-electron microscopy to reveal the three-dimensional architecture of the human version of mTORC2. Comparing the new mTORC2 structure to the existing one for mTORC1 showed that they have many features in common but important differences too. The overall shape of both complexes is similar and each complex contains two copies of mTOR arranged in a similar way. Also, the main accessory proteins in each complex interact with almost the exact same parts of mTOR, but the accessory proteins in mTORC2 are organized differently from those of mTORC1. The different accessory proteins also have distinct shapes. These differences could help to explain why the complexes respond to different cues and recognize different targets. These new findings provide an entry point for further studies on how mTORC2 works in cells. The next step is to get a higher resolution image of the structure of this complex to see the finer details of all the components. This may in the future help scientists to develop drugs that inhibit mTORC2 to treat cancer and other diseases.
Collapse
Affiliation(s)
| | | | | | | | - Alain Scaiola
- Institute for Molecular Biology and Biophysics, Zürich, Switzerland
| | - Evelyn Sauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland.,Institute for Molecular Biology and Biophysics, Zürich, Switzerland
| | - Nenad Ban
- Institute for Molecular Biology and Biophysics, Zürich, Switzerland
| |
Collapse
|
1358
|
Houssaini A, Breau M, Kebe K, Abid S, Marcos E, Lipskaia L, Rideau D, Parpaleix A, Huang J, Amsellem V, Vienney N, Validire P, Maitre B, Attwe A, Lukas C, Vindrieux D, Boczkowski J, Derumeaux G, Pende M, Bernard D, Meiners S, Adnot S. mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight 2018; 3:93203. [PMID: 29415880 DOI: 10.1172/jci.insight.93203] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 01/05/2018] [Indexed: 01/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent and devastating condition for which no curative treatment is available. Exaggerated lung cell senescence may be a major pathogenic factor. Here, we investigated the potential role for mTOR signaling in lung cell senescence and alterations in COPD using lung tissue and derived cultured cells from patients with COPD and from age- and sex-matched control smokers. Cell senescence in COPD was linked to mTOR activation, and mTOR inhibition by low-dose rapamycin prevented cell senescence and inhibited the proinflammatory senescence-associated secretory phenotype. To explore whether mTOR activation was a causal pathogenic factor, we developed transgenic mice exhibiting mTOR overactivity in lung vascular cells or alveolar epithelial cells. In this model, mTOR activation was sufficient to induce lung cell senescence and to mimic COPD lung alterations, with the rapid development of lung emphysema, pulmonary hypertension, and inflammation. These findings support a causal relationship between mTOR activation, lung cell senescence, and lung alterations in COPD, thereby identifying the mTOR pathway as a potentially new therapeutic target in COPD.
Collapse
Affiliation(s)
- Amal Houssaini
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France.,Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marielle Breau
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Kanny Kebe
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Shariq Abid
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Elisabeth Marcos
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Larissa Lipskaia
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Dominique Rideau
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Aurelien Parpaleix
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Jin Huang
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Valerie Amsellem
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Nora Vienney
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Pierre Validire
- Institut Mutualiste Montsouris, Département anatomopathologie, Paris, France
| | - Bernard Maitre
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Aya Attwe
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Christina Lukas
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - David Vindrieux
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052/CNRS 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Jorge Boczkowski
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Genevieve Derumeaux
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Mario Pende
- INSERM U845, Université Paris Descartes, 75015, Paris, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052/CNRS 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Serge Adnot
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles, and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| |
Collapse
|
1359
|
Hoffmann TM, Cwiklinski E, Shah DS, Stretton C, Hyde R, Taylor PM, Hundal HS. Effects of Sodium and Amino Acid Substrate Availability upon the Expression and Stability of the SNAT2 (SLC38A2) Amino Acid Transporter. Front Pharmacol 2018; 9:63. [PMID: 29467657 PMCID: PMC5808304 DOI: 10.3389/fphar.2018.00063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
The SNAT2 (SLC38A2) System A amino acid transporter mediates Na+-coupled cellular uptake of small neutral α-amino acids (AAs) and is extensively regulated in response to humoral and nutritional cues. Understanding the basis of such regulation is important given that AA uptake via SNAT2 has been linked to activation of mTORC1; a major controller of many important cellular processes including, for example, mRNA translation, lipid synthesis, and autophagy and whose dysregulation has been implicated in the development of cancer and conditions such as obesity and type 2 diabetes. Extracellular AA withdrawal induces an adaptive upregulation of SNAT2 gene transcription and SNAT2 protein stability but, as yet, the sensing mechanism(s) that initiate this response remain poorly understood although interactions between SNAT2 and its substrates may play a vital role. Herein, we have explored how changes in substrate (AA and Na+) availability impact upon the adaptive regulation of SNAT2 in HeLa cells. We show that while AA deprivation induces SNAT2 gene expression, this induction was not apparent if extracellular Na+ was removed during the AA withdrawal period. Furthermore, we show that the increase in SNAT2 protein stability associated with AA withdrawal is selectively repressed by provision of SNAT2 AA substrates (N-methylaminoisobutyric acid and glutamine), but not non-substrates. This stabilization and substrate-induced repression were critically dependent upon the cytoplasmic N-terminal tail of SNAT2 (containing lysyl residues which are putative targets of the ubiquitin-proteasome system), because “grafting” this tail onto SNAT5, a related SLC38 family member that does not exhibit adaptive regulation, confers substrate-induced changes in stability of the SNAT2-5 chimeric transporter. In contrast, expression of SNAT2 in which the N-terminal lysyl residues were mutated to alanine rendered the transporter stable and insensitive to substrate-induced changes in protein stability. Intriguingly, SNAT2 protein stability was dramatically reduced in the absence of extracellular Na+ irrespective of whether substrate AAs were present or absent. Our findings indicate that the presence of extracellular Na+ (and potentially its binding to SNAT2) may be crucial for not only sensing SNAT2 AA occupancy and consequently for initiating the adaptive response under AA insufficient conditions, but for enabling substrate-induced changes in SNAT2 protein stability.
Collapse
Affiliation(s)
- Thorsten M Hoffmann
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Emma Cwiklinski
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dinesh S Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Clare Stretton
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Russell Hyde
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Peter M Taylor
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
1360
|
Earwaker P, Anderson C, Willenbrock F, Harris AL, Protheroe AS, Macaulay VM. RAPTOR up-regulation contributes to resistance of renal cancer cells to PI3K-mTOR inhibition. PLoS One 2018; 13:e0191890. [PMID: 29389967 PMCID: PMC5794101 DOI: 10.1371/journal.pone.0191890] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/12/2018] [Indexed: 02/04/2023] Open
Abstract
The outlook for patients with advanced renal cell cancer (RCC) has been improved by targeted agents including inhibitors of the PI3 kinase (PI3K)-AKT-mTOR axis, although treatment resistance is a major problem. Here, we aimed to understand how RCC cells acquire resistance to PI3K-mTOR inhibition. We used the RCC4 cell line to generate a model of in vitro resistance by continuous culture in PI3K-mTOR kinase inhibitor NVP-BEZ235 (BEZ235, Dactolisib). Resistant cells were cross-resistant to mTOR inhibitor AZD2014. Sensitivity was regained after 4 months drug withdrawal, and resistance was partially suppressed by HDAC inhibition, supporting an epigenetic mechanism. BEZ235-resistant cells up-regulated and/or activated numerous proteins including MET, ABL, Notch, IGF-1R, INSR and MEK/ERK. However, resistance was not reversed by inhibiting or depleting these pathways, suggesting that many induced changes were passengers not drivers of resistance. BEZ235 blocked phosphorylation of mTOR targets S6 and 4E-BP1 in parental cells, but 4E-BP1 remained phosphorylated in resistant cells, suggesting BEZ235-refractory mTORC1 activity. Consistent with this, resistant cells over-expressed mTORC1 component RAPTOR at the mRNA and protein level. Furthermore, BEZ235 resistance was suppressed by RAPTOR depletion, or allosteric mTORC1 inhibitor rapamycin. These data reveal that RAPTOR up-regulation contributes to PI3K-mTOR inhibitor resistance, and suggest that RAPTOR expression should be included in the pharmacodynamic assessment of mTOR kinase inhibitor trials.
Collapse
Affiliation(s)
| | | | | | - Adrian L. Harris
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, United Kingdom
| | - Andrew S. Protheroe
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, United Kingdom
| | - Valentine M. Macaulay
- Department of Oncology, Oxford, United Kingdom
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
1361
|
Hui DS, Lee N, Chan PK, Beigel JH. The role of adjuvant immunomodulatory agents for treatment of severe influenza. Antiviral Res 2018; 150:202-216. [PMID: 29325970 PMCID: PMC5801167 DOI: 10.1016/j.antiviral.2018.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/31/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022]
Abstract
A severe inflammatory immune response with hypercytokinemia occurs in patients hospitalized with severe influenza, such as avian influenza A(H5N1), A(H7N9), and seasonal A(H1N1)pdm09 virus infections. The role of immunomodulatory therapy is unclear as there have been limited published data based on randomized controlled trials (RCTs). Passive immunotherapy such as convalescent plasma and hyperimmune globulin have some studies demonstrating benefit when administered as an adjunctive therapy for severe influenza. Triple combination of oseltamivir, clarithromycin, and naproxen for severe influenza has one study supporting its use, and confirmatory studies would be of great interest. Likewise, confirmatory studies of sirolimus without concomitant corticosteroid therapy should be explored as a research priority. Other agents with potential immunomodulating effects, including non-immune intravenous immunoglobulin, N-acetylcysteine, acute use of statins, macrolides, pamidronate, nitazoxanide, chloroquine, antiC5a antibody, interferons, human mesenchymal stromal cells, mycophenolic acid, peroxisome proliferator-activated receptors agonists, non-steroidal anti-inflammatory agents, mesalazine, herbal medicine, and the role of plasmapheresis and hemoperfusion as rescue therapy have supportive preclinical or observational clinical data, and deserve more investigation preferably by RCTs. Systemic corticosteroids administered in high dose may increase the risk of mortality and morbidity in patients with severe influenza and should not be used, while the clinical utility of low dose systemic corticosteroids requires further investigation.
Collapse
Affiliation(s)
- David S Hui
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Nelson Lee
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Division of Infectious Diseases, University of Alberta, Edmonton, Canada
| | - Paul K Chan
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - John H Beigel
- Leidos Biomedical Research Inc, Support to National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
1362
|
Weiss HR, Chi OZ, Kiss GK, Liu X, Damito S, Jacinto E. Akt activation improves microregional oxygen supply/consumption balance after cerebral ischemia-reperfusion. Brain Res 2018; 1683:48-54. [PMID: 29371097 DOI: 10.1016/j.brainres.2018.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 11/27/2022]
Abstract
There have been reports that activation of Akt may provide neuroprotection after cerebral ischemia-reperfusion. We tested the hypothesis that activation of Akt would decrease infarct size and improve microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This hypothesis was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with or without SC-79 (Akt activator, 0.05 mg/kg, three doses). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small vessel (20-60 μm diameter) arterial and venous oxygen saturations were determined microspectrophotometrically. Akt phosphorylation was determined by Western blot. There were no significant hemodynamic or blood gas differences between groups. The control ischemic-reperfused cortex had a similar O2 consumption, but lower blood flow and higher O2 extraction compared to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex with many areas of low O2 saturation (42 of 80 veins with O2 saturation below 50%). SC-79 did not significantly affect cerebral O2 consumption, but significantly improved O2 supply/consumption balance in the reperfused area (18 of 80 veins with O2 saturation below 50%). This was associated with a reduced cortical infarct size (13.3 ± 0.5% control vs 6.7 ± 0.3% SC-79). In control, Akt phosphorylation was elevated at 2 h after ischemia. With SC-79, Akt was activated at 15 min but not at 2 h in the ischemic reperfused area. These results suggest that early Akt activation is important for not only cell survival, but also for the control of local oxygen balance after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Harvey R Weiss
- Dept. of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| | - Oak Z Chi
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Geza K Kiss
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Xia Liu
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Stacey Damito
- Dept. of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Estela Jacinto
- Dept. of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| |
Collapse
|
1363
|
mTOR signaling in skeletal development and disease. Bone Res 2018; 6:1. [PMID: 29423330 PMCID: PMC5802487 DOI: 10.1038/s41413-017-0004-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that integrates inputs from nutrients and growth factors to control many fundamental cellular processes through two distinct protein complexes mTORC1 and mTORC2. Recent mouse genetic studies have established that mTOR pathways play important roles in regulating multiple aspects of skeletal development and homeostasis. In addition, mTORC1 has emerged as a common effector mediating the bone anabolic effect of Igf1, Wnt and Bmp. Dysregulation of mTORC1 could contribute to various skeletal diseases including osteoarthritis and osteoporosis. Here we review the current understanding of mTOR signaling in skeletal development and bone homeostasis, as well as in the maintenance of articular cartilage. We speculate that targeting mTOR signaling may be a valuable approach for treating skeletal diseases. Drugs directed at a key cellular signaling pathway could prove useful for treating skeletal diseases. Jianquan Chen from Soochow University in Suzhou, China, and Fanxin Long from Washington University School of Medicine in St. Louis, Missouri, USA, provide an overview of how proteins involved in the mechanistic target of rapamycin (mTOR) signaling pathway sense and integrate a range of environmental cues to regulate bone and cartilage development. In particular, they review the differing roles of the two distinct mTOR-containing protein complexes, mTORC1 and mTORC2. Both seem to mediate bone formation and resorption but in different ways, with implications for how best to treat osteoarthritis, osteoporosis, and other degenerative skeletal diseases. The authors suggest that more specific mTOR inhibitors with minimal side effects are needed to help stimulate bone growth in these diseases.
Collapse
|
1364
|
Phosphoglyceric acid mutase-1 contributes to oncogenic mTOR-mediated tumor growth and confers non-small cell lung cancer patients with poor prognosis. Cell Death Differ 2018; 25:1160-1173. [PMID: 29362480 PMCID: PMC5988759 DOI: 10.1038/s41418-017-0034-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/18/2023] Open
Abstract
As a hallmark of cancer, the Warburg effect (aerobic glycolysis) confers a selective advantage for the survival and proliferation of cancer cells. Due to frequent aberration of upstream proto-oncogenes and tumor suppressors, hyperactive mammalian/mechanistic target of rapamycin (mTOR) is a potent inducer of the Warburg effect. Here, we report that overexpression of a glycolytic enzyme, phosphoglyceric acid mutase-1 (PGAM1), is critical to oncogenic mTOR-mediated Warburg effect. mTOR stimulated PGAM1 expression through hypoxia-inducible factor 1α-mediated transcriptional activation. Blockage of PGAM1 suppressed mTOR-dependent glycolysis, cell proliferation, and tumorigenesis. PGAM1 expression and mTOR activity were positively correlated in non-small cell lung cancer (NSCLC) tissues and PGAM1 abundance was an adverse predictor for patient survival. PGAM1 is thus a downstream effector of mTOR signaling pathway and mTOR-PGAM1 signaling cascade may contribute to the development of Warburg effect observed in cancer. We consider PGAM1 as a novel prognostic biomarker for NSCLC and a therapeutic target for cancer.
Collapse
|
1365
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
1366
|
Rayhan A, Faller A, Chevalier R, Mattice A, Karagiannis J. Using genetic buffering relationships identified in fission yeast to reveal susceptibilities in cells lacking hamartin or tuberin function. Biol Open 2018; 7:bio.031302. [PMID: 29343513 PMCID: PMC5827267 DOI: 10.1242/bio.031302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tuberous sclerosis complex is an autosomal dominant disorder characterized by benign tumors arising from the abnormal activation of mTOR signaling in cells lacking TSC1 (hamartin) or TSC2 (tuberin) activity. To expand the genetic framework surrounding this group of growth regulators, we utilized the model eukaryote Schizosaccharomyces pombe to uncover and characterize genes that buffer the phenotypic effects of mutations in the orthologous tsc1 or tsc2 loci. Our study identified two genes: fft3 (encoding a DNA helicase) and ypa1 (encoding a peptidyle-prolyl cis/trans isomerase). While the deletion of fft3 or ypa1 has little effect in wild-type fission yeast cells, their loss in tsc1Δ or tsc2Δ backgrounds results in severe growth inhibition. These data suggest that the inhibition of Ypa1p or Fft3p might represent an 'Achilles' heel' of cells defective in hamartin/tuberin function. Furthermore, we demonstrate that the interaction between tsc1/tsc2 and ypa1 can be rescued through treatment with the mTOR inhibitor, torin-1, and that ypa1Δ cells are resistant to the glycolytic inhibitor, 2-deoxyglucose. This identifies ypa1 as a novel upstream regulator of mTOR and suggests that the effects of ypa1 loss, together with mTOR activation, combine to result in a cellular maladaptation in energy metabolism that is profoundly inhibitory to growth.
Collapse
Affiliation(s)
- Ashyad Rayhan
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Adam Faller
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Ryan Chevalier
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Alannah Mattice
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Jim Karagiannis
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| |
Collapse
|
1367
|
Panda DK, Bai X, Sabbagh Y, Zhang Y, Zaun HC, Karellis A, Koromilas AE, Lipman ML, Karaplis AC. Defective interplay between mTORC1 activity and endoplasmic reticulum stress-unfolded protein response in uremic vascular calcification. Am J Physiol Renal Physiol 2018; 314:F1046-F1061. [PMID: 29357413 DOI: 10.1152/ajprenal.00350.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular calcification increases the risk of cardiovascular disease and death in patients with chronic kidney disease (CKD). Increased activity of mammalian target of rapamycin complex 1 (mTORC1) and endoplasmic reticulum (ER) stress-unfolded protein response (UPR) are independently reported to partake in the pathogenesis of vascular calcification in CKD. However, the association between mTORC1 activity and ER stress-UPR remains unknown. We report here that components of the uremic state [activation of the receptor for advanced glycation end products (RAGE) and hyperphosphatemia] potentiate vascular smooth muscle cell (VSMC) calcification by inducing persistent and exaggerated activity of mTORC1. This gives rise to prolonged and excessive ER stress-UPR as well as attenuated levels of sestrin 1 ( Sesn1) and Sesn3 feeding back to inhibit mTORC1 activity. Activating transcription factor 4 arising from the UPR mediates cell death via expression of CCAAT/enhancer-binding protein (c/EBP) homologous protein (CHOP), impairs the generation of pyrophosphate, a potent inhibitor of mineralization, and potentiates VSMC transdifferentiation to the osteochondrocytic phenotype. Short-term treatment of CKD mice with rapamycin, an inhibitor of mTORC1, or tauroursodeoxycholic acid, a bile acid that restores ER homeostasis, normalized mTORC1 activity, molecular markers of UPR, and calcium content of aortas. Collectively, these data highlight that increased and/or protracted mTORC1 activity arising from the uremic state leads to dysregulated ER stress-UPR and VSMC calcification. Manipulation of the mTORC1-ER stress-UPR pathway opens up new therapeutic strategies for the prevention and treatment of vascular calcification in CKD.
Collapse
Affiliation(s)
- Dibyendu K Panda
- Division of Nephrology, Department of Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec , Canada
| | - Xiuying Bai
- Division of Endocrinology and Metabolism, Department of Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec , Canada
| | - Yves Sabbagh
- Rare Disease, Sanofi Genzyme, Framingham, Massachusetts
| | - Yan Zhang
- Division of Nephrology, Department of Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec , Canada
| | - Hans-Christian Zaun
- Division of Nephrology, Department of Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec , Canada
| | - Angeliki Karellis
- Division of Endocrinology and Metabolism, Department of Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec , Canada
| | - Antonis E Koromilas
- Department of Oncology and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec , Canada
| | - Mark L Lipman
- Division of Nephrology, Department of Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec , Canada
| | - Andrew C Karaplis
- Division of Endocrinology and Metabolism, Department of Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
1368
|
Yadav RK, Chauhan AS, Zhuang L, Gan B. FoxO transcription factors in cancer metabolism. Semin Cancer Biol 2018; 50:65-76. [PMID: 29309929 DOI: 10.1016/j.semcancer.2018.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
FoxO transcription factors serve as the central regulator of cellular homeostasis and are tumor suppressors in human cancers. Recent studies have revealed that, besides their classic functions in promoting cell death and inducing cell cycle arrest, FoxOs also regulate cancer metabolism, an emerging hallmark of cancer. In this review, we summarize the regulatory mechanisms employed to control FoxO activities in the context of cancer biology, and discuss FoxO function in metabolism reprogramming in cancer and interaction with other key cancer metabolism pathways. A deeper understanding of FoxOs in cancer metabolism may reveal novel therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Raj Kumar Yadav
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Li Zhuang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| |
Collapse
|
1369
|
Bodur C, Kazyken D, Huang K, Ekim Ustunel B, Siroky KA, Tooley AS, Gonzalez IE, Foley DH, Acosta-Jaquez HA, Barnes TM, Steinl GK, Cho KW, Lumeng CN, Riddle SM, Myers MG, Fingar DC. The IKK-related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists. EMBO J 2018; 37:19-38. [PMID: 29150432 PMCID: PMC5753041 DOI: 10.15252/embj.201696164] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/15/2023] Open
Abstract
The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene-induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site-specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF-receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus-selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock-in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN-β production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1-mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.
Collapse
Affiliation(s)
- Cagri Bodur
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kezhen Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bilgen Ekim Ustunel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kate A Siroky
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aaron Seth Tooley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ian E Gonzalez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel H Foley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hugo A Acosta-Jaquez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tammy M Barnes
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabrielle K Steinl
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kae-Won Cho
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Martin G Myers
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
1370
|
Abstract
The ribosome is a complex molecular machine composed of numerous distinct proteins and nucleic acids and is responsible for protein synthesis in every living cell. Ribosome biogenesis is one of the most multifaceted and energy- demanding processes in biology, involving a large number of assembly and maturation factors, the functions of which are orchestrated by multiple cellular inputs, including mitogenic signals and nutrient availability. Although causal associations between inherited mutations affecting ribosome biogenesis and elevated cancer risk have been established over the past decade, mechanistic data have emerged suggesting a broader role for dysregulated ribosome biogenesis in the development and progression of most spontaneous cancers. In this Opinion article, we highlight the most recent findings that provide new insights into the molecular basis of ribosome biogenesis in cancer and offer our perspective on how these observations present opportunities for the design of new targeted cancer treatments.
Collapse
Affiliation(s)
- Joffrey Pelletier
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; at the Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA; and at the Unit of Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Siniša Volarević
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; and at the Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
1371
|
Zeng H, Yu M, Tan H, Li Y, Su W, Shi H, Dhungana Y, Guy C, Neale G, Cloer C, Peng J, Wang D, Chi H. Discrete roles and bifurcation of PTEN signaling and mTORC1-mediated anabolic metabolism underlie IL-7-driven B lymphopoiesis. SCIENCE ADVANCES 2018; 4:eaar5701. [PMID: 29399633 PMCID: PMC5792226 DOI: 10.1126/sciadv.aar5701] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 05/21/2023]
Abstract
Interleukin-7 (IL-7) drives early B lymphopoiesis, but the underlying molecular circuits remain poorly understood, especially how Stat5 (signal transducer and activator of transcription 5)-dependent and Stat5-independent pathways contribute to this process. Combining transcriptome and proteome analyses and mouse genetic models, we show that IL-7 promotes anabolic metabolism and biosynthetic programs in pro-B cells. IL-7-mediated activation of mTORC1 (mechanistic target of rapamycin complex 1) supported cell proliferation and metabolism in a Stat5-independent, Myc-dependent manner but was largely dispensable for cell survival or Rag1 and Rag2 gene expression. mTORC1 was also required for Myc-driven lymphomagenesis. PI3K (phosphatidylinositol 3-kinase) and mTORC1 had discrete effects on Stat5 signaling and independently controlled B cell development. PI3K was actively suppressed by PTEN (phosphatase and tensin homolog) in pro-B cells to ensure proper IL-7R expression, Stat5 activation, heavy chain rearrangement, and cell survival, suggesting the unexpected bifurcation of the classical PI3K-mTOR signaling. Together, our integrative analyses establish IL-7R-mTORC1-Myc and PTEN-mediated PI3K suppression as discrete signaling axes driving B cell development, with differential effects on IL-7R-Stat5 signaling.
Collapse
Affiliation(s)
- Hu Zeng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mei Yu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - Haiyan Tan
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- St. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- St. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wei Su
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Caryn Cloer
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- St. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Corresponding author. (H.C.); (D.W.); (J.P.)
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
- Corresponding author. (H.C.); (D.W.); (J.P.)
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Corresponding author. (H.C.); (D.W.); (J.P.)
| |
Collapse
|
1372
|
Abstract
PURPOSE OF REVIEW The current review aims to provide an update on the recent biomedical interest in oncogenic branched-chain amino acid (BCAA) metabolism, and discusses the advantages of using BCAAs and expression of BCAA-related enzymes in the treatment and diagnosis of cancers. RECENT FINDINGS An accumulating body of evidence demonstrates that BCAAs are essential nutrients for cancer growth and are used by tumors in various biosynthetic pathways and as a source of energy. In addition, BCAA metabolic enzymes, such as the cytosolic branched-chain aminotransferase 1 (BCAT1) and mitochondrial branched-chain aminotransferase 2, have emerged as useful prognostic cancer markers. BCAT1 expression commonly correlates with more aggressive cancer growth and progression, and has attracted substantial scientific attention in the past few years. These studies have found the consequences of BCAT1 disruption to be heterogeneous; not all cancers share the same requirements for BCAA metabolites and the function of BCAT1 appears to vary between cancer types. SUMMARY Both oncogenic mutations and cancer tissue-of-origin influence BCAA metabolism and expression of BCAA-associated metabolic enzymes. These new discoveries need to be taken into consideration during the development of new cancer therapies that target BCAA metabolism.
Collapse
Affiliation(s)
- Elitsa A. Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, Iowa
| | - Adam C. Wilkinson
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, Stanford, California, USA
| |
Collapse
|
1373
|
Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1727-1743. [PMID: 29654346 PMCID: PMC5949137 DOI: 10.1007/s00213-018-4882-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
In recent years, research has identified the molecular and neural substrates underlying the transition of moderate "social" consumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD.
Collapse
|
1374
|
Abstract
Autophagy is a catabolic program that is responsible for the degradation of dysfunctional or unnecessary proteins and organelles to maintain cellular homeostasis. Mechanistically, it involves the formation of double-membrane autophagosomes that sequester cytoplasmic material and deliver it to lysosomes for degradation. Eventually, the material is recycled back to the cytoplasm. Abnormalities of autophagy often lead to human diseases, such as neurodegeneration and cancer. In the case of cancer, increasing evidence has revealed the paradoxical roles of autophagy in both tumor inhibition and tumor promotion. Here, we summarize the context-dependent role of autophagy and its complicated molecular mechanisms in the hallmarks of cancer. Moreover, we discuss how therapeutics targeting autophagy can counter malignant transformation and tumor progression. Overall, the findings of studies discussed here shed new light on exploiting the complicated mechanisms of the autophagic machinery and relevant small-molecule modulators as potential antitumor agents to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Tianzhi Huang
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xiao Song
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yongyong Yang
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xuechao Wan
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Angel A. Alvarez
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Namratha Sastry
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Hu
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shi-Yuan Cheng
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
1375
|
Leptin and ghrelin: Sewing metabolism onto neurodegeneration. Neuropharmacology 2017; 136:307-316. [PMID: 29248481 DOI: 10.1016/j.neuropharm.2017.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/23/2022]
Abstract
Life expectancy has considerably increased over the last decades. The negative consequence of this augmented longevity has been a dramatic increase of age-related chronic neurodegenerative diseases, such as Alzheimer's, Parkinson's and multiple sclerosis. Epidemiology is telling us there exists a strong correlation between the neuronal loss characterizing these disorders and metabolic dysfunction. This review aims at presenting the evidence supporting the existence of a molecular system linking metabolism with neurodegeneration, with a specific focus on the role of two hormones with a key role in the regulatory cross talk between metabolic imbalance and the damage of nervous system: leptin and ghrelin. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
|
1376
|
Lim J, Munivez E, Jiang MM, Song IW, Gannon F, Keene DR, Schweitzer R, Lee BH, Joeng KS. mTORC1 Signaling is a Critical Regulator of Postnatal Tendon Development. Sci Rep 2017; 7:17175. [PMID: 29215029 PMCID: PMC5719403 DOI: 10.1038/s41598-017-17384-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tendons transmit contractile forces between musculoskeletal tissues. Whereas the biomechanical properties of tendons have been studied extensively, the molecular mechanisms regulating postnatal tendon development are not well understood. Here we examine the role of mTORC1 signaling in postnatal tendon development using mouse genetic approaches. Loss of mTORC1 signaling by removal of Raptor in tendons caused severe tendon defects postnatally, including decreased tendon thickness, indicating that mTORC1 is necessary for postnatal tendon development. By contrast, activation of mTORC1 signaling in tendons increased tendon cell numbers and proliferation. In addition, Tsc1 conditional knockout mice presented severely disorganized collagen fibers and neovascularization in the tendon midsubstance. Interestingly, collagen fibril diameter was significantly reduced in both Raptor and Tsc1 conditional knockout mice, albeit with variations in severity. We performed RNA-seq analysis using Achilles tendons to investigate the molecular changes underlying these tendon phenotypes. Raptor conditional knockout mice showed decreased extracellular matrix (ECM) structure-related gene expression, whereas Tsc1 conditional knockout mice exhibited changes in genes regulating TGF-β/BMP/FGF signaling, as well as in genes controlling ECM structure and disassembly. Collectively, our studies suggest that maintaining physiological levels of mTORC1 signaling is essential for postnatal tendon development and maturation.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Francis Gannon
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Douglas R Keene
- Research Center, Shriners Hospital for Children, Portland, OR, 97239, USA
| | - Ronen Schweitzer
- Research Center, Shriners Hospital for Children, Portland, OR, 97239, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kyu Sang Joeng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
1377
|
Figlia G, Gerber D, Suter U. Myelination and mTOR. Glia 2017; 66:693-707. [PMID: 29210103 PMCID: PMC5836902 DOI: 10.1002/glia.23273] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Myelinating cells surround axons to accelerate the propagation of action potentials, to support axonal health, and to refine neural circuits. Myelination is metabolically demanding and, consistent with this notion, mTORC1—a signaling hub coordinating cell metabolism—has been implicated as a key signal for myelination. Here, we will discuss metabolic aspects of myelination, illustrate the main metabolic processes regulated by mTORC1, and review advances on the role of mTORC1 in myelination of the central nervous system and the peripheral nervous system. Recent progress has revealed a complex role of mTORC1 in myelinating cells that includes, besides positive regulation of myelin growth, additional critical functions in the stages preceding active myelination. Based on the available evidence, we will also highlight potential nonoverlapping roles between mTORC1 and its known main upstream pathways PI3K‐Akt, Mek‐Erk1/2, and AMPK in myelinating cells. Finally, we will discuss signals that are already known or hypothesized to be responsible for the regulation of mTORC1 activity in myelinating cells. Myelination is metabolically demanding. The metabolic regulator mTORC1 controls differentiation of myelinating cells and promotes myelin
growth. mTORC1‐independent targets of the PI3K‐Akt and Mek‐Erk1/2 pathways may also be significant in myelination.
Collapse
Affiliation(s)
- Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Daniel Gerber
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| |
Collapse
|
1378
|
Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology. Biochim Biophys Acta Rev Cancer 2017; 1868:341-358. [PMID: 28694093 PMCID: PMC5675793 DOI: 10.1016/j.bbcan.2017.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease and accounts for majority of human dementia. The hyper-phosphorylated tau-mediated intracellular neurofibrillary tangle and amyloid β-mediated extracellular senile plaque are characterized as major pathological lesions of AD. Different from the dysregulated growth control and ample genetic mutations associated with human cancers, AD displays damage and death of brain neurons in the absence of genomic alterations. Although various biological processes predominately governing tumorigenesis such as inflammation, metabolic alteration, oxidative stress and insulin resistance have been associated with AD genesis, the mechanistic connection of these biological processes and signaling pathways including mTOR, MAPK, SIRT, HIF, and the FOXO pathway controlling aging and the pathological lesions of AD are not well recapitulated. Hence, we performed a thorough review by summarizing the physiological roles of these key cancer-related signaling pathways in AD pathogenesis, comprising of the crosstalk of these pathways with neurofibrillary tangle and senile plaque formation to impact AD phenotypes. Importantly, the pharmaceutical investigations of anti-aging and AD relevant medications have also been highlighted. In summary, in this review, we discuss the potential role that cancer-related signaling pathways may play in governing the pathogenesis of AD, as well as their potential as future targeted strategies to delay or prevent aging-related diseases and combating AD.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ji Cheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
1379
|
Eukaryotic Elongation Factor 2 Kinase (eEF2K) in Cancer. Cancers (Basel) 2017; 9:cancers9120162. [PMID: 29186827 PMCID: PMC5742810 DOI: 10.3390/cancers9120162] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a highly unusual protein kinase that negatively regulates the elongation step of protein synthesis. This step uses the vast majority of the large amount of energy and amino acids required for protein synthesis. eEF2K activity is controlled by an array of regulatory inputs, including inhibition by signalling through mammalian target of rapamycin complex 1 (mTORC1). eEF2K is activated under conditions of stress, such as energy depletion or nutrient deprivation, which can arise in poorly-vascularised tumours. In many such stress conditions, eEF2K exerts cytoprotective effects. A growing body of data indicates eEF2K aids the growth of solid tumours in vivo. Since eEF2K is not essential (in mice) under ‘normal’ conditions, eEF2K may be a useful target in the treatment of solid tumours. However, some reports suggest that eEF2K may actually impair tumorigenesis in some situations. Such a dual role of eEF2K in cancer would be analogous to the situation for other pathways involved in cell metabolism, such as autophagy and mTORC1. Further studies are needed to define the role of eEF2K in different tumour types and at differing stages in tumorigenesis, and to assess its utility as a therapeutic target in oncology.
Collapse
|
1380
|
Karuppasamy M, Kusmider B, Oliveira TM, Gaubitz C, Prouteau M, Loewith R, Schaffitzel C. Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2. Nat Commun 2017; 8:1729. [PMID: 29170376 PMCID: PMC5700991 DOI: 10.1038/s41467-017-01862-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
The target of rapamycin (TOR) kinase assembles into two distinct multiprotein complexes, conserved across eukaryote evolution. In contrast to TOR complex 1 (TORC1), TORC2 kinase activity is not inhibited by the macrolide rapamycin. Here, we present the structure of Saccharomyces cerevisiae TORC2 determined by electron cryo-microscopy. TORC2 contains six subunits assembling into a 1.4 MDa rhombohedron. Tor2 and Lst8 form the common core of both TOR complexes. Avo3/Rictor is unique to TORC2, but interacts with the same HEAT repeats of Tor2 that are engaged by Kog1/Raptor in mammalian TORC1, explaining the mutual exclusivity of these two proteins. Density, which we conclude is Avo3, occludes the FKBP12-rapamycin-binding site of Tor2’s FRB domain rendering TORC2 rapamycin insensitive and recessing the kinase active site. Although mobile, Avo1/hSin1 further restricts access to the active site as its conserved-region-in-the-middle (CRIM) domain is positioned along an edge of the TORC2 active-site-cleft, consistent with a role for CRIM in substrate recruitment. Target of rapamycin (TOR) kinase operates within two distinct multiprotein complexes named TORC1 and TORC2. Here the authors report a cryo-EM structure of TORC2, establish its subunit organization, providing a rationale for TORC2’s rapamycin insensitivity and the mutually exclusive inclusion of Avo3/Rictor or Raptor within their respective TOR complex.
Collapse
Affiliation(s)
- Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Beata Kusmider
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Taiana M Oliveira
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Christl Gaubitz
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Manoel Prouteau
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland. .,Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, 30 Quai Ernest-Ansermet, Bristol, CH1211 Geneva, Switzerland.
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France. .,School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
1381
|
Kelsey I, Zbinden M, Byles V, Torrence M, Manning BD. mTORC1 suppresses PIM3 expression via miR-33 encoded by the SREBP loci. Sci Rep 2017; 7:16112. [PMID: 29170467 PMCID: PMC5701013 DOI: 10.1038/s41598-017-16398-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that is often aberrantly activated in cancer. However, mTORC1 inhibitors, such as rapamycin, have limited effectiveness as single agent cancer therapies, with feedback mechanisms inherent to the signaling network thought to diminish the anti-tumor effects of mTORC1 inhibition. Here, we identify the protein kinase and proto-oncogene PIM3 as being repressed downstream of mTORC1 signaling. PIM3 expression is suppressed in cells with loss of the tuberous sclerosis complex (TSC) tumor suppressors, which exhibit growth factor-independent activation of mTORC1, and in the mouse liver upon feeding-induced activation of mTORC1. Inhibition of mTORC1 with rapamycin induces PIM3 transcript and protein levels in a variety of settings. Suppression of PIM3 involves the sterol regulatory element-binding (SREBP) transcription factors SREBP1 and 2, whose activation and mRNA expression are stimulated by mTORC1 signaling. We find that PIM3 repression is mediated by miR-33, an intronic microRNA encoded within the SREBP loci, the expression of which is decreased with rapamycin. These results demonstrate that PIM3 is induced upon mTORC1 inhibition, with potential implications for the effects of mTORC1 inhibitors in TSC, cancers, and the many other disease settings influenced by aberrant mTORC1 signaling.
Collapse
Affiliation(s)
- Ilana Kelsey
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marie Zbinden
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vanessa Byles
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margaret Torrence
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
1382
|
Peng H, Kasada A, Ueno M, Hoshii T, Tadokoro Y, Nomura N, Ito C, Takase Y, Vu HT, Kobayashi M, Xiao B, Worley PF, Hirao A. Distinct roles of Rheb and Raptor in activating mTOR complex 1 for the self-renewal of hematopoietic stem cells. Biochem Biophys Res Commun 2017; 495:1129-1135. [PMID: 29175333 DOI: 10.1016/j.bbrc.2017.11.140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/20/2017] [Indexed: 02/05/2023]
Abstract
The mammalian target of rapamycin (mTOR) complex 1 (mTORC1) senses a cell's energy status and environmental levels of nutrients and growth factors. In response, mTORC1 mediates signaling that controls protein translation and cellular metabolism. Although mTORC1 plays a critical role in hematopoiesis, it remains unclear which upstream stimuli regulate mTORC1 activity in the context of hematopoietic stem cells (HSC) maintenance in vivo. In this study, we investigated the function of Rheb, a critical regulator of mTORC1 activity controlled by the PI3K-AKT-TSC axis, both in HSC maintenance in mice at steady-state and in HSC-derived hematopoiesis post-transplantation. In contrast to the severe hematopoietic dysfunction caused by Raptor deletion, which completely inactivates mTORC1, Rheb deficiency in adult mice did not show remarkable hematopoietic failure. Lack of Rheb caused abnormalities in myeloid cells but did not have impact on hematopoietic regeneration in mice subjected to injury by irradiation. As previously reported, Rheb deficiency resulted in defective HSC-derived hematopoiesis post-transplantation. However, while Raptor is essential for HSC competitiveness in vivo, Rheb is dispensable for HSC maintenance under physiological conditions, indicating that the PI3K-AKT-TSC pathway does not contribute to mTORC1 activity for sustaining HSC self-renewal activity at steady-state. Thus, the various regulatory elements that impinge upstream of mTORC1 activation pathways are differentially required for HSC homeostasis in vivo.
Collapse
Affiliation(s)
- Hui Peng
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Atsuo Kasada
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaya Ueno
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takayuki Hoshii
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Naho Nomura
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Chiaki Ito
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yusuke Takase
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Ha Thi Vu
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Bo Xiao
- Laboratory of Developmental Neurobiology & Metabolism, State Key Laboratory of Bio-Therapy, West-China Hospital, Sichuan University, Chengdu 610041, China
| | - Paul F Worley
- Departments of Neuroscience and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
1383
|
Wen JK, Wang YT, Chan CC, Hsieh CW, Liao HM, Hung CC, Chen GC. Atg9 antagonizes TOR signaling to regulate intestinal cell growth and epithelial homeostasis in Drosophila. eLife 2017; 6:29338. [PMID: 29144896 PMCID: PMC5690286 DOI: 10.7554/elife.29338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/29/2017] [Indexed: 02/06/2023] Open
Abstract
Autophagy is essential for maintaining cellular homeostasis and survival under various stress conditions. Autophagy-related gene 9 (Atg9) encodes a multipass transmembrane protein thought to act as a membrane carrier for forming autophagosomes. However, the molecular regulation and physiological importance of Atg9 in animal development remain largely unclear. Here, we generated Atg9 null mutant flies and found that loss of Atg9 led to shortened lifespan, locomotor defects, and increased susceptibility to stress. Atg9 loss also resulted in aberrant adult midgut morphology with dramatically enlarged enterocytes. Interestingly, inhibiting the TOR signaling pathway rescued the midgut defects of the Atg9 mutants. In addition, Atg9 interacted with PALS1-associated tight junction protein (Patj), which associates with TSC2 to regulate TOR activity. Depletion of Atg9 caused a marked decrease in TSC2 levels. Our findings revealed an antagonistic relationship between Atg9 and TOR signaling in the regulation of cell growth and tissue homeostasis.
Collapse
Affiliation(s)
- Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Wen Hsieh
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiao-Man Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chin-Chun Hung
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Program, College of Life Science, National Taiwan University, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
1384
|
Sahoo SS, Lombard JM, Ius Y, O'Sullivan R, Wood LG, Nahar P, Jaaback K, Tanwar PS. Adipose-Derived VEGF-mTOR Signaling Promotes Endometrial Hyperplasia and Cancer: Implications for Obese Women. Mol Cancer Res 2017; 16:309-321. [PMID: 29133593 DOI: 10.1158/1541-7786.mcr-17-0466] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022]
Abstract
Obesity is responsible for increased morbidity and mortality in endometrial cancer. Despite the positive correlation of body mass index (BMI) or obesity in endometrial carcinogenesis, the contribution of adipose tissue to the pathogenesis of endometrial hyperplasia and cancer is unclear. This study clarifies the role of adipocytes in the pathogenesis of endometrial cancer by demonstrating that adipocyte-conditioned medium (ACM) increases proliferation, migration, and survival of endometrial cancer cells compared with preadipocyte-conditioned medium (PACM). Comparative cytokine array analysis of ACM and PACM reveal upregulation of a group of cytokines belonging to the VEGF signaling pathway in ACM. VEGF protein expression is upregulated in visceral adipose tissue (VAT) in obese patients, which is correlated with increased tumor growth in an in vivo xenograft model. The increased tumor size is mechanistically associated with the activation of the PI3K/AKT/mTOR pathway, a downstream target of VEGF signaling, and its suppression decreased the growth-promoting effects of VAT on endometrial cancer cells. Similar to the human model systems, pathologic changes in endometrial cells in a hyperphagic obese mouse model are associated with increased body weight and hyperactive mTOR signaling. Analysis of human tissue specimens depicts increased in tumor vasculature and VEGF-mTOR activity in obese endometrial cancer patients compared with nonobese patients. Collectively, these results provide evidence that VEGF-mTOR signaling drives endometrial cell growth leading to hyperplasia and cancer.Implications: Adipocyte-derived VEGF-mTOR signaling may be an attractive therapeutic target against endometrial cancer in obese women. Mol Cancer Res; 16(2); 309-21. ©2017 AACR.
Collapse
Affiliation(s)
- Subhransu S Sahoo
- Gynaecology Oncology Group, University of Newcastle, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Janine M Lombard
- Department of Medical Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia
| | - Yvette Ius
- Department of Gynecological Oncology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Rachel O'Sullivan
- Department of Gynecological Oncology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Pravin Nahar
- Department of Maternity and Gynecology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Kenneth Jaaback
- Department of Gynecological Oncology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, University of Newcastle, Newcastle, New South Wales, Australia. .,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Newcastle, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
1385
|
Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex. Mol Cell 2017; 68:835-846.e3. [PMID: 29107538 DOI: 10.1016/j.molcel.2017.10.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
The lysosomal membrane is the locus for sensing cellular nutrient levels, which are transduced to mTORC1 via the Rag GTPases and the Ragulator complex. The crystal structure of the five-subunit human Ragulator at 1.4 Å resolution was determined. Lamtor1 wraps around the other four subunits to stabilize the assembly. The Lamtor2:Lamtor3 dimer stacks upon Lamtor4:Lamtor5 to create a platform for Rag binding. Hydrogen-deuterium exchange was used to map the Rag binding site to the outer face of the Lamtor2:Lamtor3 dimer and to the N-terminal intrinsically disordered region of Lamtor1. EM was used to reconstruct the assembly of the full-length RagAGTP:RagCGDP dimer bound to Ragulator at 16 Å resolution, revealing that the G-domains of the Rags project away from the Ragulator core. The combined structural model shows how Ragulator functions as a platform for the presentation of active Rags for mTORC1 recruitment, and might suggest an unconventional mechanism for Rag GEF activity.
Collapse
|
1386
|
mTOR signaling in immune cells and its implications for cancer immunotherapy. Cancer Lett 2017; 408:182-189. [DOI: 10.1016/j.canlet.2017.08.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
|
1387
|
Evolving Significance and Future Relevance of Anti-Angiogenic Activity of mTOR Inhibitors in Cancer Therapy. Cancers (Basel) 2017; 9:cancers9110152. [PMID: 29104248 PMCID: PMC5704170 DOI: 10.3390/cancers9110152] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
mTOR inhibitors have demonstrated remarkable anti-tumor activity in experimental models, mainly by reducing cancer cell growth and tumor angiogenesis. Their use in cancer patients as monotherapy has, however, generated only limited benefits, increasing median overall survival by only a few months. Likewise, in other targeted therapies, cancer cells develop resistance mechanisms to overcome mTOR inhibition. Hence, novel therapeutic strategies have to be designed to increase the efficacy of mTOR inhibitors in cancer. In this review, we discuss the present and future relevance of mTOR inhibitors in cancer therapy by focusing on their effects on tumor angiogenesis.
Collapse
|
1388
|
The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 2017; 9:nu9111176. [PMID: 29077002 PMCID: PMC5707648 DOI: 10.3390/nu9111176] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.
Collapse
|
1389
|
Reijnders MRF, Kousi M, van Woerden GM, Klein M, Bralten J, Mancini GMS, van Essen T, Proietti-Onori M, Smeets EEJ, van Gastel M, Stegmann APA, Stevens SJC, Lelieveld SH, Gilissen C, Pfundt R, Tan PL, Kleefstra T, Franke B, Elgersma Y, Katsanis N, Brunner HG. Variation in a range of mTOR-related genes associates with intracranial volume and intellectual disability. Nat Commun 2017; 8:1052. [PMID: 29051493 PMCID: PMC5648772 DOI: 10.1038/s41467-017-00933-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Abstract
De novo mutations in specific mTOR pathway genes cause brain overgrowth in the context of intellectual disability (ID). By analyzing 101 mMTOR-related genes in a large ID patient cohort and two independent population cohorts, we show that these genes modulate brain growth in health and disease. We report the mTOR activator gene RHEB as an ID gene that is associated with megalencephaly when mutated. Functional testing of mutant RHEB in vertebrate animal models indicates pathway hyperactivation with a concomitant increase in cell and head size, aberrant neuronal migration, and induction of seizures, concordant with the human phenotype. This study reveals that tight control of brain volume is exerted through a large community of mTOR-related genes. Human brain volume can be altered, by either rare disruptive events causing hyperactivation of the pathway, or through the collective effects of common alleles.
Collapse
Affiliation(s)
- M R F Reijnders
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 6500 GA, The Netherlands
| | - M Kousi
- Center for Human Disease Modeling, Duke University, Durham, NC, 27701, USA
| | - G M van Woerden
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - M Klein
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 6500 GA, The Netherlands
| | - J Bralten
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 6500 GA, The Netherlands
| | - G M S Mancini
- Department of Clinical Genetics, Erasmus MC, Sophia Children's Hospital, 3000 CA, Rotterdam, The Netherlands
| | - T van Essen
- Department of Genetics, University of Groningen, University Medical Center of Groningen, 9700 RB, Groningen, The Netherlands
| | - M Proietti-Onori
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - E E J Smeets
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
| | - M van Gastel
- Department of Medical Care, SWZ zorg, 5691 AG, Son, The Netherlands
| | - A P A Stegmann
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
| | - S J C Stevens
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
| | - S H Lelieveld
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 GA, Nijmegen, The Netherlands
| | - C Gilissen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 6500 GA, The Netherlands
| | - R Pfundt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 6500 GA, The Netherlands
| | - P L Tan
- Center for Human Disease Modeling, Duke University, Durham, NC, 27701, USA
| | - T Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 6500 GA, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 6500 GA, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GA, Nijmegen, The Netherlands
| | - Y Elgersma
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - N Katsanis
- Center for Human Disease Modeling, Duke University, Durham, NC, 27701, USA
| | - H G Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 6500 GA, The Netherlands. .,Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
1390
|
Yoon MS. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Front Physiol 2017; 8:788. [PMID: 29089899 PMCID: PMC5650960 DOI: 10.3389/fphys.2017.00788] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/26/2017] [Indexed: 01/02/2023] Open
Abstract
Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.
Collapse
Affiliation(s)
- Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
1391
|
Hong Z, Pedersen NM, Wang L, Torgersen ML, Stenmark H, Raiborg C. PtdIns3P controls mTORC1 signaling through lysosomal positioning. J Cell Biol 2017; 216:4217-4233. [PMID: 29030394 PMCID: PMC5716264 DOI: 10.1083/jcb.201611073] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/04/2017] [Accepted: 08/21/2017] [Indexed: 01/06/2023] Open
Abstract
mTORC1 is activated by lysosome positioning and by amino acid–induced phosphatidylinositol 3-phosphate (PtdIns3P). Hong et al. show that amino acids stimulate recruitment of the PtdIns3P-binding protein FYCO1 to lysosomes and promote contacts between FYCO1 lysosomes and ER that contains the PtdIns3P effector Protrudin, mediating lysosome translocation and facilitating mTORC1 activation. The mechanistic target of rapamycin complex 1 (mTORC1) is a protein kinase complex that localizes to lysosomes to up-regulate anabolic processes and down-regulate autophagy. Although mTORC1 is known to be activated by lysosome positioning and by amino acid–stimulated production of phosphatidylinositol 3-phosphate (PtdIns3P) by the lipid kinase VPS34/PIK3C3, the mechanisms have been elusive. Here we present results that connect these seemingly unrelated pathways for mTORC1 activation. Amino acids stimulate recruitment of the PtdIns3P-binding protein FYCO1 to lysosomes and promote contacts between FYCO1 lysosomes and endoplasmic reticulum that contain the PtdIns3P effector Protrudin. Upon overexpression of Protrudin and FYCO1, mTORC1–positive lysosomes translocate to the cell periphery, thereby facilitating mTORC1 activation. This requires the ability of Protrudin to bind PtdIns3P. Conversely, upon VPS34 inhibition, or depletion of Protrudin or FYCO1, mTORC1-positive lysosomes cluster perinuclearly, accompanied by reduced mTORC1 activity under nutrient-rich conditions. Consequently, the transcription factor EB enters the nucleus, and autophagy is up-regulated. We conclude that PtdIns3P-dependent lysosome translocation to the cell periphery promotes mTORC1 activation.
Collapse
Affiliation(s)
- Zhi Hong
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| |
Collapse
|
1392
|
Yoo SM, Cerione RA, Antonyak MA. The Arf-GAP and protein scaffold Cat1/Git1 as a multifaceted regulator of cancer progression. Small GTPases 2017; 11:77-85. [PMID: 28981399 DOI: 10.1080/21541248.2017.1362496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cool-associated tyrosine phosphorylated protein 1 (Cat1), also referred to as GPCR-kinase interacting protein 1 (Git1), is a ubiquitously expressed, multi-domain protein that is best known for regulating cell shape and migration. Cat1/Git1 functions as a GTPase activating protein (GAP) that inactivates certain members of the ADP-ribosylation factor (Arf) family of small GTPases. It is also a scaffold that brings together several signaling proteins at specific locations within the cell, ensuring their efficient activation. Here we will discuss what is known regarding the classical role of Cat1/Git1 in the regulation of cell morphology and migration, as well as highlight some more recent findings that suggest this interesting signaling/scaffolding protein may also contribute in unexpected ways to oncogenic transformation.
Collapse
Affiliation(s)
- Sungsoo M Yoo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
1393
|
Castanheira S, García-Del Portillo F. Salmonella Populations inside Host Cells. Front Cell Infect Microbiol 2017; 7:432. [PMID: 29046870 PMCID: PMC5632677 DOI: 10.3389/fcimb.2017.00432] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from gastroenteritis to life-threatening typhoid fever and are among the most successful intracellular pathogens known. After the invasion of the eukaryotic cell, Salmonella exhibits contrasting lifestyles with different replication rates and subcellular locations. Although Salmonella hyper-replicates in the cytosol of certain host cell types, most invading bacteria remain within vacuoles in which the pathogen proliferates at moderate rates or persists in a dormant-like state. Remarkably, these cytosolic and intra-vacuolar intracellular lifestyles are not mutually exclusive and can co-exist in the same infected host cell. The mechanisms that direct the invading bacterium to follow the cytosolic or intra-vacuolar “pathway” remain poorly understood. In vitro studies show predominance of either the cytosolic or the intra-vacuolar population depending on the host cell type invaded by the pathogen. The host and pathogen factors controlling phagosomal membrane integrity and, as consequence, the egress into the cytosol, are intensively investigated. Other aspects of major interest are the host defenses that may affect differentially the cytosolic and intra-vacuolar populations and the strategies used by the pathogen to circumvent these attacks. Here, we summarize current knowledge about these Salmonella intracellular subpopulations and discuss how they emerge during the interaction of this pathogen with the eukaryotic cell.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
1394
|
An autophagic mechanism is involved in the 6-hydroxydopamine-induced neurotoxicity in vivo. Toxicol Lett 2017; 280:29-40. [DOI: 10.1016/j.toxlet.2017.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/05/2017] [Accepted: 08/06/2017] [Indexed: 01/23/2023]
|
1395
|
Affiliation(s)
- Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), via Campi Flegrei, 34, 80078 Pozzuoli (Naples), Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), via Campi Flegrei, 34, 80078 Pozzuoli (Naples), Italy.,Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
1396
|
Lam HC, Liu HJ, Baglini CV, Filippakis H, Alesi N, Nijmeh J, Du H, Lope AL, Cottrill KA, Handen A, Asara JM, Kwiatkowski DJ, Ben-Sahra I, Oldham WM, Chan SY, Henske EP. Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells. Oncotarget 2017; 8:64714-64727. [PMID: 29029388 PMCID: PMC5630288 DOI: 10.18632/oncotarget.19947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 06/25/2017] [Indexed: 12/24/2022] Open
Abstract
mTORC1 hyperactivation drives the multi-organ hamartomatous disease tuberous sclerosis complex (TSC). Rapamycin inhibits mTORC1, inducing partial tumor responses; however, the tumors regrow following treatment cessation. We discovered that the oncogenic miRNA, miR-21, is increased in Tsc2-deficient cells and, surprisingly, further increased by rapamycin. To determine the impact of miR-21 in TSC, we inhibited miR-21 in vitro. miR-21 inhibition significantly repressed the tumorigenic potential of Tsc2-deficient cells and increased apoptosis sensitivity. Tsc2-deficient cells' clonogenic and anchorage independent growth were reduced by ∼50% (p<0.01) and ∼75% (p<0.0001), respectively, and combined rapamycin treatment decreased soft agar growth by ∼90% (p<0.0001). miR-21 inhibition also increased sensitivity to apoptosis. Through a network biology-driven integration of RNAseq data, we discovered that miR-21 promotes mitochondrial adaptation and homeostasis in Tsc2-deficient cells. miR-21 inhibition reduced mitochondrial polarization and function in Tsc2-deficient cells, with and without co-treatment with rapamycin. Importantly, miR-21 inhibition limited Tsc2-deficient tumor growth in vivo, reducing tumor size by approximately 3-fold (p<0.0001). When combined with rapamcyin, miR-21 inhibition showed even more striking efficacy, both during treatment and after treatment cessation, with a 4-fold increase in median survival following rapamycin cessation (p=0.0008). We conclude that miR-21 promotes mTORC1-driven tumorigenesis via a mechanism that involves the mitochondria, and that miR-21 is a potential therapeutic target for TSC-associated hamartomas and other mTORC1-driven tumors, with the potential for synergistic efficacy when combined with rapalogs.
Collapse
Affiliation(s)
- Hilaire C. Lam
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Heng-Jia Liu
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian V. Baglini
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Harilaos Filippakis
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicola Alesi
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Nijmeh
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Heng Du
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia Llorente Lope
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Katherine A. Cottrill
- Department of Medicine, Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam Handen
- Department of Medicine, Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John M. Asara
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David J. Kwiatkowski
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - William M. Oldham
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen Y. Chan
- Department of Medicine, Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Elizabeth P. Henske
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
1397
|
Hicks-Berthet J, Varelas X. Integrin-FAK-CDC42-PP1A signaling gnaws at YAP/TAZ activity to control incisor stem cells. Bioessays 2017; 39. [PMID: 28891248 DOI: 10.1002/bies.201700116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
How epithelial tissues are able to self-renew to maintain homeostasis and regenerate in response to injury remains a persistent question. The transcriptional effectors YAP and TAZ are increasingly being recognized as central mediators of epithelial stem cell biology, and a wealth of recent studies have been directed at understanding the control and activity of these factors. Recent work by Hu et al. has added to this knowledge, as they identify an Integrin-FAK-CDC42-PP1A signaling cascade that directs nuclear YAP/TAZ activity in stem cell populations of the mouse incisor, and define convergence on mTORC1 signaling as an important mediator of the proliferation of these cells. Here, we review recent studies on YAP/TAZ function and regulation in epithelial tissue-specific stem cells, merging the Hu et al. study together with our current knowledge of YAP/TAZ.
Collapse
Affiliation(s)
- Julia Hicks-Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
1398
|
Xiong Y, Yepuri G, Montani JP, Ming XF, Yang Z. Arginase-II Deficiency Extends Lifespan in Mice. Front Physiol 2017; 8:682. [PMID: 28943853 PMCID: PMC5596098 DOI: 10.3389/fphys.2017.00682] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial arginase type II (Arg-II) has been shown to interact with ribosomal protein S6 kinase 1 (S6K1) and mitochondrial p66Shc and to promote cell senescence, apoptosis and inflammation under pathological conditions. However, the impact of Arg-II on organismal lifespan is not known. In this study, we demonstrate a significant lifespan extension in mice with Arg-II gene deficiency (Arg-II−/−) as compared to wild type (WT) control animals. This effect is more pronounced in the females than in the males. The gender difference is associated with higher Arg-II expression levels in the females than in the males in skin and heart at both young and old age. Ablation of Arg-II gene significantly reduces the aging marker p16INK4a levels in these tissues of old female mice, whereas in the male mice this effect of Arg-II deficiency is weaker. In line with this observation, age-associated increases in S6K1 signaling and p66Shc levels in heart are significantly attenuated in the female Arg-II−/− mice. In the male mice, only p66Shc but not S6K1 signaling is reduced. In summary, our study demonstrates that Arg-II may play an important role in the acceleration of aging in mice. Genetic disruption of Arg-II in mouse extends lifespan predominantly in females, which relates to inhibition of S6K1, p66Shc, and p16INK4a. Thus, Arg-II may represent a promising target to decelerate aging process and extend lifespan as well as to treat age-related diseases.
Collapse
Affiliation(s)
- Yuyan Xiong
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland
| | - Gautham Yepuri
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland
| | - Jean-Pierre Montani
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland.,National Center of Competence in Research "Kidney.CH"Fribourg, Switzerland
| | - Xiu-Fen Ming
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland.,National Center of Competence in Research "Kidney.CH"Fribourg, Switzerland
| | - Zhihong Yang
- Division of Physiology, Cardiovascular and Aging Research, Department of Medicine, University of FribourgFribourg, Switzerland.,National Center of Competence in Research "Kidney.CH"Fribourg, Switzerland
| |
Collapse
|
1399
|
|
1400
|
Thelen AM, Zoncu R. Emerging Roles for the Lysosome in Lipid Metabolism. Trends Cell Biol 2017; 27:833-850. [PMID: 28838620 DOI: 10.1016/j.tcb.2017.07.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Precise regulation of lipid biosynthesis, transport, and storage is key to the homeostasis of cells and organisms. Cells rely on a sophisticated but poorly understood network of vesicular and nonvesicular transport mechanisms to ensure efficient delivery of lipids to target organelles. The lysosome stands at the crossroads of this network due to its ability to process and sort exogenous and endogenous lipids. The lipid-sorting function of the lysosome is intimately connected to its recently discovered role as a metabolic command-and-control center, which relays multiple nutrient cues to the master growth regulator, mechanistic target of rapamycin complex (mTORC)1 kinase. In turn, mTORC1 potently drives anabolic processes, including de novo lipid synthesis, while inhibiting lipid catabolism. Here, we describe the dual role of the lysosome in lipid transport and biogenesis, and we discuss how integration of these two processes may play important roles both in normal physiology and in disease.
Collapse
Affiliation(s)
- Ashley M Thelen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|