1401
|
Zeng QP, Zeng LX, Lu WJ, Feng LL, Yang RY, Qiu F. Enhanced artemisinin production from engineered yeast precursors upon biotransformation. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.661723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
1402
|
|
1403
|
Wittmann A, Suess B. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators. FEBS Lett 2012; 586:2076-83. [PMID: 22710175 DOI: 10.1016/j.febslet.2012.02.038] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/22/2022]
Abstract
Riboswitches are natural RNA-based genetic switches that sense small-molecule metabolites and regulate in response the expression of the corresponding metabolic genes. Within the last years, several engineered riboswitches have been developed that act on various stages of gene expression. These switches can be engineered to respond to any ligand of choice and are therefore of great interest for synthetic biology. In this review, we present an overview of engineered riboswitches and discuss their application in conditional gene expression systems. We will provide structural and mechanistic insights and point out problems and recent trends in the development of engineered riboswitches.
Collapse
Affiliation(s)
- Alexander Wittmann
- Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
1404
|
Nguyen QT, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E. Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Lett 2012; 586:2177-83. [PMID: 22710183 DOI: 10.1016/j.febslet.2012.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/07/2012] [Indexed: 11/26/2022]
Abstract
Many microbial secondary metabolites are of high biotechnological value for medicine, agriculture, and the food industry. Bacterial genome mining has revealed numerous novel secondary metabolite biosynthetic gene clusters, which encode the potential to synthesize a large diversity of compounds that have never been observed before. The stimulation or "awakening" of this cryptic microbial secondary metabolism has naturally attracted the attention of synthetic microbiologists, who exploit recent advances in DNA sequencing and synthesis to achieve unprecedented control over metabolic pathways. One of the indispensable tools in the synthetic biology toolbox is metabolomics, the global quantification of small biomolecules. This review illustrates the pivotal role of metabolomics for the synthetic microbiology of secondary metabolism, including its crucial role in novel compound discovery in microbes, the examination of side products of engineered metabolic pathways, as well as the identification of major bottlenecks for the overproduction of compounds of interest, especially in combination with metabolic modeling. We conclude by highlighting remaining challenges and recent technological advances that will drive metabolomics towards fulfilling its potential as a cornerstone technology of synthetic microbiology.
Collapse
Affiliation(s)
- Quoc-Thai Nguyen
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
1405
|
Paudel MK, Takei A, Sakoda J, Juengwatanatrakul T, Sasaki-Tabata K, Putalun W, Shoyama Y, Tanaka H, Morimoto S. Preparation of a single-chain variable fragment and a recombinant antigen-binding fragment against the anti-malarial drugs, artemisinin and artesunate, and their application in an ELISA. Anal Chem 2012; 84:2002-8. [PMID: 22260329 DOI: 10.1021/ac203131f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two different recombinant antibodies, a single-chain variable fragment (scFv) and an antigen-binding fragment (Fab), were prepared against artemisinin (AM) and artesunate (AS) and were developed for use in an enzyme-linked immunosorbent assay (ELISA). The recombinant antibodies, which were derived from a single monoclonal antibody against AM and AS (mAb 1C1) prepared by us, were expressed by Escherichia coli cells and their reactivity and specificity were characterized. As a result, to obtain sufficient signal in indirect ELISA, a much greater amount of a first antibody was needed in the use of scFv due to the differences of the secondary antibody and conformational stability. Therefore, we focused on the development of the recombinant Fab antibodies and applied it to indirect competitive ELISA. The specificity of the Fab was similar to that of mAb 1C1 in that it showed specific reactivity toward AM and AS only. The sensitivity of the icELISA (0.16 μg/mL to 40 μg/mL for AM and 8.0 ng/mL to 60 ng/mL for AS) was sufficient for analysis of antimalarial drugs, and its utility for quality control of analysis of Artemisia spp. was validated. The Fab expression and refolding systems provided a good yield of high-quality antibodies. The recombinant antibody against AM and AS provides an essential component of an economically attractive immunoassay and will be useful in other immunochemical applications for the analysis and purification of antimalarial drugs.
Collapse
Affiliation(s)
- Madan K Paudel
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1406
|
Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 2012; 134:3234-41. [PMID: 22280121 DOI: 10.1021/ja2114486] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microbial production can be advantageous over the extraction of phytoterpenoids from natural plant sources, but it remains challenging to rationally and rapidly access efficient pathway variants. Previous engineering attempts mainly focused on the mevalonic acid (MVA) or methyl-d-erythritol phosphate (MEP) pathways responsible for the generation of precursors for terpenoids biosynthesis, and potential interactions between diterpenoids synthases were unexplored. Miltiradiene, the product of the stepwise conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP) catalyzed by diterpene synthases SmCPS and SmKSL, has recently been identified as the precursor to tanshionones, a group of abietane-type norditerpenoids rich in the Chinese medicinal herb Salvia miltiorrhiza . Here, we present the modular pathway engineering (MOPE) strategy and its application for rapid assembling synthetic miltiradiene pathways in the yeast Saccharomyces cerevisiae . We predicted and analyzed the molecular interactions between SmCPS and SmKSL, and engineered their active sites into close proximity for enhanced metabolic flux channeling to miltiradiene biosynthesis by constructing protein fusions. We show that the fusion of SmCPS and SmKSL, as well as the fusion of BTS1 (GGPP synthase) and ERG20 (farnesyl diphosphate synthase), led to significantly improved miltiradiene production and reduced byproduct accumulation. The MOPE strategy facilitated a comprehensive evaluation of pathway variants involving multiple genes, and, as a result, our best pathway with the diploid strain YJ2X reached miltiradiene titer of 365 mg/L in a 15-L bioreactor culture. These results suggest that terpenoids synthases and the precursor supplying enzymes should be engineered systematically to enable an efficient microbial production of phytoterpenoids.
Collapse
Affiliation(s)
- Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1407
|
Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, Mortensen UH, Halkier BA. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 2012; 14:104-11. [PMID: 22326477 DOI: 10.1016/j.ymben.2012.01.006] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/17/2012] [Accepted: 01/26/2012] [Indexed: 11/18/2022]
Abstract
Epidemiological studies have shown that consumption of cruciferous vegetables, such as, broccoli and cabbages, is associated with a reduced risk of developing cancer. This phenomenon has been attributed to specific glucosinolates among the ~30 glucosinolates that are typically present as natural products characteristic of cruciferous plants. Accordingly, there has been a strong interest to produce these compounds in microbial cell factories as it will allow production of selected beneficial glucosinolates. We have developed a versatile platform for stable expression of multi-gene pathways in the yeast, Saccharomyces cerevisiae. Introduction of the seven-step pathway of indolylglucosinolate from Arabidopsis thaliana to yeast resulted in the first successful production of glucosinolates in a microbial host. The production of indolylglucosinolate was further optimized by substituting supporting endogenous yeast activities with plant-derived enzymes. Production of indolylglucosinolate serves as a proof-of-concept for our expression platform, and provides a basis for large-scale microbial production of specific glucosinolates for the benefit of human health.
Collapse
Affiliation(s)
- Michael Dalgaard Mikkelsen
- University of Copenhagen, Faculty of Life Sciences, Department of Plant Biology and Biotechnology, Molecular Plant Biology, VKR Research Centre for Pro-Active Plants, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
1408
|
Blount BA, Weenink T, Ellis T. Construction of synthetic regulatory networks in yeast. FEBS Lett 2012; 586:2112-21. [DOI: 10.1016/j.febslet.2012.01.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/30/2022]
|
1409
|
Jensen K, Jensen PE, Møller BL. Light-driven chemical synthesis. TRENDS IN PLANT SCIENCE 2012; 17:60-63. [PMID: 22306522 DOI: 10.1016/j.tplants.2011.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
Depletion of the fossil fuel reserves of the Earth has prompted research into sources of renewable and sustainable energy, and feedstock for the chemical and pharmaceutical industries to support the transition towards a bio-based society. Photosynthesis efficiently captures solar energy, but its subsequent conversion into chemical energy in the form of biomass is limited to a final output in the 1-4% range. Re-routing of photosynthetic electron transport and reducing power directly into desired biosynthetic pathways offers a new avenue for sustainable production of high-value products.
Collapse
Affiliation(s)
- Kenneth Jensen
- Plant Biochemistry Laboratory, Center for Synthetic Biology and VKR Research Center 'Pro-Active Plants', University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | |
Collapse
|
1410
|
|
1411
|
Boghigian BA, Salas D, Ajikumar PK, Stephanopoulos G, Pfeifer BA. Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli. Appl Microbiol Biotechnol 2012; 93:1651-61. [PMID: 21850432 PMCID: PMC9896015 DOI: 10.1007/s00253-011-3528-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/19/2011] [Accepted: 08/03/2011] [Indexed: 02/05/2023]
Abstract
Taxa-4(5),11(12)-diene is the first dedicated intermediate in the metabolic pathway responsible for synthesizing the anticancer compound Taxol. In this study, the heterologous production of taxadiene was established in and analyzed between K- and B-derived Escherichia coli strains. First, recombinant parameters associated with precursor metabolism (the upstream methylerythritol phosphate (MEP) pathway) and taxadiene biosynthesis (the downstream pathway) were varied to probe the effect different promoters and cellular backgrounds have on taxadiene production. Specifically, upstream MEP pathway genes responsible for the taxadiene precursors, dimethylallyl diphosphate and isopentenyl diphosphate, were tested with an inducible T7 promoter system within K and B E. coli strains. Whereas, inducible T7, Trc, and T5 promoters were tested with the plasmid-borne geranylgeranyl diphosphate synthase and taxadiene synthase genes responsible for the downstream pathway. The K-derivative produced taxadiene roughly 2.5-fold higher than the B-derivative. A transcriptomics study revealed significant differences in pyruvate metabolism between the K and B strains, providing insight into the differences observed in taxadiene biosynthesis and targets for future metabolic engineering efforts. Next, the effect of temperature on cell growth and taxadiene production was analyzed in these two strains, revealing similar phenotypes between the two with 22°C as the optimal production temperature. Lastly, the effect of indole on cell growth was investigated between the two strains, showing that the K-derivative demonstrated greater growth inhibition compared to the B-derivative.
Collapse
Affiliation(s)
- Brett A. Boghigian
- Department of Chemical and Biological Engineering; Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Daniel Salas
- Department of Chemical and Biological Engineering; Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Parayil Kumaran Ajikumar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering; Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
1412
|
Toward biosynthetic design and implementation of Escherichia coli-derived paclitaxel and other heterologous polyisoprene compounds. Appl Environ Microbiol 2012; 78:2497-504. [PMID: 22287010 DOI: 10.1128/aem.07391-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli offers unparalleled engineering capacity in the context of heterologous natural product biosynthesis. However, as with other heterologous hosts, cellular metabolism must be designed or redesigned to support final compound formation. This task is at once complicated and aided by the fact that the cell does not natively produce an abundance of natural products. As a result, the metabolic engineer avoids complicated interactions with native pathways closely associated with the outcome of interest, but this convenience is tempered by the need to implement the required metabolism to allow functional biosynthesis. This review focuses on engineering E. coli for the purpose of polyisoprene formation, as it is related to isoprenoid compounds currently being pursued through a heterologous approach. In particular, the review features the compound paclitaxel and early efforts to design and overproduce intermediates through E. coli.
Collapse
|
1413
|
Abstract
As the field of synthetic biology is developing, the prospects for de novo design of biosynthetic pathways are becoming more and more realistic. Hence, there is an increasing need for computational tools that can support these efforts. A range of algorithms has been developed that can be used to identify all possible metabolic pathways and their corresponding enzymatic parts. These can then be ranked according to various properties and modelled in an organism-specific context. Finally, design software can aid the biologist in the integration of a selected pathway into smartly regulated transcriptional units. Here, we review key existing tools and offer suggestions for how informatics can help to shape the future of synthetic microbiology.
Collapse
|
1414
|
Giessen TW, Marahiel MA. Ribosome-independent biosynthesis of biologically active peptides: Application of synthetic biology to generate structural diversity. FEBS Lett 2012; 586:2065-75. [PMID: 22273582 DOI: 10.1016/j.febslet.2012.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 01/24/2023]
Abstract
Peptide natural products continue to play an important role in modern medicine as last-resort treatments of many life-threatening diseases, as they display many interesting biological activities ranging from antibiotic to antineoplastic. A large fraction of these microbial natural products is assembled by ribosome-independent mechanisms. Progress in sequencing technology and the mechanistic understanding of secondary metabolite pathways has led to the discovery of many formerly cryptic natural products and a molecular understanding of their assembly. Those advances enable us to apply protein and metabolic engineering approaches towards the manipulation of biosynthetic pathways. In this review we discuss the application potential of both templated and non-templated pathways as well as chemoenzymatic strategies for the structural diversification and tailoring of peptide natural products.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Chemistry/Biochemistry, Philipps-University, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
1415
|
Perez Rafael S, Vallee-Belisle A, Fabregas E, Plaxco K, Palleschi G, Ricci F. Employing the metabolic "branch point effect" to generate an all-or-none, digital-like response in enzymatic outputs and enzyme-based sensors. Anal Chem 2012; 84:1076-82. [PMID: 22148353 PMCID: PMC3893712 DOI: 10.1021/ac202701c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we demonstrate a strategy to convert the graded Michaelis-Menten response typical of unregulated enzymes into a sharp, effectively all-or-none response. We do so using an approach analogous to the "branch point effect", a mechanism observed in naturally occurring metabolic networks in which two or more enzymes compete for the same substrate. As a model system, we used the enzymatic reaction of glucose oxidase (GOx) and coupled it to a second, nonsignaling reaction catalyzed by the higher affinity enzyme hexokinase (HK) such that, at low substrate concentrations, the second enzyme outcompetes the first, turning off the latter's response. Above an arbitrarily selected "threshold" substrate concentration, the nonsignaling HK enzyme saturates leading to a "sudden" activation of the first signaling GOx enzyme and a far steeper dose-response curve than that observed for simple Michaelis-Menten kinetics. Using the well-known GOx-based amperometric glucose sensor to validate our strategy, we have steepen the normally graded response of this enzymatic sensor into a discrete yes/no output similar to that of a multimeric cooperative enzyme with a Hill coefficient above 13. We have also shown that, by controlling the HK reaction we can precisely tune the threshold target concentration at which we observe the enzyme output. Finally, we demonstrate the utility of this strategy for achieving effective noise attenuation in enzyme logic gates. In addition to supporting the development of biosensors with digital-like output, we envisage that the use of all-or-none enzymatic responses will also improve our ability to engineer efficient enzyme-based catalysis reactions in synthetic biology applications.
Collapse
Affiliation(s)
- Sandra Perez Rafael
- Sensors and Biosensors Group, Department of Chemistry, Autonomous University of Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Alexis Vallee-Belisle
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
| | - Esteve Fabregas
- Sensors and Biosensors Group, Department of Chemistry, Autonomous University of Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Kevin Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Giuseppe Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Viale Medaglie d’Oro 305, 00136 Rome, Italy
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Viale Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
1416
|
Zhang D, Fakhrullin RF, Özmen M, Wang H, Wang J, Paunov VN, Li G, Huang WE. Functionalization of whole-cell bacterial reporters with magnetic nanoparticle. Microb Biotechnol 2012; 4:89-97. [PMID: 21255376 PMCID: PMC3815799 DOI: 10.1111/j.1751-7915.2010.00228.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We developed a biocompatible and highly efficient approach for functionalization of bacterial cell wall with magnetic nanoparticles (MNPs). Three Acinetobacter baylyi ADP1 chromosomally based bioreporters, which were genetically engineered to express bioluminescence in response to salicylate, toluene/xylene and alkanes, were functionalized with 18 ± 3 nm iron oxide MNPs to acquire magnetic function. The efficiency of MNPs functionalization of Acinetobacter bioreporters was 99.96 ± 0.01%. The MNPs‐functionalized bioreporters (MFBs) can be remotely controlled and collected by an external magnetic field. The MFBs were all viable and functional as good as the native cells in terms of sensitivity, specificity and quantitative response. More importantly, we demonstrated that salicylate sensing MFBs can be applied to sediments and garden soils, and semi‐quantitatively detect salicylate in those samples by discriminably recovering MFBs with a permanent magnet. The magnetically functionalized cells are especially useful to complex environments in which the indigenous cells, particles and impurities may interfere with direct measurement of bioreporter cells and conventional filtration is not applicable to distinguish and harvest bioreporters. The approach described here provides a powerful tool to remotely control and selectively manipulate MNPs‐functionalized cells in water and soils. It would have a potential in the application of environmental microbiology, such as bioremediation enhancement and environment monitoring and assessment.
Collapse
Affiliation(s)
- Dayi Zhang
- Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
1417
|
Lévesque F, Seeberger PH. Kontinuierliche Synthese des Malariawirkstoffs Artemisinin. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107446] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
1418
|
Lévesque F, Seeberger PH. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew Chem Int Ed Engl 2012; 51:1706-9. [PMID: 22250044 DOI: 10.1002/anie.201107446] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Indexed: 11/06/2022]
Affiliation(s)
- François Lévesque
- Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | |
Collapse
|
1419
|
Da Silva NA, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:197-214. [PMID: 22129153 DOI: 10.1111/j.1567-1364.2011.00769.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/26/2022] Open
Abstract
Metabolic pathway engineering in the yeast Saccharomyces cerevisiae leads to improved production of a wide range of compounds, ranging from ethanol (from biomass) to natural products such as sesquiterpenes. The introduction of multienzyme pathways requires precise control over the level and timing of expression of the associated genes. Gene number and promoter strength/regulation are two critical control points, and multiple studies have focused on modulating these in yeast. This MiniReview focuses on methods for introducing genes and controlling their copy number and on the many promoters (both constitutive and inducible) that have been successfully employed. The advantages and disadvantages of the methods will be presented, and applications to pathway engineering will be highlighted.
Collapse
Affiliation(s)
- Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.
| | | |
Collapse
|
1420
|
Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 2012; 109:E111-8. [PMID: 22247290 DOI: 10.1073/pnas.1110740109] [Citation(s) in RCA: 502] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria, caused by Plasmodium sp, results in almost one million deaths and over 200 million new infections annually. The World Health Organization has recommended that artemisinin-based combination therapies be used for treatment of malaria. Artemisinin is a sesquiterpene lactone isolated from the plant Artemisia annua. However, the supply and price of artemisinin fluctuate greatly, and an alternative production method would be valuable to increase availability. We describe progress toward the goal of developing a supply of semisynthetic artemisinin based on production of the artemisinin precursor amorpha-4,11-diene by fermentation from engineered Saccharomyces cerevisiae, and its chemical conversion to dihydroartemisinic acid, which can be subsequently converted to artemisinin. Previous efforts to produce artemisinin precursors used S. cerevisiae S288C overexpressing selected genes of the mevalonate pathway [Ro et al. (2006) Nature 440:940-943]. We have now overexpressed every enzyme of the mevalonate pathway to ERG20 in S. cerevisiae CEN.PK2, and compared production to CEN.PK2 engineered identically to the previously engineered S288C strain. Overexpressing every enzyme of the mevalonate pathway doubled artemisinic acid production, however, amorpha-4,11-diene production was 10-fold higher than artemisinic acid. We therefore focused on amorpha-4,11-diene production. Development of fermentation processes for the reengineered CEN.PK2 amorpha-4,11-diene strain led to production of > 40 g/L product. A chemical process was developed to convert amorpha-4,11-diene to dihydroartemisinic acid, which could subsequently be converted to artemisinin. The strains and procedures described represent a complete process for production of semisynthetic artemisinin.
Collapse
|
1421
|
Siddiqui MS, Thodey K, Trenchard I, Smolke CD. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 2012; 12:144-70. [PMID: 22136110 DOI: 10.1111/j.1567-1364.2011.00774.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 12/11/2022] Open
Abstract
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways.
Collapse
Affiliation(s)
- Michael S Siddiqui
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
1422
|
Kim IK, Roldão A, Siewers V, Nielsen J. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 2012; 12:228-48. [DOI: 10.1111/j.1567-1364.2011.00779.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/05/2011] [Accepted: 12/09/2011] [Indexed: 12/01/2022] Open
Affiliation(s)
- Il-Kwon Kim
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - António Roldão
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| |
Collapse
|
1423
|
Galata M, Mahmoud S. Bioactive Plant Isoprenoids. STUDIES IN NATURAL PRODUCTS CHEMISTRY VOLUME 37 2012. [DOI: 10.1016/b978-0-444-59514-0.00005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
1424
|
Abstract
Terpenoids comprise a structurally diverse group of natural products. Despite various and important uses of terpenoids (e.g., flavors, drugs, and nutraceuticals), most of them are, however, still extracted from plant sources, which suffer from high cost and low yield. Alternatively, terpenoids can be produced in microbes using their biosynthetic genes. With the explosion of sequence data, many genes for terpenoid metabolism can be characterized by biochemical approaches and used for the microbial production of terpenoids. However, substrates for in vitro studies of terpene synthases are costly, and the enzymatic synthesis of terpenoids in vitro using recombinant enzymes is insufficient to meet the chemical characterization need. Here, we describe the use of engineered yeast (EPY300) to evaluate in vivo production of sesquiterpenoids. Two sesquiterpene synthase genes (for valencene and 5-epi-aristolochene synthases) were expressed in EPY300 in native and N-terminal thioredoxin fusion forms. By using the thioredoxin fusion, valencene biosynthesis was slightly decreased; however, the production of 5-epi-aristolochene was increased by 10-fold, producing 420 μg mL(-1) of 5-epi-aristolochene. Accordingly, the thioredoxin-fused 5-epi-aristolochene was coexpressed with 5-epi-aristolochene dihydroxylase (cytochrome P450 monooxygenase) and its reductase in EPY300. This combinatorial expression yielded hydroxylated sesquiterpene, capsidiol, at ~250 μg mL(-1). Detailed experimental procedures and other considerations for this work are given.
Collapse
Affiliation(s)
- Trinh-Don Nguyen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
1425
|
Johnnie J, Austin M, Sriram G, Conway M, Misra A. Systems Engineering and Metabolic Engineering: A Side-by-Side Comparison. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.procs.2012.01.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
1426
|
Yang J, Zhao G, Sun Y, Zheng Y, Jiang X, Liu W, Xian M. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli. BIORESOURCE TECHNOLOGY 2012; 104:642-7. [PMID: 22133602 DOI: 10.1016/j.biortech.2011.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 05/21/2023]
Abstract
In this paper, an original strategy is employed to biosynthesize the isoprene by heterologously co-expressing the Saccharomyces cerevisiae MVA pathway and isoprene synthase (IspS) from Populus alba in the Escherichia coli BL21 (DE3) strain, which was screened from three different IspS enzymes. The finally genetic strain YJM13 harboring the MVA pathway and ispS(Pa) gene could accumulate isoprene up to 2.48 mg/l and 532 mg/l under the flask and fed-batch fermentation conditions, respectively, which is about three times and five times to the control strain. The result proves to be higher than that in the report documents. In this way, a potential production system for isoprene from renewable sources via the MVA pathway in E. coli has been provided.
Collapse
Affiliation(s)
- Jianming Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | | | | | | | | | | |
Collapse
|
1427
|
Møldrup ME, Salomonsen B, Halkier BA. Engineering of glucosinolate biosynthesis: candidate gene identification and validation. Methods Enzymol 2012; 515:291-313. [PMID: 22999179 DOI: 10.1016/b978-0-12-394290-6.00020-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The diverse biological roles of glucosinolates as plant defense metabolites and anticancer compounds have spurred a strong interest in their biosynthetic pathways. Since the completion of the Arabidopsis genome, functional genomics approaches have enabled significant progress on the elucidation of glucosinolate biosynthesis, although in planta validation of candidate gene function often is hampered by time-consuming generation of knockout and overexpression lines in Arabidopsis. To better exploit the increasing amount of data available from genomic sequencing, microarray database and RNAseq, time-efficient methods for identification and validation of candidate genes are needed. This chapter covers the methodology we are using for gene discovery in glucosinolate engineering, namely, guilt-by-association-based in silico methods and fast proof-of-function screens by transient expression in Nicotiana benthamiana. Moreover, the lessons learned in the rapid, transient tobacco system are readily translated to our robust, versatile yeast expression platform, where additional genes critical for large-scale microbial production of glucosinolates can be identified. We anticipate that the methodology presented here will be beneficial to elucidate and engineer other plant biosynthetic pathways.
Collapse
Affiliation(s)
- Morten E Møldrup
- Center for Dynamic Molecular Interactions, Department of Plant Biology and Biotechnology, Molecular Plant Biology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
1428
|
|
1429
|
Farhi M, Marhevka E, Ben-Ari J, Algamas-Dimantov A, Liang Z, Zeevi V, Edelbaum O, Spitzer-Rimon B, Abeliovich H, Schwartz B, Tzfira T, Vainstein A. Generation of the potent anti-malarial drug artemisinin in tobacco. Nat Biotechnol 2011; 29:1072-4. [PMID: 22158354 DOI: 10.1038/nbt.2054] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1430
|
Zhang HF, Yang XH, Wang Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.07.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
1431
|
Rai R, Meena RP, Smita SS, Shukla A, Rai SK, Pandey-Rai S. UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L. – An antimalarial plant. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 105:216-25. [DOI: 10.1016/j.jphotobiol.2011.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/27/2022]
|
1432
|
Zhang F, Rodriguez S, Keasling JD. Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 2011; 22:775-83. [DOI: 10.1016/j.copbio.2011.04.024] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 12/19/2022]
|
1433
|
Hamberger B, Ohnishi T, Hamberger B, Séguin A, Bohlmann J. Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. PLANT PHYSIOLOGY 2011; 157:1677-95. [PMID: 21994349 PMCID: PMC3327196 DOI: 10.1104/pp.111.185843] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diterpene resin acids (DRAs) are specialized (secondary) metabolites of the oleoresin defense of conifers produced by diterpene synthases and cytochrome P450s of the CYP720B family. The evolution of DRA metabolism shares common origins with the biosynthesis of ent-kaurenoic acid, which is highly conserved in general (primary) metabolism of gibberellin biosynthesis. Transcriptome mining in species of spruce (Picea) and pine (Pinus) revealed CYP720Bs of four distinct clades. We cloned a comprehensive set of 12 different Sitka spruce (Picea sitchensis) CYP720Bs as full-length cDNAs. Spatial expression profiles, methyl jasmonate induction, and transcript enrichment in terpenoid-producing resin ducts suggested a role of CYP720B4 in DRA biosynthesis. CYP720B4 was characterized as a multisubstrate, multifunctional enzyme by the formation of oxygenated diterpenoids in metabolically engineered yeast, yeast in vivo transformation of diterpene substrates, in vitro assays with CYP720B4 protein produced in Escherichia coli, and alteration of DRA profiles in RNA interference-suppressed spruce seedlings. CYP720B4 was active with 24 different diterpenoid substrates, catalyzing consecutive C-18 oxidations in the biosynthesis of an array of diterpene alcohols, aldehydes, and acids. CYP720B4 was most active in the formation of dehydroabietic acid, a compound associated with insect resistance of Sitka spruce. We identified patterns of convergent evolution of CYP720B4 in DRA metabolism and ent-kaurene oxidase CYP701 in gibberellin metabolism and revealed differences in the evolution of specialized and general diterpene metabolism in a gymnosperm. The genomic and functional characterization of the gymnosperm CYP720B family highlights that the evolution of specialized metabolism involves substantial diversification relative to conserved, general metabolism.
Collapse
|
1434
|
Abstract
Synthetic biology aims to create functional devices, systems and organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. Although they were initially constructed to elucidate the dynamics of simple processes, designed devices now contribute to the understanding of disease mechanisms, provide novel diagnostic tools, enable economic production of therapeutics and allow the design of novel strategies for the treatment of cancer, immune diseases and metabolic disorders, such as diabetes and gout, as well as a range of infectious diseases. In this Review, we cover the impact and potential of synthetic biology for biomedical applications.
Collapse
Affiliation(s)
- Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104 Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Hebelstrasse 25, Freiburg, D-79104 Germany
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058 Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058 Switzerland
| |
Collapse
|
1435
|
Liu X, Wang SY, Wang J. A statistical feature of Hurst exponents of essential genes in bacterial genomes. Integr Biol (Camb) 2011; 4:93-8. [PMID: 22108754 DOI: 10.1039/c1ib00030f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
At present, methods for determining essential genes depend on biochemical experiments. There is therefore a demand for the development of analysis methods and software for identifying essential genes, based on the common features of these genes. In this study, we employed the Hurst exponent as a characteristic parameter and analyzed its distribution among nine bacterial species. We found that most of the significance levels of the Hurst exponents of essential genes were higher than those of the corresponding full-gene-set. Conversely, most of the significance levels of the Hurst exponents of nonessential genes remained unchanged or only increased slightly. Therefore, we propose that this feature represents a restraint for pre- or post-design checking of bacterial essential genes in computer-aided design.
Collapse
Affiliation(s)
- Xiao Liu
- College of Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing, 400044, China.
| | | | | |
Collapse
|
1436
|
Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hiller L, Dahlgren M, Kreft R, Yu F, Wolff JJ, Kweon HK, Christiansen MA, Håkansson K, Williams RM, Ehrlich GD, Sherman DH. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol 2011; 6:1244-56. [PMID: 21875091 DOI: 10.1021/cb200244t] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many macroorganisms, the ultimate source of potent biologically active natural products has remained elusive due to an inability to identify and culture the producing symbiotic microorganisms. As a model system for developing a meta-omic approach to identify and characterize natural product pathways from invertebrate-derived microbial consortia, we chose to investigate the ET-743 (Yondelis) biosynthetic pathway. This molecule is an approved anticancer agent obtained in low abundance (10(-4)-10(-5) % w/w) from the tunicate Ecteinascidia turbinata and is generated in suitable quantities for clinical use by a lengthy semisynthetic process. On the basis of structural similarities to three bacterial secondary metabolites, we hypothesized that ET-743 is the product of a marine bacterial symbiont. Using metagenomic sequencing of total DNA from the tunicate/microbial consortium, we targeted and assembled a 35 kb contig containing 25 genes that comprise the core of the NRPS biosynthetic pathway for this valuable anticancer agent. Rigorous sequence analysis based on codon usage of two large unlinked contigs suggests that Candidatus Endoecteinascidia frumentensis produces the ET-743 metabolite. Subsequent metaproteomic analysis confirmed expression of three key biosynthetic proteins. Moreover, the predicted activity of an enzyme for assembly of the tetrahydroisoquinoline core of ET-743 was verified in vitro. This work provides a foundation for direct production of the drug and new analogues through metabolic engineering. We expect that the interdisciplinary approach described is applicable to diverse host-symbiont systems that generate valuable natural products for drug discovery and development.
Collapse
Affiliation(s)
| | - Benjamin Janto
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Josh Earl
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Azad Ahmed
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Fen Z. Hu
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
| | - Luisa Hiller
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Meg Dahlgren
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Rachael Kreft
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | | | - Jeremy J. Wolff
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | | | | | | | - Robert M. Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
| | | |
Collapse
|
1437
|
Hartwig CL, Lauterwasser EMW, Mahajan SS, Hoke JM, Cooper RA, Renslo AR. Investigating the antimalarial action of 1,2,4-trioxolanes with fluorescent chemical probes. J Med Chem 2011; 54:8207-13. [PMID: 22023506 DOI: 10.1021/jm2012003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 1,2,4-trioxolanes are a new class of synthetic peroxidic antimalarials currently in human clinical trials. The well-known reactivity of the 1,2,4-trioxolane ring toward inorganic ferrous iron and ferrous iron heme is proposed to play a role in the antimalarial action of this class of compounds. We have designed structurally relevant fluorescent chemical probes to study the subcellular localization of 1,2,4-trioxolanes in cultured Plasmodium falciparum parasites. Microscopy experiments revealed that a probe fluorescently labeled on the adamantane ring accumulated specifically in digestive vacuole-associated neutral lipid bodies within the parasite while an isosteric, but nonperoxidic, congener did not. Probes fluorescently labeled on the cyclohexane ring showed no distinct localization pattern. In their subcellular localization and peroxidative effects, 1,2,4-trioxolane probes behave much like artemisinin-based probes studied previously. Our results are consistent with a role for adamantane-derived carbon-centered radicals in the antimalarial action of 1,2,4-trioxolanes, as hypothesized previously on the basis of chemical reactivity studies.
Collapse
Affiliation(s)
- Carmony L Hartwig
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States
| | | | | | | | | | | |
Collapse
|
1438
|
Flamholz A, Noor E, Bar-Even A, Milo R. eQuilibrator--the biochemical thermodynamics calculator. Nucleic Acids Res 2011; 40:D770-5. [PMID: 22064852 PMCID: PMC3245061 DOI: 10.1093/nar/gkr874] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.
Collapse
Affiliation(s)
- Avi Flamholz
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
1439
|
Seki H, Sawai S, Ohyama K, Mizutani M, Ohnishi T, Sudo H, Fukushima EO, Akashi T, Aoki T, Saito K, Muranaka T. Triterpene Functional Genomics in Licorice for Identification of CYP72A154 Involved in the Biosynthesis of Glycyrrhizin. THE PLANT CELL 2011; 23:4112-23. [PMID: 22128119 PMCID: PMC3246328 DOI: 10.1105/tpc.110.082685] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Abstract
Glycyrrhizin, a triterpenoid saponin derived from the underground parts of Glycyrrhiza plants (licorice), has several pharmacological activities and is also used worldwide as a natural sweetener. The biosynthesis of glycyrrhizin involves the initial cyclization of 2,3-oxidosqualene to the triterpene skeleton β-amyrin, followed by a series of oxidative reactions at positions C-11 and C-30, and glycosyl transfers to the C-3 hydroxyl group. We previously reported the identification of a cytochrome P450 monooxygenase (P450) gene encoding β-amyrin 11-oxidase (CYP88D6) as the initial P450 gene in glycyrrhizin biosynthesis. In this study, a second relevant P450 (CYP72A154) was identified and shown to be responsible for C-30 oxidation in the glycyrrhizin pathway. CYP72A154 expressed in an engineered yeast strain that endogenously produces 11-oxo-β-amyrin (a possible biosynthetic intermediate between β-amyrin and glycyrrhizin) catalyzed three sequential oxidation steps at C-30 of 11-oxo-β-amyrin supplied in situ to produce glycyrrhetinic acid, a glycyrrhizin aglycone. Furthermore, CYP72A63 of Medicago truncatula, which has high sequence similarity to CYP72A154, was able to catalyze C-30 oxidation of β-amyrin. These results reveal a function of CYP72A subfamily proteins as triterpene-oxidizing enzymes and provide a genetic tool for engineering the production of glycyrrhizin.
Collapse
Affiliation(s)
- Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Satoru Sawai
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Tokiwa Phytochemical Co., Sakura, Chiba 285-0801, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Kiyoshi Ohyama
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Masaharu Mizutani
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiyuki Ohnishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Sudo
- Tokiwa Phytochemical Co., Sakura, Chiba 285-0801, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Ery Odette Fukushima
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Kazuki Saito
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
1440
|
Boghigian BA, Myint M, Wu J, Pfeifer BA. Simultaneous production and partitioning of heterologous polyketide and isoprenoid natural products in an Escherichia coli two-phase bioprocess. J Ind Microbiol Biotechnol 2011; 38:1809-20. [PMID: 21487833 PMCID: PMC9871370 DOI: 10.1007/s10295-011-0969-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/26/2011] [Indexed: 01/26/2023]
Abstract
Natural products have long served as rich sources of drugs possessing a wide range of pharmacological activities. The discovery and development of natural product drug candidates is often hampered by the inability to efficiently scale and produce a molecule of interest, due to inherent qualities of the native producer. Heterologous biosynthesis in an engineering and process-friendly host emerged as an option to produce complex natural products. Escherichia coli has previously been utilized to produce complex precursors to two popular natural product drugs, erythromycin and paclitaxel. These two molecules represent two of the largest classes of natural products, polyketides and isoprenoids, respectively. In this study, we have developed a platform E. coli strain capable of simultaneous production of both product precursors at titers greater than 15 mg l(-1). The utilization of a two-phase batch bioreactor allowed for very strong in situ separation (having a partitioning coefficient of greater than 5,000), which would facilitate downstream purification processes. The system developed here could also be used in metagenomic studies to screen environmental DNA for natural product discovery and preliminary production experiments.
Collapse
Affiliation(s)
- Brett A Boghigian
- Department of Chemical and Biological Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
1441
|
Boyle PM, Silver PA. Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab Eng 2011; 14:223-32. [PMID: 22037345 DOI: 10.1016/j.ymben.2011.10.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 10/05/2011] [Accepted: 10/16/2011] [Indexed: 11/24/2022]
Abstract
Synthetic biologists combine modular biological "parts" to create higher-order devices. Metabolic engineers construct biological "pipes" by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
1442
|
Ye VM, Bhatia SK. Metabolic engineering for the production of clinically important molecules: Omega-3 fatty acids, artemisinin, and taxol. Biotechnol J 2011; 7:20-33. [PMID: 22021189 DOI: 10.1002/biot.201100289] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/28/2011] [Accepted: 09/02/2011] [Indexed: 11/07/2022]
Abstract
Driven by requirements for sustainability as well as affordability and efficiency, metabolic engineering of plants and microorganisms is increasingly being pursued to produce compounds for clinical applications. This review discusses three such examples of the clinical relevance of metabolic engineering: the production of omega-3 fatty acids for the prevention of cardiovascular disease; the biosynthesis of artemisinic acid, an anti-malarial drug precursor, for the treatment of malaria; and the production of the complex natural molecule taxol, an anti-cancer agent. In terms of omega-3 fatty acids, bioengineering of fatty acid metabolism by expressing desaturases and elongases, both in soybeans and oleaginous yeast, has resulted in commercial-scale production of these beneficial molecules. Equal success has been achieved with the biosynthesis of artemisinic acid at low cost for developing countries. This is accomplished through channeling the flux of the isoprenoid pathway to the specific genes involved in artemisinin biosynthesis. Efficient coupling of the isoprenoid pathway also leads to the construction of an Escherichia coli strain that produces a high titer of taxadiene-the first committed intermediate for taxol biosynthesis. These examples of synthetic biology demonstrate the versatility of metabolic engineering to bring new solutions to our health needs.
Collapse
Affiliation(s)
- Victor M Ye
- Health Promotion and Disease Prevention, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
1443
|
FU AS, LIU R, ZHU J, LIU TG. Genetic engineering of microbial metabolic pathway for production of advanced biodiesel. YI CHUAN = HEREDITAS 2011; 33:1121-33. [DOI: 10.3724/sp.j.1005.2011.01121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
1444
|
Wang Y, Yang K, Jing F, Li M, Deng T, Huang R, Wang B, Wang G, Sun X, Tang KX. Cloning and characterization of trichome-specific promoter of cpr71av1 gene involved in artemisinin biosynthesis in Artemisia annua L. Mol Biol 2011. [DOI: 10.1134/s0026893311040145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
1445
|
Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. Eur J Med Chem 2011; 46:4769-807. [DOI: 10.1016/j.ejmech.2011.07.057] [Citation(s) in RCA: 556] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 11/16/2022]
|
1446
|
Alejos-Gonzalez F, Qu G, Zhou LL, Saravitz CH, Shurtleff JL, Xie DY. Characterization of development and artemisinin biosynthesis in self-pollinated Artemisia annua plants. PLANTA 2011; 234:685-97. [PMID: 21614500 DOI: 10.1007/s00425-011-1430-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/02/2011] [Indexed: 05/18/2023]
Abstract
Artemisia annua L. is the only natural resource that produces artemisinin (Qinghaosu), an endoperoxide sesquiterpene lactone used in the artemisinin-combination therapy of malaria. The cross-hybridization properties of A. annua do not favor studying artemisinin biosynthesis. To overcome this problem, in this study, we report on selection of self-pollinated A. annua plants and characterize their development and artemisinin biosynthesis. Self-pollinated F2 plants selected were grown under optimized growth conditions, consisting of long day (16 h of light) and short day (9 h of light) exposures in a phytotron. The life cycles of these plants were approximately 3 months long, and final heights of 30-35 cm were achieved. The leaves on the main stems exhibited obvious morphological changes, from indented single leaves to odd, pinnately compound leaves. Leaves and flowers formed glandular and T-shaped trichomes on their surfaces. The glandular trichome densities increased from the bottom to the top leaves. High performance liquid chromatography-mass spectrometry-based metabolic profiling analyses showed that leaves, flowers, and young seedlings of F2 plants produced artemisinin. In leaves, the levels of artemisinin increased from the bottom to the top of the plants, showing a positive correlation to the density increase of glandular trichomes. RT-PCR analysis showed that progeny of self-pollinated plants expressed the amorpha-4, 11-diene synthase (ADS) and cytochrome P450 monooxygenase 71 AV1 (CYP71AV1) genes, which are involved in artemisinin biosynthesis in leaves and flowers. The use of self-pollinated A. annua plants will be a valuable approach to the study of artemisinin biosynthesis.
Collapse
|
1447
|
Liang QF, Wang Q, Qi QS. [Synthetic biology and rearrangements of microbial genetic material]. YI CHUAN = HEREDITAS 2011; 33:1102-1112. [PMID: 21993285 DOI: 10.3724/sp.j.1005.2011.01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.
Collapse
|
1448
|
Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2011; 2:483. [PMID: 21952217 PMCID: PMC3195254 DOI: 10.1038/ncomms1494] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/26/2011] [Indexed: 01/14/2023] Open
Abstract
Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l(-1). We produce bisabolene in Saccharomyces cerevisiae (>900 mg l(-1)), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels.
Collapse
|
1449
|
Molecular identification and functional characterization of cytochrome P450 monooxygenases from the brown-rot basidiomycete Postia placenta. Arch Microbiol 2011; 194:243-53. [DOI: 10.1007/s00203-011-0753-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/19/2011] [Accepted: 09/02/2011] [Indexed: 12/21/2022]
|
1450
|
The imminent role of protein engineering in synthetic biology. Biotechnol Adv 2011; 30:541-9. [PMID: 21963685 DOI: 10.1016/j.biotechadv.2011.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 01/08/2023]
Abstract
Protein engineering has for decades been a powerful tool in biotechnology for generating vast numbers of useful enzymes for industrial applications. Today, protein engineering has a crucial role in advancing the emerging field of synthetic biology, where metabolic engineering efforts alone are insufficient to maximize the full potential of synthetic biology. This article reviews the advancements in protein engineering techniques for improving biocatalytic properties to optimize engineered pathways in host systems, which are instrumental to achieve high titer production of target molecules. We also discuss the specific means by which protein engineering has improved metabolic engineering efforts and provide our assessment on its potential to continue to advance biology engineering as a whole.
Collapse
|