101
|
Xia W, Zhang M, Liu C, Wang S, Xu A, Xia Z, Pang L, Cai Y. Exploring the therapeutic potential of tetrahydrobiopterin for heart failure with preserved ejection fraction: A path forward. Life Sci 2024; 345:122594. [PMID: 38537900 DOI: 10.1016/j.lfs.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A large number of patients are affected by classical heart failure (HF) symptomatology with preserved ejection fraction (HFpEF) and multiorgan syndrome. Due to high morbidity and mortality rate, hospitalization and mortality remain serious socioeconomic problems, while the lack of effective pharmacological or device treatment means that HFpEF presents a major unmet medical need. Evidence from clinical and basic studies demonstrates that systemic inflammation, increased oxidative stress, and impaired mitochondrial function are the common pathological mechanisms in HFpEF. Tetrahydrobiopterin (BH4), beyond being an endogenous co-factor for catalyzing the conversion of some essential biomolecules, has the capacity to prevent systemic inflammation, enhance antioxidant resistance, and modulate mitochondrial energy production. Therefore, BH4 has emerged in the last decade as a promising agent to prevent or reverse the progression of disorders such as cardiovascular disease. In this review, we cover the clinical progress and limitations of using downstream targets of nitric oxide (NO) through NO donors, soluble guanylate cyclase activators, phosphodiesterase inhibitors, and sodium-glucose co-transporter 2 inhibitors in treating cardiovascular diseases, including HFpEF. We discuss the use of BH4 in association with HFpEF, providing new evidence for its potential use as a pharmacological option for treating HFpEF.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Miao Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Guangdong, China
| | - Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
102
|
Li H, He Y, Chen X, Yang A, Lyu F, Dong Y. Exosomal miR-423-5p Derived from Cerebrospinal Fluid Pulsation Stress-Stimulated Osteoblasts Improves Angiogenesis of Endothelial Cells via DUSP8/ERK1/2 Signaling Pathway. Stem Cells Int 2024; 2024:5512423. [PMID: 38765936 PMCID: PMC11102110 DOI: 10.1155/2024/5512423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Exosomes secreted from osteoblasts (OBs) can regulate the angiogenesis of endothelial cells (ECs); however, whether cerebrospinal fluid pulsation (CSFP) stress, a special mechanical stimulation, can influence the cell's communication in the context of angiogenesis remains unknown. In this study, the effect of exosomes derived from CSFP stress-stimulated OBs on facilitating the angiogenesis of ECs was investigated. First, OBs were cultured in a CSFP bioreactor, and exosomes derived from OBs were isolated and identified. Cell Counting Kit 8 assay, transwell migration assay, wound healing migration assay, and tube formation assay were conducted to assess the effects of CSFP stress-stimulated OBs-derived exosomes (CSFP-Exos) on the angiogenesis of ECs. Then high-throughput RNA sequencing was used to determine the miRNA profiles of Non-CSFP stress-stimulated OBs-derived exosomes (NCSFP-Exos) and CSFP-Exos, and the luciferase reporter gene assay was performed to confirm the binging of miR-423-5p to DUSP8. In addition, the Matrigel plug assay was performed to explore whether exosomal miR-423-5p has the same effects in vivo. Our results suggested that CSFP-Exos can promote the angiogenesis of ECs, and miR-423-5p was enriched in CSFP-Exos. Moreover, miR-423-5p could promote the effect of angiogenesis via directly targeting dual-specificity phosphatase 8 (DUSP8), which inhibited the ERK1/2 signaling pathway. In conclusion, exosomal miR-423-5p derived from CSFP stress-stimulated OBs could promote the angiogenesis of ECs by the DUSP8/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yiqun He
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xujun Chen
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Aolei Yang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Feizhou Lyu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Youhai Dong
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
103
|
Rademacher J, Therre M, Hinze CA, Buder F, Böhm M, Welte T. Association of respiratory infections and the impact of vaccinations on cardiovascular diseases. Eur J Prev Cardiol 2024; 31:877-888. [PMID: 38205961 DOI: 10.1093/eurjpc/zwae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Influenza, pneumococcal, severe acute respiratory syndrome coronavirus 2, and respiratory syncytial virus infections are important causes of high morbidity and mortality in the elderly. Beyond the burden of infectious diseases, they are also associated with several non-infectious complications like cardiovascular events. A growing body of evidence in prospective studies and meta-analyses has shown the impact of influenza and pneumococcal vaccines on types of cardiovascular outcomes in the general population. Influenza vaccination showed a potential benefit for primary and secondary prevention of cardiovascular diseases across all ages. A reduced risk of cardiovascular events for individuals aged 65 years and older was associated with pneumococcal vaccination. Despite scientific evidence on the effectiveness, safety, and benefits of the vaccines and recommendations to vaccinate elderly patients and those with risk factors, vaccination rates remain sub-optimal in this population. Doubts about vaccine necessity or efficacy and concerns about possible adverse events in patients and physicians refer to delayed acceptance. Vaccination campaigns targeting increasing professional recommendations and public perceptions should be implemented in the coming years. The aim of this review paper is to summarize the effect of vaccination in the field of cardiovascular disease to achieve a higher vaccination rate in this patient population.
Collapse
Affiliation(s)
- Jessica Rademacher
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease, Hannover, Germany
| | - Markus Therre
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Kirrberger Str. 1, Homburg 66421, Germany
| | - Christopher Alexander Hinze
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Felix Buder
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Kirrberger Str. 1, Homburg 66421, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Kirrberger Str. 1, Homburg 66421, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease, Hannover, Germany
| |
Collapse
|
104
|
Delgado-Ramírez M, López-Serrano AL, Rodríguez-Menchaca AA. Inhibition of Kv2.1 potassium channels by the antidepressant drug sertraline. Eur J Pharmacol 2024; 970:176487. [PMID: 38458411 DOI: 10.1016/j.ejphar.2024.176487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In this study, we have used the patch-clamp technique to assess the effects of sertraline on Kv2.1 channels heterologously expressed in HEK-293 cells and on the voltage-gated potassium currents (IKv) of Neuro 2a cells, which are predominantly mediated by Kv2.1 channels. Our results reveal that sertraline inhibits Kv2.1 channels in a concentration-dependent manner. The sertraline-induced inhibition was not voltage-dependent and did not require the channels to be open. The kinetics of activation and deactivation were accelerated and decelerated, respectively, by sertraline. Moreover, the inhibition by this drug was use-dependent. Notably, sertraline significantly modified the inactivation mechanism of Kv2.1 channels; the steady-state inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was enhanced and accelerated, and the recovery from inactivation was slowed, suggesting that this is the main mechanism by which sertraline inhibits Kv2.1 channels. Overall, this study provides novel insights into the pharmacological actions of sertraline on Kv2.1 channels, shedding light on the intricate interaction between SSRIs and ion channel function.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico.
| | - Ana Laura López-Serrano
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| |
Collapse
|
105
|
Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S. Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 2024; 11:1370951. [PMID: 38765810 PMCID: PMC11099240 DOI: 10.3389/fnut.2024.1370951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.
Collapse
Affiliation(s)
- Praful Saha
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dishant Maniar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Simran Sahare
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
106
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 2024; 98:1323-1367. [PMID: 38483584 PMCID: PMC11303474 DOI: 10.1007/s00204-024-03696-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 198.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., β-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
107
|
Yang Q, Chen D, Li C, Liu R, Wang X. Mechanism of hypoxia-induced damage to the mechanical property in human erythrocytes-band 3 phosphorylation and sulfhydryl oxidation of membrane proteins. Front Physiol 2024; 15:1399154. [PMID: 38706947 PMCID: PMC11066195 DOI: 10.3389/fphys.2024.1399154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: The integrity of the erythrocyte membrane cytoskeletal network controls the morphology, specific surface area, material exchange, and state of erythrocytes in the blood circulation. The antioxidant properties of resveratrol have been reported, but studies on the effect of resveratrol on the hypoxia-induced mechanical properties of erythrocytes are rare. Methods: In this study, the effects of different concentrations of resveratrol on the protection of red blood cell mor-phology and changes in intracellular redox levels were examined to select an appropriate concentration for further study. The Young's modulus and surface roughness of the red blood cells and blood viscosity were measured via atomic force microsco-py and a blood rheometer, respectively. Flow cytometry, free hemoglobin levels, and membrane lipid peroxidation levels were used to characterize cell membrane damage in the presence and absence of resveratrol after hypoxia. The effects of oxida-tive stress on the erythrocyte membrane proteins band 3 and spectrin were further investigated by immunofluorescent label-ing and Western blotting. Results and discussion: Resveratrol changed the surface roughness and Young's modulus of the erythrocyte mem-brane, reduced the rate of eryptosis in erythrocytes after hypoxia, and stabilized the intracellular redox level. Further data showed that resveratrol protected the erythrocyte membrane proteins band 3 and spectrin. Moreover, resistance to band 3 pro-tein tyrosine phosphorylation and sulfhydryl oxidation can protect the stability of the erythrocyte membrane skeleton net-work, thereby protecting erythrocyte deformability under hypoxia. The results of the present study may provide new insights into the roles of resveratrol in the prevention of hypoxia and as an antioxidant.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
108
|
Da Silva DE, Richards CM, McRae SA, Riar I, Yang S(S, Zurfluh NE, Gibon J, Klegeris A. Extracellular mixed histones are neurotoxic and modulate select neuroimmune responses of glial cells. PLoS One 2024; 19:e0298748. [PMID: 38630734 PMCID: PMC11023449 DOI: 10.1371/journal.pone.0298748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
Although histone proteins are widely known for their intranuclear functions where they organize DNA, all five histone types can also be released into the extracellular space from damaged cells. Extracellular histones can interact with pattern recognition receptors of peripheral immune cells, including toll-like receptor 4 (TLR4), causing pro-inflammatory activation, which indicates they may act as damage-associated molecular patterns (DAMPs) in peripheral tissues. Very limited information is available about functions of extracellular histones in the central nervous system (CNS). To address this knowledge gap, we applied mixed histones (MH) to cultured cells modeling neurons, microglia, and astrocytes. Microglia are the professional CNS immunocytes, while astrocytes are the main support cells for neurons. Both these cell types are critical for neuroimmune responses and their dysregulated activity contributes to neurodegenerative diseases. We measured effects of extracellular MH on cell viability and select neuroimmune functions of microglia and astrocytes. MH were toxic to cultured primary murine neurons and also reduced viability of NSC-34 murine and SH-SY5Y human neuron-like cells in TLR4-dependent manner. MH did not affect the viability of resting or immune-stimulated BV-2 murine microglia or U118 MG human astrocytic cells. When applied to BV-2 cells, MH enhanced secretion of the potential neurotoxin glutamate, but did not modulate the release of nitric oxide (NO), tumor necrosis factor-α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), or the overall cytotoxicity of lipopolysaccharide (LPS)- and/or interferon (IFN)-γ-stimulated BV-2 microglial cells towards NSC-34 neuron-like cells. We demonstrated, for the first time, that MH downregulated phagocytic activity of LPS-stimulated BV-2 microglia. However, MH also exhibited protective effect by ameliorating the cytotoxicity of LPS-stimulated U118 MG astrocytic cells towards SH-SY5Y neuron-like cells. Our data demonstrate extracellular MH could both damage neurons and alter neuroimmune functions of glial cells. These actions of MH could be targeted for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dylan E. Da Silva
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Christy M. Richards
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Seamus A. McRae
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Ishvin Riar
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Sijie (Shirley) Yang
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Noah E. Zurfluh
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, University Way, Kelowna, British Columbia, Canada
| |
Collapse
|
109
|
Singh D, Singh R, Akindele AJ. Therapeutic potential of nicorandil beyond anti-anginal drug: A review on current and future perspectives. Heliyon 2024; 10:e28922. [PMID: 38617945 PMCID: PMC11015415 DOI: 10.1016/j.heliyon.2024.e28922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Nicorandil (NIC) is a well-known anti-anginal agent, which has been recommended as one of the second-line treatments for chronic stable angina as justified by the European guidelines. It shows an efficacy equivalent to that of classic anti-anginal agents. NIC has also been used clinically in various cardiovascular diseases such as variant or unstable angina and reperfusion-induced damage following coronary angioplasty or thrombolysis. Different mechanisms have been involved in the protective effects of nicorandil in various diseases, including opening of adenosine triphosphate-sensitive potassium (KATP) channel and donation of nitric oxide (NO). In recent years, NIC has been found to show numerous pharmacological activities such as neuroprotective, nephroprotective, hepatoprotective, cardioprotective, and testicular protective effects, among other beneficial effects on the body. The present review dwells on the pharmacological potentials of NIC beyond its anti-anginal action.
Collapse
Affiliation(s)
- Dhirendra Singh
- M.M College of Pharmacy, Maharishi Markandeshwar Mullana, Ambala, Haryana, India
| | - Randhir Singh
- Departments of Pharmacology, Central University of Punjab, Bhatinda, Punjab, India
| | - Abidemi James Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003 Lagos, Nigeria
| |
Collapse
|
110
|
Campàs M, Reverté J, Tudó À, Alkassar M, Diogène J, Sureda FX. Automated Patch Clamp for the Detection of Tetrodotoxin in Pufferfish Samples. Mar Drugs 2024; 22:176. [PMID: 38667793 PMCID: PMC11050952 DOI: 10.3390/md22040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.
Collapse
Affiliation(s)
- Mònica Campàs
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Jaume Reverté
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Àngels Tudó
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Mounira Alkassar
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Jorge Diogène
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Francesc X. Sureda
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| |
Collapse
|
111
|
Guo B, Zheng C, Cao J, Qiu X, Luo F, Li H, Lee SM, Yang X, Zhang G, Sun Y, Zhang Z, Wang Y. Tetramethylpyrazine Nitrone Promotes the Clearance of Alpha-Synuclein via Nrf2-Mediated Ubiquitin-Proteasome System Activation. Neuromolecular Med 2024; 26:9. [PMID: 38568291 DOI: 10.1007/s12017-024-08775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent enhancement of the expression of the 20S proteasome core particles (20S CPs) and regulatory particles (RPs) increases proteasome activity, which can promote α-syn clearance in PD. Activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) may reduce oxidative stress by strongly inducing Nrf2 gene expression. In the present study, tetramethylpyrazine nitrone (TBN), a potent-free radical scavenger, promoted α-syn clearance by the ubiquitin-proteasome system (UPS) in cell models overexpressing the human A53T mutant α-syn. In the α-syn transgenic mice model, TBN improved motor impairment, decreased the products of oxidative damage, and down-regulated the α-syn level in the serum. TBN consistently up-regulated PGC-1α and Nrf2 expression in tested models of PD. Additionally, TBN similarly enhanced the proteasome 20S subunit beta 8 (Psmb8) expression, which is linked to chymotrypsin-like proteasome activity. Furthermore, TBN increased the mRNA levels of both the 11S RPs subunits Pa28αβ and a proteasome chaperone, known as the proteasome maturation protein (Pomp). Interestingly, specific siRNA targeting of Nrf2 blocked TBN's effects on Psmb8, Pa28αβ, Pomp expression, and α-syn clearance. In conclusion, TBN promotes the clearance of α-syn via Nrf2-mediated UPS activation, and it may serve as a potentially disease-modifying therapeutic agent for PD.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Chengyou Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Jie Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Xiaoling Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Fangcheng Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Simon Mingyuan Lee
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, 999078, Macao SAR, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China.
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| |
Collapse
|
112
|
Antonelli Incalzi R, Consoli A, Lopalco P, Maggi S, Sesti G, Veronese N, Volpe M. Influenza vaccination for elderly, vulnerable and high-risk subjects: a narrative review and expert opinion. Intern Emerg Med 2024; 19:619-640. [PMID: 37891453 PMCID: PMC11039544 DOI: 10.1007/s11739-023-03456-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Influenza is associated with a substantial health burden, especially in high-risk subjects such as older adults, frail individuals and those with underlying chronic diseases. In this review, we summarized clinical findings regarding the impact of influenza in vulnerable populations, highlighted the benefits of influenza vaccination in preventing severe illness and complications and reviewed the main evidence on the efficacy, effectiveness and safety of the vaccines that are best suited to older adults among those available in Italy. The adverse outcomes associated with influenza infection in elderly and frail subjects and those with underlying chronic diseases are well documented in the literature, as are the benefits of vaccination (mostly in older adults and in patients with cardiovascular diseases, diabetes and chronic lung disease). High-dose and adjuvanted inactivated influenza vaccines were specifically developed to provide enhanced immune responses in older adults, who generally have low responses mainly due to immunosenescence, comorbidities and frailty. These vaccines have been evaluated in clinical studies and systematic reviews by international immunization advisory boards, including the European Centre for Disease Prevention and Control. The high-dose vaccine is the only licensed influenza vaccine to have demonstrated greater efficacy versus a standard-dose vaccine in preventing laboratory-confirmed influenza in a randomized controlled trial. Despite global recommendations, the vaccination coverage in high-risk populations is still suboptimal. All healthcare professionals (including specialists) have an important role in increasing vaccination rates.
Collapse
Affiliation(s)
- Raffaele Antonelli Incalzi
- Gerontology Unit, Department of Internal Medicine and Geriatrics, Campus Bio-Medico University and Teaching Hospital, Rome, Italy
| | - Agostino Consoli
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Pierluigi Lopalco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefania Maggi
- Institute of Neuroscience-Aging Branch, National Research Council, Padua, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy.
| | - Nicola Veronese
- Department of Internal Medicine, Geriatrics Section, University of Palermo, Palermo, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, "La Sapienza" University of Rome and IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
113
|
Ghatage T, Singh S, Mandal K, Dhar A. Co-activation of Mas and pGCA receptors suppresses Endothelin-1-induced endothelial dysfunction via nitric oxide/cGMP system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167110. [PMID: 38462025 DOI: 10.1016/j.bbadis.2024.167110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The aortic endothelium is crucial in preserving vascular tone through endothelium-derived vasodilators and vasoconstrictors. Dysfunction in the endothelium is an early indicator of cardiovascular diseases. Our study explores the therapeutic potential of a dual-acting peptide (DAP) to co-activate Mas and pGCA receptors and restore the balance between vasodilators and vasoconstrictors on endothelial dysfunction in DOCA-salt-induced hypertensive rats. METHODS DOCA-salt was administered to male wistar rats to induce hypertension, and various parameters, including blood pressure (BP), water intake and body weight were monitored. DAP, Ang1-7, BNP, and losartan were administered to hypertensive rats for three weeks. Histological analysis and isometric tension studies were carried out to assess endothelial function. In addition to this, we used primary aortic endothelial cells for detailed mechanistic investigations. RESULTS DOCA-salt administration significantly elevated systolic, diastolic, mean arterial BP, and water intake whereas, downregulated the gene expression of Mas and pGCA receptors. However, DAP co-administration attenuated BP increase, upregulated the gene expression of Mas and pGCA receptors, normalized serum and urinary parameters, and effectively reduced fibrosis, inflammation, and vascular calcification. Notably, DAP outperformed the standard drug, Losartan. Our findings indicate that DAP restores aortic function by balancing the NO and ET1-induced pathways. CONCLUSION Co-activating Mas and pGCA receptors with DAP mitigates vascular damage and enhances endothelial function, emphasizing its potential to maintain a delicate balance between vasodilatory NO and vasoconstrictor ET1 in endothelial dysfunction.
Collapse
Affiliation(s)
- Trupti Ghatage
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| | - Sameer Singh
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India.
| |
Collapse
|
114
|
Liu J, He J, Liao Z, Chen X, Ye Y, Pang Q, Fan R. Environmental dose of 16 priority-controlled PAHs induce endothelial dysfunction: An in vivo and in vitro study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170711. [PMID: 38340817 DOI: 10.1016/j.scitotenv.2024.170711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/24/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure is related to the occurrence of cardiovascular diseases (CVDs). Endothelial dysfunction is considered an initial event of CVDs. To confirm the relationship of PAHs exposure with endothelial dysfunction, 8-week-old male SD rats and primary human umbilical vein endothelial cells (HUVECs) were co-treated with environmental doses of 16 priority-controlled PAHs for 90 d and 48 h, respectively. Results showed that 10× PAHs exposure remarkably raised tumor necrosis factor-α and malonaldehyde levels in rat serum (p < 0.05), but had no effects on interleukin-8 levels and superoxide dismutase activity. The expressions of SIRT1 in HUVECs and rat aorta were attenuated after PAHs treatment. Interestingly, PAHs exposure did not activate the expression of total endothelial nitric oxide synthase (eNOS), but 10× PAHs exposure significantly elevated the expression of phosphorylated eNOS (Ser1177) in HUVECs and repressed it in aortas, accompanied with raised nitrite level both in serum and HUVECs by 48.50-253.70 %. PAHs exposure also led to the augment of endothelin-1 (ET-1) levels by 19.76-38.54 %, angiotensin (Ang II) levels by 20.09-39.69 % in HUVECs, but had no effects on ET-1 and Ang II levels in serum. Additionally, PAHs exposure improved endocan levels both in HUVECs and serum by 305.05-620.48 % and stimulated the THP-1 cells adhered to HUVECs (p < 0.05). After PAHs treatment, the smooth muscle alignment was disordered and the vascular smooth muscle locally proliferated in rat aorta. Notably, the systolic blood pressure of rats exposed to 10× PAHs increased significantly compared with the control ones (131.28 ± 5.20 vs 116.75 ± 5.33 mmHg). In summary, environmental chronic PAHs exposure may result in endothelial dysfunction in SD rats and primary HUVECs. Our research can confirm the cardiovascular damage caused by chronic exposure to PAHs and provide ideas for the prevention or intervention of CVDs affected by environmental factors.
Collapse
Affiliation(s)
- Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiaying He
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zengquan Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yufeng Ye
- Medical Imaging Institute of Panyu, Guangzhou 511486, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
115
|
Yu H, Wang X, Tian R, Li X, Xu C, Fei J, Li T, Yin Z. Myometrium infection decreases TREK1 through NHE1 and increases contraction in pregnant mice. Am J Physiol Cell Physiol 2024; 326:C1106-C1119. [PMID: 38344766 DOI: 10.1152/ajpcell.00598.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Intrauterine infection during pregnancy can enhance uterine contractions. A two-pore K+ channel TREK1 is crucial for maintaining uterine quiescence and reducing contractility, with its properties regulated by pH changes in cell microenvironment. Meanwhile, the sodium hydrogen exchanger 1 (NHE1) plays a pivotal role in modulating cellular pH homeostasis, and its activation increases smooth muscle tension. By establishing an infected mouse model of Escherichia coli (E. coli) and lipopolysaccharide (LPS), we used Western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence to detect changes of TREK1 and NHE1 expression in the myometrium, and isometric recording measured the uterus contraction. The NHE1 inhibitor cariporide was used to explore the effect of NHE1 on TREK1. Finally, cell contraction assay and siRNA transfection were performed to clarify the relationship between NHE1 and TREK1 in vitro. We found that the uterine contraction was notably enhanced in infected mice with E. coli and LPS administration. Meanwhile, TREK1 expression was reduced, whereas NHE1 expression was upregulated in infected mice. Cariporide alleviated the increased uterine contraction and promoted myometrium TREK1 expression in LPS-injected mice. Furthermore, suppression of NHE1 with siRNA transfection inhibited the contractility of uterine smooth muscle cells and activated the TREK1. Altogether, our findings indicate that infection increases the uterine contraction by downregulating myometrium TREK1 in mice, and the inhibition of TREK1 is attributed to the activation of NHE1.NEW & NOTEWORTHY Present work found that infection during pregnancy will increase myometrium contraction. Infection downregulated NHE1 and followed TREK1 expression and activation decrease in myometrium, resulting in increased myometrium contraction.
Collapse
Affiliation(s)
- Huihui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingxing Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixian Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenyi Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Fei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tengteng Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| |
Collapse
|
116
|
Jana A, Naga R, Saha S, Griñán-Ferré C, Banerjee DR. Integration of ligand and structure-based pharmacophore screening for the identification of novel natural leads against Euchromatic histone lysine methyltransferase 2 (EHMT2/G9a). J Biomol Struct Dyn 2024; 42:3535-3562. [PMID: 37216299 DOI: 10.1080/07391102.2023.2213346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Herein, we report a blended ligand and structure-based pharmacophore screening approach to identify new natural leads against the Protein Lysine Methyltransferase 2 (EHMT2/G9a). The EHMT2/G9a has been associated with Cancer, Alzheimer's, and aging and is considered an emerging drug target having no clinically passed inhibitor. Purposefully, we developed the ligand-based pharmacophore (Pharmacophore-L) based on the common features of known inhibitors and the structure-based pharmacophore (Pharmacophore-S) based on the interaction profile of available crystal structures. The Pharmacophore-L and Pharmacophore-S were subjected to multiple tiers of validations and utilized in combination for the screening of total 741543 compounds coming from multiple databases. Additional layers of stringency were applied in the screening process to test drug-likeness (using Lipinski's rule, Veber's rule, SMARTS and ADMET filtration), to rule out any toxicity (TOPKAT analysis). The interaction profiles, stabilities, and comparative analysis against the reference were carried out by flexible docking, MD simulation, and MM-GBSA analysis, which finally led to three leads as potential inhibitors of G9a.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhisek Jana
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, India
| | - Rahul Naga
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Sougata Saha
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
117
|
Renden RB, Institoris A, Sharma K, Tran CHT. Modulatory effects of noradrenergic and serotonergic signaling pathway on neurovascular coupling. Commun Biol 2024; 7:287. [PMID: 38459113 PMCID: PMC10923894 DOI: 10.1038/s42003-024-05996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Dynamic changes in astrocyte Ca2+ are recognized as contributors to functional hyperemia, a critical response to increased neuronal activity mediated by a process known as neurovascular coupling (NVC). Although the critical role of glutamatergic signaling in this process has been extensively investigated, the impact of behavioral state, and the release of behavior-associated neurotransmitters, such as norepinephrine and serotonin, on astrocyte Ca2+ dynamics and functional hyperemia have received less attention. We used two-photon imaging of the barrel cortex in awake mice to examine the role of noradrenergic and serotonergic projections in NVC. We found that both neurotransmitters facilitated sensory stimulation-induced increases in astrocyte Ca2+. Interestingly, while ablation of serotonergic neurons reduced sensory stimulation-induced functional hyperemia, ablation of noradrenergic neurons caused both attenuation and potentiation of functional hyperemia. Our study demonstrates that norepinephrine and serotonin are involved in modulating sensory stimulation-induced astrocyte Ca2+ elevations and identifies their differential effects in regulating functional hyperemia.
Collapse
Affiliation(s)
- Robert B Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kushal Sharma
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Cam Ha T Tran
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA.
| |
Collapse
|
118
|
Jacques D, Bkaily G. Taurine Prevents Angiotensin II-Induced Human Endocardial Endothelium Morphological Remodeling and the Increase in Cytosolic and Nuclear Calcium and ROS. Nutrients 2024; 16:745. [PMID: 38474873 DOI: 10.3390/nu16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Endocardial endothelium (EE) is a layer of cells covering the cardiac cavities and modulates cardiomyocyte function. This cell type releases several cardioactive factors, including Angiotensin II (Ang II). This octopeptide is known to induce cardiac hypertrophy. However, whether this circulating factor also induces EE hypertrophy is not known. Taurine is known to prevent cardiac hypertrophy. Whether this endogenous antioxidant prevents the effect of Ang II on human EE (hEE) will be verified. Using quantitative fluorescent probe imaging for calcium and reactive oxygen species (ROS), our results show that Ang II induces (10-7 M, 48 h treatment) an increase in hEE cell (hEEC) volume and its nucleus. Pretreatment with 20 mM of taurine prevents morphological remodeling and increases intracellular calcium and ROS. These results suggest that the reported Ang II induces cardiac hypertrophy is associated with hEEC hypertrophy. This later effect is prevented by taurine by reducing intracellular calcium and ROS overloads. Thus, taurine could be an excellent tool for preventing Ang II-induced remodeling of hEECs.
Collapse
Affiliation(s)
- Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
119
|
Farag A, Elfadadny A, Mandour AS, Ngeun SK, Aboubakr M, Kaneda M, Tanaka R. Potential protective effects of L-carnitine against myocardial ischemia/reperfusion injury in a rat model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18813-18825. [PMID: 38349499 DOI: 10.1007/s11356-024-32212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a growing concern for global public health. This study seeks to explore the potential protective effects of L-carnitine (LC) against heart ischemia-reperfusion injury in rats. To induce I/R injury, the rat hearts underwent a 30-min ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. We evaluated cardiac function through electrocardiography and heart rate variability (HRV) and conducted pathological examinations of myocardial structure. Additionally, the study investigated the influence of LC on myocardial apoptosis, inflammation, and oxidative stress in the context of I/R injury. The results show that pretreatment with LC led to improvements in the observed alterations in ECG waveforms and HRV parameters in the nontreated ischemic reperfusion model group, although most of these changes did not reach statistical significance. Similarly, although without a significant difference, LC reduced the levels of proinflammatory cytokines when compared to the values in the nontreated ischemic rat group. Furthermore, LC restored the reduced expressions of SOD1, SOD2, and SOD3. Additionally, LC significantly reduced the elevated Bax expressions and showed a nonsignificant increase in Bcl-2 expression, resulting in a favorable adjustment of the Bcl-2/Bax ratio. We also observed a significant enhancement in the histological appearance of cardiac muscles, a substantial reduction in myocardial fibrosis, and suppressed CD3 + cell proliferation in the ischemic myocardium. This small-scale, experimental, in vivo study indicates that LC was associated with enhancements in the pathological findings in the ischemic myocardium in the context of ischemia/reperfusion injury in this rat model. Although statistical significance was not achieved, LC exhibits potential and beneficial protective effects against I/R injury. It does so by modulating the expression of antioxidative and antiapoptotic genes, inhibiting the inflammatory response, and enhancing autonomic balance, particularly by increasing vagal tone in the heart. Further studies are necessary to confirm and elaborate on these findings.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan.
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qaliobiya, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
120
|
Brito Lucas AM, Bezerra Palacio P, Oliveira Cunha PL, Tarso Facundo H. Calorie restriction anti-hypertrophic effects are associated with improved mitochondrial content, blockage of Ca 2+-induced mitochondrial damage, and lower reverse electron transport-mediated oxidative stress. Free Radic Res 2024; 58:293-310. [PMID: 38630026 DOI: 10.1080/10715762.2024.2342962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/15/2024] [Indexed: 05/23/2024]
Abstract
Calorie restriction is a nutritional intervention that reproducibly protects against the maladaptive consequences of cardiovascular diseases. Pathological cardiac hypertrophy leads to cellular growth, dysfunction (with mitochondrial dysregulation), and oxidative stress. The mechanisms behind the cardiovascular protective effects of calorie restriction are still under investigation. In this study, we show that this dietetic intervention prevents cardiac protein elevation, avoids fetal gene reprogramming (atrial natriuretic peptide), and blocks the increase in heart weight per tibia length index (HW/TL) seen in isoproterenol-induced cardiac hypertrophy. Our findings suggest that calorie restriction inhibits cardiac pathological growth while also lowering mitochondrial reverse electron transport-induced hydrogen peroxide formation and improving mitochondrial content. Calorie restriction also attenuated the opening of the Ca2+-induced mitochondrial permeability transition pore. We also found that calorie restriction blocked the negative correlation of antioxidant enzymes (superoxide dimutase and glutatione peroxidase activity) and HW/TL, leading to the maintenance of protein sulphydryls and glutathione levels. Given the nature of isoproterenol-induced cardiac hypertrophy, we investigated whether calorie restriction could alter cardiac beta-adrenergic sensitivity. Using isolated rat hearts in a Langendorff system, we found that calorie restricted hearts have preserved beta-adrenergic signaling. In contrast, hypertrophic hearts (treated for seven days with isoproterenol) were insensitive to beta-adrenergic activation using isoproterenol (50 nM). Despite protecting against cardiac hypertrophy, calorie restriction did not alter the lack of responsiveness to isoproterenol in isolated hearts harvested from isoproterenol-treated rats. These results suggest (through a series of mitochondrial, oxidative stress, and cardiac hemodynamic studies) that calorie restriction possesses beneficial effects against hypertrophic cardiomyopathy.
Collapse
|
121
|
Ibrahim AA, Nsairat H, Al-Sulaibi M, El-Tanani M, Jaber AM, Lafi Z, Barakat R, Abuarqoub DA, Mahmoud IS, Obare SO, Aljabali AAA, Alkilany AM, Alshaer W. Doxorubicin conjugates: a practical approach for its cardiotoxicity alleviation. Expert Opin Drug Deliv 2024; 21:399-422. [PMID: 38623735 DOI: 10.1080/17425247.2024.2343882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.
Collapse
Affiliation(s)
- Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Rahmeh Barakat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Duaa Azmi Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Sherine O Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | | | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
122
|
Matsushita K, Toyoda T, Akane H, Morikawa T, Ogawa K. Role of CD44 expressed in renal tubules during maladaptive repair in renal fibrogenesis in an allopurinol-induced rat model of chronic kidney disease. J Appl Toxicol 2024; 44:455-469. [PMID: 37876353 DOI: 10.1002/jat.4554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
The kidney is a major target organ for the adverse effects of pharmaceuticals; renal tubular epithelial cells (TECs) are particularly vulnerable to drug-induced toxicity. TECs have regenerative capacity; however, maladaptive repair of TECs after injury leads to renal fibrosis, resulting in chronic kidney disease (CKD). We previously reported the specific expression of CD44 in failed-repair TECs of rat CKD model induced by ischemia reperfusion injury. Here, we investigated the pathophysiological role of CD44 in renal fibrogenesis in allopurinol-treated rat CKD model. Dilated or atrophic TECs expressing CD44 in fibrotic areas were collected by laser microdissection and subjected to microarray analysis. Gene ontology showed that extracellular matrix (ECM)-related genes were upregulated and differentiation-related genes were downregulated in dilated/atrophic TECs. Ingenuity Pathway Analysis identified CD44 as an upstream regulator of fibrosis-related genes, including Fn1, which encodes fibronectin. Immunohistochemistry demonstrated that dilated/atrophic TECs expressing CD44 showed decreases in differentiation markers of TECs and clear expression of mesenchymal markers during basement membrane attachment. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of dilated/atrophic TECs, whereas fibronectin was localized in the stroma around these TECs, supporting the production/secretion of ECM by dilated/atrophic TECs. Overall, these data indicated that dilated/atrophic TECs underwent a partial epithelial-mesenchymal transition (pEMT) and that CD44 promoted renal fibrogenesis via induction of ECM production in failed-repair TECs exhibiting pEMT. CD44 was detected in the urine and serum of APL-treated rats, which may reflect the expression of CD44 in the kidney.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
123
|
Phan UTT, Nguyen HD, Nguyen TKO, Tran TH, Le TH, Tran TTP. Anti-inflammatory effect of Piper longum L. fruit methanolic extract on lipopolysaccharide-treated RAW 264.7 murine macrophages. Heliyon 2024; 10:e26174. [PMID: 38404825 PMCID: PMC10884859 DOI: 10.1016/j.heliyon.2024.e26174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Context The Piper species was studied several potential properties such as anti-tumor, anti-inflammatory and antioxidant activity. However, the specific anti-inflammatory activity of the extract from the fruits of P. longum L. has not been investigated. Objectives Our study want to examine the anti-inflammatory effects of P. longum L. fruit methanolic extracts (PLE) on lipopolysachharide (LPS)-stimulated RAW 264.7 murine macrophages to understand the mechanism of this effect. Method This study examined the chemical profiling of PLE by LC-HRMS analysis and measured the presence of nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the supernatant using the Griess reagent assay and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA expression of IL-6, TNF-α, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, the protein expression of COX-2, iNOS and the phosphorylation of MAPK family, c-Jun N-terminal kinase (JNK), p38 in protein level were observed by western blotting. Result PLE have detected 66 compounds which belong to different classes such as alkaloids, flavonoids, terpenoids, phenolics, lactones, and organic acids inhibited nitric oxide products with the IC50 = 28.5 ± 0.91 μg/mL. Moreover, PLE at 10-100 μg/mL up-regulate HO-1 protein expression from 3 to 10 folds at 3 h. It also downregulated the mRNA and protein expression of iNOS, COX-2, decreased IL-6 and TNF-α secretion by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, specifically by decreasing the phosphorylation of p38 and JNK. Conclusion These results shown chemical profiling of PLE and demonstrated that PLE exhibits anti-inflammatory effects by regulating the MAPK family and could be a potential candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Uyen Thi Tu Phan
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Hai Dang Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Thi Kieu Oanh Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Viet Nam
| | - Thanh Huong Le
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Thi Thu Phuong Tran
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| |
Collapse
|
124
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
125
|
Sun H, Zhang Y, Shi L. Advances in exercise-induced vascular adaptation: mechanisms, models, and methods. Front Bioeng Biotechnol 2024; 12:1370234. [PMID: 38456010 PMCID: PMC10917942 DOI: 10.3389/fbioe.2024.1370234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Insufficient physical activity poses a significant risk factor for cardiovascular diseases. Exercise plays a crucial role in influencing the vascular system and is essential for maintaining vascular health. Hemodynamic stimuli generated by exercise, such as shear stress and circumferential stress, directly impact vascular structure and function, resulting in adaptive changes. In clinical settings, incorporating appropriate exercise interventions has become a powerful supplementary approach for treating and rehabilitating various cardiovascular conditions. However, existing models for studying exercise-induced vascular adaptation primarily rely on in vivo animal and in vitro cellular models, each with its inherent limitations. In contrast, human research faces challenges in conducting mechanistic analyses due to ethics issues. Therefore, it is imperative to develop highly biomimetic in vitro/ex vivo vascular models that can replicate exercise stimuli in human systems. Utilizing various vascular assessment techniques is also crucial to comprehensively evaluate the effects of exercise on the vasculature and uncover the molecular mechanisms that promote vascular health. This article reviews the hemodynamic mechanisms that underlie exercise-induced vascular adaptation. It explores the advancements in current vascular models and measurement techniques, while addressing their future development and challenges. The overarching goal is to unravel the molecular mechanisms that drive the positive effects of exercise on the cardiovascular system. By providing a scientific rationale and offering novel perspectives, the aim is to contribute to the formulation of precise cardiovascular rehabilitation exercise prescriptions.
Collapse
Affiliation(s)
- Hualing Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
126
|
Shi R, Liu Z, Yue H, Li M, Liu S, De D, Li R, Chen Y, Cheng S, Gu X, Jia M, Li J, Li J, Zhang S, Feng N, Fan R, Fu F, Liu Y, Ding M, Pei J. IP 3R1-mediated MAMs formation contributes to mechanical trauma-induced hepatic injury and the protective effect of melatonin. Cell Mol Biol Lett 2024; 29:22. [PMID: 38308199 PMCID: PMC10836028 DOI: 10.1186/s11658-023-00509-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/02/2023] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION There is a high morbidity and mortality rate in mechanical trauma (MT)-induced hepatic injury. Currently, the molecular mechanisms underlying liver MT are largely unclear. Exploring the underlying mechanisms and developing safe and effective medicines to alleviate MT-induced hepatic injury is an urgent requirement. The aim of this study was to reveal the role of mitochondria-associated ER membranes (MAMs) in post-traumatic liver injury, and ascertain whether melatonin protects against MT-induced hepatic injury by regulating MAMs. METHODS Hepatic mechanical injury was established in Sprague-Dawley rats and primary hepatocytes. A variety of experimental methods were employed to assess the effects of melatonin on hepatic injury, apoptosis, MAMs formation, mitochondrial function and signaling pathways. RESULTS Significant increase of IP3R1 expression and MAMs formation were observed in MT-induced hepatic injury. Melatonin treatment at the dose of 30 mg/kg inhibited IP3R1-mediated MAMs and attenuated MT-induced liver injury in vivo. In vitro, primary hepatocytes cultured in 20% trauma serum (TS) for 12 h showed upregulated IP3R1 expression, increased MAMs formation and cell injury, which were suppressed by melatonin (100 μmol/L) treatment. Consequently, melatonin suppressed mitochondrial calcium overload, increased mitochondrial membrane potential and improved mitochondrial function under traumatic condition. Melatonin's inhibitory effects on MAMs formation and mitochondrial calcium overload were blunted when IP3R1 was overexpressed. Mechanistically, melatonin bound to its receptor (MR) and increased the expression of phosphorylated ERK1/2, which interacted with FoxO1 and inhibited the activation of FoxO1 that bound to the IP3R1 promoter to inhibit MAMs formation. CONCLUSION Melatonin prevents the formation of MAMs via the MR-ERK1/2-FoxO1-IP3R1 pathway, thereby alleviating the development of MT-induced liver injury. Melatonin-modulated MAMs may be a promising therapeutic therapy for traumatic hepatic injury.
Collapse
Affiliation(s)
- Rui Shi
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Zhenhua Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Huan Yue
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Man Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Simin Liu
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dema De
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Runjing Li
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Yunan Chen
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Shuli Cheng
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Min Jia
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China.
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
127
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
128
|
Chen Y, Liu Y, Lv H, Li Q, Shen J, Chen W, Shi J, Zhou C. Effect of Perioperative Nicorandil on Myocardial Protection in Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass, a Retrospective Study. Drug Des Devel Ther 2024; 18:223-231. [PMID: 38312992 PMCID: PMC10838497 DOI: 10.2147/dddt.s437801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Background The potential myocardial protective effect of nicorandil (NICD) in patients undergoing percutaneous coronary intervention has been established. However, its efficacy in the context of cardiac surgery remains controversial. The present study aimed to evaluate the myocardial protective effect of perioperative NICD use in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Methods We retrospectively gathered data from patients undergoing cardiac bypass surgery between 12/2018 and 04/2021 in Fuwai Hospital. Subsequently, the patients were divided into two groups, NICD group and non-nicorandil (non-NICD) group. A 1, 3 propensity score matching (PSM) was conducted. The primary outcome was the incidence of myocardial injury. The secondary outcomes included the mechanical ventilation (MV) duration, intensive care unit (ICU) length of stay (LOS), hospital LOS, duration of chest drainage, the drainage volume, the total cost, the incidence of acute kidney injury (AKI), and the incidence of acute liver injury (ALI). Subsequently, we divided the entire population into two distinct subgroups based on their administration of NICD, and performed a comprehensive subgroup analysis. Results A total of 2406 patients were ultimately included in the study. After PSM, 250 patients in NICD group and 750 patients in non-NICD group were included in the analysis. Perioperative NICD reduced the incidence of myocardial injury (47.2% versus 38.8%, P=0.025). Our subgroup analysis revealed that preoperative NICD administration not only provided myocardial protection benefits (45.7% vs 35.8%, OR 0.66, 95% CI [0.45-0.97], P=0.041), but also demonstrated statistically significant reduction in ALI, the ICU and hospital LOS, and the duration of chest drainage (all P<0.05). Conclusion The perioperative NICD administration may confer myocardial protection in patients undergoing cardiac surgery with CPB. Furthermore, the preoperative utilization of NICD has the potential to mitigate the incidence of postoperative ALI, a reduction in the ICU and hospital LOS, and the duration of chest drainage.
Collapse
Affiliation(s)
- Yuye Chen
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences&Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, People's Republic of China
| | - Yue Liu
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Hong Lv
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences&Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, People's Republic of China
| | - Qian Li
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences&Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, People's Republic of China
| | - Jingjia Shen
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences&Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, People's Republic of China
| | - Weiyun Chen
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Jia Shi
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences&Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, People's Republic of China
| | - Chenghui Zhou
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, People's Republic of China
| |
Collapse
|
129
|
van Kraaij SJW, Hamblin MR, Pickering G, Giannokopoulos B, Kechemir H, Heinz M, Igracki-Turudic I, Yavuz Y, Rissmann R, Gal P. A Phase 1 randomized, open-label clinical trial to evaluate the effect of a far-infrared emitting patch on local skin perfusion, microcirculation and oxygenation. Exp Dermatol 2024; 33:e14962. [PMID: 37950549 DOI: 10.1111/exd.14962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Far-infrared radiation (FIR) has been investigated for reduction of pain and improvement of dermal blood flow. The FIRTECH patch is a medical device designed to re-emit FIR radiated by the body. This phase 1 study was conducted to evaluate the local effects of the FIRTECH patch on local skin perfusion, microcirculation and oxygenation. This prospective, randomized, open-label, parallel designed study admitted 20 healthy participants to a medical research facility for treatment for 31 h on three anatomical locations. During treatment, imaging assessments consisting of laser speckle contrast imaging, near-infrared spectroscopy, side-stream dark-field microscopy, multispectral imaging and thermography were conducted regularly on patch-treated skin and contralateral non-treated skin. The primary endpoint was baseline perfusion increase during treatment on the upper back. Secondary endpoints included change in baseline perfusion, oxygen consumption and temperature of treated versus untreated areas. The primary endpoint was not statistically significantly different between treated and non-treated areas. The secondary endpoints baseline perfusion on the forearm (least square means [LSMs] difference 2.63 PU, 95% CI: 0.97, 4.28), oxygen consumption (LSMs difference: 0.42 arbitrary units [AUs], 95% CI: 0.04, 0.81) and skin temperature (LSMs difference 0.35°C, 95% CI: 0.16, 0.6) were statistically significantly higher in treated areas. Adverse events observed during the study were mild and transient. The vascular response to the FIRTECH patch was short-lived suggesting a non-thermal vasodilatory effect of the patch. The FIRTECH patch was well tolerated, with mild and transient adverse events observed during the study. These results support the therapeutic potential of FIR in future investigations.
Collapse
Affiliation(s)
- Sebastiaan J W van Kraaij
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Gisele Pickering
- Clinical Investigation Center CIC Inserm 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | - Moritz Heinz
- Research & Development, Sanofi, Chilly-Mazarin, France
| | | | - Yalçin Yavuz
- Centre for Human Drug Research, Leiden, the Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Pim Gal
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
130
|
Dai Q, Pan Y, Zhu X, Chen M, Xie L, Zhu Y, Wan G. Network Pharmacology along with Molecular Docking to Explore the Mechanism of Danshen Injection against Anthracycline-induced Cardiotoxicity and Transcriptome Validation. Curr Pharm Des 2024; 30:952-967. [PMID: 38482629 DOI: 10.2174/0113816128289845240305070522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Although anthracyclines have demonstrated efficacy in cancer therapy, their utilization is constrained by cardiotoxicity. In contrast, Danshen injection (DSI), derived from Salvia miltiorrhiza, has a longstanding tradition of being employed to ameliorate cardiovascular ailments, including anthracycline- induced cardiotoxicity (AIC). Nonetheless, there is a notable dearth of comprehensive systematic investigation into the molecular mechanisms underlying DSI's effects on AIC. Consequently, this study was undertaken to explore the underlying mechanism by which DSI acted against AIC. METHODS Employing network pharmacology approach, the current investigation undertook a comprehensive analysis of the impact of DSI on AIC, which was further validated by transcriptome sequencing with in vitro AIC model. Additionally, molecular docking was conducted to evaluate the binding of active ingredients to core targets. A total of 3,404 AIC-related targets and 12 active ingredients in DSI, including chrysophanol, luteolin, tanshinone IIA, isoimperatorin, among others, were collected by differentially expressed analysis and database search, respectively. RESULTS The network pharmacology and enrichment analysis suggested 102 potential targets and 29 signaling pathways associated with the protective effect of DSI on AIC. Three core targets (CA12, NOS3, and POLH) and calcium signaling pathways were further validated by transcriptomic analysis of the in-vitro model. The high affinity of the active ingredients binding to corresponding targets was confirmed by molecular docking. CONCLUSION The present study suggested that DSI might exert a cardioprotective effect on AIC via the inhibition of CA12, NOS3, and POLH, as well as the modulation of calcium signaling. Further experiments are warranted to verify the findings.
Collapse
Affiliation(s)
- Quankai Dai
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yijun Pan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xiwen Zhu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Mengyao Chen
- Department of Oncology, Renmin Hospital, Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lin Xie
- Department of Oncology, Renmin Hospital, Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yu Zhu
- Department of Research and Teaching, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Guoxing Wan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| |
Collapse
|
131
|
Pradhan G, Kulkarni YA. Diabetes and its Complications: Role of Luteolin, A Wonder Chemical from the Natural Source. Curr Diabetes Rev 2024; 21:e290224227537. [PMID: 38425118 DOI: 10.2174/0115733998285798240217084632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Flavonoids have been reported to be vital in treating various chronic disorders. Luteolin (3',4',5,7-tetrahydroxyflavone) is a flavonoid present in a variety of plant sources such as celery, green pepper, olive oil, peppermint, thyme, rosemary, oregano, etc. It has been reported to have various pharmacological activities such as antioxidant, anti-inflammatory, anticancer, antidiabetic, anti-Alzheimer, antimicrobial, etc. Many scientific studies have been carried out on luteolin for its possible effects on diabetes and its associated complications. The present review focuses on the role of luteolin in diabetes mellitus and the associated complications. The antidiabetic impact of luteolin is linked with the increased expression of PPARγ and GLUT. Various in vitro and in vivo studies have been performed to explore the effects of luteolin on diabetic complications, and it has shown a significant impact in the management of the same.
Collapse
Affiliation(s)
- Gandhar Pradhan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
132
|
Shim SY. Late-Stage C-H Activation of Drug (Derivative) Molecules with Pd(ll) Catalysis. Chemistry 2023; 29:e202302620. [PMID: 37846586 DOI: 10.1002/chem.202302620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
This review comprehensively analyses representative examples of Pd(II)-catalyzed late-stage C-H activation reactions and demonstrates their efficacy in converting C-H bonds at multiple positions within drug (derivative) molecules into diverse functional groups. These transformative reactions hold immense potential in medicinal chemistry, enabling the efficient and selective functionalization of specific sites within drug molecules, thereby enhancing their pharmacological activity and expanding the scope of potential drug candidates. Although notable articles have focused on late-stage C-H functionalization reactions of drug-like molecules using transition-metal catalysts, reviews specifically focusing on late-stage C-H functionalization reactions of drug (derivative) molecules using Pd(II) catalysts are required owing to their prominence as the most widely utilized metal catalysts for C-H activation and their ability to introduce a myriad of functional groups at specific C-H bonds. The utilization of Pd-catalyzed C-H activation methodologies demonstrates impressive success in introducing various functional groups, such as cyano (CN), fluorine (F), chlorine (Cl), aromatic rings, olefin, alkyl, alkyne, and hydroxyl groups, to drug (derivative) molecules with high regioselectivity and functional-group tolerance. These breakthroughs in late-stage C-H activation reactions serve as invaluable tools for drug discovery and development, thereby offering strategic options to optimize drug candidates and drive the exploration of innovative therapeutic solutions.
Collapse
Affiliation(s)
- Su Yong Shim
- Infectious Diseases Therapeutic Research Center Division of Medicinal Chemistry and Pharmacology Korea Research Institute of Chemical Technology (KRICT) KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
133
|
He P, Low RJY, Burns SF, Lipik V, Tok AIY. Enhanced far infrared emissivity, UV protection and near-infrared shielding of polypropylene composites via incorporation of natural mineral for functional fabric development. Sci Rep 2023; 13:22329. [PMID: 38102206 PMCID: PMC10724279 DOI: 10.1038/s41598-023-49897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023] Open
Abstract
Far infrared radiation in the range of 4-20 µm has been showed to have biological and health benefits to the human body. Therefore, incorporating far-infrared emissivity additives into polymers and/or fabrics hold promise for the development of functional textiles. In this study, we incorporated nine types of natural minerals into polypropylene (PP) film and examined their properties to identify potential candidates for functional textiles and apparels. The addition of 2% mineral powders into PP film increased the far-infrared emissivity (5-14 µm) by 7.65%-14.48%. The improvement in far-infrared emissivity within the range of 5-14 µm, which overlaps with the peak range of human skin radiation at 8-14 µm, results in increased absorption efficiency, and have the potential to enhance thermal and biological effects. Moreover, the incorporation of mineral powders in PP films exhibited favorable ultraviolet (UV) protection and near-infrared (NIR) shielding properties. Two films, specifically those containing red ochre and hematite, demonstrated excellent UV protection with a UPF rating of 50+ and blocked 99.92% and 98.73% of UV radiation, respectively. Additionally, they showed 95.2% and 93.2% NIR shielding properties, compared to 54.1% NIR shielding properties of PP blank films. The UV protection and NIR shielding properties offered additional advantages for the utilization of polymer composite with additives in the development of sportswear and other outdoor garments. The incorporation of minerals could absorb near-IR radiation and re-emit them at longer wavelength in the mid-IR region. Furthermore, the incorporation of minerals significantly improved the heat retention of PP films under same heat radiation treatment. Notably, films with red ochre and hematite exhibited a dramatic temperature increase, reaching 2.5 and 3.2 times the temperature increase of PP films under same heat radiation treatment, respectively (46.8 °C and 59.9 °C higher than the temperature increase of 20.9 °C in the PP film). Films with additives also demonstrated lower thermal effusivity than PP blank films, indicating superior heat insulation properties. Therefore, polypropylene films with mineral additives, particularly those containing red ochre and hematite, showed remarkable heat capacity, UV-protection, NIR-shielding properties and enhanced far infrared emissivity, making them promising candidates for the development of functional textiles.
Collapse
Affiliation(s)
- Pengfei He
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rayland Jun Yan Low
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Stephen Francis Burns
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Vitali Lipik
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
134
|
Wang W, Zhang H, Sandai D, Zhao R, Bai J, Wang Y, Wang Y, Zhang Z, Zhang HL, Song ZJ. ATP-induced cell death: a novel hypothesis for osteoporosis. Front Cell Dev Biol 2023; 11:1324213. [PMID: 38161333 PMCID: PMC10755924 DOI: 10.3389/fcell.2023.1324213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
ATP-induced cell death has emerged as a captivating realm of inquiry with profound ramifications in the context of osteoporosis. This study unveils a paradigm-shifting hypothesis that illuminates the prospective involvement of ATP-induced cellular demise in the etiology of osteoporosis. Initially, we explicate the morphological attributes of ATP-induced cell death and delve into the intricacies of the molecular machinery and regulatory networks governing ATP homeostasis and ATP-induced cell death. Subsequently, our focus pivots towards the multifaceted interplay between ATP-induced cellular demise and pivotal cellular protagonists, such as bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts, accentuating their potential contributions to secondary osteoporosis phenotypes, encompassing diabetic osteoporosis, glucocorticoid-induced osteoporosis, and postmenopausal osteoporosis. Furthermore, we probe the captivating interplay between ATP-induced cellular demise and alternative modalities of cellular demise, encompassing apoptosis, autophagy, and necroptosis. Through an all-encompassing inquiry into the intricate nexus connecting ATP-induced cellular demise and osteoporosis, our primary goal is to deepen our comprehension of the underlying mechanisms propelling this malady and establish a theoretical bedrock to underpin the development of pioneering therapeutic strategies.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Haolong Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Doblin Sandai
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jinxia Bai
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanfei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yong Wang
- Pathology Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongwen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hao-Ling Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
135
|
Son CO, Hong MH, Kim HY, Han BH, Seo CS, Lee HS, Yoon JJ, Kang DG. Sibjotang Protects against Cardiac Hypertrophy In Vitro and In Vivo. Life (Basel) 2023; 13:2307. [PMID: 38137908 PMCID: PMC10744393 DOI: 10.3390/life13122307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiac hypertrophy is developed by various diseases such as myocardial infarction, valve diseases, hypertension, and aortic stenosis. Sibjotang (, Shizaotang, SJT), a classic formula in Korean traditional medicine, has been shown to modulate the equilibrium of body fluids and blood pressure. This research study sought to explore the impact and underlying process of Sibjotang on cardiotoxicity induced by DOX in H9c2 cells. In vitro, H9c2 cells were induced by DOX (1 μM) in the presence or absence of SJT (1-5 μg/mL) and incubated for 24 h. In vivo, SJT was administrated to isoproterenol (ISO)-induced cardiac hypertrophy mice (n = 8) at 100 mg/kg/day concentrations. Immunofluorescence staining revealed that SJT mitigated the enlargement of H9c2 cells caused by DOX in a dose-dependent way. Using SJT as a pretreatment notably suppressed the rise in cardiac hypertrophic marker levels induced by DOX. SJT inhibited the DOX-induced ERK1/2 and p38 MAPK signaling pathways. In addition, SJT significantly decreased the expression of the hypertrophy-associated transcription factor GATA binding factor 4 (GATA 4) induced by DOX. SJT also decreased hypertrophy-associated calcineurin and NFAT protein levels. Pretreatment with SJT significantly attenuated DOX-induced apoptosis-associated proteins such as Bax, caspase-3, and caspase-9 without affecting cell viability. In addition, the results of the in vivo study indicated that SJT significantly reduced the left ventricle/body weight ratio level. Administration of SJT reduced the expression of hypertrophy markers, such as ANP and BNP. These results suggest that SJT attenuates cardiac hypertrophy and heart failure induced by DOX or ISO through the inhibition of the calcineurin/NFAT/GATA4 pathway. Therefore, SJT may be a potential treatment for the prevention and treatment of cardiac hypertrophy that leads to heart failure.
Collapse
Affiliation(s)
- Chan-Ok Son
- Department of Ophthalmology, Konkuk University School of Medicine, Gwangjin-gu, Seoul 05030, Republic of Korea;
| | - Mi-Hyeon Hong
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Byung-Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Jung-Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Dae-Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
- College of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
136
|
Yang C, Mu Y, Li S, Zhang Y, Liu X, Li J. Tanshinone IIA: a Chinese herbal ingredient for the treatment of atherosclerosis. Front Pharmacol 2023; 14:1321880. [PMID: 38108067 PMCID: PMC10722201 DOI: 10.3389/fphar.2023.1321880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is a fat-soluble compound extracted from Salvia miltiorrhiza, which has a protective effect against atherosclerosis (AS). Tan IIA can inhibit oxidative stress and inflammatory damage of vascular endothelial cells (VECs) and improve endothelial cell dysfunction. Tan IIA also has a good protective effect on vascular smooth muscle cells (VSMCs). It can reduce vascular stenosis by inhibiting the proliferation and migration of vascular smooth muscle cells (VSMCs), and improve the stability of the fibrous cap of atherosclerotic plaque by inhibiting apoptosis and inflammation of VSMCs. In addition, Tan IIA inhibits the inflammatory response of macrophages and the formation of foam cells in atherosclerotic plaques. In summary, Tan IIA improves AS through a complex pathway. We propose to further study the specific molecular targets of Tan IIA using systems biology methods, so as to fundamentally elucidate the mechanism of Tan IIA. It is worth mentioning that there is a lack of high-quality evidence-based medical data on Tan IIA treatment of AS. We recommend that a randomized controlled clinical trial be conducted to evaluate the exact efficacy of Tan IIA in improving AS. Finally, sodium tanshinone IIA sulfonate (STS) can cause adverse drug reactions in some patients, which needs our attention.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Shuanghong Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yang Zhang
- Weifang People’s Hospital, Weifang, China
| | - Xiaoyuan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
137
|
Addario A, Célarier T, Bongue B, Barth N, Gavazzi G, Botelho-Nevers E. Impact of influenza, herpes zoster, and pneumococcal vaccinations on the incidence of cardiovascular events in subjects aged over 65 years: a systematic review. GeroScience 2023; 45:3419-3447. [PMID: 37269492 PMCID: PMC10239224 DOI: 10.1007/s11357-023-00807-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/25/2023] [Indexed: 06/05/2023] Open
Abstract
This systematic review aims to summarize the impact of vaccination against influenza, shingles, and pneumococcus on the incidence on the risk of cardiovascular events in the elderly. This protocol was developed in accordance with PRISMA guidelines. We conducted a literature search and identified all relevant articles published regarding the matter up to September 2022. We retrieved 38 studies (influenza vaccine = 33, pneumococcal vaccine = 5, and zoster vaccine = 2). A total of 28 and 2 studies have shown that influenza and pneumococcal vaccines significantly lower the risk of cardiovascular disease in the elderly. Also, repeated influenza vaccination shows a consistent and dose-dependent protective effect against acute coronary syndromes and stroke. Moreover, dual influenza and pneumococcal vaccination was associated with lower risks of some cardiovascular events (stroke, congestive heart failure, ischemic heart disease, and myocardial infarction). However, the impact of PCV13 on cardiovascular events has not been studied, nor has the currently recommended vaccination schedule (PCV13 + PPV23). As for herpes zoster vaccination, only the protective effect against stroke has been studied with the live attenuated herpes zoster vaccine, but no studies have been conducted with the recombinant subunit herpes zoster vaccine. This review outlines the benefits of the vaccines mentioned above beyond their preventive action on infectious diseases. It is intended for health professionals who wish to inform and advise their elderly patients.
Collapse
Affiliation(s)
- Alexandra Addario
- Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, Lyon, France.
- CIC INSERM 1408 Vaccinologie, CHU de Saint-Etienne, 42055, Saint-Etienne Cedex 2, France.
- Chaire PREVACCI, PRESAGE Institute, Université Jean Monnet, 42023, Saint-Etienne, France.
- Chaire Sante Des Ainés, Ingénierie de La Prévention, PRESAGE Institute, Université Jean Monnet, 42023, Saint-Etienne, France.
- Gérontopôle Auvergne-Rhône-Alpes, Saint-Etienne, France.
| | - Thomas Célarier
- Gérontopôle Auvergne-Rhône-Alpes, Saint-Etienne, France
- Department of Clinical Gerontology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Bienvenu Bongue
- SAINBIOSE, Jean Monnet University, Saint-Etienne, France
- CETAF, Saint Etienne, France
| | | | - Gaëtan Gavazzi
- Groupe de Translational Research in Autoimmunity and Inflammation Group (T-RAIG, TIMC IMAG), Université de Grenoble-Alpes, Grenoble, France
- Geriatric Medicine Department, CHU de Grenoble Alpes, Grenoble, France
| | - Elisabeth Botelho-Nevers
- Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, Lyon, France
- CIC INSERM 1408 Vaccinologie, CHU de Saint-Etienne, 42055, Saint-Etienne Cedex 2, France
- Chaire PREVACCI, PRESAGE Institute, Université Jean Monnet, 42023, Saint-Etienne, France
- Department of Infectious Diseases, CHU de Saint-Etienne, 42055, Saint-Etienne, France
| |
Collapse
|
138
|
Fan H, Wang Y, Zhao K, Su L, Deng C, Huang J, Chen G. Incomplete Knockdown of MyD88 Inhibits LPS-Induced Lung Injury and Lung Fibrosis in a Mouse Model. Inflammation 2023; 46:2276-2288. [PMID: 37606850 DOI: 10.1007/s10753-023-01877-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/12/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disorder stemmed mainly from an uncontrolled inflammatory response. Lipopolysaccharide (LPS) is commonly used to induce ALI animal models. Toll-like receptor 4 (TLR4) is the main receptor for LPS, and myeloid differentiation factor 88 (MyD88) is a key adaptor protein molecule in the Toll-like receptor (TLR) signaling pathway. Thus, MyD88 knockdown heterozygous mice (MyD88+/-) were used to investigate the effect of incomplete knockout of the MyD88 gene on indirect LPS-induced ALI through intraperitoneal injection of LPS. The LPS-induced ALI significantly upregulated MyD88 expression, and heterozygous mice with incomplete knockout of the MyD88 gene (MyD88+/-) ameliorated LPS-induced histopathological injury and collagen fiber deposition. Heterozygous mice with incomplete knockout of the MyD88 gene (MyD88+/-) inhibited LPS-induced nuclear factor-κB (NF-κB) pathway activation, but TLR-4 expression tended to be upregulated. Incomplete knockdown of the MyD88 gene also downregulated LPS-induced expression of IL1-β, IL-6, TNF-α, TGF-β, SMAD2, and α-SMA. The transcriptome sequencing also revealed significant changes in LPS-regulated genes (such as IL-17 signaling pathway genes) after the incomplete knockdown of MyD88. In conclusion, this paper clarified that LPS activates the downstream NF-κB pathway depending on the MyD88 signaling pathway, which induces the secretion of inflammatory cytokines such as IL-1β/IL-6/TNF-α and ultimately triggers ALI. Incomplete knockdown of the MyD88 reverses LPS-induced lung fibrosis, which confirmed the vital role of MyD88 in LPS-induced ALI.
Collapse
Affiliation(s)
- Hui Fan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanni Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kaochang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Su
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chong Deng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Huang
- Research Center for Stem Cell Engineering and Technology, Institute of Industrial Technology, Chongqing University, Chongqing, China
- Better Biotechnology LLC, Chongqing, China
| | - Guozhong Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
139
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
140
|
Dos Santos MG, Gomes JR, Costa MDM. Methods used to achieve different levels of the neuronal differentiation process in SH-SY5Y and Neuro2a cell lines: An integrative review. Cell Biol Int 2023; 47:1883-1894. [PMID: 37817323 DOI: 10.1002/cbin.12093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
To study the process of neuronal differentiation, the human neuroblastoma (SH-SY5Y) and the murine neuroblastoma (Neuro2a) cell lines have proven to be effective models. For this approach, different protocols involving known neurotrophic factors and other molecules, such as retinoic acid (RA), have been assessed to better understand the neuronal differentiation process. Thus, the goal of this manuscript was to provide a brief overview of recent studies that have used protocols to promote neurodifferentiation in SH-SY5Y and Neuro2a cell lines and used acquired morphology and neuronal markers to validate whether differentiation was effective. The published results supply some guidance regarding the relationship between RA and neurotrophins for SH-SY5Y, as well a serum concentrations for both cell lines. Furthermore, they demonstrate the potential application of Neuro2a, which is critical for future research on neuronal differentiation.
Collapse
Affiliation(s)
- Mônica G Dos Santos
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - José R Gomes
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Michele D M Costa
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
141
|
Nourmohammadi K, Bayrami A, Naderi R, Shirpoor A, Soraya H. Moderate exercise mitigates cardiac dysfunction and injury induced by cyclosporine A through activation of the PGI 2 / PPAR-γ signaling pathway. Res Pharm Sci 2023; 18:696-707. [PMID: 39005570 PMCID: PMC11246107 DOI: 10.4103/1735-5362.389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose The present study investigated the role of the prostaglandin I2/peroxisome proliferator activator receptor (PGI2/PPAR) signaling pathway in cardiac cell proliferation, apoptosis, and systemic hemodynamic variables under cyclosporine A (CsA) exposure alone or combined with moderate exercises. Experimental approach Twenty-four male Wistar rats were classified into three groups, namely, control, CsA, and CsA + exercise. Findings/Results After 42 days of treatment, the findings showed a significant enhancement in the expression of the β-MHC gene, enhancement in protein expression of Bax and caspase-3, and a significant decline in the protein expression of Bcl-2 expression, as well as increased proliferation intensity in the heart tissue of the CsA group compared to the control group. Systolic pressure, pulse pressure, mean arterial pressure (MAP), QT and QRS duration, and T wave amplitude, as well as QTc amount in the CsA group, showed a significant increase compared to the control group. PPAR-γ and PGI2 showed no significant changes compared to the control group. Moderate exercise along with CsA significantly enhanced the protein expression of PPAR-γ and PGI2 and declined protein expression of Bax, and caspase-3 compared to those in the CsA group. In the CsA + exercise group, systolic pressure, MAP, and Twave showed a significant decrease compared to the CsA group. Moderate exercises along CsA improved heart cell proliferation intensity and significantly reduced β- MHC gene expression compared to the CsA group. Conclusions and implications The results showed moderate exercise alleviated CsA-induced heart tissue apoptosis and proliferation with the corresponding activation of the PGI2/PPAR-γ pathway.
Collapse
Affiliation(s)
- Khatereh Nourmohammadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Roya Naderi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
142
|
Chen L, Hu Y, Ye Z, Li L, Qian H, Wu M, Qin K, Li N, Wen X, Pan T, Ye Q. Major Indole Alkaloids in Evodia Rutaecarpa: The Latest Insights and Review of Their Impact on Gastrointestinal Diseases. Biomed Pharmacother 2023; 167:115495. [PMID: 37741256 DOI: 10.1016/j.biopha.2023.115495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Evodia rutaecarpa, the near-ripe fruit of Euodia rutaecarpa (Juss.) Benth, Euodia rutaecarpa (Juss.) Benth. var. officinalis (Dode) Huang, or Euodia rutaecarpa (Juss.) Benth. var. bodinieri (Dode) Huang, is a famous herbal medicine with several biological activities and therapeutic values, which has been applied for abdominalgia, abdominal distension, vomiting, and diarrhea as a complementary and alternative therapy in clinic. Indole alkaloids, particularly evodiamine (EVO), rutaecarpine (RUT), and dedhydroevodiamine (DHE), are received rising attention as the major bioactivity compounds in Evodia rutaecarpa. Therefore, this review summarizes the physicochemical properties, pharmacological activities, pharmacokinetics, and therapeutic effects on gastrointestinal diseases of these three indole alkaloids with original literature collected by PubMed, Web of Science Core Collection, and CNKI up to June 2023. Despite sharing the same parent nucleus, EVO, RUT, and DHE have different structural and chemical properties, which result in different advantages of biological effects. In their wide range of pharmacological activities, the anti-migratory activity of RUT is less effective than that of EVO, and the neuroprotection of DHE is significant. Additionally, although DHE has a higher bioavailability, EVO and RUT display better permeabilities within blood-brain barrier. These three indole alkaloids can alleviate gastrointestinal inflammatory in particular, and EVO also has outstanding anti-cancer effect, although clinical trials are still required to further support their therapeutic potential.
Collapse
Affiliation(s)
- Liulin Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Linzhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanzhu Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Province Orthopedic Hospital, Chengdu 610041, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610059, China
| | - Tao Pan
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610059, China.
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
143
|
Fu F, Luo H, Du Y, Chen Y, Tian K, Pan J, Li J, Wang N, Bao R, Jin H, Tong P, Ruan H, Wu C. AR/PCC herb pair inhibits osteoblast pyroptosis to alleviate diabetes-related osteoporosis by activating Nrf2/Keap1 pathway. J Cell Mol Med 2023; 27:3601-3613. [PMID: 37621124 PMCID: PMC10660633 DOI: 10.1111/jcmm.17928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoporosis is a prevalent complication of diabetes, characterized by systemic metabolic impairment of bone mass and microarchitecture, particularly in the spine. Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been extensively employed in Traditional Chinese Medicine to manage diabetes; however, its potential to ameliorate diabetic osteoporosis (DOP) has remained obscure. Herein, we explored the protective efficacy of AR/PCC herb pair against DOP using a streptozotocin (STZ)-induced rat diabetic model. Our data showed that AR/PCC could effectively reduce the elevated fasting blood glucose and reverse the osteoporotic phenotype of diabetic rats, resulting in significant improvements in vertebral trabecular area percentage, trabecular thickness and trabecular number, while reducing trabecular separation. Specifically, AR/PCC herb pair improved impaired osteogenesis, nerve ingrowth and angiogenesis. More importantly, it could mitigate the aberrant activation of osteoblast pyroptosis in the vertebral bodies of diabetic rats by reducing increased expressions of Nlrp3, Asc, Caspase1, Gsdmd and IL-1β. Mechanistically, AR/PCC activated antioxidant pathway through the upregulation of the antioxidant response protein Nrf2, while concurrently decreasing its negative feedback regulator Keap1. Collectively, our in vivo findings demonstrate that AR/PCC can inhibit osteoblast pyroptosis and alleviate STZ-induced rat DOP, suggesting its potential as a therapeutic agent for mitigating DOP.
Collapse
Affiliation(s)
- Fangda Fu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yu Du
- The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuying Chen
- The Fourth Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Kun Tian
- Department of OrthopaedicsThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jin Pan
- Department of Architecture, School of ArchitectureChina Academy of ArtHangzhouChina
| | - Jian Li
- Department of OrthopaedicsHangzhou Ninth People's HospitalHangzhouChina
| | - Nani Wang
- Department of MedicineZhejiang Academy of Traditional Chinese MedicineHangzhouChina
| | - Ronghua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and TraumatologyHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Peijian Tong
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Hongfeng Ruan
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengliang Wu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| |
Collapse
|
144
|
Hwang YJ, Park JH, Cho DH. Far-Infrared Irradiation Decreases Proliferation in Basal and PDGF-Stimulated VSMCs Through AMPK-Mediated Inhibition of mTOR/p70S6K Signaling Axis. J Korean Med Sci 2023; 38:e335. [PMID: 37873631 PMCID: PMC10593596 DOI: 10.3346/jkms.2023.38.e335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Far-infrared (FIR) irradiation has been reported to improve diverse cardiovascular diseases, including heart failure, hypertension, and atherosclerosis. The dysregulated proliferation of vascular smooth muscle cells (VSMCs) is well established to contribute to developing occlusive vascular diseases such as atherosclerosis and in-stent restenosis. However, the effects of FIR irradiation on VSMC proliferation and the underlying mechanism are unclear. This study investigated the molecular mechanism through which FIR irradiation inhibited VSMC proliferation. METHODS We performed cell proliferation and cell death assay, adenosine 5'-triphosphate (ATP) assay, inhibitor studies, transfection of dominant negative (dn)-AMP-activated protein kinase (AMPK) α1 gene, and western blot analyses. We also conducted confocal microscopic image analyses and ex vivo studies using isolated rat aortas. RESULTS FIR irradiation for 30 minutes decreased VSMC proliferation without altering the cell death. Furthermore, FIR irradiation accompanied decreases in phosphorylation of the mammalian target of rapamycin (mTOR) at Ser2448 (p-mTOR-Ser2448) and p70 S6 kinase (p70S6K) at Thr389 (p-p70S6K-Thr389). The phosphorylation of AMPK at Thr172 (p-AMPK-Thr172) was increased in FIR-irradiated VSMCs, which was accompanied by a decreased cellular ATP level. Similar to in vitro results, FIR irradiation increased p-AMPK-Thr172 and decreased p-mTOR-Ser2448 and p-p70S6K-Thr389 in isolated rat aortas. Pre-treatment with compound C, a specific AMPK inhibitor, or ectopic expression of dn-AMPKα1 gene, significantly reversed FIR irradiation-decreased VSMC proliferation, p-mTOR-Ser2448, and p-p70S6K-Thr389. On the other hand, hyperthermal stimulus (39°C) did not alter VSMC proliferation, cellular ATP level, and AMPK/mTOR/p70S6K phosphorylation. Finally, FIR irradiation attenuated platelet-derived growth factor (PDGF)-stimulated VSMC proliferation by increasing p-AMPK-Thr172, and decreasing p-mTOR-Ser2448 and p-p70S6K-Thr389 in PDGF-induced in vitro atherosclerosis model. CONCLUSION These results show that FIR irradiation decreases the basal and PDGF-stimulated VSMC proliferation, at least in part, by the AMPK-mediated inhibition of mTOR/p70S6K signaling axis irrespective of its hyperthermal effect. These observations suggest that FIR therapy can be used to treat arterial narrowing diseases, including atherosclerosis and in-stent restenosis.
Collapse
Affiliation(s)
- Yun-Jin Hwang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | | | - Du-Hyong Cho
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea.
| |
Collapse
|
145
|
Wang Q, Li J, Chu X, Jiang X, Zhang C, Liu F, Zhang X, Li Y, Shen Q, Pang B. Potential chemoprotective effects of active ingredients in Salvia miltiorrhiza on doxorubicin-induced cardiotoxicity: a systematic review of in vitro and in vivo studies. Front Cardiovasc Med 2023; 10:1267525. [PMID: 37915739 PMCID: PMC10616797 DOI: 10.3389/fcvm.2023.1267525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Background Recently, attention has been paid to the protective properties of active ingredients in Salvia miltiorrhiza (AISM) against organ toxicity induced by chemotherapy drugs. Purpose of the present systematic review is to evaluate the chemoprotective effects and mechanisms of AISM on in vitro and in vivo models of doxorubicin-induced cardiotoxicity (DIC). Methods According to the PRISMA guideline, the current systematic review was conducted in the Web of Science, PubMed, Embase, and the Cochrane Library to collect all relevant in vitro and in vivo studies on "the role of AISM on DIC" published up until May 2023. The SYRCLE's tool was used to identify potential risk of bias. Results Twenty-two eligible articles were included in this systematic review. Eleven types of active ingredients in Salvia miltiorrhiza were used for DIC, which have the following effects: improvement of physical signs and biochemical indicators, reduction of cardiac function damage caused by DIC, protection of heart tissue structure, enhancement of myocardial cell viability, prevention of cardiomyocyte apoptosis, increase of the chemosensitivity of cancer cells to Doxorubicin, etc. The cardioprotective mechanism of AISM involves inhibiting apoptosis, attenuating oxidative stress, suppressing endoplasmic reticulum (ER) stress, decreasing inflammation, improving mitochondrial structure and function, affecting cellular autophagy and calcium homeostasis. The quality scores of included studies ranged from 4 to 7 points (a total of 10 points), according to SYRCLE's risk of bias tool. Conclusion This systematic review demonstrated that AISM have chemoprotective effects on DIC in vivo and in vitro models through several main mechanisms such as anti-apoptosis, antioxidant effects, anti-ER stress, and anti-inflammatory.
Collapse
Affiliation(s)
- Qingqing Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing Association of the Integrating of Traditional and Westem Medicine, Beijing, China
| | - Jiaxian Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuelei Chu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
146
|
Watts KM, Nichols W, Richardson WJ. Computational screen for sex-specific drug effects in a cardiac fibroblast signaling network model. Sci Rep 2023; 13:17068. [PMID: 37816826 PMCID: PMC10564891 DOI: 10.1038/s41598-023-44440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
Heart disease is the leading cause of death in both men and women. Cardiac fibrosis is the uncontrolled accumulation of extracellular matrix proteins, which can exacerbate the progression of heart failure, and there are currently no drugs approved specifically to target matrix accumulation in the heart. Computational signaling network models (SNMs) can be used to facilitate discovery of novel drug targets. However, the vast majority of SNMs are not sex-specific and/or are developed and validated using data skewed towards male in vitro and in vivo samples. Biological sex is an important consideration in cardiovascular health and drug development. In this study, we integrate a cardiac fibroblast SNM with estrogen signaling pathways to create sex-specific SNMs. The sex-specific SNMs demonstrated high validation accuracy compared to in vitro experimental studies in the literature while also elucidating how estrogen signaling can modulate the effect of fibrotic cytokines via multi-pathway interactions. Further, perturbation analysis and drug screening uncovered several drug compounds predicted to generate divergent fibrotic responses in male vs. female conditions, which warrant further study in the pursuit of sex-specific treatment recommendations for cardiac fibrosis. Future model development and validation will require more generation of sex-specific data to further enhance modeling capabilities for clinically relevant sex-specific predictions of cardiac fibrosis and treatment.
Collapse
Affiliation(s)
- Kelsey M Watts
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA.
| | - Wesley Nichols
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - William J Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
147
|
Qu Y, Zhang N, Zhao Y. Resveratrol Inhibits Abdominal Aortic Aneurysm Progression by Reducing Extracellular Matrix Degradation, Apoptosis, Autophagy, and Inflammation of Vascular Smooth Muscle Cells via Upregulation of HMOX1. J Endovasc Ther 2023:15266028231202727. [PMID: 37789605 DOI: 10.1177/15266028231202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
OBJECTIVE This study aimed to explore the therapeutic effect of resveratrol (RES) against abdominal aortic aneurysm (AAA) and the role of HMOX1 underlying this effect. METHODS Vascular smooth muscle cells (VSMCs) were induced by angiotensin II (Ang II) to construct the microenvironment of AAA. HMOX1 expression was downregulated by the short hairpin ribonucleic acid (RNA) specific to HMOX1 in RES-pretreated VSMCs. The levels of matrix metalloproteinase (MMP)-2, MMP-9, and elastin were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. Apoptosis rate was detected. The levels of apoptosis-related proteins (caspase-3 and Bax/Bcl-2), inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and IL-1β), and autophagy-related proteins (Beclin 1, light chain 3 [LC3] II/I, and p62) were detected by western blot. The secretion of inflammatory factors in cell supernatant was detected by enzyme-linked immunosorbent assay (ELISA). The number of autophagic vesicles in VSMCs was observed and analyzed by transmission electron microscopy. A rat model of pancreatic elastase-induced AAA was established to verify the effect and action mechanism of RES. RESULTS Stimulation of Ang II increased the messenger RNA (mRNA) and protein levels of MMP-2 and MMP-9, decreased elastin expression, and enhanced apoptosis, secretion of inflammatory factors, and autophagy in VSMCs, whereas RES pretreatment ameliorated Ang II-induced VSMC dysfunction. In addition, HMOX1 mRNA and heme oxygenase-1 (HO-1) protein levels were significantly increased in VSMCs pretreated with RES compared with Ang II treatment alone. Silencing of HMOX1 abolished the effects of RES on VSMC dysfunction. Consistently, RES suppressed the development of AAA in rats by increasing the expression of HMOX1. CONCLUSION Resveratrol protects against AAA by inhibiting extracellular matrix degradation, apoptosis, autophagy, and inflammation of VSMCs via HMOX1 upregulation. CLINICAL IMPACT Our study found that angiotensin II (Ang II) stimulated increased the levels of MMP-2 and MMP-9 in vascular smooth muscle cells (VSMCs), decreased elastin expression, and promoted apoptosis, autophagy occurrence, and secretion of inflammatory factors, while resveratrol (RES) pretreatment improved this effect. In addition, downregulation of HMOX1 expression eliminated the effect of RES on the function of VSMCs. Our study elucidates that RES improves AAA progression through HMOX1 at both cellular and animal levels. This work can help doctors better understand the pathological mechanism of the occurrence and development of AAA, and provide a theoretical basis for clinicians to find better treatment options.
Collapse
Affiliation(s)
- Yunfei Qu
- Department of Vascular Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Ning Zhang
- General Practice, Chongqing University Three Gorges Hospital, Chongqing, P.R. China
| | - Yu Zhao
- Department of Vascular Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
148
|
Zeng S, Liu Y, Fan P, Yang L, Liu X. Role of leptin in the pathophysiology of preeclampsia. Placenta 2023; 142:128-134. [PMID: 37713744 DOI: 10.1016/j.placenta.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Preeclampsia (PE) is a severe pregnancy complication. The exact pathogenesis of PE remains unclear, but it is related to immune, inflammatory, circulatory, and oxidative stress factors. Leptin is a protein involved in these processes and is essential for maintaining a normal pregnancy and healthy fetal growth. Abnormal increases in leptin levels have been observed in the peripheral blood and placenta of patients with PE. Disturbances in leptin can affect the proliferation and hypertrophy of vascular smooth muscle cells, which are important for placentation. Leptin also regulates arterial tension and trophoblast function in pregnant women. In addition, consistently high levels of leptin are linked to hyperactive inflammation and oxidative stress reactions in both patients with PE and animal models. This review focuses on the role of leptin in the pathophysiology of PE and elucidates its potential mechanisms.
Collapse
Affiliation(s)
- Shuai Zeng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yijun Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luming Yang
- Chongqing University Medical School, Chongqing, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
149
|
Poonia P, Sharma M, Jha P, Chopra M. Pharmacophore-based virtual screening of ZINC database, molecular modeling and designing new derivatives as potential HDAC6 inhibitors. Mol Divers 2023; 27:2053-2071. [PMID: 36214962 DOI: 10.1007/s11030-022-10540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
To date, many HDAC6 inhibitors have been identified and developed but none is clinically approved as of now. Through this study, we aim to obtain novel HDAC6 selective inhibitors and provide new insights into the detailed structural design of potential HDAC6 inhibitors. A HypoGen-based 3D QSAR HDAC6 pharmacophore was built and used as a query model to screen approximately 8 million ZINC database compounds. First, the ZINC Database was filtered using ADMET, followed by pharmacophore-based library screening. Using fit value and estimated activity cutoffs, a final set of 54 ZINC hits was obtained that were further investigated using molecular docking with the crystal structure of human histone deacetylase 6 catalytic domain 2 in complex with Trichostatin A (PDB ID: 5EDU). Through detailed in silico screening of the ZINC database, we shortlisted three hits as the lead molecules for designing novel HDAC6 inhibitors with better efficacy. Docking with 5EDU, followed by ADMET and TOPKAT analysis of modified ZINC hits provided 9 novel potential HDAC6 inhibitors that possess better docking scores and 2D interactions as compared to the control ZINC hit molecules. Finally, a 50 ns MD analysis run followed by Protein-Ligand Interaction Energy (PLIE) analysis of the top scored hits provided a novel molecule N1 that showed promisingly similar results to that of Ricolinostat (a known HDAC6 inhibitor). The comparable result of the designed hits to established HDAC6 inhibitors suggests that these compounds might prove to be successful HDAC6 inhibitors in future. Designed novel hits that might act as good HDAC6 inhibitors derived from ZINC database using combined molecular docking and modeling approaches.
Collapse
Affiliation(s)
- Priya Poonia
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Monika Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Prakash Jha
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Madhu Chopra
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India.
| |
Collapse
|
150
|
Ahn SJ, Anfray A, Anrather J, Iadecola C. Calcium transients in nNOS neurons underlie distinct phases of the neurovascular response to barrel cortex activation in awake mice. J Cereb Blood Flow Metab 2023; 43:1633-1647. [PMID: 37149758 PMCID: PMC10581240 DOI: 10.1177/0271678x231173175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Neuronal nitric oxide (NO) synthase (nNOS), a Ca2+ dependent enzyme, is expressed by distinct populations of neocortical neurons. Although neuronal NO is well known to contribute to the blood flow increase evoked by neural activity, the relationships between nNOS neurons activity and vascular responses in the awake state remain unclear. We imaged the barrel cortex in awake, head-fixed mice through a chronically implanted cranial window. The Ca2+ indicator GCaMP7f was expressed selectively in nNOS neurons using adenoviral gene transfer in nNOScre mice. Air-puffs directed at the contralateral whiskers or spontaneous motion induced Ca2+ transients in 30.2 ± 2.2% or 51.6 ± 3.3% of nNOS neurons, respectively, and evoked local arteriolar dilation. The greatest dilatation (14.8 ± 1.1%) occurred when whisking and motion occurred simultaneously. Ca2+ transients in individual nNOS neurons and local arteriolar dilation showed various degrees of correlation, which was strongest when the activity of whole nNOS neuron ensemble was examined. We also found that some nNOS neurons became active immediately prior to arteriolar dilation, while others were activated gradually after arteriolar dilatation. Discrete nNOS neuron subsets may contribute either to the initiation or to the maintenance of the vascular response, suggesting a previously unappreciated temporal specificity to the role of NO in neurovascular coupling.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|