101
|
Liu WT, Li CQ, Fu AN, Yang HT, Xie YX, Yao H, Yi GH. Therapeutic implication of targeting mitochondrial drugs designed for efferocytosis dysfunction. J Drug Target 2024; 32:1169-1185. [PMID: 39099434 DOI: 10.1080/1061186x.2024.2386620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Chao-Quan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Ao-Ni Fu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hao-Tian Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| |
Collapse
|
102
|
Manoharan S, Perumal E. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights. Fitoterapia 2024; 179:106265. [PMID: 39437855 DOI: 10.1016/j.fitote.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Cancer remains a significant global health concern. The dysregulation of signaling networks in tumor cells greatly affects their functions. This review intends to explore phytochemicals possessing potent anticancer properties that specifically target the STAT3 signaling pathway, elucidating strategies and emphasizing their potential as promising candidates for cancer therapy. The review comprehensively examines various STAT3 inhibitors designed to disrupt the signaling cascade, including those targeting upstream activation, SH2 domain phosphorylation, DNA binding domain (DBD), N-terminal domain (NTD), nuclear translocation, and enhancing endogenous STAT3 negative regulators. A literature review was conducted to identify phytochemicals with anticancer activity targeting the STAT3 signaling pathway. Popular research databases such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, and ResearchGate were searched from the years 1989 - 2023 based on the keywords "Cancer", "STAT3", "Phytochemicals", "Phytochemicals targeting STAT3 signaling", "upstream activation of STAT3", "SH2 domain of STAT3", "DBD of STAT3", "NTD of STAT3, "endogenous negative regulators of STAT3", or "nuclear translocation of STAT3", and their combinations. A total of 264 relevant studies were selected and analyzed based on the mechanisms of action and the efficacy of the phytocompounds. The majority of the discussed phytochemicals primarily focus on inhibiting upstream activation of STAT3. Additionally, flavonoid and terpenoid compounds exhibit multifaceted effects by targeting one or more checkpoints within the STAT3 pathway. Analysis reveals that phytochemicals targeting upstream activation predominantly belong to the classes of flavonoids and terpenoids, which hold significant promise as effective anticancer therapeutics. Future research in this field can be directed towards exploring and developing these scrutinized classes of phytochemicals to achieve desired therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
103
|
Li J, Ma X, Xu F, Yan Y, Chen W. Babaodan overcomes cisplatin resistance in cholangiocarcinoma via inhibiting YAP1. PHARMACEUTICAL BIOLOGY 2024; 62:314-325. [PMID: 38571483 PMCID: PMC10997361 DOI: 10.1080/13880209.2024.2331060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT Cholangiocarcinoma with highly heterogeneous, aggressive, and multidrug resistance has a poor prognosis. Although babaodan (BBD) combined with cisplatin improved non-small cell lung cancer efficacy, its impact on overcoming resistance in cholangiocarcinoma remains unexplored. OBJECTIVE This study explored the role and mechanism of BBD on cisplatin resistance in cholangiocarcinoma cells (CCAs). MATERIALS AND METHODS Cisplatin-resistant CCAs were exposed to varying concentrations of cisplatin (25-400 μg/mL) or BBD (0.25-1.00 mg/mL) for 48 h. IC50 values, inhibition ratios, apoptosis levels, DNA damage, glutathione (GSH) levels, oxidized forms of GSH, total GSH content, and glutaminase relative activity were evaluated using the cell counting kit 8, flow cytometry, comet assay, and relevant assay kits. RESULTS BBD-reduced the cisplatin IC50 in CCAs from 118.8 to 61.83 μg/mL, leading to increased inhibition rate, apoptosis, and DNA damage, and decreased expression of B-cell lymphoma-2, p-Yes-associated protein 1/Yes-associated protein 1, solute carrier family 1 member 5, activating transcription factor 4, and ERCC excision repair 1 in a dose-dependent manner with maximum reductions of 78.97%, 51.98%, 54.03%, 56.59%, and 63.22%, respectively; bcl2-associated X and gamma histone levels were increased by 0.43-115.77% and 22.15-53.39%. The impact of YAP1 knockdown on cisplatin-resistant CCAs resembled BBD. GSH, oxidized GSH species, total GSH content, and glutaminase activity in cisplatin-resistant CCAs with BBD treatment also decreased, while YAP1 overexpression countered BBD's effects. DISCUSSION AND CONCLUSION This study provides a scientific basis for BBD clinical application and provides a new direction for BBD biological mechanism research.
Collapse
Affiliation(s)
- Jiong Li
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Xiangjun Ma
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Faying Xu
- College of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqing Chen
- Department of General Surgery, The First People’s Hospital of Lin’an District, Hangzhou, China
| |
Collapse
|
104
|
Siripoon T, O'Donnell C, Jin Z, Mahipal A. Fibroblast growth factor therapies in biliary tract cancers: current and future state. Expert Opin Investig Drugs 2024; 33:1245-1255. [PMID: 39629832 DOI: 10.1080/13543784.2024.2430201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Cholangiocarcinoma is the rare and aggressive tumor with poor prognosis and limited therapeutic options. Recently, there have been promising developments in molecular targeted therapies for patients following the progression of first-line chemotherapy and immunotherapy combinations. Dysregulation of fibroblast Growth Factor Receptor (FGFR) signaling is significantly associated with tumorigenesis of intrahepatic cholangiocarcinoma and has been identified as a targetable alteration. This was possible through the discovery of crucial insights into the biochemical mechanisms and pathophysiology of the FGFR pathway. AREAS COVERED This review summarizes the current state of FGFR targeted therapies, mechanisms of resistance, and future directions for FGFR-targeted therapies in patients with cholangiocarcinoma. EXPERT OPINION Currently, pemigatinib and futibatinib are FDA approved FGFR-targeted therapies that have demonstrated remarkable responses. However, there is still a significant proportion of patients whose disease remains intrinsically resistant to treatment and most patients eventually develop secondary resistance after an initial response. Additionally, unique side effects of FGFR inhibitors may limit their efficacy in clinical practice and can have detrimental effects on quality of life. Several novel FGFR inhibitors are currently being investigated to overcome resistance mechanisms and reduce toxicities.
Collapse
Affiliation(s)
| | | | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Amit Mahipal
- Department of Oncology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
105
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
106
|
Xue Q, Liu C, Zhang D, Li M, Li Y. α-Mangostin Attenuates Blood Pressure and Reverses Vascular Remodeling by Balancing ACE/AT1R and ACE2/Ang-(1-7)/MasR Axes in Ang II-Infused Hypertensive Mice. Phytother Res 2024; 38:5918-5929. [PMID: 39410864 PMCID: PMC11634819 DOI: 10.1002/ptr.8353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 08/20/2024] [Accepted: 09/21/2024] [Indexed: 12/13/2024]
Abstract
Hyperuricemia is a common comorbidity of hypertension and probably has a causal relationship with hypertension. Alpha-mangostin (α-MG) has been reported to have uric acid lowering effect. This study aimed to investigate the dual effects of α-MG on blood pressure (BP) and uric acid levels in angiotensin II (Ang II)-infused hypertensive mice. Male C57BL/6 mice were randomized into five groups: control, Ang II infusion (500 ng/kg/min for 2 weeks), Ang II infusion with gavage administration of α-MG 4.0 and 8.0 mg/kg and benzbromarone (25 mg/kg) respectively. BP, uric acid levels, vascular structure and function, and renin-Ang II system expressions in the aorta were assessed. Treatment with α-MG reduced BP, improved endothelial relaxation, and reversed aortic wall thickening and collagen deposition in Ang II-induced hypertensive mice. It also downregulated Ang II receptor 1 (AT1R) and angiotensin converting enzyme (ACE) expression, while upregulating ACE2, Mas receptor (MasR), and angiotensin (1-7) in the aorta. Moreover, α-MG demonstrated a significant enhancement in uric acid clearance and reduction in serum uric acid levels. Conversely, benzbromarone did not result in a decrease in BP, indicating that the hypotensive effect of α-MG may not be necessarily dependent on its urate-lowering properties. α-MG can attenuate Ang II-induced hypertension and reverse vascular remodeling, potentially by balancing the ACE/Ang II/AT1R axis and the ACE2/Ang-(1-7)/MasR axis. Our findings provide insights into α-MG as a novel anti-hypertensive drug especially in patients with hyperuricemia.
Collapse
Affiliation(s)
- Qi‐Qi Xue
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin HospitalShanghai Jiatong University School of MedicineShanghaiChina
| | - Chu‐Hao Liu
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin HospitalShanghai Jiatong University School of MedicineShanghaiChina
| | - Dong‐Yan Zhang
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin HospitalShanghai Jiatong University School of MedicineShanghaiChina
| | - Ming‐Xuan Li
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin HospitalShanghai Jiatong University School of MedicineShanghaiChina
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin HospitalShanghai Jiatong University School of MedicineShanghaiChina
| |
Collapse
|
107
|
Tang WW, Huang FF, Haedi AR, Shi QY. The effect of curcumin supplementation on endothelial function and blood pressure in patients with metabolic disorders: A meta-analysis of meta-analyses. Prostaglandins Other Lipid Mediat 2024; 175:106900. [PMID: 39265778 DOI: 10.1016/j.prostaglandins.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Several interventional studies have revealed the beneficial impact of curcumin supplementation on blood pressure and endothelial function, but the findings are conflicting. Therefore, this study was conducted to investigate the effects of curcumin supplementation on blood pressure and endothelial function. A meta-analyses of randomized clinical trials were performed by searching PubMed, Embase, Scopus, and Web of Science were searched up to March 31, 2024. Random effects models were used to calculate weighted mean differences (WMD). Pooled estimates of 10 studies revealed that curcumin decreased diastolic blood pressure (DBP) [WMD = -0.94, 95 % CI: -1.59, -0.30; p = 0.004], pulse wave velocity (PWV) [WMD = -45.60, 95 % CI: -88.16, -3.04; p = 0.03, I2 = 0.0 %, p = 0.59], and vascular cell adhesion molecule-1 (VCAM-1) [WMD = -39.19; 95 % CI: -66.15, -12.23, p =0.004; I2=73.0 %, p = 0.005] significantly, and increased flow-mediated dilation (FMD) [WMD = 1.64, 95 % CI: 1.06, 2.22; p < 0.001, I2 = 0.0 %, p = 0.61. However, curcumin did not significantly change systolic blood pressure (SBP) [WMD = -0.64, 95 % CI: -1.96, 0.67; p =0.34, I2 = 83.5 %, p <0.001], and Intercellular Adhesion Molecule 1 (ICAM1) [WMD = -17.05; 95 % CI: -80.79, 46.70, p =0.601; I2=94.1 %, p < 0.001]. These results suggest that curcumin has a beneficial effect on DBP, PWV, VCAM-1 and FMD levels and may be an effective adjunctive therapy for improving blood pressure and endothelial function.
Collapse
Affiliation(s)
- Wen Wen Tang
- Department ofCardiovascular Medicine, Wuhan No.9 Hospital, Wuhan, China
| | - Fei Fei Huang
- Department of Cardiovascular Medicine, Central China University of Science and Technology Xiehe Jiangbei Hospital, China
| | - Amir Reza Haedi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Qing Yuan Shi
- Department of Cardiovascular Medicine, Central China University of Science and Technology Xiehe Jiangbei Hospital, China.
| |
Collapse
|
108
|
Durmus N, Gulsunoglu‐Konuskan Z, Kilic‐Akyilmaz M. Recovery, Bioactivity, and Utilization of Bioactive Phenolic Compounds in Citrus Peel. Food Sci Nutr 2024; 12:9974-9997. [PMID: 39723030 PMCID: PMC11666827 DOI: 10.1002/fsn3.4570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 12/28/2024] Open
Abstract
Citrus peels are rich in bioactive phenolic compounds with various health effects including antioxidant, antiobesity, antiinflammatory, antihypertensive, antihypercholesterolemic, antimicrobial, antidiabetic, and anticarcinogenic activities. Both extractable and nonextractable phenolics are present in significant amounts in Citrus peel with diverse bioactivities. While extractable phenolics can be recovered from the fruit peels by conventional extraction methods, nonextractable phenolics remaining in the residues must be released from the cell matrix first by hydrolysis with acid, alkali, or enzymes. Novel processing technologies can help in improvement of extraction efficiency. Extreme process or medium conditions degrade phenolics and their bioactivity where encapsulation can be applied to improve their stability, solubility, and bioactivity. Citrus peel powder including ascorbic acid and dietary fiber besides phenolics or extracts therefrom can be used as functional food ingredients to extend shelf life and provide health benefits. In addition, phenolic extracts can be used as antioxidant and antimicrobial agents in active food packaging applications. Phenolic extracts have also a potential to be used as nutraceuticals and pharmaceuticals. In this review, phenolic compounds in different forms in Citrus peels, their recovery, bioactivity and possible applications for upcycling in the industry are presented.
Collapse
Affiliation(s)
- Nihal Durmus
- Department of Food EngineeringIstanbul Technical UniversityIstanbulTürkiye
- Department of Food ProcessingDuzce UniversityDuzceTürkiye
| | | | | |
Collapse
|
109
|
Taesuwan S, Jirarattanarangsri W, Wangtueai S, Hussain MA, Ranadheera S, Ajlouni S, Zubairu IK, Naumovski N, Phimolsiripol Y. Unexplored Opportunities of Utilizing Food Waste in Food Product Development for Cardiovascular Health. Curr Nutr Rep 2024; 13:896-913. [PMID: 39276290 DOI: 10.1007/s13668-024-00571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE OF REVIEW Global food production leads to substantial amounts of agricultural and food waste that contribute to climate change and hinder international efforts to end food insecurity and poverty. Food waste is a rich source of vitamins, minerals, fibers, phenolic compounds, lipids, and bioactive peptides. These compounds can be used to create food products that help reduce heart disease risk and promote sustainability. This review examines the potential cardiovascular benefits of nutrients found in different food waste categories (such as fruits and vegetables, cereal, dairy, meat and poultry, and seafood), focusing on animal and clinical evidence, and giving examples of functional food products in each category. RECENT FINDINGS Current evidence suggests that consuming fruit and vegetable pomace, cereal bran, and whey protein may lower the risk of cardiovascular disease, particularly in individuals who are at risk. This is due to improved lipid profile, reduced blood pressure and increased flow-mediated dilation, enhanced glucose and insulin regulation, decreased inflammation, as well as reduced platelet aggregation and improved endothelial function. However, the intervention studies are limited, including a low number of participants and of short duration. Food waste has great potential to be utilized as cardioprotective products. Longer-term intervention studies are necessary to substantiate the health claims of food by-products. Technological advances are needed to improve the stability and bioavailability of bioactive compounds. Implementing safety assessments and regulatory frameworks for functional food derived from food waste is crucial. This is essential for maximizing the potential of food waste, reducing carbon footprint, and improving human health.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia.
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
| | | | - Sutee Wangtueai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Malik A Hussain
- School of Science, Western Sydney University, Richmond, NSW, 2758, Australia
| | - Senaka Ranadheera
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Said Ajlouni
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Idris Kaida Zubairu
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, 2601, Australia
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | | |
Collapse
|
110
|
Abdelrazik RM, Ali MHM, Atef RM, Abdel Fattah IO. Comparative evaluation of the effects of deferiprone and/or resveratrol in alleviating iron overload-induced tongue injury in rats. Tissue Cell 2024; 91:102534. [PMID: 39191050 DOI: 10.1016/j.tice.2024.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Iron overload causes excessive iron deposition in extrahepatic organs, including the tongue. This study aims to compare the deferiprone and/or resveratrol treatments for the alleviation of iron overload-induced tongue injury in rats. Rats were divided into 6 groups: control group, iron-overloaded group, recovery group where rats were left to recover from iron overload, deferiprone-treated group, resveratrol-treated group, and combined deferiprone/resveratrol-treated group. Iron was administered for 4 weeks, while all treatment options were given for the subsequent 4 weeks. After 8 weeks, all rats were sacrificed; the serum iron profile was estimated, and the tongues were assessed by histopathological, tumour necrosis factor alpha (TNF-α) immunohistochemical, histomorphometric, and ultrastructural evaluations. Serum iron parameters were significantly increased in iron-overloaded rats and decreased to control levels only in the combined group. The iron-overloaded tongues demonstrated lost lingual papillae, coarse keratohyalin granules, vacuolated epithelial cells, degenerated muscle fibers, and congested blood vessels. Compared to the control rats, this group revealed a significant decrease in the epithelial layer thickness (550.7 vs. 763.4 µm), papillae height (441.4 vs. 849.7 µm), and myofiber diameter (58.5 vs. 98.6 µm), and increased lamina propria thickness (305.1 vs. 176.8 µm), fibrosis index (33.4 vs. 8.6 %), and TNF-α immunoexpression (1.16 vs. 0.63 optical density). Additionally, the ultrastructure showed hyperkeratinized papillae, wide interpapillary spaces, flat fungiform papillae, and lost gustatory pores. All these parameters were improved in the recovery, deferiprone, and resveratrol groups to different degrees, while the combined deferiprone/resveratrol treatment was the best option.
Collapse
Affiliation(s)
- Rania Mahmoud Abdelrazik
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona Hassan Mohammed Ali
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Reham Mohammed Atef
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Islam Omar Abdel Fattah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
111
|
Wattanathavorn W, Buranapraditkun S, Kitkumthorn N, Bhattarakosol P, Chaiwongkot A. Effect of NQO1 Downregulation on the Migration and Invasion of HPV16-Positive Cervical Cancer Cells. Asian Pac J Cancer Prev 2024; 25:4189-4200. [PMID: 39733409 PMCID: PMC12008345 DOI: 10.31557/apjcp.2024.25.12.4189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024] Open
Abstract
OBJECTIVE This study aimed to identify upregulated genes in HPV16-positive cervical cancer cells and investigate the impact of downregulating NAD(P) H:quinone oxidoreductase 1 (NQO1) on the survival of these cells. METHODS Transcriptomic sequencing (RNA-seq) was utilized to pinpoint upregulated genes and associated cancer-related pathways in HPV16-positive cervical cancer cells, comparing them to HPV-negative cervical cancer cells. NQO1 gene knockdown was performed in HPV16-positive cervical cancer cell lines to assess its effect on cell survival, including parameters such as cell proliferation, migration, invasion, cell cycle progression, apoptosis, and the expression of key proteins in the PI3K/AKT pathway, p53, and RECK. RESULTS Genes with a fold change ≥4.0 in HPV16-positive cervical cancer cell lines were predominantly localized to the extracellular region and plasma membrane. These genes were involved in protein binding and cell adhesion, influencing cellular responses to stimuli and tissue development. KEGG pathway analysis identified the most significant pathways, including metabolic pathways, cancer pathways, MAPK signaling, and PI3K-AKT signaling. Knockdown of NQO1 significantly decreased cell proliferation, migration, and invasion, while increasing apoptosis in HPV16-positive cervical cancer cells (p ≤ 0.01). Additionally, proteins associated with the PI3K-AKT pathway were downregulated, while p53 and RECK protein levels were elevated. CONCLUSION Our findings suggest that NQO1 plays a crucial role in promoting migration and invasion in HPV16-positive cervical cancer cells, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Warattaya Wattanathavorn
- Interdisciplinary Program, Graduate school, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Thai Red Cross Society, Bangkok, 10330, Thailand.
- Center of Excellence in Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI), Faculty of Medicine, Chulalongkon University, Bangkok, 10330, Thailand.
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center- Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Arkom Chaiwongkot
- Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
112
|
Zhou J, Yu H, Zeng H, Shen Q, Wang X, Xia Q. Intrahepatic cholangiocarcinoma with FGFR alterations: A series of Chinese cases with an emphasis on their clinicopathologic and genetic features. Dig Liver Dis 2024; 56:2125-2132. [PMID: 38734568 DOI: 10.1016/j.dld.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Intrahepatic Cholangiocarcinoma (iCCA) with FGFR alterations is relatively rare, and its identification is important in the era of targeted therapy. We collected a large series of FGFR-altered cases in the Chinese population and characterized their clinicopathological and genetic features. Among the 18 FGFR-altered cases out of 260 iCCAs, 10 were males and 8 were females, ranging in age from 35 to 74 years (mean, 57.3 years; median, 58 years). Pathologically, they include 9 cases of large duct (LD, 50 %) and small duct (SD, 50 %) types each. All of them (100 %, 18/18) showed microsatellite stable (MSS) and low tumor mutation burden (TMB). Genetically, FGFR alterations involved FGFR1 (20 %), FGFR2 (70 %), and FGFR3 (10 %), with FGFR2 rearrangement accounting for the most (11/18). The most frequently altered genes/biological processes were development/proliferation-related pathways (44 %), chromatin organization (20 %), and tumor suppressors (32 %). Our study further revealed the clinicopathological and genetic features of FGFR-altered iCCA and demonstrated that its occurrence may show regional or ethnic variability and is less common in the Chinese population. A significant number of LD-type iCCA cases also have FGFR alterations rather than the SD type.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Pathology, Zigong Fourth People's Hospital, Sichuan Province, Zigong, 643099, China.
| | - Haoran Yu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Hong Zeng
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Qin Shen
- Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Xuewen Wang
- Department of Hepatobiliary Surgery, Zigong Fourth People's Hospital, Sichuan Province, Zigong, 643099, China
| | - Qinxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
113
|
Dzigbor A, Neglo D, Tettey CO, Nsaful F, Addo EO, Ofosu-Pomaa J. The effects of varying ingredients combination and boiling time on total phenolic content, antioxidant activity, and antimicrobial properties of lemongrass-ginger tea. Heliyon 2024; 10:e40172. [PMID: 39584112 PMCID: PMC11583708 DOI: 10.1016/j.heliyon.2024.e40172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
This study was aimed at exploring the effect of varying lemongrass-ginger combinations, and boiling time on total phenolic contents (TPC), antioxidant activity, and antimicrobial efficacy of lemongrass-ginger tea. Lemongrass-ginger tea was produced by varying the percentage of lemongrass (25 %, 50 %, and 75 %) and boiling times (5, 10, and 15 min). The antioxidant activity of the lemongrass-ginger tea samples was investigated using the DPPH and ABTS assays whereas the TPC was determined using the Folin-Ciocalteau method. The antimicrobial activities were investigated by measuring the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) of the tea against selected microorganisms, and its combinatory effects with antimicrobial drugs. The lemongrass-ginger combination and the boiling time significantly affected antioxidant potential, TPC, and antimicrobial activities. TPC measured ranged between 966.7 ± 90.20 to 1761.3 ± 81.70 μgGAE/g whereas DPPH antioxidant activities varied from 43.97 ± 14.99 % to 75.20 ± 8.55 %. The highest values of TPC and DPPH were 1761.3 ± 81.70 μgGAE/g and 75.20 ± 8.55 % and were recorded by 75 % lemongrass-ginger combination boiled for 15 min. Furthermore, differences in lemongrass-ginger combination and boiling times resulted in varying antimicrobial activities against the test microorganisms. The lowest MBC was recorded for 50 % lemongrass boiled for 10 min against C. albicans, 75 % lemongrass boiled for 15 min against K. pneumoniae and S. typhi, and 25 % lemongrass against E. coli. Additionally, varying ingredient proportions and boiling times affected the combinatory effect of the tea with antimicrobial drugs. However, the exact effect depends on the proportion of ingredients used and the boiling times.
Collapse
Affiliation(s)
- Aaron Dzigbor
- Department of Food Science & Technology, Ho Technical University, Ho, Ghana
| | - David Neglo
- Department of Biomedical Sciences, School of Basic & Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Clement O. Tettey
- Department of Biomedical Sciences, School of Basic & Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Frank Nsaful
- Department of Food Process Engineering, School of Engineering Sciences, University of Ghana, Legon, Ghana
| | | | | |
Collapse
|
114
|
Bai M, Wang R, Huang C, Zhong R, Jiang N, Fu W, Mi N, Gao L, Jin Y, Ma H, Cao J, Yu H, Jing Q, Zhang C, Yue P, Zhang Y, Lin Y, Zhang H, Meng W. Biological and genetic characterization of a newly established human primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. Sci Rep 2024; 14:29661. [PMID: 39613883 DOI: 10.1038/s41598-024-81392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Distal cholangiocarcinoma is a rare and highly aggressive malignant tumor. The inherent tumor characteristics and growth pattern of cancer cells pose a challenge for diagnosis and treatment. Chemotherapy resistance leads to limited treatment options for patients with advanced cholangiocarcinoma. However, drug resistance studies in cholangiocarcinoma are often limited by the use of preclinical models that do not accurately replicate the essential features of the disease. In this study, we established and characterized a primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. STR profiling indicated no evidence of cross-contamination. This cell line remains stable during long-term in vitro culture and is characterized by short doubling times and rapid subcutaneous tumor formation in mice. In addition, among the first-line anticancer drugs for cholangiocarcinoma, CBC3T-6 cells showed varying degrees of resistance to gemcitabine, oxaliplatin, cisplatin, and 5-FU. Whole exome sequencing analysis revealed that CBC3T-6 cells contained a variety of potentially pathogenic somatic cell mutations, such as TP53 and KRAS mutations. ABCB1 mutation as a possible therapeutic target for multidrug resistance. In conclusion, CBC3T-6 cells can be used as a useful tool to study the mechanism of cholangiocarcinoma and develop new therapeutic strategies for multidrug resistance.
Collapse
Affiliation(s)
- Mingzhen Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruoshui Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Chongfei Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruyang Zhong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningzu Jiang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wenkang Fu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningning Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yuyao Jin
- The Sixth Clinical Medical School of Guangzhou Medical University, Guangzhou, China
| | - Haidong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jie Cao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Haiying Yu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China
| | - Qiang Jing
- Department of Pathology, First Hospital of Lanzhou University, Donggang District, Lanzhou, China
| | - Chao Zhang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China.
| |
Collapse
|
115
|
Xue QQ, Liu CH, Li Y. Decoding the anti-hypertensive mechanism of α-mangostin based on network pharmacology, molecular docking and experimental validation. Mol Med 2024; 30:234. [PMID: 39592923 PMCID: PMC11600633 DOI: 10.1186/s10020-024-01001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Hypertension is a leading risk factor for disability and deaths worldwide. Evidence indicates that alpha-mangostin(α-MG) can reduce blood pressure and improve target organ damage. Nonetheless, its pharmacological targets and potential mechanisms of action remain inadequately elucidated. METHOD We used SwissTargetPrediction to identify α-MG's drug targets and DisGeNET, GeneCards, CTD, and GEO databases for hypertension-related targets, and then determined antihypertensive therapeutic targets of α-MG by intersecting these targets. GO functional enrichment analysis, KEGG pathway analysis, and disease association analysis were conducted using the DAVID database and R package "clusterprofile", visualized with Cytoscape software. The binding affinity of α-MG to identified targets was confirmed through molecular docking using Autodock Vina v.1.2.2 software. The impact of α-MG on target genes was validated using an Angiotensin II-induced hypertensive mouse model and RT-qPCR. RESULTS A total of 51 potential antihypertensive therapeutic targets for α-MG were identified by intersecting 109 drug targets with 821 disease targets. Furthermore, 10 cellular component terms, 10 disease terms, and the top 20 enriched biological processes, molecular functions, and KEGG pathways related to α-MG's antihypertensive effects were documented. Molecular docking studies indicated a strong binding affinity of α-MG with the HSP90AA1 domain. In Ang II-induced hypertensive mice aorta, treatment with α-MG effectively reversed the aberrant mRNA expression of TNF, HSP90AA1, NFKB1, PPARG, SIRT1, PTGS2, and RELA. CONCLUSION Our analyses showed that TNF, HSP90AA1, NFKB1, PPARG, SIRT1, PTGS2, and RELA might be α-MG's potential therapeutic targets for hypertension, laying groundwork for further investigation into its pharmacological mechanisms and clinical uses.
Collapse
Affiliation(s)
- Qi-Qi Xue
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Rd 197, Shanghai, 200025, China
| | - Chu-Hao Liu
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Rd 197, Shanghai, 200025, China
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Rd 197, Shanghai, 200025, China.
| |
Collapse
|
116
|
Bognár G, Kenari F, Pintér Z, Borges ID, Camargo AJ, Oliveira HCB, Sanches-Neto FO, Carvalho-Silva VH, Napolitano HB, Perjési P. ( E)-2-Benzylidenecyclanones: Part XX-Reaction of Cyclic Chalcone Analogs with Cellular Thiols: Unexpected Increased Reactivity of 4-Chromanone- Compared to 1-Tetralone Analogs in Thia-Michael Reactions. Molecules 2024; 29:5493. [PMID: 39683654 DOI: 10.3390/molecules29235493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
In vitro relative cytotoxicity (IC50 (IIb)/IC50 (IIIb) of (E)-3-(4'-methylbenzylidene)-4-chromanone (IIIb) towards human Molt 4/C8 and CEM T-lymphocytes showed a >50-fold increase in comparison to those of the respective tetralone derivative (IIb). On the other hand, such an increase was not observed in the analogous 4-OCH3 (IIc and IIIc) derivatives. In order to study whether thiol reactivity-as a possible basis of the mechanism of action-correlates with the observed cytotoxicities, the kinetics of the non-enzyme catalyzed reactions with reduced glutathione (GSH) and N-acetylcysteine (NAC) of IIIb and IIIc were investigated. The reactivity of the compounds and the stereochemical outcome of the reactions were evaluated using high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Molecular modeling calculations were performed to rationalize the unexpectedly higher thiol reactivity of the chromanones (III) compared to the carbocyclic analog tetralones (II). The results indicate the possible role of spontaneous thiol reactivity of compounds III in their recorded biological effects.
Collapse
Affiliation(s)
- Gábor Bognár
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
| | - Fatemeh Kenari
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Pintér
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
| | - Igor D Borges
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| | - Ademir J Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| | - Heibbe C B Oliveira
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
| | - Flávio Olimpio Sanches-Neto
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Valparaíso de Goiás 72876-601, GO, Brazil
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, Brasília 70904-970, Brazil
| | - Valter H Carvalho-Silva
- Laboratory for Modeling of Physical and Chemical Transformations, Research and Graduate Center, Goiás State University, Anápolis 75132-903, GO, Brazil
| | - Hamilton B Napolitano
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| |
Collapse
|
117
|
Zhou ZJ, Ye YH, Hu ZQ, Hou YR, Liu KX, Sun RQ, Wang PC, Luo CB, Li J, Zou JX, Zhou J, Fan J, Song CL, Zhou SL. Whole-exome sequencing reveals genomic landscape of intrahepatic cholangiocarcinoma and identifies SAV1 as a potential driver. Nat Commun 2024; 15:9960. [PMID: 39551842 PMCID: PMC11570600 DOI: 10.1038/s41467-024-54387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic malignancy after hepatocellular carcinoma, with poor prognosis and limited treatment options. The genomic features of ICC in Chinese patients remain largely unknown. In this study, we perform deep whole-exome sequencing of 204 Chinese primary ICCs and characterize genomic alterations and clonal evolution, and reveal their associations with patient outcomes. We identify six mutational signatures, including Signatures A and F, which are highly similar to previously described signatures linked to aristolochic acid and aflatoxin exposures, respectively. We also identify 13 significantly mutated genes in the ICC samples, including SAV1. We find that SAV1 was mutated in 2.9% (20/672) of 672 ICC samples. SAV1 mutation is associated with lower SAV1 protein levels, higher rates of tumor recurrence, and shorter overall patient survival. Biofunctional investigations reveal a tumor-suppressor role of SAV1: its inactivation suppresses Hippo signaling, leading to YAP activation, thereby promoting tumor growth and metastasis. Collectively, our results delineate the genomic landscape of Chinese ICCs and identify SAV1 as a potential driver of ICC.
Collapse
Affiliation(s)
- Zheng-Jun Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Hang Ye
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Qiang Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue-Ru Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Kai-Xuan Liu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rong-Qi Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng-Cheng Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chu-Bin Luo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Li
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji-Xue Zou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng-Li Song
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Shao-Lai Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
118
|
Liu J, Wang BY, Liu CH, Yang C, Zhao BT. Proteomic analysis reveals the mechanism that low molecular weight hyaluronic acid enhances cell migration in keratinocyte. J Pharm Biomed Anal 2024; 250:116402. [PMID: 39151299 DOI: 10.1016/j.jpba.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Hyaluronic acid (HA), as an extracellular matrix, is known to promote wound healing, and its bioactivity is affected by molecular weight. However, the mechanism of LMW-HA on cells migration remains unclear. In this study, we investigated the effect of LMW-HA on cells migration and the underlying mechanism by employing proteomics. The scratch assay showed that LMW-HA can significantly enhance the migration of keratinocytes in vitro, and ten differentially expressed proteins (DEPs) were found to be associated with wound healing through proteomics and network pharmacology. The result of bioinformatic analysis indicated that these DEPs are involved in positive regulation of cell motility and cellular component movement. Moreover, protein targets of key pathways were further validated. The findings suggest that LMW-HA can promote wound healing by accelerating epithelization via the HIF-1α/VEGF pathway, which provides new insight and reference for HA to enhance cells migration.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bin Ya Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chun Huan Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Bing Tian Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
119
|
Yan P, Li X, He Y, Zhang Y, Wang Y, Liu J, Ren S, Wu D, Zhao Y, Ding L, Jia W, Lyu Y, Xiao D, Lin S, Lin Y. The synergistic protective effects of paeoniflorin and β-ecdysterone against cardiac hypertrophy through suppressing oxidative stress and ferroptosis. Cell Signal 2024; 125:111509. [PMID: 39549820 DOI: 10.1016/j.cellsig.2024.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Exploring feasible drugs for the treatment of pathological cardiac hypertrophy has always been a focus of cardiovascular disease research. Paeoniflorin (PF) and β-Ecdysterone (β-Ecd) are the main active components of Paeonia lactiflora and Achyranthes bidentata, which can be used for the treatment of cardiovascular diseases, but their mechanism of action remains unclear. This study focused on oxidative stress and ferroptosis to investigate the protective effects of PF and β-Ecd on cardiac hypertrophy in primary cardiomyocytes and C57BL/6 mice, utilizing the integration of CCK8 assays, ROS detection, molecular docking, real-time quantitative PCR, western blot, immunofluorescence, etc. The result of combination indices demonstrated a significant synergistic protective effect of PF and β-Ecd on cardiac hypertrophy. Furthermore, in vitro and in vivo studies further showed that the combination of PF and β-Ecd could improve the abnormalities of cell surface area, ANP, β-MHC, MDA, SOD, calcium ion, mitochondrial membrane potential and so on induced by cardiac hypertrophy through the inhibition effects of oxidative stress and iron metabolism, which might be closely related to the impact on the Nrf2/HO-1 and SLC7A11/GPX4 pathways. Altogether, this work revealed the mechanism of the combination of PF and β-Ecd in the treatment of cardiac hypertrophy from the aspects of suppressing oxidative stress and ferroptosis, aiming to promote effective treatment of the disease and the clinical application of PF and β-Ecd.
Collapse
Affiliation(s)
- Peimei Yan
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Xue Li
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuhui He
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yanyan Zhang
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingwanqi Wang
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Jianing Liu
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Shan Ren
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Dingxiao Wu
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yu Zhao
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Lin Ding
- Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar 161006, China
| | - Weiwei Jia
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Ying Lyu
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150000, China
| | - Song Lin
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China; Heilongjiang Key Laboratory of Medicine and Food Resources and Metabolic Disease Prevention, Qiqihar Medical University, Qiqihar 161006, China.
| | - Yan Lin
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China; Heilongjiang Key Laboratory of Medicine and Food Resources and Metabolic Disease Prevention, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
120
|
Liu J, Tan G, Wang S, Tong B, Wu Y, Zhang L, Jiang B. Artesunate induces HO-1-mediated cell cycle arrest and senescence to protect against ocular fibrosis. Int Immunopharmacol 2024; 141:112882. [PMID: 39151383 DOI: 10.1016/j.intimp.2024.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-β1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-β-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shutong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
121
|
Ma R, You H, Liu H, Bao J, Zhang M. Hesperidin:a citrus plant component, plays a role in the central nervous system. Heliyon 2024; 10:e38937. [PMID: 39553629 PMCID: PMC11564962 DOI: 10.1016/j.heliyon.2024.e38937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 11/19/2024] Open
Abstract
Hesperidin is a kind of flavonoids, which has the biological activities of antioxidation, anti-inflammation, antibacterial, anti-virus, anti-allergy, anti-cancer, heart protection and neuroprotection. More and more studies have begun to pay attention to the therapeutic prospect of hesperidin in central nervous system (CNS) diseases. This paper describes its current role in the treatment of central nervous system diseases, especially stroke, and discusses its bioavailability, so as to provide a theoretical basis for the clinical application of hesperidin.
Collapse
Affiliation(s)
- Rui Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hong You
- Sino-French Neurorehabilitation Department of Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hong Liu
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juan Bao
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Min Zhang
- Sino-French Neurorehabilitation Department of Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
122
|
Kandaswamy K, Guru A. The potential role of lumazine peptide penilumamide E from Aspergillus terreus in head and neck cancer treatment. Nat Prod Res 2024:1-2. [PMID: 39523627 DOI: 10.1080/14786419.2024.2426062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
123
|
Park SH, Lee HJ, Kim TI, Lee J, Han SY, Seo HI, Kim DU. Ultrashort Cell-Free DNA Fragments and Vimentin-Positive Circulating Tumor Cells for Predicting Early Recurrence in Patients with Biliary Tract Cancer. Diagnostics (Basel) 2024; 14:2462. [PMID: 39518429 PMCID: PMC11544859 DOI: 10.3390/diagnostics14212462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Biliary tract cancer (BTC) is a rare but aggressive malignancy that requires surgical treatment. However, postoperative recurrence rates are high, and reliable predictors of recurrence are limited. This study aimed to investigate the effectiveness of cell-free DNA (cfDNA) and circulating tumor cells (CTCs) in predicting early recurrence after curative surgery and complete adjuvant therapy in patients with BTC. Methods: Twenty-four patients who underwent R0 and R1 resections and completed adjuvant therapy for BTC between September 2019 and March 2022 were followed up until March 2024. Patients were categorized into early recurrence (ER) and non-ER groups, using one year as the cutoff for recurrence. Results: The combination score derived from ultrashort fragments of cfDNA, vimentin-positive CTCs, and carbohydrate antigen (CA) 19-9 levels showed a statistically significant difference between the ER and non-ER groups (p-value < 0.001). The receiver operating characteristic curve from the combination score and CA 19-9 levels yielded areas under the curve of 0.891 and 0.750, respectively. Conclusions: Although further research is required, these findings suggest that cfDNA and CTCs may increase the accuracy of predicting postoperative recurrence in patients with BTC.
Collapse
Affiliation(s)
- Sung Hee Park
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
| | - Hye Ji Lee
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
| | - Tae In Kim
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
| | - Jonghyun Lee
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
| | - Sung Yong Han
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
- Department of Internal Medicine, Pusan National University College of Medicine, Yangsan 44955, Republic of Korea
| | - Hyung Il Seo
- Department of Surgery, Pusan National University College of Medicine, Yangsan 44955, Republic of Korea;
| | - Dong Uk Kim
- Department of Internal Medicine, Gumi Medical Center, CHA University, Gumi 39100, Republic of Korea;
| |
Collapse
|
124
|
Kawakatsu R, Tadagaki K, Yamasaki K, Kuwahara Y, Nakada S, Yoshida T. The combination of venetoclax and quercetin exerts a cytotoxic effect on acute myeloid leukemia. Sci Rep 2024; 14:26418. [PMID: 39488609 PMCID: PMC11531559 DOI: 10.1038/s41598-024-78221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Venetoclax is a BH3 mimetic that was recently approved for the treatment of acute myeloid leukemia (AML) treatment. However, the effect of venetoclax on AML remains limited, and a novel strategy is required. Here, we demonstrate for the first time that the cytotoxic effect of venetoclax drastically increased when by combined with the naturally occurring flavonoid quercetin. Combined treatment with venetoclax and quercetin caused most of AML KG-1 cells to exhibit a condensed morphology. Cell cycle analysis revealed that the combination strongly induced cell death. Caspase inhibitor blocked this cell death, and the combination induced poly (ADP-ribose) polymerase (PARP) cleavage, indicating that apoptosis was the primary mechanism. These effects were also observed in another AML cell line Kasumi-1 but not in chronic myeloid leukemia (CML) K562 cells. Public data analysis demonstrated that B-cell/CLL lymphoma 2 (Bcl-2) expression is increased in AML cells compared to other malignant tumors, and the survival and the growth of AML cell line depends on Bcl-2. We found that quercetin increased Bcl-2-associated X protein (Bax) expression in KG-1. Our study provides a novel function for quercetin and presents a promising strategy for AML treatment using venetoclax.
Collapse
Affiliation(s)
- Renshi Kawakatsu
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinichiro Nakada
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
125
|
Connolly BJ, Saxton SN. Recent updates on the influence of iron and magnesium on vascular, renal, and adipose inflammation and possible consequences for hypertension. J Hypertens 2024; 42:1848-1861. [PMID: 39258532 PMCID: PMC11451934 DOI: 10.1097/hjh.0000000000003829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
The inflammatory status of the kidneys, vasculature, and perivascular adipose tissue (PVAT) has a significant influence on blood pressure and hypertension. Numerous micronutrients play an influential role in hypertension-driving inflammatory processes, and recent reports have provided bases for potential targeted modulation of these micronutrients to reduce hypertension. Iron overload in adipose tissue macrophages and adipocytes engenders an inflammatory environment and may contribute to impaired anticontractile signalling, and thus a treatment such as chelation therapy may hold a key to reducing blood pressure. Similarly, magnesium intake has proven to greatly influence inflammatory signalling and concurrent hypertension in both healthy animals and in a model for chronic kidney disease, demonstrating its potential clinical utility. These findings highlight the importance of further research to determine the efficacy of micronutrient-targeted treatments for the amelioration of hypertension and their potential translation into clinical application.
Collapse
Affiliation(s)
- Benjamin J Connolly
- Divison of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
126
|
Sim HH, Shiwakoti S, Lee JH, Lee IY, Ok Y, Lim HK, Ko JY, Oak MH. 2,7-Phloroglucinol-6,6'-bieckol from Ecklonia cava ameliorates nanoplastics-induced premature endothelial senescence and dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175007. [PMID: 39053557 DOI: 10.1016/j.scitotenv.2024.175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs), plastic particles ranging from 1 to 100 nm are ubiquitous environmental pollutants infiltrating ecosystems. Their small size and widespread use in various products raise concerns for human health, particularly their association with cardiovascular diseases (CVD). NPs can enter the human body through multiple routes, causing oxidative stress, and leading to the senescence and dysfunction of endothelial cells (ECs). Although there are potential natural compounds for treating CVD, there is limited research on preventing CVD induced by NPs. This study investigates the efficacy of Ecklonia cava extract (ECE) in preventing NPs-induced premature vascular senescence and dysfunction. Exposure of porcine coronary arteries (PCAs) and porcine coronary ECs to NPs, either alone or in combination with ECE, demonstrated that ECE mitigates senescence-associated β-galactosidase (SA-β-gal) activity induced by NPs, thus preventing premature endothelial senescence. ECE also improved NPs-induced vascular dysfunction. The identified active ingredient in Ecklonia cava, 2,7'-Phloroglucinol-6,6'-bieckol (PHB), a phlorotannin, proved to be pivotal in these protective effects. PHB treatment ameliorated SA-β-gal activity, reduced oxidative stress, restored cell proliferation, and decreased the expression of cell cycle regulatory proteins such as p53, p21, p16, and angiotensin type 1 receptor (AT1), well known triggers for EC senescence. Moreover, PHB also improved NPs-induced vascular dysfunction by upregulating endothelial nitric oxide synthase (eNOS) expression and restoring endothelium-dependent vasorelaxation. In conclusion, Ecklonia cava and its active ingredient, PHB, exhibit potential as therapeutic agents against NPs-induced premature EC senescence and dysfunction, indicating a protective effect against environmental pollutants-induced CVDs associated with vascular dysfunction.
Collapse
Affiliation(s)
- Hwan-Hee Sim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Ji-Hyeok Lee
- Division of Commercialization Support, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - In-Young Lee
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Yejoo Ok
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Han-Kyu Lim
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
127
|
Hasani S, Pourfarzi F, Mazani M, Yazdanbod A, Fazaeli A. Association of ANRIL Gene Polymorphisms with Gastric Cancer Risk: A Case-Control Study. Genet Test Mol Biomarkers 2024; 28:445-451. [PMID: 39377150 DOI: 10.1089/gtmb.2024.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Background: Gastric cancer's (GC) cause is unknown, but its complexity indicates that, in addition to environmental factors, it may have genetic origins. Scientists are studying single-nucleotide polymorphisms (SNPs) in the antisense noncoding RNA in the INK4 locus (ANRIL) gene, which encodes a long noncoding RNA molecule. They found a link between the ANRIL gene product and some polymorphisms and GC, suggesting genetic changes may lead to precancerous conditions. Methods: In a case-control research that included 250 patients with GC and 210 controls who were age- and gender-matched, four SNPs within the ANRIL gene were genotyped. These SNPs were rs1333049, rs496892, rs2383207, and rs2151280. Tetra-primer amplification refractory mutation system-PCR was utilized to carry out the process of genotyping. Results: It was found that the chance of developing GC was connected with three SNPs rs2151280, rs1333049, and rs496892. Nevertheless, rs2383207 did not demonstrate any meaningful connection. In addition, whereas CCTC and TTCC haplotypes were shown to be less common, certain haplotypes that contained these SNPs (TTCG, TCTC, and TTTC) displayed a considerably higher prevalence in the cancer group in comparison to the control group. Conclusion: This study showed novel associations between specific ANRIL gene polymorphisms (SNPs) and the risk of GC. These findings shed light on the potential role of ANRIL SNPs in GC risk and highlight the need for additional research to clarify the underlying functional processes. Understanding these functional processes might lead to developing novel diagnostic or treatment approaches for this cancer.
Collapse
Affiliation(s)
- Samaneh Hasani
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mazani
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abbas Yazdanbod
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
128
|
Li S, Niu J, Smits R. RNF43 and ZNRF3: Versatile regulators at the membrane and their role in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189217. [PMID: 39551397 DOI: 10.1016/j.bbcan.2024.189217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
RNF43 and ZNRF3 are recognized as important regulators of Wnt/β-catenin signaling by maintaining Wnt-receptors at minimal essential levels. In various cancer types, particularly gastrointestinal tumors, mutations in these genes lead to abnormal Wnt-dependent activation of β-catenin signaling. However, recent findings implicate RNF43/ZNRF3 also in the regulation of other tumor-related proteins, including EGFR, BRAF, and the BMP-signaling pathway, which may have important implications for tumor biology. Additionally, we describe in detail how phosphorylation and ubiquitination may finetune RNF43 and ZNRF3 activity. We also address the variety of mutations observed in cancers and the mechanism through which they support tumor growth, and challenge the prevailing view that specific missense mutations in the R-spondin and RING domains may possess dominant-negative activity in contributing to tumor formation.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Jiahui Niu
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
129
|
Zhang YL, Sun SJ, Zeng L. Biological effects and mechanisms of dietary chalcones: latest research progress, future research strategies, and challenges. Food Funct 2024; 15:10582-10599. [PMID: 39392421 DOI: 10.1039/d4fo03618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.
Collapse
Affiliation(s)
- Yun Liang Zhang
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Shuang Jiao Sun
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Li Zeng
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
130
|
Ikhsan LN, Chin KY, Ahmad F. The Potential of Dehydrated Geniotrigona thoracica Stingless Bee Honey against Metabolic Syndrome in Rats Induced by a High-Carbohydrate, High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:1427. [PMID: 39598339 PMCID: PMC11597213 DOI: 10.3390/ph17111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic syndrome (MS) is diagnosed when at least three out of five key risk factors are present: obesity, high blood pressure, insulin resistance, high triglycerides (TG) and low high-density lipoprotein (HDL). MS is often associated with chronic low-grade inflammation. Recent studies have shown that raw stingless bee honey (SBH) can alleviate MS risk factors. However, the high moisture content in raw SBH predisposes it to fermentation, which can degrade its quality. Therefore, dehydrating SBH is necessary to prevent the fermentation process. This study aimed to compare the effects of dehydrated (DeGT) and raw (RGT) SBH from Geniotrigona thoracica species on high-carbohydrate, high-fat diet (HCHF)-induced MS in rats. METHODS Twenty-four male Wistar rats were divided into four groups: control (C), HCHF-induced MS without treatment (MS), HCHF-induced MS treated with DeGT (MS+DeGT) and HCHF-induced MS treated with RGT (MS+RGT). Group C received standard rat chow, while the other groups were fed with HCHF diet for 16 weeks. In the final eight weeks, two HCHF-induced groups received their respective SBH treatments. RESULTS Both DeGT and RGT treatments reduced energy intake, fat mass, high blood pressure, inflammatory (tumour necrosis factor-alpha (TNF-α)) and obesity (the leptin/adiponectin (L/A) ratio, corticosterone, 11 beta-hydroxysteroid dehydrogenase type-1 (11βHSD1)) markers, as well as prevented histomorphometry changes (prevented adipocyte hypertrophy, increased the Bowman's space area and glomerular atrophy). Additionally, DeGT increased serum HDL levels, while RGT reduced serum TG, leptin and other inflammatory markers (interleukin-6 (IL-6) and interleukin-1 beta (IL-1β)), as well as hepatosteatosis. CONCLUSIONS While DeGT demonstrates potential as a preventive agent for MS, RGT exhibited more pronounced anti-MS effects in this study.
Collapse
Affiliation(s)
- Liyana Nabihah Ikhsan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
131
|
Liang Y, Qi J, Yu D, Wang Z, Li W, Long F, Ning S, Yuan M, Zhong X. Ferulic Acid Alleviates Lipid and Bile Acid Metabolism Disorders by Targeting FASN and CYP7A1 in Iron Overload-Treated Mice. Antioxidants (Basel) 2024; 13:1277. [PMID: 39594419 PMCID: PMC11591460 DOI: 10.3390/antiox13111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024] Open
Abstract
Iron overload is a common complication in various chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD). Lipid and bile acid metabolism disorders are regarded as crucial hallmarks of NAFLD. However, effects of iron accumulation on lipid and bile acid metabolism are not well understood. Ferulic acid (FA) can chelate iron and regulate lipid and bile acid metabolism, but its potential to alleviate lipid and bile acid metabolism disorders caused by iron overload remains unclear. Here, in vitro experiments, iron overload induced oxidative stress, apoptosis, genomic instability, and lipid deposition in AML12 cells. FA reduced lipid and bile acid synthesis while increasing fatty acid β-oxidation and bile acid export, as indicated by increased mRNA expression of PPARα, Acox1, Adipoq, Bsep, and Shp, and decreased mRNA expression of Fasn, Acc, and Cyp7a1. In vivo experiments, FA mitigated liver injury in mice caused by iron overload, as indicated by reduced AST and ALT activities, and decreased iron levels in both serum and liver. RNA-seq results showed that differentially expressed genes were enriched in biological processes related to lipid metabolism, lipid biosynthesis, lipid storage, and transport. Furthermore, FA decreased cholesterol and bile acid contents, downregulated lipogenesis protein FASN, and bile acid synthesis protein CYP7A1. In conclusion, FA can protect the liver from lipid and bile acid metabolism disorders caused by iron overload by targeting FASN and CYP7A1. Consequently, FA, as a dietary supplement, can potentially prevent and treat chronic liver diseases related to iron overload by regulating lipid and bile acid metabolism.
Collapse
Affiliation(s)
- Yaxu Liang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Jun Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Dongming Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Zhibo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Weite Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Fei Long
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Shuai Ning
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Meng Yuan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
- Natural Plant and Animal Health Innovation Institute, NJAU-Cohoo Biotechnology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
132
|
Cao H, Huang X, Luo B, Shi W, Li H, Shi R. Gender Differences of Visceral Fat Area to Hip Circumference Ratio for Insulin Resistance. Diabetes Metab Syndr Obes 2024; 17:3935-3942. [PMID: 39465126 PMCID: PMC11512554 DOI: 10.2147/dmso.s482820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Not all type 2 diabetes mellitus (T2DM) patients exhibit insulin resistance (IR). Our objective is to identify the most effective sex-specific index for predicting IR in T2DM. This will be achieved through a comparative analysis of the sex-specific attributes of waist to hip circumference ratio (WHR), visceral fat area to hip circumference ratio (VHR), and visceral fat area to subcutaneous fat area ratio (VSR). Methods Receiver operating characteristic curve analysis was conducted to estimate the area under the curve for WHR, VHR, and VSR. Subsequently, logistic regression was employed to analyze the relationship between VHR and IR. Results There were significant differences between males and females in anthropometric measurements, biochemical data, and obesity prevalence. ROC analysis revealed that the area under the curve (AUC) for predicting male IR was 0.67, 0.71, and 0.62 for WHR, VHR, and VSR, respectively. For females, the AUC values were 0.63, 0.69, and 0.60, respectively. In multivariate logistic regression analysis, adjusting for confounding factors, compared to the lowest tertile of VHR, the odds ratio (OR) of the highest tertile was 2.2 (95% CI: 1.47-3.3, P<0.001) for males and 2.1 (95% CI: 1.24-3.57, P=0.005) for females. Conclusion VHR emerges as the most reliable predictor of IR risk in individuals with T2DM.
Collapse
Affiliation(s)
- Huiying Cao
- Clinical Laboratory, The First People’s Hospital of Honghe State, Honghe State, Yunnan Province, People’s Republic of China
| | - Xuan Huang
- Clinical Laboratory, The First People’s Hospital of Honghe State, Honghe State, Yunnan Province, People’s Republic of China
| | - Beibei Luo
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People’s Republic of China
| | - Wei Shi
- Clinical Laboratory, The First People’s Hospital of Honghe State, Honghe State, Yunnan Province, People’s Republic of China
| | - Huan Li
- Clinical Laboratory, The First People’s Hospital of Honghe State, Honghe State, Yunnan Province, People’s Republic of China
| | - Rui Shi
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People’s Republic of China
| |
Collapse
|
133
|
Pranomphon T, López-Valiñas Á, Almiñana C, Mahé C, Brair VL, Parnpai R, Mermillod P, Bauersachs S, Saint-Dizier M. Oviduct epithelial spheroids during in vitro culture of bovine embryos mitigate oxidative stress, improve blastocyst quality and change the embryonic transcriptome. Biol Res 2024; 57:73. [PMID: 39438935 PMCID: PMC11494963 DOI: 10.1186/s40659-024-00555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND In vitro embryo production is increasingly used for genetic improvement in cattle but bypasses the oviduct environment and exposes the embryos to oxidative stress with deleterious effects on further development. Here we aimed to examine the effect of oviduct epithelial spheroids (OES) on embryo development and quality in terms of morphology and gene expression during two co-culture times (4 days: up to embryonic genome activation at 8-16 cell stage vs. 7 days: up to blastocyst stage) and under two oxygen levels (5% vs. 20%). METHODS Bovine presumptive zygotes produced by in vitro fertilization (day 0) using in-vitro matured oocytes were cultured in droplets of synthetic oviductal fluid (SOF) medium with or without (controls) OES for 4 or 7 days under 5% or 20% oxygen (4 treated and 2 control groups). Cleavage rates were evaluated on day 2 and blastocyst rates on days 7-8. Expanded blastocysts on days 7-8 were evaluated for total cell numbers and gene expression analysis by RNA-sequencing. RESULTS Under 20% oxygen, blastocyst rates and total cell numbers were significantly higher in the presence of OES for 4 and 7 days compared to controls (P < 0.05), with no difference according to the co-culture time. Under 5% oxygen, the presence of OES did not affect blastocyst rates but increased the number of cells per blastocyst after 7 days of co-culture (P < 0.05). Both oxygen level and OES co-culture had a significant impact on the embryonic transcriptome. The highest number of differentially expressed genes (DEGs) was identified after 7 days of co-culture under 20% oxygen. DEGs were involved in a wide range of functions, including lipid metabolism, membrane organization, response to external signals, early embryo development, and transport of small molecules among the most significantly impacted. CONCLUSION OES had beneficial effects on embryo development and quality under both 5% and 20% oxygen, mitigating oxidative stress. Stronger effects on embryo quality and transcriptome were obtained after 7 than 4 days of co-culture. This study shows the impact of OES on embryo development and reveals potential molecular targets of OES-embryo dialog involved in response to stress and early embryonic development.
Collapse
Affiliation(s)
- Thanya Pranomphon
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Álvaro López-Valiñas
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Coline Mahé
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France
| | | | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pascal Mermillod
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland.
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France.
| |
Collapse
|
134
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
135
|
Pannangrong W, Nillert N, Boonyarat C, Welbat JU, Yannasithinon S, Choowong-In P. Clausena harmandiana root extract ameliorates Aβ 1-42 induced cognitive deficits, oxidative stress, and apoptosis in rats. BMC Complement Med Ther 2024; 24:364. [PMID: 39390478 PMCID: PMC11465876 DOI: 10.1186/s12906-024-04662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Clausena harmandiana (CH), commonly known as song fa dong, was a medicinal plant traditionally used to treat illnesses and as a health tonic. CH root extract (CHRE) exhibited various bioactivities, including neuroprotective, antioxidant, antimicrobial, antifungal, anti-inflammatory, and anti-cancer effects. However, CHRE data on neuroprotective in AD-like animal models were still scarce. OBJECTIVES This study aimed to investigate the effects of CHRE on Aβ1-42-induced cognitive deficits, free radical damage, and neuronal death in rats. METHODS Forty-eight adult male Sprague-Dawley rats (250-300 g) were classified as sham control (SC), V+Aβ, Vit C+Aβ, CHRE125+Aβ, CHRE250+Aβ, and CHRE500+Aβ (n = 8 in each group). Animals were orally administered with 0.5% sodium carboxymethylcellulose, vitamin C (200 mg/kg BW), or CHRE (125, 250, and 500 mg/kg BW) and were untreated for 35 days. On day 21, all treated rats were injected with 1 µl of aggregated Aβ1-42 (1 µg/µl) into the lateral ventricles, bilaterally, whereas untreated rats were injected with sterilized normal saline (NS). The Morris water maze test estimated the rat's learning and memory one week later. At the end of the treatment, all rats were sacrificed, and their brains were removed and divided into two hemispheres. On the left, morphological changes and neuronal density were observed in hippocampal CA1 and CA3 regions. While, on the right, changes in free radical damage markers (SOD, CAT, GPx, MDA, and Nrf2) and protein expression of active caspase-3 were evaluated in the hippocampus. RESULTS Pretreatment with CHRE at all doses could alleviate spatial learning and memory defects. CHRE also improved morphological changes and a decrease in neuronal density in CA1 and CA3 regions. Additionally, CHRE significantly increased the activities of antioxidant enzymes (SOD, CAT, GPx) and Nrf2 expression. This was coupled with significantly decreased MDA levels and active caspase-3 expression in the hippocampus of Aβ1-42-induced rats, which was similar to vitamin C exposure. CONCLUSIONS Our findings suggested that CHRE ameliorated cognitive deficits and exhibited neuroprotective effects by reducing free radical damage and mitigating neuronal abnormality and neuronal death.
Collapse
Affiliation(s)
- Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nutchareeporn Nillert
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Faculty of Nursing Sciences and Allied Health, Phetchaburi Rajabhat University, Phetchaburi, 76000, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Pannawat Choowong-In
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit, 53000, Thailand.
| |
Collapse
|
136
|
Mad Azli AA, Salamt N, Aminuddin A, Roos NAC, Mokhtar MH, Kumar J, Hamid AA, Ugusman A. The Role of Curcumin in Modulating Vascular Function and Structure during Menopause: A Systematic Review. Biomedicines 2024; 12:2281. [PMID: 39457594 PMCID: PMC11504472 DOI: 10.3390/biomedicines12102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The risk of developing cardiovascular disease (CVD) escalates in women during menopause, which is associated with increased vascular endothelial dysfunction, arterial stiffness, and vascular remodeling. Meanwhile, curcumin has been demonstrated to enhance vascular function and structure in various studies. Therefore, this study systematically reviewed the recent literature regarding the potential role of curcumin in modulating vascular function and structure during menopause. The Ovid MEDLINE, PubMed, Scopus, and Web of Science electronic databases were searched to identify relevant articles. Clinical and preclinical studies involving menopausal women and postmenopausal animal models with outcomes related to vascular function or structure were included. After thorough screening, seven articles were selected for data extraction, comprising three animal studies and four clinical trials. The findings from this review suggested that curcumin has beneficial effects on vascular function and structure during menopause by addressing endothelial function, arterial compliance, hemodynamic parameters, and the formation of atherosclerotic lesions. Therefore, curcumin has the potential to be utilized as a supplement to enhance vascular health in menopausal women. However, larger-scale clinical trials employing gold-standard techniques to evaluate vascular health in menopausal women are necessary to validate the preliminary results obtained from small-scale randomized clinical trials involving curcumin supplementation (INPLASY, INPLASY202430043).
Collapse
Affiliation(s)
- Amanina Athirah Mad Azli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Norizam Salamt
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
137
|
Mo L, Wan S, Zékány-Nagy T, Luo X, Yang X. The Effect of Curcumin on Glucolipid Metabolic Disorders: A Review. FOOD REVIEWS INTERNATIONAL 2024:1-35. [DOI: 10.1080/87559129.2024.2405654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Lifen Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Siyu Wan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Tekla Zékány-Nagy
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xiaoyi Luo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
138
|
Wang Q, Wu Z, Li C, Qin G, Hu X, Guo P, Ding A, Xu W, Wang W, Xuan L. Haperforatones A-M, thirteen undescribed limonoids from Harrisonia perforata with anti-inflammatory activity. Bioorg Chem 2024; 151:107631. [PMID: 39018800 DOI: 10.1016/j.bioorg.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
UPLC-Q-TOF-MS combined with mass defect filtering strategies were applied for the phytochemical investigation of Harrisonia perforata, leading to the isolation of thirteen undescribed limonoids named haperforatones A-M (1-13) and seventeen known compounds (14-30). Particularly, haperforatones D-E (4-5) have an unprecedented A, B, C, D-seco-6, 7-nor-C-24-limonoid skeleton, structurally stripped of the five-membered lactone ring B and formed a double bond at the C-5 and C-10 positions. Their 2D structures and relative configurations were identified using spectroscopic data. The absolute configurations of 1, 4, and 6 were established via X-ray diffraction crystallography. All 30 compounds were evaluated for anti-inflammatory potential in LPS-induced Raw 264.7 cell lines. Among those tested compounds, the most potent activity against LPS-induced NO generation was demonstrated by haperforatone F (6), with the IC50 value of inhibition NO production of 7.2 µM. Additionally, 6 could significantly inhibit IL-1β and IL-6 release and markedly downregulate the protein expression level of iNOS in the LPS-stimulated RAW264.7 cells at 10 µM. The possible mechanism of NO inhibition of 6 was also investigated using molecular docking, which revealed the interaction of compound 6 with the iNOS protein.
Collapse
Affiliation(s)
- Qing Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Zhitao Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Chenyue Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guoqing Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Xianggang Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Pengju Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Aoxue Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Wenjing Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Wenqiong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| | - Lijiang Xuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
139
|
Xin Q, Niu R, Chen Q, Liu D, Xu E. Stable cytoactivity of piscine satellite cells in rice bran-gelatin hydrogel scaffold of cultured meat. Int J Biol Macromol 2024; 277:134242. [PMID: 39084438 DOI: 10.1016/j.ijbiomac.2024.134242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
In order to achieve high cell adhesion and growth efficiency on scaffolds for cultured meat, animal materials, especially gelatin, are necessary though the disadvantages of weak mechanical properties and poor stability of their hydrogel scaffolds are present during cell cultivation. Here, we use rice bran as a kind of filling and supporting materials to develop a composite scaffold with gelatin for fish cell cultivation, where rice bran is also inexpensive from high yield fibrous agricultural by-product. The rice bran (with a proportion of 1, 3, 5, 7, 10 to 3 of gelatin) could evenly distributed in the three-dimensional network composed of gelatin hydrogel. It contributed to delaying swelling and degradation rates, fixing water and improving elastic modulus. It is important that rice bran-gelatin hydrogel scaffolds (especially the hydrogel with 70 % rice bran, db) promoted piscine satellite cells (PSCs) proliferation effectively compared to the pure gelatin hydrogel, and the former could also support the differentiation of PSCs. Overall, this work showed a positive promotion to explore new source of scaffold materials like agricultural by-product for reducing the cost of cell cultured meat production.
Collapse
Affiliation(s)
- Qipu Xin
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
140
|
Şensoy E. Melatonin prevents histopathologies stem from cadmium chloride in pregnant mice lungs. J Mol Histol 2024; 55:955-965. [PMID: 39198364 DOI: 10.1007/s10735-024-10243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
Heavy metals may cause structural and functional changes in organs. Cadmium, taken into the body through oral and respiratory routes, can lead to lesions. Cadmium may lead to lesions by accumulating in organs. The lungs are significantly affected by cadmium. Melatonin, an antioxidant hormone with therapeutic effects, is secreted by the pineal gland. The aim of the study is to treat cadmium-induced lesions in the lungs of pregnant mice with Melatonin. Four groups were created with 24 pregnant mice, named Control, Cadmium Chloride, Melatonin, and Melatonin + Cadmium Chloride groups (n: 6) Cadmium Chloride (2 mg/kg/bw) and Melatonin (3 mg/kg/bw) were given orally through gavage during pregnancy (21 days) After routine histological procedures, the lung tissues were stained with Hematoxylin-Eosin and evaluated under a light and electron microscope. ANOVA tests were applied for one-way analysis of variance, and LSD tests were applied for pairwise comparisons (p < 0.05) The average lung weight decreased in the Cadmium Chloride group (p: 0.03) The average lung weight in the Cadmium Chloride + Melatonin group was found to be close to the control group (p: 0.06) Cadmium Chloride caused thickening of the lung alveolar wall, inflammatory cell infiltration, and fibrin deposition. Because the lesions were not observed in the Melatonin group, lesions may be prevented by melatonin. Additional studies may be useful to determine the protective effect of Melatonin at different doses of Cadmium Chloride.
Collapse
Affiliation(s)
- Erhan Şensoy
- Department of Midwifery, Faculty of Health Sciences, KaramanogluMehmetbey University, Karaman, Turkey.
| |
Collapse
|
141
|
Kitsugi K, Noritake H, Matsumoto M, Hanaoka T, Umemura M, Yamashita M, Takatori S, Ito J, Ohta K, Chida T, Ulmasov B, Neuschwander-Tetri BA, Suda T, Kawata K. Inhibition of integrin binding to ligand arg-gly-asp motif induces AKT-mediated cellular senescence in hepatic stellate cells. Mol Cell Biochem 2024; 479:2697-2710. [PMID: 37902885 DOI: 10.1007/s11010-023-04883-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) play an essential role in liver fibrogenesis. The induction of cellular senescence has been reported to inhibit HSC activation. Previously, we demonstrated that CWHM12, a small molecule arginine-glycine-aspartic acid (RGD) peptidomimetic compound, inhibits HSC activation. This study investigated whether the inhibitory effects of CWHM12 on HSCs affected cellular senescence. METHODS The immortalized human HSC lines, LX-2 and TWNT-1, were used to evaluate the effects of CWHM12 on cellular senescence via the disruption of RGD-mediated binding to integrins. RESULTS CWHM12 induces cell cycle arrest, senescence-associated beta-galactosidase activity, acquisition of senescence-associated secretory phenotype (SASP), and expression of senescence-associated proteins in HSCs. Further experiments revealed that the phosphorylation of AKT and murine double minute 2 (MDM2) was involved in the effects of CWHM12, and the inhibition of AKT phosphorylation reversed these effects of CWHM12 on HSCs. CONCLUSIONS Pharmacological inhibition of RGD-mediated integrin binding induces senescence in activated HSCs.
Collapse
Affiliation(s)
- Kensuke Kitsugi
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hidenao Noritake
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | - Moe Matsumoto
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohiko Hanaoka
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masahiro Umemura
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Maho Yamashita
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Takatori
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Jun Ito
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuyoshi Ohta
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Chida
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MO, USA
| | | | - Takafumi Suda
- Division of Respiratory Medicine, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuhito Kawata
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
142
|
Luo F, Yang J, Yang X, Mi J, Ye T, Li G, Xie Y. Saikosaponin D potentiates the antineoplastic effects of doxorubicin in drug-resistant breast cancer through perturbing NQO1-mediated intracellular redox balance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155945. [PMID: 39146878 DOI: 10.1016/j.phymed.2024.155945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Drug resistance to doxorubicin (DOX) significantly limits its therapeutic efficacy in breast cancer (BC) patients. Saikosaponin D (SSD), a triterpene saponin derived from the traditional herb Radix Bupleuri, has shown promise as a chemotherapeutic sensitizer in preclinical studies due to its notable antitumor activity. However, the role and mechanism of SSD in DOX-resistant BC cells remain largely unexplored. PURPOSE This study aimed to investigate the chemosensitizing effect of SSD on DOX-resistant BC and the underlying molecular mechanisms both in vitro and in vivo. METHODS In vitro assays, including cell viability, clone formation, three-dimensional tumor spheroid growth, and apoptosis analysis, were conducted to evaluate the synergistic effect of SSD and DOX on resistant BC cells. Reactive oxygen species (ROS), GSH/GSSG, NADPH/NADP+, and NADH/NAD+ detections were employed to assess the impact of SSD on cellular redox homeostasis. Western blotting, cell cycle distribution assay, and DOX uptake assay were performed to further elucidate the possible antineoplastic mechanism of SSD. Finally, a subcutaneous MCF7/DOX cell xenografted model in nude mice was established to identify the in vivo anticarcinogenic effect of SSD combined with DOX. RESULTS SSD significantly inhibited cell viability, proliferation, and clone formation, enhancing DOX's anticancer efficacy in vitro and in vivo. Mechanistically, SSD reduced STAT1, NQO1, and PGC-1α protein levels, leading to cellular redox imbalance, excessive ROS generation, and depletion of GSH, NADPH, and NADH. SSD induced DNA damage by disrupting redox homeostasis, resulting in G0/G1 phase cell cycle arrest. Additionally, SSD increased DOX accumulation in BC cells via inhibiting P-gp protein expression and efflux activity. CONCLUSION We demonstrated for the first time that SSD enhances the sensitivity of chemoresistant BC cells to DOX by disrupting cellular redox homeostasis through inactivation of the STAT1/NQO1/PGC-1α signaling pathway. This study provides evidence for SSD as an adjuvant agent in drug-resistant BC treatment.
Collapse
Affiliation(s)
- Fazhen Luo
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, 184 Baoding Road, Shanghai 200082, China
| | - Juan Yang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiuru Yang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jinxia Mi
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Taiwei Ye
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guowen Li
- Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, 184 Baoding Road, Shanghai 200082, China.
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
143
|
Ramos-Junior OJF, Pinheiro VDS, de Souza TGDS, Alvares TS. Effect of Curcumin Intake on Skeletal Muscle Oxygen Saturation Parameters in Older Participants. Antioxidants (Basel) 2024; 13:1175. [PMID: 39456429 PMCID: PMC11505174 DOI: 10.3390/antiox13101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Aging is associated with increased reactive oxygen species (ROS) and reduced bioavailability of nitric oxide (NO). Curcumin has been shown to increase NO bioavailability due to its ability to neutralize ROS, preventing oxidative stress. The present study aimed to investigate the effect of curcumin intake on skeletal muscle oxygen parameters and exercise tolerance in response to exercise in older people. Changes in circulating levels of NO metabolites were also investigated. METHODS Older subjects consumed 10 g of turmeric root extract from Curcuma longa L. (containing 95.33% of the total curcuminoids) or placebo in a randomized, double-blind, crossover study. A time of 2 h after ingestion, the participants performed one set of rhythmic handgrip exercise until the limit of tolerance, followed by 5 min of recovery. During exercise and exercise recovery, skeletal muscle oxygen saturation parameters were recorded. RESULTS During exercise, the amplitude of deoxyhemoglobin was greater after curcumin intake compared to placebo (CUR: 13.11 ± 9.52 vs. PLA: 10.22 ± 8.39 μM, p = 0.030). Furthermore, a faster skeletal muscle oxygen resaturation during exercise recovery was observed after curcumin compared to placebo (CUR: 1.01 ± 0.65 vs. PLA: 0.32 ± 0.20%.s-1, p = 0.004). These results were associated with significant changes in plasma nitrite (CUR: 6.82 ± 11.68 vs. PLA: -4.94 ± 17.28%, p = 0.028). There was no statistical difference in the total hemoglobin, exercise time until fatigue, and plasma nitrate between groups. CONCLUSIONS The present study suggests that curcumin improves muscle oxygenation status at the capillary level in older adults by possibly improving muscle oxygen extraction and/or delivery, with no effect on exercise tolerance.
Collapse
Affiliation(s)
- Olavo João Frederico Ramos-Junior
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (O.J.F.R.-J.); (V.d.S.P.); (T.G.d.S.d.S.)
| | - Vivian dos Santos Pinheiro
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (O.J.F.R.-J.); (V.d.S.P.); (T.G.d.S.d.S.)
| | - Tatiane Gomes dos Santos de Souza
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (O.J.F.R.-J.); (V.d.S.P.); (T.G.d.S.d.S.)
| | - Thiago Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (O.J.F.R.-J.); (V.d.S.P.); (T.G.d.S.d.S.)
- Food and Nutrition Institute, Multidisciplinary Center, Federal University of Rio de Janeiro, Macaé 27930-560, RJ, Brazil
| |
Collapse
|
144
|
Juszczak M, Tokarz P, Woźniak K. Potential of NRF2 Inhibitors-Retinoic Acid, K67, and ML-385-In Overcoming Doxorubicin Resistance in Promyelocytic Leukemia Cells. Int J Mol Sci 2024; 25:10257. [PMID: 39408587 PMCID: PMC11476837 DOI: 10.3390/ijms251910257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Drug resistance is one of the major obstacles to the clinical use of doxorubicin, an extensively used chemotherapeutic drug to treat various cancers, including leukemia. Inhibition of the nuclear factor erythroid 2-related factor 2 (NRF2) seems a promising strategy to reverse chemoresistance in cancer cells. NRF2 is a transcription factor that regulates both antioxidant defense and drug detoxification mechanisms. In this study, we investigated the potential of three inhibitors of NRF2-K67, retinoic acid and ML-385-to overcome doxorubicin resistance in promyelocytic leukemia HL-60 cells. For this purpose, low-dose doxorubicin was used to establish doxorubicin-resistant HL-60/DR cells. The expression of NRF2 and its main repressor, Kelch-like ECH-associated protein 1 (KEAP1), at mRNA and protein levels was examined. HL-60/DR cells overexpressed NRF2 at mRNA and protein levels and down-regulated KEAP1 protein compared to drug-sensitive HL-60 cells. The effects of NRF2 inhibitors on doxorubicin-resistant HL-60/DR cell viability, apoptosis, and intracellular reactive oxygen species (ROS) levels were analyzed. We observed that NRF2 inhibitors significantly sensitized doxorubicin-resistant HL-60/DR cells to doxorubicin, which was associated with increased intracellular ROS levels and the expression of CAS-9, suggesting the participation of the mitochondrial-dependent apoptosis pathway. Furthermore, ML-385 inhibitor was used to study the expression of NRF2-KEAP1 pathway genes. NRF2 gene and protein expression remained unchanged; however, we noted the down-regulation of KEAP1 protein upon ML-385 treatment. Additionally, the expression of NRF2-regulated antioxidant and detoxification genes including SOD2, HMOX2, and GSS was maintained upon ML-385 treatment. In conclusion, our results demonstrated that all the studied inhibitors, namely K67, retinoic acid, and ML-385, increased the efficacy of doxorubicin in doxorubicin-resistant HL-60/DR cells, and suggested a potential strategy of combination therapy using NRF2 inhibitors and doxorubicin in overcoming doxorubicin resistance in leukemia.
Collapse
Affiliation(s)
- Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.T.); (K.W.)
| | | | | |
Collapse
|
145
|
Panaampon J, Sungwan P, Fujikawa S, Sampattavanich S, Jirawatnotai S, Okada S. Trastuzumab, a monoclonal anti-HER2 antibody modulates cytotoxicity against cholangiocarcinoma via multiple mechanisms. Int Immunopharmacol 2024; 138:112612. [PMID: 38968862 DOI: 10.1016/j.intimp.2024.112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and fatal cancer. The prognosis is very poor and no optimal chemotherapy has been established. Human epidermal growth factor receptor 2 (HER2, neu, and erbB2) is highly-expressed in breast cancer and is expressed in many other tumors but poorly expressed in CCA. The anti-HER2 antibody, trastuzumab, has been used for the treatment of HER2-positive breast and gastric cancer. In this study, we examined the surface expression of HER2 on seven Thai liver-fluke-associated CCA cell lines by flow cytometry, and found all of these CCA cells were weakly positive for HER2. MTT assay revealed that trastuzumab directly suppressed the growth of CCA. By using FcR-bearing recombinant Jurkat T-cell-expressing firefly luciferase gene under the control of NFAT response elements, we defined the activities of antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP). ADCC was confirmed by using expanded NK cells. ADCP was confirmed by using mouse peritoneal macrophages and human monocyte-derived macrophages as effector cells. Rabbit serum was administered to test the complement-dependent cytotoxicity (CDC) activity of trastuzumab. Finally, we evaluated the efficacy of trastuzumab in in vivo patient-derived cell xenograft and patient-derived xenograft (PDX) models. Our results showed that a distinct population of CCA (liver-fluke-associated CCA) expressed HER2. Trastuzumab demonstrated a potent inhibitory effect on even HER2 weakly positive CCA both in vitro and in vivo via multiple mechanisms. Thus, HER2 is a promising target in anti-CCA therapy, and trastuzumab can be considered a promising antibody immunotherapy agent for the treatment of CCA.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prin Sungwan
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sawako Fujikawa
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
146
|
Shrestha J, Limbu KR, Chhetri RB, Paudel KR, Hansbro PM, Oh YS, Baek DJ, Ki SH, Park EY. Antioxidant genes in cancer and metabolic diseases: Focusing on Nrf2, Sestrin, and heme oxygenase 1. Int J Biol Sci 2024; 20:4888-4907. [PMID: 39309448 PMCID: PMC11414382 DOI: 10.7150/ijbs.98846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Reactive oxygen species are involved in the pathogenesis of cancers and metabolic diseases, including diabetes, obesity, and fatty liver disease. Thus, inhibiting the generation of free radicals is a promising strategy to control the onset of metabolic diseases and cancer progression. Various synthetic drugs and natural product-derived compounds that exhibit antioxidant activity have been reported to have a protective effect against a range of metabolic diseases and cancer. This review highlights the development and aggravation of cancer and metabolic diseases due to the imbalance between pro-oxidants and endogenous antioxidant molecules. In addition, we discuss the function of proteins that regulate the production of reactive oxygen species as a strategy to treat metabolic diseases. In particular, we summarize the role of proteins such as nuclear factor-like 2, Sestrin, and heme oxygenase-1, which regulate the expression of various antioxidant genes in metabolic diseases and cancer. We have included recent literature to discuss the latest research on identifying novel signals of antioxidant genes that can control metabolic diseases and cancer.
Collapse
Affiliation(s)
- Jitendra Shrestha
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Khem Raj Limbu
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sci., Sydney, NSW 2007, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sci., Sydney, NSW 2007, Australia
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Republic of Korea
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Sung-Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61451, Republic of Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| |
Collapse
|
147
|
Nie W, Wang Y, Tian X, Liu J, Jin Z, Xu J, He M, Shen Q, Guo H, Luan T. Cucurbitacin B and Its Derivatives: A Review of Progress in Biological Activities. Molecules 2024; 29:4193. [PMID: 39275042 PMCID: PMC11397067 DOI: 10.3390/molecules29174193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The emergence of natural products has provided extremely valuable references for the treatment of various diseases. Cucurbitacin B, a tetracyclic triterpenoid compound isolated from cucurbitaceae and other plants, is the most abundant member of the cucurbitin family and exhibits a wide range of biological activities, including anti-inflammatory, anti-cancer, and even agricultural applications. Due to its high toxicity and narrow therapeutic window, structural modification and dosage form development are necessary to address these issues with cucurbitacin B. This paper reviews recent research progress in the pharmacological action, structural modification, and application of cucurbitacin B. This review aims to enhance understanding of advancements in this field and provide constructive suggestions for further research on cucurbitacin B.
Collapse
Affiliation(s)
- Wenzhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yalan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xinlu Tian
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Jinying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhanhui Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Junjie Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Miaohai He
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Qingkun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongyan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
148
|
Zhang Y, Rao YD, Yu JS, Hu JY, Hu WH, Li SR, Yang H, Liu YP, Fu YH. Polyprenylated xanthones with potential anti-inflammatory and anti-HIV effects from the stems and leaves of Cratoxylum cochinchinense (Lour.) Blume. Nat Prod Res 2024:1-9. [PMID: 39229856 DOI: 10.1080/14786419.2024.2397044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
A phytochemical study on the stems and leaves of Cratoxylum cochinchinense (Lour.) Blume resulted in the isolation and characterisation of a new polyprenylated xanthone, cratocochinone (1), as well as seven known analogues, fuscaxanthone K (2), pruniflorone Q (3), 1,3,5,8-tetrahy-droxy- 2-(3-methybut-2-enyl)-4-(3,7-dimethylocta-2,6-dienyl) xanthone (4), cochinensoxanthone (5), cratoxylum-xanthone B (6), cochinchinone I (7) and cochinchinone K (8). The chemical structure of 1 was determined by comprehensive spectral analyses. The known compounds 2 - 8 were identified by comparing their experimental spectroscopic data with those reported data in the literature. The anti-inflammatory and anti-HIV effects of all isolates 1-8 were evaluated. As a result, compounds 1-8 showed remarkable inhibitory effects against nitric oxide (NO) production induced by lipopolysaccharide in mouse macrophage RAW 264.7 cells showing IC50 values ranging from 0.68 ± 0.06 to 10.27 ± 0.18 μM. Meanwhile, compounds 1-8 displayed notable anti-HIV-1 reverse transcriptase (RT) effects with EC50 values ranging from 0.19 to 10.72 µM.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
| | - You-Di Rao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
| | - Jing-Su Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
| | - Jia-Yi Hu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
| | - Wen-Hui Hu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
| | - Shu-Ri Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
| | - Hui Yang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
| | - Yan-Ping Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, P. R. China
| | - Yan-Hui Fu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, P. R. China
| |
Collapse
|
149
|
Matsuoka T, Kajiwara K, Kawasaki T, Wada S, Samura O, Sago H, Okamoto A, Umezawa A, Akutsu H. Inhibitory effect of all-trans retinoic acid on ferroptosis in BeWo cells mediated by the upregulation of heme Oxygenase-1. Placenta 2024; 154:110-121. [PMID: 38945098 DOI: 10.1016/j.placenta.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION This study aimed to explore the association between ferroptosis, a newly identified type of cell death, and the role of retinoic acid in developing pregnancy complications. Therefore, the effects of all-trans retinoic acid (ATRA) on ferroptosis susceptibility in BeWo cells were assessed to understand abnormal placental development. METHODS BeWo cells were used as surrogates for cytotrophoblasts. The effect of ATRA on ferroptosis sensitivity was assessed on BeWo cells pretreated with ATRA or dimethyl sulfoxide (DMSO; control), following which the LDH-releasing assay was performed. The effects of ATRA pretreatment on the antioxidant defense system (including glutathione [GSH], mitochondrial membrane potential, and heme oxygenase-1 [HMOX1]) in BeWo cells were assessed using assay kits, RT-qPCR, and HMOX1 immunostaining. To evaluate the effect of ATRA on BeWo cells, HMOX1 was silenced in BeWo cells using shRNA. RESULTS ATRA pretreatment increased ferroptosis resistance in BeWo cells. Although with pretreatment, qPCR indicated upregulation of HMOX1, no significant change was observed in the GSH levels or mitochondrial membrane potential. This was corroborated by intensified immunostaining for heme oxygenase-1 protein (HO-1). Notably, the protective effect of ATRA against ferroptosis was negated when HO-1 was inhibited. Although HMOX1-silenced BeWo cells exhibited heightened ferroptosis sensitivity compared with controls, ATRA pretreatment counteracted ferroptosis in these cells. DISCUSSION ATRA pretreatment promotes BeWo cell viability by suppressing ferroptosis and upregulating HMOX1 and this can be used as a potential therapeutic strategy for addressing placental complications associated with ferroptosis.
Collapse
Affiliation(s)
- Tomona Matsuoka
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Kazuhiro Kajiwara
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Seiji Wada
- Center of Maternal-Fetal, Neonatal, and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal, and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| |
Collapse
|
150
|
Zhou Y, Chen Y, Xuan C, Li X, Tan Y, Yang M, Cao M, Chen C, Huang X, Hu R. DPP9 regulates NQO1 and ROS to promote resistance to chemotherapy in liver cancer cells. Redox Biol 2024; 75:103292. [PMID: 39094401 PMCID: PMC11345690 DOI: 10.1016/j.redox.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
Chemotherapy has been the standard treatment for liver cancer. However, intrinsic or acquired drug resistance remains a major barrier to successful treatment. At present, the underlying molecular mechanisms of chemoresistance in liver cancer have not been elucidated. Dipeptidyl peptidase 9 (DPP9) is a member of the dipeptidyl peptidase IV family that has been found to be highly expressed in a variety of tumors, including liver cancer. It is unclear whether DPP9 affects chemoresistance in liver cancer. In this study, we find that DPP9 weakens the responses of liver cancer cells to chemotherapy drugs by up-regulating NQO1 and inhibiting intracellular ROS levels. In terms of mechanism, DPP9 inhibits ubiquitin-mediated degradation of NRF2 protein by binding to KEAP1, up-regulates NRF2 protein levels, promotes mRNA transcription of NQO1, and inhibits intracellular ROS levels. In addition, the NQO1 inhibitor dicoumarol can enhance the efficacy of chemotherapy drugs in liver cancer cells. Collectively, our findings suggest that inhibiting DPP9/NQO1 signaling can serve as a potential therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaxin Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenyuan Xuan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingyan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Tan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengran Cao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chi Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China.
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|