101
|
Shi X, Xiao B, Feng R. Identification of a glycolysis-related miRNA Signature for Predicting Breast cancer Survival. Mol Biotechnol 2024; 66:1988-2006. [PMID: 37535159 DOI: 10.1007/s12033-023-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Breast cancer (BC) is a common type of cancer and has a poor prognosis. In this study, we collected the mRNA and miRNA expression profiles of BC patients were obtained from The Cancer Genome Atlas (TCGA) to explore a novel prognostic strategy for BC patients using bioinformatics tools. We found that six glycolysis-related miRNAs (GRmiRs, including hsa-mir-1247, hsa-mir148b, hsa-mir-133a-2, has-mir-1307, hsa-mir-195 and hsa-mir-1258) were correlated with prognosis of BC samples. The risk score model was established based on 6 prognosis-associated GRmiRs. The outcome of high risk group was significantly poorer. Cox regression analysis showed that risk score was an independent prognostic factor. Differentially expressed genes identified between high and low risk groups were mainly enriched in inflammation and immune-related signaling pathways. The proportion of infiltration of 12 kinds of immune cells in high and low risk groups were significantly different. Risk score was closely associated with many immune indexes. Multiple DEGRGs and miRNAs were associated with drugs. In conclusion, glycolysis-related miRNA signature effectively predicts BC prognosis.
Collapse
Affiliation(s)
- Xuejing Shi
- Department of Galactophore, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156 Nankai Sanma Road, Tianjin, Nankai District, 300100, P.R. China
| | - Baoqiang Xiao
- Department of General Surgery, Tianjin Hospital, Tianjin, Hexi District, 300211, P.R. China
| | - Rui Feng
- Department of Galactophore, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156 Nankai Sanma Road, Tianjin, Nankai District, 300100, P.R. China.
| |
Collapse
|
102
|
Wang J, Wang J, Lu C, Wang Y, Bi H, Zheng J, Ding X. ISL1-overexpressing BMSCs attenuate renal ischemia-reperfusion injury by suppressing apoptosis and oxidative stress through the paracrine action. Cell Mol Life Sci 2024; 81:312. [PMID: 39066917 PMCID: PMC11335236 DOI: 10.1007/s00018-024-05354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major event in renal transplantation, leading to adverse outcomes. Bone marrow mesenchymal stem cells (BMSCs) are novel promising therapeutics for repairing kidney injuries. The therapeutic efficacy of BMSCs with ISL1 overexpression in renal IRI and its underlying mechanism need to be investigated. The unilateral renal IRI rat model was established to mimic clinical acute kidney injury. Rats were injected with PBS, BMSCs-Scrambled or BMSCs-ISL1 via the tail vein at the timepoint of reperfusion, and then sacrificed after 24 h of reperfusion. The administration of BMSCs-ISL1 significantly improved renal function, inhibited tubular cells apoptosis, inflammation, oxidative stress in rats. In vitro, HKC cells subjected to H2O2 stimulation were pretreated with the conditioned medium (CM) of BMSCs-Scrambled or BMSCs-ISL1. The pretreatment of ISL1-CM attenuated apoptosis and oxidative stress induced by H2O2 in HKC cells. Our proteomic data suggested that haptoglobin (Hp) was one of the secretory proteins in ISL1-CM. Subsequent experiments confirmed that Hp was the important paracrine factor from BMSCs-ISL1 that exerted anti-apoptotic and antioxidant functions. Mechanistically, Hp played a cytoprotective role via the inhibition of ERK signaling pathway, which could be abrogated by Ro 67-7476, the ERK phosphorylation agonist. The results suggested that paracrine action may be the main mechanism for BMSCs-ISL1 to exert protective effects. As an important anti-apoptotic and antioxidant factor in ISL1-CM, Hp may serve as a new therapeutic agent for treating IRI, providing new insights for overcoming the long-term adverse effects of stem cell therapy.
Collapse
Affiliation(s)
- Jiale Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jingwen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Cuinan Lu
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Huanjing Bi
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Xiaoming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
103
|
Fuhrmann B, Jiang J, Mcleod P, Huang X, Balaji S, Arp J, Diao H, Ma S, Peng T, Haig A, Gunaratnam L, Zhang ZX, Jevnikar AM. Inhibition of NK cell cytotoxicity by tubular epithelial cell expression of Clr-b and Clr-f. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100081. [PMID: 39113760 PMCID: PMC11303997 DOI: 10.1016/j.crimmu.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
NK cells participate in ischemia reperfusion injury (IRI) and transplant rejection. Endogenous regulatory systems may exist to attenuate NK cell activation and cytotoxicity in IRI associated with kidney transplantation. A greater understanding of NK regulation will provide insights in transplant outcomes and could direct new therapeutic strategies. Kidney tubular epithelial cells (TECs) may negatively regulate NK cell activation by their surface expression of a complex family of C-type lectin-related proteins (Clrs). We have found that Clr-b and Clr-f were expressed by TECs. Clr-b was upregulated by inflammatory cytokines TNFα and IFNγ in vitro. Silencing of both Clr-b and Clr-f expression using siRNA resulted in increased NK cell killing of TECs compared to silencing of either Clr-b or Clr-f alone (p < 0.01) and when compared to control TECs (p < 0.001). NK cells treated in vitro with soluble Clr-b and Clr-f proteins reduced their capacity to kill TECs (p < 0.05). Hence, NK cell cytotoxicity can be inhibited by Clr proteins on the surface of TECs. Our study suggests a synergistic effect of Clr molecules in regulating NK cell function in renal cells and this may represent an important endogenous regulatory system to limit NK cell-mediated organ injury during inflammation.
Collapse
Affiliation(s)
- Benjamin Fuhrmann
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Patrick Mcleod
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shilpa Balaji
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jaqueline Arp
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Hong Diao
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shengwu Ma
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Tianqing Peng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Aaron Haig
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Anthony M. Jevnikar
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
104
|
Mo C, Huang Q, Li L, Long Y, Shi Y, Lu Z, Wu N, Li Q, Zeng H, Li G, Qiu L, Gui C, Ji Q. High-mobility group box 1 and its related receptors: potential therapeutic targets for contrast-induced acute kidney injury. Int Urol Nephrol 2024; 56:2291-2299. [PMID: 38438703 DOI: 10.1007/s11255-024-03981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Percutaneous coronary intervention (PCI) is a crucial diagnostic and therapeutic approach for coronary heart disease. Contrast agents' exposure during PCI is associated with a risk of contrast-induced acute kidney injury (CI-AKI). CI-AKI is characterized by a sudden decline in renal function occurring as a result of exposure to intravascular contrast agents, which is associated with an increased risk of poor prognosis. The pathophysiological mechanisms underlying CI-AKI involve renal medullary hypoxia, direct cytotoxic effects, endoplasmic reticulum stress, inflammation, oxidative stress, and apoptosis. To date, there is no effective therapy for CI-AKI. High-mobility group box 1 (HMGB1), as a damage-associated molecular pattern molecule, is released extracellularly by damaged cells or activated immune cells and binds to related receptors, including toll-like receptors and receptor for advanced glycation end product. In renal injury, HMGB1 is expressed in renal tubular epithelial cells, macrophages, endothelial cells, and glomerular cells, involved in the pathogenesis of various kidney diseases by activating its receptors. Therefore, this review provides a theoretical basis for HMGB1 as a therapeutic intervention target for CI-AKI.
Collapse
Affiliation(s)
- Changhua Mo
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qili Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lixia Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yusheng Long
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ning Wu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qingkuan Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Huayuan Zeng
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Guihua Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lingyue Qiu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, China.
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China.
| |
Collapse
|
105
|
Dubois A, Jin X, Hooft C, Canovai E, Boelhouwer C, Vanuytsel T, Vanaudenaerde B, Pirenne J, Ceulemans LJ. New insights in immunomodulation for intestinal transplantation. Hum Immunol 2024; 85:110827. [PMID: 38805779 DOI: 10.1016/j.humimm.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Tolerance is the Holy Grail of solid organ transplantation (SOT) and remains its primary challenge since its inception. In this topic, the seminal contributions of Thomas Starzl at Pittsburgh University outlined foundational principles of graft acceptance and tolerance, with chimerism emerging as a pivotal factor. Immunologically, intestinal transplantation (ITx) poses a unique hurdle due to the inherent characteristics and functions of the small bowel, resulting in increased immunogenicity. This necessitates heavy immunosuppression (IS) while IS drugs side effects cause significant morbidity. In addition, current IS therapies fall short of inducing clinical tolerance and their discontinuation has been proven unattainable in most cases. This underscores the unfulfilled need for immunological modulation to safely reduce IS-related burdens. To address this challenge, the Leuven Immunomodulatory Protocol (LIP), introduced in 2000, incorporates various pro-tolerogenic interventions in both the donor to the recipient, with the aim of facilitating graft acceptance and improving outcome. This review seeks to provide an overview of the current understanding of tolerance in ITx and outline recent advances in this domain.
Collapse
Affiliation(s)
- Antoine Dubois
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Xin Jin
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Emilio Canovai
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Oxford Transplant Centre, Churchill Hospital, Oxford, United Kingdom
| | - Caroline Boelhouwer
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
106
|
Zhang B, Wu H, Zhang J, Cong C, Zhang L. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:1673-1696. [PMID: 38189880 DOI: 10.1007/s11010-023-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct myocardial disorder elicited by diabetes mellitus, characterized by aberrations in myocardial function and structural integrity. This pathological condition predominantly manifests in individuals with diabetes who do not have concurrent coronary artery disease or hypertension. An escalating body of scientific evidence substantiates the pivotal role of programmed cell death (PCD)-encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis-in the pathogenic progression of DCM, thereby emerging as a prospective therapeutic target. Additionally, numerous non-coding RNAs (ncRNAs) have been empirically verified to modulate the biological processes underlying programmed cell death, consequently influencing the evolution of DCM. This review systematically encapsulates prevalent types of PCD manifest in DCM as well as nascent discoveries regarding the regulatory influence of ncRNAs on programmed cell death in the pathogenesis of DCM, with the aim of furnishing novel insights for the furtherance of research in PCD-associated disorders relevant to DCM.
Collapse
Affiliation(s)
- Bingrui Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Hua Wu
- Tai'an Special Care Hospital Clinical Laboratory Medical Laboratory Direction, Tai'an, 271000, Shandong, China
| | - Jingwen Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Cong Cong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Tai'an Hospital of Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, No.216, Yingxuan Street, Tai'an, 271000, Shandong, China.
| |
Collapse
|
107
|
Guo L, Ma X, Li H, Yan S, Zhang K, Li J. Single‑cell RNA‑seq necroptosis‑related genes predict the prognosis of breast cancer and affect the differentiation of CD4 + T cells in tumor immune microenvironment. Mol Clin Oncol 2024; 21:49. [PMID: 38872949 PMCID: PMC11170320 DOI: 10.3892/mco.2024.2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Breast cancer (BC) is one of the most prevalent types of malignancy and a major cause of cancer-related death. The purpose of the present study was to identify prognostic models of necroptosis-related genes (NRGs) in BC at the single-cell RNA-sequencing level and reveal the role of NRGs in tumour immune microenvironment (TIME). A risk model was constructed based on Cox regression and LASSO methods. Next, high-scoring cell populations were searched through AUCell scores, and cell subtypes were then analyzed by pseudotime analysis. Finally, the expression level of the model genes was verified by reverse transcription-quantitative (RT-qPCR). A new prognostic model was constructed and validated based on five NRGs (BCL2, BIRC3, AIFM1, IFNG and VDAC1), which could effectively predict the prognosis of patients with BC. NRGs were found to be highly active in CD4+ T cells and differentially expressed in their developmental trajectories. Finally, the RT-qPCR results showed that most of the model genes were significantly overexpressed in MDA-MB-231 and MCF-7 cells (P<0.05). In conclusion, an NRG signature with excellent predictive properties in prognosis and TIME was successfully established. Moreover, NRGs were involved in the differentiation and development of CD4+ T cells in TIME. These findings provide potential therapeutic strategies for BC.
Collapse
Affiliation(s)
- Li Guo
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Xiuzhen Ma
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shuxun Yan
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Kai Zhang
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
108
|
Huang H, Mu Y, Li S. The biological function of Serpinb9 and Serpinb9-based therapy. Front Immunol 2024; 15:1422113. [PMID: 38966643 PMCID: PMC11222584 DOI: 10.3389/fimmu.2024.1422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqing Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
109
|
Palit S, Shrestha AK, Thapa S, L. Grimm S, Coarfa C, Theis F, Simon LM, Shivanna B. Leveraging Integrated RNA Sequencing to Decipher Adrenomedullin's Protective Mechanisms in Experimental Bronchopulmonary Dysplasia. Genes (Basel) 2024; 15:806. [PMID: 38927741 PMCID: PMC11202456 DOI: 10.3390/genes15060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly affecting premature infants, with limited therapeutic options and increased long-term consequences. Adrenomedullin (Adm), a proangiogenic peptide hormone, has been found to protect rodents against experimental BPD. This study aims to elucidate the molecular and cellular mechanisms through which Adm influences BPD pathogenesis using a lipopolysaccharide (LPS)-induced model of experimental BPD in mice. Bulk RNA sequencing of Adm-sufficient (wild-type or Adm+/+) and Adm-haplodeficient (Adm+/-) mice lungs, integrated with single-cell RNA sequencing data, revealed distinct gene expression patterns and cell type alterations associated with Adm deficiency and LPS exposure. Notably, computational integration with cell atlas data revealed that Adm-haplodeficient mouse lungs exhibited gene expression signatures characteristic of increased inflammation, natural killer (NK) cell frequency, and decreased endothelial cell and type II pneumocyte frequency. Furthermore, in silico human BPD patient data analysis supported our cell type frequency finding, highlighting elevated NK cells in BPD infants. These results underscore the protective role of Adm in experimental BPD and emphasize that it is a potential therapeutic target for BPD infants with an inflammatory phenotype.
Collapse
Affiliation(s)
- Subarna Palit
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Amrit Kumar Shrestha
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA (B.S.)
| | - Shyam Thapa
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA (B.S.)
| | - Sandra L. Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabian Theis
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, 85748 Garching, Germany
| | - Lukas M. Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Binoy Shivanna
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA (B.S.)
| |
Collapse
|
110
|
Benjamin C, Crews R. Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications. Metabolites 2024; 14:341. [PMID: 38921475 PMCID: PMC11205942 DOI: 10.3390/metabo14060341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Recent years have seen a surge in research focused on NAD+ decline and potential interventions, and despite significant progress, new discoveries continue to highlight the complexity of NAD+ biology. Nicotinamide mononucleotide (NMN), a well-established NAD+ precursor, has garnered considerable interest due to its capacity to elevate NAD+ levels and induce promising health benefits in preclinical models. Clinical trials investigating NMN supplementation have yielded variable outcomes while shedding light on the intricacies of NMN metabolism and revealing the critical roles played by gut microbiota and specific cellular uptake pathways. Individual variability in factors such as lifestyle, health conditions, genetics, and gut microbiome composition likely contributes to the observed discrepancies in clinical trial results. Preliminary evidence suggests that NMN's effects may be context-dependent, varying based on a person's physiological state. Understanding these nuances is critical for definitively assessing the impact of manipulating NAD+ levels through NMN supplementation. Here, we review NMN metabolism, focusing on current knowledge, pinpointing key areas where further research is needed, and outlining future directions to advance our understanding of its potential clinical significance.
Collapse
|
111
|
Valdes AM, Ikram A, Taylor LA, Zheng A, Kouraki A, Kelly A, Ashraf W, Vijay A, Miller S, Nightingale J, Selby NM, Ollivere BJ. Preoperative inflammatory biomarkers reveal renal involvement in postsurgical mortality in hip fracture patients: an exploratory study. Front Immunol 2024; 15:1372079. [PMID: 38919625 PMCID: PMC11197399 DOI: 10.3389/fimmu.2024.1372079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Background Hip fractures in frail patients result in excess mortality not accounted for by age or comorbidities. The mechanisms behind the high risk of mortality remain undetermined but are hypothesized to be related to the inflammatory status of frail patients. Methods In a prospective observational exploratory cohort study of hospitalized frail hip fracture patients, 92 inflammatory markers were tested in pre-operative serum samples and markers were tested against 6-month survival post-hip fracture surgery and incidence of acute kidney injury (AKI). After correcting for multiple testing, adjustments for comorbidities and demographics were performed on the statistically significant markers. Results Of the 92 markers tested, circulating levels of fibroblast growth factor 23 (FGF-23) and interleukin-15 receptor alpha (IL15RA), both involved in renal disease, were significantly correlated with 6-month mortality (27.5% overall) after correcting for multiple testing. The incidence of postoperative AKI (25.4%) was strongly associated with 6-month mortality, odds ratio = 10.57; 95% CI [2.76-40.51], and with both markers plus estimated glomerular filtration rate (eGFR)- cystatin C (CYSC) but not eGFR-CRE. The effect of these markers on mortality was significantly mediated by their effect on postoperative AKI. Conclusion High postoperative mortality in frail hip fracture patients is highly correlated with preoperative biomarkers of renal function in this pilot study. The effect of preoperative circulating levels of FGF-23, IL15RA, and eGFR-CYSC on 6-month mortality is in part mediated by their effect on postoperative AKI. Creatinine-derived preoperative renal function measures were very poorly correlated with postoperative outcomes in this group.
Collapse
Affiliation(s)
- Ana M. Valdes
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Adeel Ikram
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Lauren A. Taylor
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Amy Zheng
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Afroditi Kouraki
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Anthony Kelly
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Waheed Ashraf
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Amrita Vijay
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Suzanne Miller
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Jessica Nightingale
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Nicholas M. Selby
- Centre for Kidney Research and Innovation, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Benjamin J. Ollivere
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| |
Collapse
|
112
|
Rucker AJ, Park CS, Li QJ, Moseman EA, Chan FKM. Necroptosis stimulates interferon-mediated protective anti-tumor immunity. Cell Death Dis 2024; 15:403. [PMID: 38858387 PMCID: PMC11164861 DOI: 10.1038/s41419-024-06801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Necroptosis is an inflammatory form of cell suicide that critically depends on the kinase activity of Receptor Interacting Protein Kinase 3 (RIPK3). Previous studies showed that immunization with necroptotic cells conferred protection against subsequent tumor challenge. Since RIPK3 can also promote apoptosis and NF-κB-dependent inflammation, it remains difficult to determine the contribution of necroptosis-associated release of damage-associated molecular patterns (DAMPs) in anti-tumor immunity. Here, we describe a system that allows us to selectively induce RIPK3-dependent necroptosis or apoptosis with minimal NF-κB-dependent inflammatory cytokine expression. In a syngeneic tumor challenge model, immunization with necroptotic cells conferred superior protection against subsequent tumor challenge. Surprisingly, this protective effect required CD4+ T cells rather than CD8+ T cells and is dependent on host type I interferon signaling. Our results provide evidence that death-dependent type I interferon production following necroptosis is sufficient to elicit protective anti-tumor immunity.
Collapse
Affiliation(s)
- A Justin Rucker
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, 27710-3010, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710-3010, USA
| | - Christa S Park
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, 27710-3010, USA
- Johnson & Johnson Research & Development, San Diego, CA, USA
| | - Qi Jing Li
- Institute of Molecular & Cell Biology, A-STAR, Singapore, Singapore
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, 27710-3010, USA.
| | - Francis Ka-Ming Chan
- Department of Cardiology of the Second Affiliated Hospital of Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, 1369 West Wenyi Road, Hangzhou, 311121, China.
| |
Collapse
|
113
|
Chen X, Hu G, Ning D, Wang D. Exploring gut microbiota's role in rheumatic valve disease: insights from a Mendelian randomization study and mediation analysis. Front Immunol 2024; 15:1362753. [PMID: 38895120 PMCID: PMC11183100 DOI: 10.3389/fimmu.2024.1362753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Background Investigating the relationship between gut microbiota and Rheumatic Valve Disease (RVD) is crucial for understanding the disease's etiology and developing effective interventions. Our study adopts a novel approach to examine the potential causal connections between these factors. Methods Utilizing a two-sample Mendelian Randomization (MR) framework, we incorporated a multi-variable MR (MVMR) strategy to assess the mediatory mechanisms involved. This approach involved analyzing data from the MiBioGen consortium for gut microbiota and the FinnGen for RVD, among other sources. Instrumental variables (IVs) were carefully selected based on rigorous MR principles, and statistical analysis was conducted using bidirectional two-sample MR, such as inverse variance-weighted (IVW), weighted median, MR-Egger regression and MR Steiger Test methods. The MR-PRESSO strategy was employed for outlier detection, and MVMR was used to untangle the complex relationships between multiple microbiota and RVD. Results Our analysis highlighted several gut microbiota classes and families with potential protective effects against RVD, including Lentisphaerae, Alphaproteobacteria, and Streptococcaceae. In contrast, certain genera, such as Eubacterium eligens and Odoribacter, were identified as potential risk factors. The MVMR analysis revealed significant mediation effects of various immune cell traits and biomarkers, such as CD4-CD8- T cells, CD3 on Terminally Differentiated CD8+ T cell and Pentraxin-related protein PTX, elucidating the complex pathways linking gut microbiota to RVD. Conclusion This study underscores the intricate and potentially causal relationship between gut microbiota and RVD, mediated through a range of immune and hormonal factors. The use of MVMR in our methodological approach provides a more comprehensive understanding of these interactions, highlighting the gut microbiota's potential as therapeutic targets in RVD management. Our findings pave the way for further research to explore these complex relationships and develop targeted interventions for RVD.
Collapse
Affiliation(s)
- Xiwei Chen
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Guangwen Hu
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Dong Ning
- Department of Physiology, Human Biology Building, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| |
Collapse
|
114
|
Danga AK, Kour S, Kumari A, Rath PC. Cell-type specific and differential expression of LINC-RSAS long noncoding RNA declines in the testes during ageing of the rat. Biogerontology 2024; 25:543-566. [PMID: 38353919 DOI: 10.1007/s10522-023-10088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/15/2023] [Indexed: 03/26/2024]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as major regulators of gene expression, chromatin structure, epigenetic changes, post-transcriptional processing of RNAs, translation of mRNAs into proteins as well as contributing to the process of ageing. Ageing is a universal, slow, progressive change in almost all physiological processes of organisms after attaining reproductive maturity and often associated with age-related diseases. Mammalian testes contain various cell-types, vast reservoir of transcriptome complexity, produce haploid male gametes for reproduction and testosterone for development and maintenance of male sexual characters as well as contribute genetic variation to the species. We report age-related decline in expression and cellular localization of Long intergenic noncoding repeat-rich sense-antisense (LINC-RSAS) RNA in the testes and its major cell-types such as primary spermatocytes, Leydig cells and Sertoli cells during ageing of the rat. LINC-RSAS expression in testes increased from immature (4-weeks) to adult (16- and 44-weeks) and declined from adult (44-weeks) to nearly-old (70-weeks) rats. Genomic DNA methylation in the testes showed a similar pattern. Cell-type specific higher expression of LINC-RSAS was observed in primary spermatocytes (pachytene cells), Leydig cells and Sertoli cells of testes of adult rats. Over-expression of LINC-RSAS in cultured human cell lines revealed its possible role in cell-cycle control and apoptosis. We propose that LINC-RSAS expression is involved in molecular physiology of primary spermatocytes, Leydig cells and Sertoli cells of adult testes and its decline is associated with diminishing function of testes during ageing of the rat.
Collapse
Affiliation(s)
- Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sukhleen Kour
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
115
|
Wang Y, Peng X. Bioinformatics analysis characterizes immune infiltration landscape and identifies potential blood biomarkers for heart transplantation. Transpl Immunol 2024; 84:102036. [PMID: 38499050 DOI: 10.1016/j.trim.2024.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Cardiac allograft rejection (AR) remains a significant complication following heart transplantation. The primary objective of our study is to gain a comprehensive understanding of the fundamental mechanisms involved in AR and identify possible therapeutic targets. METHODS We acquired the GSE87301 dataset from the Gene Expression Omnibus database. In GSE87301, a comparison was conducted on blood samples from patients with and without cardiac allograft rejection (AR and NAR) to detect differentially expressed genes (DEGs). Enrichment analysis was conducted to identify the pathways that show significant enrichment during AR. Machine learning techniques, including the least absolute shrinkage and selection operator regression (LASSO) and random forest (RF) algorithms, were employed to identify potential genes for the diagnosis of AR. The diagnostic value was evaluated using a nomogram and receiver operating characteristic (ROC) curve. Additionally, immune cell infiltration was analyzed to explore any dysregulation of immune cells in AR. RESULTS A total of 114 DEGs were identified from the GSE87301 dataset. These DEGs were mainly found to be enriched in pathways related to the immune system. To identify the signature genes, the LASSO and RF algorithms were used, and four genes, namely ALAS2, HBD, EPB42, and FECH, were identified. The performance of these signature genes was evaluated using the receiver operating characteristic curve (ROC) analysis, which showed that the area under the curve (AUC) values for ALAS2, HBD, EPB42, and FECH were 0.906, 0.881, 0.900, and 0.856, respectively. These findings were further confirmed in the independent datasets and clinical samples. The selection of these specific genes was made to construct a nomogram, which demonstrated excellent diagnostic ability. Additionally, the results of the single-sample gene set enrichment analysis (ssGSEA) revealed that these genes may be involved in immune cell infiltration. CONCLUSION We identified four signature genes (ALAS2, HBD, EPB42, and FECH) as potential peripheral blood diagnostic candidates for AR diagnosis. Additionally, a nomogram was constructed to aid in the diagnosis of heart transplantation. This study offers valuable insights into the identification of candidate genes for heart transplantation using peripheral blood samples.
Collapse
Affiliation(s)
- Yujia Wang
- Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoping Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
116
|
Wang F. Interleukin‑18 binding protein: Biological properties and roles in human and animal immune regulation (Review). Biomed Rep 2024; 20:87. [PMID: 38665423 PMCID: PMC11040224 DOI: 10.3892/br.2024.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/11/2024] [Indexed: 04/28/2024] Open
Abstract
IL-18 binding protein (IL-18BP) is a natural regulatory molecule of the proinflammatory cytokine IL-18. It can regulate activity of IL-18 by high affinity binding. The present review aimed to highlight developments, characteristics and functions of IL-18BP. IL-18BP serves biological and anti-pathological roles in treating disease. In humans, it modulates progression of a number of chronic diseases, such as adult-onset Still's disease. The present review summarizes molecular structure, role of IL-18BP in disease and interaction with other proteins in important pathological processes.
Collapse
Affiliation(s)
- Fengxue Wang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Disease at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, P.R. China
| |
Collapse
|
117
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
118
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
119
|
Ma W, Wu D, Long C, Liu J, Xu L, Zhou L, Dou Q, Ge Y, Zhou C, Jia R. Neutrophil-derived nanovesicles deliver IL-37 to mitigate renal ischemia-reperfusion injury via endothelial cell targeting. J Control Release 2024; 370:66-81. [PMID: 38631490 DOI: 10.1016/j.jconrel.2024.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the most important causes of acute kidney injury (AKI). Interleukin (IL)-37 has been suggested as a novel anti-inflammatory factor for the treatment of IRI, but its application is still limited by its low stability and delivery efficiency. In this study, we reported a novel engineered method to efficiently and easily prepare neutrophil membrane-derived vesicles (N-MVs), which could be utilized as a promising vehicle to deliver IL-37 and avoid the potential side effects of neutrophil-derived natural extracellular vesicles. N-MVs could enhance the stability of IL-37 and targetedly deliver IL-37 to damaged endothelial cells of IRI kidneys via P-selectin glycoprotein ligand-1 (PSGL-1). In vitro and in vivo evidence revealed that N-MVs encapsulated with IL-37 (N-MV@IL-37) could inhibit endothelial cell apoptosis, promote endothelial cell proliferation and angiogenesis, and decrease inflammatory factor production and leukocyte infiltration, thereby ameliorating renal IRI. Our study establishes a promising delivery vehicle for the treatment of renal IRI and other endothelial damage-related diseases.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Chengcheng Long
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| |
Collapse
|
120
|
Zhang Q, Zhang L, Lin G, Luo F. The protective role of vagus nerve stimulation in ischemia-reperfusion injury. Heliyon 2024; 10:e30952. [PMID: 38770302 PMCID: PMC11103530 DOI: 10.1016/j.heliyon.2024.e30952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) encompasses the damage resulting from the restoration of blood supply following tissue ischemia. This phenomenon commonly occurs in clinical scenarios such as hemorrhagic shock, severe trauma, organ transplantation, and thrombolytic therapy. Despite its prevalence, existing treatments exhibit limited efficacy against IRI. Vagus nerve stimulation (VNS) is a widely utilized technique for modulating the autonomic nervous system. Numerous studies have demonstrated that VNS significantly reduces IRI in various organs, including the heart, brain, and liver. This article reviews the pathological processes during IRI and summarizes the role and possible mechanisms of VNS in IRI of different organs. Furthermore, this review addresses the current challenges of VNS clinical applications, providing a novel perspective on IRI treatment.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guoqiang Lin
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanyan Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
121
|
Protschka M, Di Placido D, Moore PF, Büttner M, Alber G, Eschke M. Canine peripheral non-conventional TCRαβ + CD4 -CD8α - double-negative T cells show T helper 2-like and regulatory properties. Front Immunol 2024; 15:1400550. [PMID: 38835756 PMCID: PMC11148280 DOI: 10.3389/fimmu.2024.1400550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The dog is an important companion animal and also serves as model species for human diseases. Given the central role of T cells in immune responses, a basic understanding of canine conventional T cell receptor (TCR)αβ+ T cells, comprising CD4+ single-positive (sp) T helper (Th) and CD8α+ sp cytotoxic T cell subsets, is available. However, characterization of canine non-conventional TCRαβ+ CD4+CD8α+ double-positive (dp) and TCRαβ+ CD4-CD8α- double-negative (dn) T cells is limited. In this study, we performed a comprehensive analysis of canine dp and dn T cells in comparison with their conventional counterparts. TCRαβ+ T cells from peripheral blood of healthy dogs were sorted according to their CD4/CD8α phenotype into four populations (i.e. CD4+ sp, CD8α+ sp, dp, and dn) and selected surface markers, transcription factors and effector molecules were analyzed ex vivo and after in vitro stimulation by RT-qPCR. Novel characteristics of canine dp T cells were identified, expanding the previously characterized Th1-like phenotype to Th17-like and Th2-like properties. Overall, mRNA expression of various Th cell-associated cytokines (i.e. IFNG, IL17A, IL4, IL13) in dp T cells upon stimulation highlights their versatile immunological potential. Furthermore, we demonstrated that the CD4-CD8α- dn phenotype is stable during in vitro stimulation. Strikingly, dn T cells were found to express highest mRNA levels of type 2 effector cytokines (IL4, IL5, and IL13) upon stimulation. Their strong ability to produce IL-4 was confirmed at the protein level. Upon stimulation, the percentage of IL-4-producing cells was even higher in the non-conventional dn than in the conventional CD4+ sp population. Constitutive transcription of IL1RL1 (encoding IL-33Rα) further supports Th2-like properties within the dn T cell population. These data point to a role of dn T cells in type 2 immunity. In addition, the high potential of dn T cells to transcribe the gene encoding the co-inhibitory receptor CTLA-4 and to produce the inhibitory cytokine IL-10 indicates putative immunosuppressive capacity of this population. In summary, this study reveals important novel aspects of canine non-conventional T cells providing the basis for further studies on their effector and/or regulatory functions to elucidate their role in health and disease.
Collapse
MESH Headings
- Animals
- Dogs
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Th2 Cells/immunology
- CD8 Antigens/metabolism
- CD8 Antigens/immunology
- Cytokines/metabolism
- CD4 Antigens/metabolism
- CD4 Antigens/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Immunophenotyping
- Male
Collapse
Affiliation(s)
- Martina Protschka
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Daniela Di Placido
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Mathias Büttner
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
122
|
Pan T, Ding P, Huang A, Tang B, Song K, Sun G, Wu Y, Yang S, Chen X, Wang D, Zhu X. Reconstitution of double-negative T cells after cord blood transplantation and its predictive value for acute graft-versus-host disease. Chin Med J (Engl) 2024; 137:1207-1217. [PMID: 37620289 PMCID: PMC11101234 DOI: 10.1097/cm9.0000000000002807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND With an increasing number of patients with hematological malignancies being treated with umbilical cord blood transplantation (UCBT), the correlation between immune reconstitution (IR) after UCBT and graft-versus-host disease (GVHD) has been reported successively, but reports on double-negative T (DNT) cell reconstitution and its association with acute GVHD (aGVHD) after UCBT are lacking. METHODS A population-based observational study was conducted among 131 patients with hematological malignancies who underwent single-unit UCBT as their first transplant at the Department of Hematology, the First Affiliated Hospital of USTC, between August 2018 and June 2021. IR differences were compared between the patients with and without aGVHD. RESULTS The absolute number of DNT cells in the healthy Chinese population was 109 (70-157)/μL, accounting for 5.82 (3.98-8.19)% of lymphocytes. DNT cells showed delayed recovery and could not reach their normal levels even one year after transplantation. Importantly, the absolute number and percentage of DNT cells were significantly higher in UCBT patients without aGVHD than in those with aGVHD within one year ( F = 4.684, P = 0.039 and F = 5.583, P = 0.026, respectively). In addition, the number of DNT cells in the first month after transplantation decreased significantly with the degree of aGVHD increased, and faster DNT cell reconstitution in the first month after UCBT was an independent protective factor for aGVHD (HR = 0.46, 95% confidence interval [CI]: 0.23-0.93; P = 0.031). CONCLUSIONS Compared to the number of DNT cells in Chinese healthy people, the reconstitution of DNT cells in adults with hematological malignancies after UCBT was slow. In addition, the faster reconstitution of DNT cells in the early stage after transplantation was associated with a lower incidence of aGVHD.
Collapse
Affiliation(s)
- Tianzhong Pan
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Peng Ding
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Aijie Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Baolin Tang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kaidi Song
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guangyu Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yue Wu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shiying Yang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xingchi Chen
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dongyao Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
123
|
Süsal C, Alvarez CM, Benning L, Daniel V, Zeier M, Schaier M, Morath C, Speer C. The balance between memory and regulatory cell populations in kidney transplant recipients with operational tolerance. Clin Exp Immunol 2024; 216:318-330. [PMID: 38393856 PMCID: PMC11097908 DOI: 10.1093/cei/uxae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Donor-reactive memory cells represent a barrier to long-term kidney graft survival. A better understanding of regulatory mechanisms that counterbalance alloreactive memory responses may help to identify patients with operational tolerance. This prospective study investigated the equilibrium between memory T-cell subsets and regulatory T or B cells (Tregs, Bregs) in peripheral blood of kidney transplant recipients with operational tolerance (N = 8), chronic rejection (N = 8), and different immunosuppressive treatment regimens (N = 81). Patients on hemodialysis and healthy individuals served as controls (N = 50). In addition, the expression of Treg- and Breg-associated molecule genes was analyzed. Patients with chronic rejection showed a disrupted memory T-cell composition with a significantly higher frequency of circulating CD8+ terminally differentiated effector memory (TEMRA) T cells than patients with operational tolerance, patients on hemodialysis, or healthy controls (P < 0.001). Low frequency of CD8+ TEMRA and high frequency of Tregs and transitional Bregs were found in operationally tolerant patients. Consequently, operationally tolerant patients showed, as compared to all other transplant recipients with different immunosuppressive regiments, the lowest ratios between CD8+ TEMRA T cells and Tregs or Bregs (for both P < 0.001). Moreover, a specific peripheral blood transcription pattern was found in operationally tolerant patients with an increased expression of Breg- and Treg-associated genes CD22 and FoxP3 and a decreased FcγRIIA/FcγRIIB transcript ratio (for all P < 0.001). In conclusion, monitoring the balance between circulating CD8+ TEMRA T cells and regulatory cell subsets and their transcripts may help to distinguish transplant recipients with operational tolerance from recipients at risk of graft loss.
Collapse
Affiliation(s)
- Caner Süsal
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University Hospital, Istanbul, Turkey
| | - Cristiam M Alvarez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Louise Benning
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
124
|
Hu X. The role of the BTLA-HVEM complex in the pathogenesis of breast cancer. Breast Cancer 2024; 31:358-370. [PMID: 38483699 DOI: 10.1007/s12282-024-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/17/2024] [Indexed: 04/26/2024]
Abstract
Breast cancer (BC) is widely recognized as a prevalent contributor to cancer mortality and ranks as the second most prevalent form of cancer among women across the globe. Hence, the development of innovative therapeutic strategies is imperative to effectively manage BC. The B- and T-lymphocyte attenuator (BTLA)-Herpesvirus entry mediator (HVEM) complex has garnered significant scientific interest as a crucial regulator in various immune contexts. The interaction between BTLA-HVEM ligand on the surface of T cells results in reduced cellular activation, cytokine synthesis, and proliferation. The BTLA-HVEM complex has been investigated in various cancers, yet its specific mechanisms in BC remain indeterminate. In this study, we aim to examine the function of BTLA-HVEM and provide a comprehensive overview of the existing evidence in relation to BC. The obstruction or augmentation of these pathways may potentially enhance the efficacy of BC treatment.
Collapse
Affiliation(s)
- Xue Hu
- College of Health Industry, Changchun University of Architecture and Civil Engineering, Changchun, 130000, China.
| |
Collapse
|
125
|
Ranjitkar S, Krajewski D, Garcia C, Tedeschi C, Polukort SH, Rovatti J, Mire M, Blesso CN, Jellison E, Schneider SS, Ryan JJ, Mathias CB. IL-10 Differentially Promotes Mast Cell Responsiveness to IL-33, Resulting in Enhancement of Type 2 Inflammation and Suppression of Neutrophilia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1407-1419. [PMID: 38497670 PMCID: PMC11018500 DOI: 10.4049/jimmunol.2300884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.
Collapse
Affiliation(s)
- Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Mohamed Mire
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | | | - Evan Jellison
- Department of Immunology, University of Connecticut, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
126
|
Minina EP, Dianov DV, Sheetikov SA, Bogolyubova AV. CAR Cells beyond Classical CAR T Cells: Functional Properties and Prospects of Application. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:765-783. [PMID: 38880641 DOI: 10.1134/s0006297924050018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptors (CARs) are genetically engineered receptors that recognize antigens and activate signaling cascades in a cell. Signal recognition and transmission are mediated by the CAR domains derived from different proteins. T cells carrying CARs against tumor-associated antigens have been used in the development of the CAR T cell therapy, a new approach to fighting malignant neoplasms. Despite its high efficacy in the treatment of oncohematological diseases, CAR T cell therapy has a number of disadvantages that could be avoided by using other types of leukocytes as effector cells. CARs can be expressed in a wide range of cells of adaptive and innate immunity with the emergence or improvement of cytotoxic properties. This review discusses the features of CAR function in different types of immune cells, with a particular focus on the results of preclinical and clinical efficacy studies and the safety of potential CAR cell products.
Collapse
Affiliation(s)
- Elizaveta P Minina
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
127
|
Di T, He L, Shi Q, Chen L, Zhu L, Zhao S, Zhang C. Emodin Blocks mPTP Opening and Improves LPS-Induced HMEC-1 Cell Injury by Upregulation of ATP5A1. Chem Biodivers 2024; 21:e202301916. [PMID: 38511277 DOI: 10.1002/cbdv.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emodin has been shown to exert anti-inflammatory and cytoprotective effects. Our study aimed to identify a novel anti-inflammatory mechanism of emodin. METHODS An LPS-induced model of microvascular endothelial cell (HMEC-1) injury was constructed. Cell proliferation was examined using a CCK-8 assay. The effects of emodin on reactive oxygen species (ROS), cell migration, the mitochondrial membrane potential (MMP), and the opening of the mitochondrial permeability transition pore (mPTP) were evaluated. Actin-Tracker Green was used to examine the relationship between cell microfilament reconstruction and ATP5A1 expression. The effects of emodin on the expression of ATP5A1, NALP3, and TNF-α were determined. After treatment with emodin, ATP5A1 and inflammatory factors (TNF-α, IL-1, IL-6, IL-13 and IL-18) were examined by Western blotting. RESULTS Emodin significantly increased HMEC-1 cell proliferation and migration, inhibited the production of ROS, increased the mitochondrial membrane potential, and blocked the opening of the mPTP. Moreover, emodin could increase ATP5A1 expression, ameliorate cell microfilament remodeling, and decrease the expression of inflammatory factors. In addition, when ATP5A1 was overexpressed, the regulatory effect of emodin on inflammatory factors was not significant. CONCLUSION Our findings suggest that emodin can protect HMEC-1 cells against inflammatory injury. This process is modulated by the expression of ATP5A1.
Collapse
Affiliation(s)
- Tietao Di
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Limin He
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Qing Shi
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lu Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lei Zhu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Sisi Zhao
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| |
Collapse
|
128
|
Buckley CT, Lee YL, Michele Schuler A, Langley RJ, Kutcher ME, Barrington R, Audia JP, Simmons JD. Deleterious effects of plasma-derived cellular debris in a porcine model of hemorrhagic shock. Injury 2024; 55:111300. [PMID: 38160196 DOI: 10.1016/j.injury.2023.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Recent studies identify large quantities of inflammatory cellular debris within Fresh Frozen Plasma (FFP). As FFP is a mainstay of hemorrhagic shock resuscitation, we used a porcine model of hemorrhagic shock and ischemia/reperfusion to investigate the inflammatory potential of plasma-derived cellular debris administered during resuscitation. METHODS The porcine model of hemorrhagic shock included laparotomy with 35 % hemorrhage (Hem), 45 min of ischemia from supraceliac aortic occlusion with subsequent clamp release (IR), followed by protocolized resuscitation for 6 h. Cellular debris (Debris) was added to the resuscitation phase in three groups. The four groups consisted of Hem + IR (n = 4), Hem + IR + Debris (n = 3), Hem + Debris (n = 3), and IR + Debris (n = 3). A battery of laboratory, physiologic, cytokine, and outcome data were compared between groups. RESULTS As expected, the Hem + IR group showed severe time dependent decrements in organ function and physiologic parameters. All animals that included both IR and Debris (Hem + IR + Debris or IR + Debris) died prior to the six-hour end point, while all animals in the Hem + IR and Hem + Debris survived. Cytokines measured at 30-60 min after initiation of resuscitation revealed significant differences in IL-18 and IL-1β between all groups. CONCLUSIONS Ischemia and reperfusion appear to prime the immune system to the deleterious effects of plasma-derived cellular debris. In the presence of ischemia and reperfusion, this model showed the equivalency of 100 % lethality when resuscitation included quantities of cellular debris at levels routinely administered to trauma patients during transfusion of FFP. A deeper understanding of the immunobiology of FFP-derived cellular debris is critical to optimize resuscitation for hemorrhagic shock.
Collapse
Affiliation(s)
- Colin T Buckley
- Department of Surgery, University of South Alabama, Mobile, AL, United States
| | - Yannleei L Lee
- Department of Surgery, University of South Alabama, Mobile, AL, United States
| | - A Michele Schuler
- Department of Comparative Medicine, University of South Alabama, United States; Department of Microbiology and Immunology, University of South Alabama, United States
| | - Raymond J Langley
- Department of Cellular & Molecular Pharmacology, University of South Alabama, United States
| | | | - Robert Barrington
- Department of Microbiology and Immunology, University of South Alabama, United States
| | - Jonathon P Audia
- Department of Microbiology and Immunology, University of South Alabama, United States
| | - Jon D Simmons
- Department of Surgery, University of South Alabama, Mobile, AL, United States; Department of Cellular & Molecular Pharmacology, University of South Alabama, United States.
| |
Collapse
|
129
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
130
|
Lu H, Jiang J, Min J, Huang X, McLeod P, Liu W, Haig A, Gunaratnam L, Jevnikar AM, Zhang ZX. The CaMK Family Differentially Promotes Necroptosis and Mouse Cardiac Graft Injury and Rejection. Int J Mol Sci 2024; 25:4428. [PMID: 38674016 PMCID: PMC11050252 DOI: 10.3390/ijms25084428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.
Collapse
Affiliation(s)
- Haitao Lu
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
- Department of Pathology, Western University, London, ON N6A 3K7, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
| | - Jeffery Min
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
| | - Patrick McLeod
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
| | - Weihua Liu
- Department of Pathology, Western University, London, ON N6A 3K7, Canada
| | - Aaron Haig
- Department of Pathology, Western University, London, ON N6A 3K7, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Division of Nephrology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Anthony M. Jevnikar
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Division of Nephrology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
- Department of Pathology, Western University, London, ON N6A 3K7, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Division of Nephrology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
131
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
132
|
Henedak NT, El-Abhar HS, Abdallah DM, Ahmed KA, Soubh AA. Demotion of canonical/non-canonical inflammasome and pyroptosis alleviates ischemia/reperfusion-induced acute kidney injury: Novel role of the D2/D3 receptor agonist ropinirole. Eur J Pharmacol 2024; 969:176460. [PMID: 38402931 DOI: 10.1016/j.ejphar.2024.176460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Ropinirole used to treat Parkinson's disease highly targets the dopaminergic receptor D3 over the D2 receptor but although both are expressed in the kidneys the ropinirole potential to treat kidney injury provoked by ischemia/reperfusion (I/R) is undraped. We investigated whether ropinirole can alleviate renal I/R by studying its anti-inflammatory, antioxidant, and anti-pyroptotic effects targeting its aptitude to inhibit the High-mobility group box 1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NF-κB) cue and the canonical/non-canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome trajectories. Herein, bilateral I/R surgery was induced in animals to be either untreated or treated with ropinirole for three days after the insult. Ropinirole successfully improved the histopathological picture and renal function which was confirmed by reducing cystatin C and the standard parameters creatinine and blood urea nitrogen (BUN). Ropinirole achieved this through its anti-inflammatory capacity mediated by reducing the HMGB1/TLR4 axis and inactivating NF-κB, which are upstream regulators of the NLRP3 pathway. As a result, the injurious inflammasome markers (NLRP3, apoptosis-associated speck-like protein (ASC), active caspase-1) and their target cytokines interleukin-1 beta (IL-1β) and IL-18 were decreased. Ropinirole also reduced the pyroptotic cell death markers caspase-11 and gasdermin-D. Furthermore, ropinirole by replenishing antioxidants and decreasing malondialdehyde helped to reduce oxidative stress in the kidneys. The docking findings confirmed that ropinirole highly binds to the dopaminergic D3 receptor more than to the D2 receptor. In conclusion, ropinirole has the potential to be a reno-therapeutic treatment against I/R insult by abating the inflammatory NLRP3 inflammasome signal, pyroptosis, and oxidative stress.
Collapse
Affiliation(s)
- Nada T Henedak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ayman A Soubh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| |
Collapse
|
133
|
Wei Y, Sun G, Yang Y, Li M, Zheng S, Wang X, Zhong X, Zhang Z, Han X, Cheng H, Zhang D, Mei X. Double-negative T cells ameliorate psoriasis by selectively inhibiting IL-17A-producing γδ low T cells. J Transl Med 2024; 22:328. [PMID: 38566145 PMCID: PMC10988838 DOI: 10.1186/s12967-024-05132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition. Although biologic treatments are effective in controlling psoriasis, some patients do not respond or lose response to these therapies. Thus, new strategies for psoriasis treatment are still urgently needed. Double-negative T cells (DNT) play a significant immunoregulatory role in autoimmune diseases. In this study, we aimed to evaluate the protective effect of DNT in psoriasis and explore the underlying mechanism. METHODS We conducted a single adoptive transfer of DNT into an imiquimod (IMQ)-induced psoriasis mouse model through tail vein injection. The skin inflammation and IL-17A producing γδ T cells were evaluated. RESULTS DNT administration significantly reduced the inflammatory response in mouse skin, characterized by decreased skin folds, scales, and red patches. After DNT treatment, the secretion of IL-17A by RORc+ γδlow T cells in the skin was selectively suppressed, resulting in an amelioration of skin inflammation. Transcriptomic data suggested heightened expression of NKG2D ligands in γδlow T cells within the mouse model of psoriasis induced by IMQ. When blocking the NKG2D ligand and NKG2D (expressed by DNT) interaction, the cytotoxic efficacy of DNT against RORc+IL17A+ γδlow T cells was attenuated. Using Ccr5-/- DNT for treatment yielded evidence that DNT migrates into inflamed skin tissue and fails to protect IMQ-induced skin lesions. CONCLUSIONS DNT could migrate to inflamed skin tissue through CCR5, selectively inhibit IL-17-producing γδlow T cells and finally ameliorate mouse psoriasis. Our study provides feasibility for using immune cell therapy for the prevention and treatment of psoriasis in the clinic.
Collapse
Affiliation(s)
- Yunxiong Wei
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guangyong Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yang Yang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Mingyang Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xinjie Zhong
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zihan Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaotong Han
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haiyan Cheng
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
| | - Xueling Mei
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
134
|
Pang H, Huang G, Xie Z, Zhou Z. The role of regulated necrosis in diabetes and its complications. J Mol Med (Berl) 2024; 102:495-505. [PMID: 38393662 DOI: 10.1007/s00109-024-02421-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
135
|
Zylberberg AK, Cottle DL, Runting J, Rodrigues G, Tham MS, Jones LK, Cumming HE, Short KM, Zaph C, Smyth IM. Modulating inflammation with interleukin 37 treatment ameliorates murine Autosomal Dominant Polycystic Kidney Disease. Kidney Int 2024; 105:731-743. [PMID: 38158181 DOI: 10.1016/j.kint.2023.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of kidney failure and is associated with substantial morbidity and mortality. Interstitial inflammation is attributed to the action of infiltrating macrophages and is a feature thought to aggravate disease progression. Here, we investigated the therapeutic potential of the anti-inflammatory IL37b cytokine as a treatment for ADPKD using genetic mouse models, demonstrating that transgenic expression of human IL37b reduced collecting duct cyst burden in both early and adult-onset ADPKD rodent models. Moreover, injection of recombinant human IL37b could also reduce cyst burden in early onset ADPKD mice, an observation not associated with increased macrophage number at early stages of cyst formation. Interestingly, transgenic IL37b expression also did not alter macrophage numbers in advanced disease. Whole kidney RNA-seq highlighted an IL37b-mediated upregulation of the interferon signaling pathway and single-cell RNA-seq established that these changes originate at least partly from kidney resident macrophages. We further found that blocking type I interferon signaling in mice expressing IL37b resulted in increased cyst number, confirming this as an important pathway by which IL37b exerts its beneficial effects. Thus, our studies show that IL37b promotes interferon signaling in kidney resident macrophages which suppresses cyst initiation, identifying this protein as a potential therapy for ADPKD.
Collapse
Affiliation(s)
- Allara K Zylberberg
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Denny L Cottle
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| | - Jessica Runting
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Grace Rodrigues
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ming Shen Tham
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Lynelle K Jones
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Helen E Cumming
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Colby Zaph
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ian M Smyth
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
136
|
Meng Y, Cai XL, Cong S, Sun J, Hu YW, Gu YQ, Ma XM, Luo L. Role of Platelet/Lymphocyte, Neutrophil/Lymphocyte, and Interleukin-37/Interleukin-17 Ratios in the Occurrence and Treatment of Rheumatoid Arthritis. Immunol Invest 2024; 53:464-474. [PMID: 38477623 DOI: 10.1080/08820139.2023.2299687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
This study was designed to investigate the correlation of neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and interleukin (IL)-37/IL-17 ratio with the incidence/treatment of rheumatoid arthritis (RA). Firstly, fifty-eight patients with RA treated at the first affiliated hospital of Xinjiang Medical University from January 2018 to January 2019 were selected as the RA group; forty-nine healthy volunteers were enrolled in the control group. RA patients were treated with disease-modifying anti-rheumatic drugs (DMARDs). Next, the NLR, PLR, IL-37, IL-17 and 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) were deleted in two groups. Subsequently, Spearman correlation analysis was adopted for the correlations of various indicators before and after treatment in two groups. According to the analysis results, the levels of NLR, PLR, IL-37, and IL-17 before treatment in the RA group were higher than those in the control group (P < .05), but the difference in the IL-37/IL-17 level between the two groups was not significant (P > .05). After treatment, NLR, PLR, and IL-37/IL-17 levels were significantly reduced in RA patients (P < .05). NLR and PLR were significantly positively correlated with DAS28-ESR, ESR and C-reactive protein (CRP), of which represented the disease activity of RA. NLP was strongly correlated with IL-37/IL-17. Collectively, NLR, PLR, IL-37, and IL-17 are closely related to the occurrence of RA. In addition, NLR and IL-37/IL-17 are more suitable than PLR in reflecting the therapeutic effect. Therefore, IL-37/IL-17 can be considered as a new indicator for reflecting the treatment effectiveness of RA.
Collapse
Affiliation(s)
- Yan Meng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Xuan-Lin Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Shan Cong
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Jiao Sun
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yong-Wei Hu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yan-Qin Gu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Xiu-Min Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, PR China
| | - Li Luo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| |
Collapse
|
137
|
Liu H, Liu H, Zhou L, Wen S, Liu T, Ju L, Liu Y. THE RELATIONSHIP BETWEEN CIRCULATING IMMUNE CELL PHENOTYPES AND SEPSIS: A MENDELIAN RANDOMIZATION STUDY. Shock 2024; 61:577-584. [PMID: 38517244 DOI: 10.1097/shk.0000000000002334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Objective: The role of immune cells in sepsis remains unclear, and there is some controversy. Here, we aim to systematically assess whether distinct immune cell phenotypes impact the susceptibility to sepsis. Methods: In this study, we harnessed publicly available summary-level data from genome-wide association studies (GWASs). The selection of genetic variations strongly associated with 731 phenotypes of circulating immune cells served as instrumental variables (IVs). Using a two-sample Mendelian randomization (MR) analysis, we investigated the relationships between different immunophenotypes and the occurrence of sepsis, as well as the 28-day mortality. The MR study utilized the inverse variance weighting (IVW) method as the main analytical approach. In addition, we incorporated four other MR methods for supplementary causal inference, including weighted median (WME), MR-Egger regression, simple mode, and weighted mode. Furthermore, the robustness of the results was affirmed through multiple sensitivity analyses. Results: The results of the IVW method indicated that a total of 36 immunophenotypes are associated with the risk of sepsis. We also identified 34 immunophenotypes with a causal association with the 28-day mortality. Interestingly, before multiple testing corrections, 11 immunophenotypes were determined to have consistent causal relationships with both the occurrence of sepsis and the 28-day mortality. Notably, after false discovery rate (FDR) correction, four immunophenotypes were found to be significantly correlated with susceptibility to sepsis: CD45RA- CD4+ %CD4+ (odds ratio [OR], 1.355; 95% confidence interval [CI], 1.139~1.611; P < 0.001, PFDR = 0.192), HLA DR on HLA DR+ NK (OR, 0.818; 95% CI, 0.726~0.922; P = 0.001, PFDR = 0.192), IgD+ CD24+ %B cell (OR, 0.626; 95% CI, 0.473~0.828; P = 0.001, PFDR = 0.192), and TD DN (CD4- CD8-) AC (OR, 0.655; 95% CI, 0.510~0.840; P < 0.001, PFDR = 0.192). Following FDR correction, only one immunophenotype was confirmed to be negatively correlated with the 28-day mortality: CD39 on CD39+ CD8br (OR, 0.820; 95% CI, 0.737~0.912; P < 0.001, PFDR = 0.184). Conclusion: This study, for the first time, has uncovered indicative evidence of a causal relationship between circulating immune cell phenotypes and varying degrees of sepsis through genetic means. These findings underscore the significance of immune cells in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Hai Liu
- Kunming Medical University, Kunming, Yunnan, China
| | - Li Zhou
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Shu Wen
- Department of Intensive Care Unit, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tiankuang Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Linqin Ju
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yiwen Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
138
|
Xiao X, Liu H, Qiu X, Chen P, Li X, Wang D, Song G, Cheng Y, Yang L, Qian W. CD19-CAR-DNT cells (RJMty19) in patients with relapsed or refractory large B-cell lymphoma: a phase 1, first-in-human study. EClinicalMedicine 2024; 70:102516. [PMID: 38444429 PMCID: PMC10912040 DOI: 10.1016/j.eclinm.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Background Current approved chimeric antigen receptor (CAR) T-cell products are autologous cell therapies that are costly and poorly accessible to patients. We aimed to evaluate the safety and antitumor activity of a novel off-the-shelf anti-CD19 CAR-engineered allogeneic double-negative T cells (RJMty19) in patients with relapsed/refractory large B-cell lymphoma. We report the results from a first-in-human, open-label, single-dose, phase 1 study of allogeneic CD19-specific CAR double-negative T (CAR-DNT) cells. Methods Eligibility criteria included the presence of measurable lesions, at least 2 lines of prior immunochemotherapy, and an ECOG score of 0-1. We evaluated four dose levels (DL) of RJMty19 in a 3 + 3 dose-escalation scheme: 1 × 106, 3 × 106, 9 × 106 and 2 × 107 CAR-DNT cells per kilogram of body weight. All patients received lymphodepleting chemotherapy with fludarabine and cyclophosphamide. The primary endpoints were dose-limiting toxicities (DLTs), incidence of adverse events (AEs), and clinically significant laboratory abnormalities. Secondary endpoints included evaluation of standard cellular pharmacokinetic parameters, immunogenicity, objective response rates (ORR), and disease control rate (DCR) per Lugano 2014 criteria. Findings A total of 12 patients were enrolled between 22 July 2022 and 27 July 2023. Among these patients, 66% were classified as stage IV, 75% had an IPI score of 3 or higher, representing an intermediate risk or worse. The maximum tolerated dose was not reached because no DLT was observed. Four patient experienced grade 1 or 2 cytokine release syndrome and dizziness. The most common AEs were hematologic toxicities, including neutropenia (N = 12, 100%), leukopenia (N = 12, 100%), lymphopenia (N = 10, 83%), thrombocytopenia (N = 6, 50%), febrile neutropenia (N = 3, 25%), and anemia (N = 3, 25%). Seven subjects died till the cut-off date, five of them died of disease progression and two of them died of COVID 19. In all patients (N = 12), the ORR was 25% and CRR was 8.3%. DL1 and DL2 patients benefited less from the therapy (ORR: 17%, N = 1; DCR: 33%, N = 2). However, all DL3 patients achieved disease control (N = 3, 100%), and all DL4 patients achieved objective response (N = 3, 100%). Interpretation Our results demonstrate that CD19-CAR-DNT cells appear to be well tolerated with promising antitumor activity in LBCL patients. Further study of this product with a larger sample size is warranted. This phase 1 study is registered on clinicaltrials.gov (NCT05453669). Funding Wyze Biotech. Co., Ltd.
Collapse
Affiliation(s)
- Xibin Xiao
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Liu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Qiu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Panpan Chen
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xian Li
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Wang
- Wyze Biotech Co., Ltd, Zhongshan, Guangdong, China
| | | | - Yu Cheng
- Wyze Biotech Co., Ltd, Zhongshan, Guangdong, China
| | - Liming Yang
- Wyze Biotech Co., Ltd, Zhongshan, Guangdong, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
139
|
Syed RU, Afsar S, Aboshouk NAM, Salem Alanzi S, Abdalla RAH, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Satheesh Kumar G, Alshammari MD. LncRNAs in necroptosis: Deciphering their role in cancer pathogenesis and therapy. Pathol Res Pract 2024; 256:155252. [PMID: 38479121 DOI: 10.1016/j.prp.2024.155252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
Necroptosis, a controlled type of cell death that is different from apoptosis, has become a key figure in the aetiology of cancer and offers a possible target for treatment. A growing number of biological activities, including necroptosis, have been linked to long noncoding RNAs (lncRNAs), a varied family of RNA molecules with limited capacity to code for proteins. The complex interactions between LncRNAs and important molecular effectors of necroptosis, including mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting protein kinase 3 (RIPK3), will be investigated. We will explore the many methods that LncRNAs use to affect necroptosis, including protein-protein interactions, transcriptional control, and post-transcriptional modification. Additionally, the deregulation of certain LncRNAs in different forms of cancer will be discussed, highlighting their dual function in influencing necroptotic processes as tumour suppressors and oncogenes. The goal of this study is to thoroughly examine the complex role that LncRNAs play in controlling necroptotic pathways and how that regulation affects the onset and spread of cancer. In the necroptosis for cancer treatment, this review will also provide insight into the possible therapeutic uses of targeting LncRNAs. Techniques utilising LncRNA-based medicines show promise in controlling necroptotic pathways to prevent cancer from spreading and improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | | | - Amna Abakar Suleiman Khalifa
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - G Satheesh Kumar
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
140
|
Yang B, Crowley SD. Interleukin-37: a new therapeutic target in autosomal dominant polycystic kidney disease. Kidney Int 2024; 105:661-663. [PMID: 38519230 DOI: 10.1016/j.kint.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/24/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) has long been considered a genetic renal disorder, but emerging evidence suggests that the immune microenvironment within the kidney plays a pivotal role in disease progression and severity. In recent years, the previously obscure cytokine interleukin-37 has proved a strong inhibitor of innate immunity in multiple disease models. However, its role in ADPKD has not received scrutiny. In a provocative study published in the current issue, Zylberberg et al. show that interleukin-37 activates interferon signaling in renal macrophages, which inhibits ADPKD initiation. This finding identifies interleukin-37 as a potential viable immunomodulatory therapy for ADPKD.
Collapse
Affiliation(s)
- Bo Yang
- Division of Nephrology and Endocrinology, Naval Medical Center of PLA, Naval Medical University, Shanghai, People's Republic of China
| | - Steven D Crowley
- Division of Nephrology, Departments of Medicine, Durham VA and Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
141
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
142
|
Wang P, Li C, Peng T, Ruan L, Wu A, Zhu J, Shi W, Chen M, Zhang T. Tolerogenic CD11c +dendritic cells regulate CD4 +Tregs in replacing delayed ischemic preconditioning to alleviate ischemia-reperfusion acute kidney injury. FASEB J 2024; 38:e23575. [PMID: 38530256 DOI: 10.1096/fj.202302299rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Ischemia-reperfusion injury (IRI) is one of the primary clinical causes of acute kidney injury (AKI). The key to IRI lies in immune-inflammatory damage, where dendritic cells (DCs) play a central role in eliciting immune responses within the context of inflammation induced by ischemia-reperfusion. Our previous study has confirmed that delayed ischemic preconditioning (DIPC) can reduce the kidney injury by mediating DCs to regulate T-cells. However, the clinical feasibility of DIPC is limited, as pre-clamping of the renal artery is not applicable for the prevention and treatment of ischemia-reperfusion acute kidney injury (I/R-AKI) in clinical patients. Therefore, the infusion of DCs as a substitute for DIPC presents a more viable strategy for preventing renal IRI. In this study, we further evaluated the impact and mechanism of infused tolerogenic CD11c+DCs on the kidneys following IRI by isolating bone marrow-derived dendritic cells and establishing an I/R-AKI model after pre-infusion of DCs. Renal function was significantly improved in the I/R-AKI mouse model after pre-infused with CD11c+DCs. The pro-inflammatory response and oxidative damage were reduced, and the levels of T helper 2 (Th2) cells and related anti-inflammatory cytokines were increased, which was associated with the reduction of autologous DCs maturation mediated by CD11c+DCs and the increase of regulatory T-cells (Tregs). Next, knocking out CD11c+DCs, we found that the reduced immune protection of tolerogenic CD11c+DCs reinfusion was related to the absence of own DCs. Together, pre-infusion of tolerogenic CD11c+DCs can replace the regulatory of DIPC on DCs and T-cells to alleviate I/R-AKI. DC vaccine is expected to be a novel avenue to prevent and treat I/R-AKI.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chunyao Li
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Peng
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Longzhu Ruan
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Aijie Wu
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiaojiao Zhu
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wenlu Shi
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Menghua Chen
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ting Zhang
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
143
|
Dugbartey GJ. Cellular and molecular mechanisms of cell damage and cell death in ischemia-reperfusion injury in organ transplantation. Mol Biol Rep 2024; 51:473. [PMID: 38553658 PMCID: PMC10980643 DOI: 10.1007/s11033-024-09261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/16/2024] [Indexed: 04/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a critical pathological condition in which cell death plays a major contributory role, and negatively impacts post-transplant outcomes. At the cellular level, hypoxia due to ischemia disturbs cellular metabolism and decreases cellular bioenergetics through dysfunction of mitochondrial electron transport chain, causing a switch from cellular respiration to anaerobic metabolism, and subsequent cascades of events that lead to increased intracellular concentrations of Na+, H+ and Ca2+ and consequently cellular edema. Restoration of blood supply after ischemia provides oxygen to the ischemic tissue in excess of its requirement, resulting in over-production of reactive oxygen species (ROS), which overwhelms the cells' antioxidant defence system, and thereby causing oxidative damage in addition to activating pro-inflammatory pathways to cause cell death. Moderate ischemia and reperfusion may result in cell dysfunction, which may not lead to cell death due to activation of recovery systems to control ROS production and to ensure cell survival. However, prolonged and severe ischemia and reperfusion induce cell death by apoptosis, mitoptosis, necrosis, necroptosis, autophagy, mitophagy, mitochondrial permeability transition (MPT)-driven necrosis, ferroptosis, pyroptosis, cuproptosis and parthanoptosis. This review discusses cellular and molecular mechanisms of these various forms of cell death in the context of organ transplantation, and their inhibition, which holds clinical promise in the quest to prevent IRI and improve allograft quality and function for a long-term success of organ transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
- Department of Physiology & Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana.
| |
Collapse
|
144
|
Li S, Pang W, Wang Y, Zhang Y. Cordyceps sinensis extract protects against acute kidney injury by inhibiting perforin expression in NK cells via the STING/IRF3 pathway. Aging (Albany NY) 2024; 16:5887-5904. [PMID: 38517396 PMCID: PMC11042953 DOI: 10.18632/aging.205676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Acute kidney injury (AKI) is associated with immune cell activation and inflammation. However, the putative pathogenic mechanisms of this injury have not been thoroughly investigated. Natural killer (NK) cells play an important role in immune regulation; however, whether NK cells regulate AKI remains unclear. Cordyceps sinensis (CS), a modern Chinese patented medicine preparation, has been widely used in treating patients with chronic kidney disease (CKD) owing to its anti-inflammatory effects and maintenance of immune homeostasis. Whether 2'-deoxyadenosine, a major active component in CS, can ameliorate renal AKI by regulating immunity, particularly in NK cells, has not been reported. This study is the first to demonstrate how NK cells promote AKI by releasing perforin, interferon-gamma (IFN-γ) and other inflammatory factors in vivo and in vitro. Differential gene expression between AKI and normal tissues was assessed using bioinformatic analyses. Quantitative real-time PCR, western blotting, and immunohistochemical staining were used to detect target protein mRNA and protein expression. Levels of inflammatory factors were measured using enzyme-linked immunosorbent assay. We found the high doses of the 2'-deoxyadenosine treatment significantly alleviated FA-induced renal damage in vivo, and alleviated the NK cells of renal injury by activating the STING/IRF3 pathway to inhibit perforin release in vitro. The results showed that 2'-deoxyadenosine could mitigate AKI by downregulating the activity of NK cells (by decreasing the expressions of perforin and IFN-γ) and inhibiting the stimulator of interferon genes and phosphorylated IFN regulatory factor 3. This may provide valuable evidence supporting the clinical use of CS in treating patients with AKI.
Collapse
Affiliation(s)
- Shuang Li
- General Department of Western Medicine, Yangjing Community Health Service Center, Shanghai 200135, China
| | - Wei Pang
- Department of Emergency Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuzhu Wang
- General Department of Western Medicine, Yangjing Community Health Service Center, Shanghai 200135, China
| | - Yiting Zhang
- General Department of Traditional Chinese Medicine, Yangjing Community Health Service Center, Shanghai 200135, China
| |
Collapse
|
145
|
Mitsuyama Y, Matsumoto H, Togami Y, Oda S, Onishi S, Yoshimura J, Murtatsu A, Ito H, Ogura H, Okuzaki D, Oda J. T cell dysfunction in elderly ARDS patients based on miRNA and mRNA integration analysis. Front Immunol 2024; 15:1368446. [PMID: 38571958 PMCID: PMC10987699 DOI: 10.3389/fimmu.2024.1368446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is respiratory failure that commonly occurs in critically ill patients, and the molecular mechanisms underlying its pathogenesis and severity are poorly understood. We evaluated mRNA and miRNA in patients with ARDS and elucidated the pathogenesis of ARDS after performing mRNA and miRNA integration analysis. Methods In this single-center, prospective, observational clinical study of patients with ARDS, peripheral blood of each patient was collected within 24 hours of admission. Sequencing of mRNA and miRNA was performed using whole blood from the ARDS patients and healthy donors. Results Thirty-four ARDS patients were compared with 15 healthy donors. Compared with the healthy donors, 1233 mRNAs and 6 miRNAs were upregulated and 1580 mRNAs and 13 miRNAs were downregulated in the ARDS patients. For both mRNA and miRNA-targeted mRNA, canonical pathway analysis showed that programmed death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) cancer immunotherapy pathway was most activated and the Th2 pathway was most suppressed. For mRNA, the Th1 pathway was most suppressed. miR-149-3p and several miRNAs were identified as upstream regulators. Conclusion miRNAs regulated the PD-1 and PD-L1 cancer immunotherapy pathway and Th2 pathway through miRNA interference action of mRNA. Integrated analysis of mRNAs and miRNAs showed that T cells were dysfunctional in ARDS patients.
Collapse
Affiliation(s)
- Yumi Mitsuyama
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Togami
- Department of Acute Medicine and Critical Care Medical Center, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Sayaka Oda
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Onishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Arisa Murtatsu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ito
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jun Oda
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
146
|
Cruz-Holguín VJ, González-García LD, Velázquez-Cervantes MA, Arévalo-Romero H, De Jesús-González LA, Helguera-Repetto AC, León-Reyes G, Salazar MI, Cedillo-Barrón L, León-Juárez M. Collateral Damage in the Placenta during Viral Infection in Pregnancy: A Possible Mechanism for Vertical Transmission and an Adverse Pregnancy Outcome. Diseases 2024; 12:59. [PMID: 38534983 PMCID: PMC10969698 DOI: 10.3390/diseases12030059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
In mammals, the placenta is a connection between a mother and a new developing organism. This tissue has a protective function against some microorganisms, transports nutrients, and exchanges gases and excretory substances between the mother and the fetus. Placental tissue is mainly composed of chorionic villi functional units called trophoblasts (cytotrophoblasts, the syncytiotrophoblast, and extravillous trophoblasts). However, some viruses have developed mechanisms that help them invade the placenta, causing various conditions such as necrosis, poor perfusion, and membrane rupture which, in turn, can impact the development of the fetus and put the mother's health at risk. In this study, we collected the most relevant information about viral infection during pregnancy which can affect both the mother and the fetus, leading to an increase in the probability of vertical transmission. Knowing these mechanisms could be relevant for new research in the maternal-fetal context and may provide options for new therapeutic targets and biomarkers in fetal prognosis.
Collapse
Affiliation(s)
- Victor Javier Cruz-Holguín
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico City 07360, Mexico;
| | - Luis Didier González-García
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico City 07360, Mexico;
- Posgrado de Inmunología, Escuela Nacional de Ciencias Biologócas (ENCB), Instituto Politecnico Naciona, Mexico City 11350, Mexico;
| | - Manuel Adrián Velázquez-Cervantes
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
| | - Haruki Arévalo-Romero
- Laboratorio de Inmunologia y Microbiologia Molecular, Division Academica Multidisciplinaria de Jalpa de Méndez, Jalpa de Mendez 86205, Mexico;
| | | | | | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Ma. Isabel Salazar
- Posgrado de Inmunología, Escuela Nacional de Ciencias Biologócas (ENCB), Instituto Politecnico Naciona, Mexico City 11350, Mexico;
- Laboratorio Nacional de Vacunología y Virus Tropicales (LNVyVT), Escuela Nacional de Ciencias Biologócas (ENCB), Instituto Politecnico Naciona, Mexico City 11350, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico City 07360, Mexico;
| | - Moisés León-Juárez
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
| |
Collapse
|
147
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
148
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
149
|
Sadeghian I, Akbarpour M, Chafjiri FMA, Chafjiri PMA, Heidari R, Morowvat MH, Sadeghian R, Raee MJ, Negahdaripour M. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1275-1310. [PMID: 37688622 DOI: 10.1007/s00210-023-02683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Akbarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
150
|
Bojic D, Aujla T, Sugihara J, Wong A, Keshavjee S, Liu M. Thyroid hormone protects human lung epithelial cells from cold preservation and warm reperfusion-induced injury. J Transl Med 2024; 22:221. [PMID: 38429788 PMCID: PMC10908176 DOI: 10.1186/s12967-024-05024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Cellular stress associated with static-cold storage (SCS) and warm reperfusion of donor lungs can contribute to ischemia-reperfusion (IR) injury during transplantation. Adding cytoprotective agents to the preservation solution may be conducive to reducing graft deterioration and improving post-transplant outcomes. METHODS SCS and warm reperfusion were simulated in human lung epithelial cells (BEAS-2B) by exposing cells to low potassium dextran glucose solution at 4 °C for different periods and then switching back to serum-containing culture medium at 37 °C. Transcriptomic analysis was used to explore potential cytoprotective agents. Based on its results, cell viability, caspase activity, cell morphology, mitochondrial function, and inflammatory gene expression were examined under simulated IR conditions with or without thyroid hormones (THs). RESULTS After 18 h SCS followed by 2 h warm reperfusion, genes related to inflammation and cell death were upregulated, and genes related to protein synthesis and metabolism were downregulated in BEAS-2B cells, which closely mirrored gene profiles found in thyroid glands of mice with congenital hypothyroidism. The addition of THs (T3 or T4) to the preservation solution increases cell viability, inhibits activation of caspase 3, 8 and 9, preserves cell morphology, enhances mitochondrial membrane potential, reduces mitochondrial superoxide production, and suppresses inflammatory gene expression. CONCLUSION Adding THs to lung preservation solutions may protect lung cells during SCS by promoting mitochondrial function, reducing apoptosis, and inhibiting pro-inflammatory pathways. Further in vivo testing is warranted to determine the potential clinical application of adding THs as therapeutics in lung preservation solutions.
Collapse
Affiliation(s)
- Dejan Bojic
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tanroop Aujla
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Aaron Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|