101
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
102
|
Qian JY, Gao J, Sun X, Cao MD, Shi L, Xia TS, Zhou WB, Wang S, Ding Q, Wei JF. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene 2019; 38:6123-6141. [PMID: 31285549 DOI: 10.1038/s41388-019-0861-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 01/21/2023]
Abstract
Most N6-methyladenosine (m6A) associated regulatory proteins (i.e., m6A writer, eraser, and reader proteins) are involved in the pathogenesis of various cancers, mostly in m6A-dependent manners. As a component in the m6A 'writers', KIAA1429 is reported to be an RNA-binding protein and involved in the m6A modification, mRNA splicing and processing. Till now, the functions of KIAA1429 in tumorigenesis and related mechanism have not been reported. In the present study, we found KIAA1429 was highly expressed in breast cancer tissues, but frequently down-regulated in non-cancerous breast tissues. The overall survival of breast cancer patients with high-expression KIAA1429 was significantly shorter than those with low-expression KIAA1429. Then, we demonstrated that KIAA1429 was associated with breast cancer proliferation and metastasis in vivo and in vitro. The potential targeting genes of KIAA1429 in breast cancer were identified by RNA immunoprecipitation sequencing. One of these genes is cyclin-dependent kinase 1 (CDK1), which plays an oncogenic role in cancers. Furthermore, we confirmed that KIAA1429 played its oncogenic role in breast cancer by regulating CDK1 by an m6A-independent manner. 5'-fluorouracil was found to be very effective in reducing the expression of KIAA1429 and CDK1 in breast cancer. These findings indicated that KIAA1429 could promote breast cancer progression and was correlated with pathogenesis. It may represent a promising therapeutic strategy on breast cancer, especially in combination with CDK1 treatment.
Collapse
Affiliation(s)
- Jia-Yi Qian
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, China
| | - Xi Sun
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Meng-Da Cao
- Research Division of Clinical Pharmacology, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Liang Shi
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Tian-Song Xia
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Wen-Bin Zhou
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Shui Wang
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| | - Qiang Ding
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| |
Collapse
|
103
|
Chen K, Lin ZW, He SM, Wang CQ, Yang JC, Lu Y, Xie XB, Li Q. Metformin inhibits the proliferation of rheumatoid arthritis fibroblast-like synoviocytes through IGF-IR/PI3K/AKT/m-TOR pathway. Biomed Pharmacother 2019; 115:108875. [PMID: 31028998 DOI: 10.1016/j.biopha.2019.108875] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/31/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease in which synovial fibroblast-like cells (FLSs) play an important role in RA development and is known to be lack of effective therapy. Thus, novel therapeutic strategies are greatly needed for treatment of RA. Metformin, a first-line drug for the treatment of type 2 diabetes, has been reported to inhibit the proliferation of a variety of tumor cells. In this study, we demonstrated that metformin could inhibit the RA-FLS proliferation in dose- and time-dependent manner. Our cell viability MTT test and 5-ethynyl-2-deoxyuridine incorporation assay showed that metformin inhibited the RA-FLSs proliferation with a time- and concentration-dependent increase. More importantly, metformin induced G2/M cell cycle phase arrest in RA-FLS via the IGF-IR/PI3K/AKT/ m-TOR pathway and inhibited m-TOR phosphorylation through both the IGF-IR/PI3K/AKT signaling pathways thereby further upregulating and down-regulating p70s6k and 4E-BP1 phosphorylation, respectively; however, metformin was found not to induce apoptosis in RA-FLSs. In summary, these results demonstrate that metformin can effectively inhibit RA-FLS proliferation through inducing cell cycle and upregulating and down-regulating p70s6k and 4E-BP1 phosphorylation. Moreover, IGF-IR/PI3K/AKT m-TOR signaling pathway can be regulated by metformin. Our results indicate that metformin may provide a new way of thinking for the treatment of RA.
Collapse
Affiliation(s)
- Kun Chen
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China; Department of Orthopedics, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, Guangdong, 516002, China
| | - Zhao-Wei Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Sheng-Mao He
- Department of orthopedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng-Qiang Wang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Jian-Cheng Yang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yao Lu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiao-Bo Xie
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Qi Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
104
|
Bortolot CS, da S M Forezi L, Marra RKF, Reis MIP, Sá BVFE, Filho RI, Ghasemishahrestani Z, Sola-Penna M, Zancan P, Ferreira VF, de C da Silva F. Design, Synthesis and Biological Evaluation of 1H-1,2,3-Triazole-Linked-1H-Dibenzo[b,h]xanthenes as Inductors of ROS-Mediated Apoptosis in the Breast Cancer Cell Line MCF-7. Med Chem 2019; 15:119-129. [PMID: 29792156 DOI: 10.2174/1573406414666180524071409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Low molecular weight 1,2,3-triazoles and naphthoquinones are endowed with various types of biological activity, such as against cancer, HIV and bacteria. However, in some cases, the conjugation of these two nuclei considerably increases their biological activities. OBJECTIVE In this work, we decided to study the synthesis and screening of bis-naphthoquinones and xanthenes tethered to 1,2,3-triazoles against cancer cell lines, specifically the human breast cancer cell line MCF-7. RESULTS Starting from lawsone and aryl-1H-1,2,3-triazole-4-carbaldehydes (10a-h) several new 7- (1-aryl-1H-1,2,3-triazol-4-yl)-6H-dibenzo[b,h]xanthene-5,6,8,13(7H)-tetraones (12a-h) and 3,3'- ((1-aryl-1H-1,2,3-triazol-4-yl)methylene)bis(2-hydroxynaphthalene-1,4-diones) 11a-h were synthesized and evaluated for their cytotoxic activities using the human breast cancer cell line MCF-7 and the non-tumor cell line MCF10A as control. We performed test of cell viability, cell proliferation, intracellular ATP content and cell cytometry to determine reactive oxygen species (ROS) formation. CONCLUSIONS Based on these results, we found that compound 12a promotes ROS production, interfering with energy metabolism, cell viability and proliferation, and thus promoting whole cell damage.
Collapse
Affiliation(s)
- Carolina S Bortolot
- Universidade Federal Fluminense, Departamento de Quimica Organica, Instituto de Quimica, Campus do Valonguinho, CEP 24020-150, Niteroi-RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Departamento de Quimica Organica, Instituto de Quimica, Campus do Valonguinho, CEP 24020-150, Niteroi-RJ, Brazil
| | - Roberta K F Marra
- Universidade Federal Fluminense, Departamento de Quimica Organica, Instituto de Quimica, Campus do Valonguinho, CEP 24020-150, Niteroi-RJ, Brazil
| | - Marcelo I P Reis
- Universidade Federal Fluminense, Departamento de Quimica Organica, Instituto de Quimica, Campus do Valonguinho, CEP 24020-150, Niteroi-RJ, Brazil
| | - Bárbara V F E Sá
- Universidade Federal Fluminense, Departamento de Quimica Organica, Instituto de Quimica, Campus do Valonguinho, CEP 24020-150, Niteroi-RJ, Brazil
| | - Ricardo I Filho
- Universidade Federal do Rio de Janeiro, Laboratorio de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmaceutica, Faculdade de Farmacia, CEP 21941-902, Rio de Janeiro-RJ, Brazil
| | - Zeinab Ghasemishahrestani
- Universidade Federal do Rio de Janeiro, Laboratorio de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmaceutica, Faculdade de Farmacia, CEP 21941-902, Rio de Janeiro-RJ, Brazil
| | - Mauro Sola-Penna
- Universidade Federal do Rio de Janeiro, Laboratorio de Enzimologia e Controle do Metabolismo (LabECoM) Departamento de Biotecnologia Farmaceutica, Faculdade de Farmacia, CEP 21941-902, Rio de Janeiro-RJ, Brazil
| | - Patricia Zancan
- Universidade Federal do Rio de Janeiro, Laboratorio de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmaceutica, Faculdade de Farmacia, CEP 21941-902, Rio de Janeiro-RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niteroi-RJ, Brazil
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Departamento de Quimica Organica, Instituto de Quimica, Campus do Valonguinho, CEP 24020-150, Niteroi-RJ, Brazil
| |
Collapse
|
105
|
Wu J, Zhang X, Han Q, Han X, Rong X, Wang M, Zheng X, Wang E. ZNF326 promotes proliferation of non-small cell lung cancer cells by regulating ERCC1 expression. J Transl Med 2019; 99:169-179. [PMID: 30401956 DOI: 10.1038/s41374-018-0148-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/18/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
The roles and downstream target genes of the transcription factor ZNF326 in malignant tumors are unclear. Out of 146 lung cancer tissue samples, we found that high expression of ZNF326 in 82 samples was closely related to low differentiation and a high pTNM stage of non-small cell lung cancer (NSCLC) cells. In vitro and in vivo analyses showed that ZNF326 significantly promoted cell cycle progression, colony formation, and proliferation as well as the growth of NSCLC transplanted tumors. Chromatin immunoprecipitation sequencing, dual-luciferase assay, and electrophoretic mobility shift assay confirmed that the C2H2 structure of ZNF326 binds to the -833 to -875 bp region of the ERCC1 promoter to initiate transcriptional activity. This binding promoted CyclinB1 synthesis and cell cycle progression. These results show that the ZNF326 transcription factor is highly expressed in lung cancer and promotes the proliferation of NSCLC cells by regulating the expression of ERCC1.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Qiang Han
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Xu Han
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Xuezhu Rong
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Minghao Wang
- Neurosurgery, The First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Xiaoying Zheng
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, PR China.
| |
Collapse
|
106
|
Hydrogen sulfide releasing enmein-type diterpenoid derivatives as apoptosis inducers through mitochondria-related pathways. Bioorg Chem 2019; 82:192-203. [DOI: 10.1016/j.bioorg.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023]
|
107
|
Shu F, Zou X, Tuo H, She S, Huang J, Ren H, Hu H, Peng S, Wang J, Yang Y. Stathmin gene silencing suppresses proliferation, migration and invasion of gastric cancer cells via AKT/sCLU and STAT3 signaling. Int J Oncol 2019; 54:1086-1098. [PMID: 30628664 DOI: 10.3892/ijo.2019.4674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/02/2018] [Indexed: 11/06/2022] Open
Abstract
Globally, gastric cancer is the fifth most common malignancy, with high rates of incidence and mortality. The high mortality rate and poor prognosis of gastric cancer are closely associated with its profound invasiveness, high incidence of metastasis, rapid proliferation, and high rate of recurrence. Previous studies have confirmed that stathmin (STMN) has an important role in the occurrence, development and prognosis of gastric cancer. However, the detailed mechanisms by which STMN affects these processes remain unclear. The aim of the present study was to determine how STMN promotes invasion, migration and proliferation in gastric cancer tumor cells. The results of immunohistochemistry indicated that STMN is overexpressed in stomach neoplasm tissues, and that it is associated with migration, invasion, proliferation and anti‑apoptotic states of gastric cancer cells. The secretory proteins of gastric cancer cells with or without STMN knockdown were further analyzed using the isobaric tags for relative and absolute quantitation method to identify differentially expressed proteins verified by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Inhibition of STMN decreases the levels of clusterin, cystatin C and matrix metalloproteinases, followed by inhibiting the protein kinase B and signal transducer and activation of transcription activation. These findings suggest that STMN could be a promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Feng Shu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoqin Zou
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Huan Tuo
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Sha She
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Juan Huang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Huaidong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shifang Peng
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jiandong Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
108
|
Bi E, Liu D, Li Y, Mao X, Wang A, Wang J. Oridonin induces growth inhibition and apoptosis in human gastric carcinoma cells by enhancement of p53 expression and function. ACTA ACUST UNITED AC 2018; 51:e7599. [PMID: 30462771 PMCID: PMC6247279 DOI: 10.1590/1414-431x20187599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022]
Abstract
The tumor suppressive role of oridonin, an active compound extracted from Rabdosia rubescens, has been proven in several gastric cancer (GC) cell lines. The present study aimed to evaluate the effect of oridonin on another GC cell line, SNU-216, and explore the potential mechanisms. The viable cell numbers, cell migration, survival fraction, and cell viability were, respectively, evaluated by trypan blue exclusion assay, wound healing assay, clonogenic assay, and CCK-8 assay. Cell apoptosis was determined by flow cytometry assay and western blot. The expression of p53 was inhibited by transient transfection, and the efficiency was verified by western blot. qRT-PCR was performed to measure the mRNA expression of p53. Western blot was used to evaluate the protein expression of apoptosis, DNA damage and p53 function related factors. We found that oridonin significantly inhibited cell proliferation, migration, and survivability, and enhanced cell apoptosis in SNU-216 cells. However, it had no influence on HEK293 cell viability. Oridonin also remarkably enhanced the anti-tumor effect of cisplatin on SNU-216 cells, as it significantly increased apoptotic cells and decreased cell viability. Moreover, the mRNA and protein expression of p53 was significantly up-regulated in oridonin-treated cells, while Mdm2 expression was down-regulated. Furthermore, oridonin enhanced p53 function and induced DNA damage. Knockdown of p53 or employing the caspase inhibitor, Boc-D-FMK, reversed the effect of oridonin on cell viability and apoptosis-related protein expression. The present study demonstrated that oridonin exhibited an anti-tumor effect on GC SNU-216 cells through regulating p53 expression and function.
Collapse
Affiliation(s)
- Enxu Bi
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Dengqiang Liu
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Youxi Li
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Xuying Mao
- Department of Hepatopancreatobiliary Surgery, Huangdao Branch, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Aihua Wang
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Jingtao Wang
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| |
Collapse
|
109
|
Qiu W, Chen R, Chen X, Zhang H, Song L, Cui W, Zhang J, Ye D, Zhang Y, Wang Z. Oridonin-loaded and GPC1-targeted gold nanoparticles for multimodal imaging and therapy in pancreatic cancer. Int J Nanomedicine 2018; 13:6809-6827. [PMID: 30425490 PMCID: PMC6205542 DOI: 10.2147/ijn.s177993] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose Early diagnosis and therapy are critical to improve the prognosis of patients with pancreatic cancer. However, conventional imaging does not significantly increase the capability to detect early stage disease. In this study, we developed a multifunctional theranostic nanoplatform for accurate diagnosis and effective treatment of pancreatic cancer. Methods We developed a theranostic nanoparticle (NP) based on gold nanocages (AuNCs) modified with hyaluronic acid (HA) and conjugated with anti-Glypican-1 (anti-GPC1) antibody, oridonin (ORI), gadolinium (Gd), and Cy7 dye. We assessed the characteristics of GPC1-Gd-ORI@HAuNCs-Cy7 NPs (ORI-GPC1-NPs) including morphology, hydrodynamic size, stability, and surface chemicals. We measured the drug loading and release efficiency in vitro. Near-infrared fluorescence (NIRF)/magnetic resonance imaging (MRI) and therapeutic capabilities were tested in vitro and in vivo. Results ORI-GPC1-NPs demonstrated long-time stability and fluorescent/MRI properties. Bio-transmission electron microscopy (bio-TEM) imaging showed that ORI-GPC1-NPs were endocytosed into PANC-1 and BXPC-3 (overexpression GPC1) but not in 293 T cells (GPC1- negative). Compared with ORI and ORI-NPs, ORI-GPC1-NPs significantly inhibited the viability and enhanced the apoptosis of pancreatic cancer cells in vitro. Moreover, blood tests suggested that ORI-GPC1-NPs showed negligible toxicity. In vivo studies showed that ORI-GPC1-NPs enabled multimodal imaging and targeted therapy in pancreatic tumor xenografted mice. Conclusion ORI-GPC1-NP is a promising theranostic platform for the simultaneous diagnosis and effective treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenli Qiu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Huifeng Zhang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Jingjing Zhang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dandan Ye
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| |
Collapse
|
110
|
Zhang HP, Li SY, Wang JP, Lin J. Clinical significance and biological roles of cyclins in gastric cancer. Onco Targets Ther 2018; 11:6673-6685. [PMID: 30349301 PMCID: PMC6186297 DOI: 10.2147/ott.s171716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background and aim Cyclins have been reported to be overexpressed with poor prognosis in several human cancers. However, limited numbers of studies evaluated the expressions and prognostic roles of cyclins in gastric cancer (GC). We aim to evaluate the expressions and prognostic roles of cyclins. Also, further efforts were made to explore biological function of the differentially expressed cyclins. Methods Cyclins expressions were analyzed by Oncomine and The Cancer Genome Atlas datasets, and the prognostic roles of cyclins in GC patients were investigated by the Kaplan–Meier Plotter database. Then, a comprehensive PubMed literature search was performed to identify expression and prognosis of cyclins in GC. Biological functions of the differentially expressed cyclins were explored through Enrich R platform, and KEGG and transcription factor were analyzed. Results The expression levels of CCNA2 (cyclin A2), CCNB1 (cyclin B1), CCNB2 (cyclin B2), and CCNE1 (cyclin E1) mRNAs were identified to be significantly higher in GC tissues than in normal tissues in both Oncomine and The Cancer Genome Atlas datasets. High expressions of CCNA2, CCNB1, and CCNB2 mRNAs were identified to be related with poor overall survival in Kaplan–Meier Plotter dataset. Evidence from clinical studies showed that CCNB1 was related with overall survival in GC patients. Cyclins were associated with several biological pathways, including cell cycle, p53 signaling pathway, FoxO signaling pathway, viral carcinogenesis, and AMPK signaling pathway. Enrichment analysis also showed that cyclins interacted with some certain transcription factors, such as FOXM1, SIN3A, NFYA, and E2F4. Conclusion Based on our results, high expressions of cyclins were related with poor prognosis in GC patients. The above information might be useful for better understanding the clinical and biological roles of cyclins mRNA and guiding individualized treatments for GC patients.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China,
| | - Shu-Yu Li
- Department of Gastroenterology, Zhongshan Hospital of Hubei Province, Wuhan City, Hubei Province 430071, China
| | - Jian-Ping Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China,
| | - Jun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China,
| |
Collapse
|
111
|
Proteasome mediated degradation of CDC25C and Cyclin B1 in Demethoxycurcumin treated human glioma U87 MG cells to trigger G2/M cell cycle arrest. Toxicol Appl Pharmacol 2018; 356:76-89. [DOI: 10.1016/j.taap.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022]
|
112
|
Luo DD, Peng K, Yang JY, Piyachaturawat P, Saengsawang W, Ao L, Zhao WZ, Tang Y, Wan SB. Structural modification of oridonin via DAST induced rearrangement. RSC Adv 2018; 8:29548-29554. [PMID: 35547324 PMCID: PMC9085272 DOI: 10.1039/c8ra05728a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
A simple and efficient protocol was developed for the syntheses of oridonin analogues, i.e. 6,20-epoxy ent-kaurane diterpenoid analogues from oridonin via diethylaminosulfur trifluoride (DAST) promoted rearrangement, most of which exhibited superior anticancer activities compared with their precursor.
Collapse
Affiliation(s)
- Dong-Dong Luo
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Yushan Road 5 Qingdao 266003 China +86-532-82031087
| | - Kai Peng
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Yushan Road 5 Qingdao 266003 China +86-532-82031087
| | - Jia-Yu Yang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Yushan Road 5 Qingdao 266003 China +86-532-82031087
| | | | - Witchuda Saengsawang
- Department of Physiology, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Lei Ao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), Nanjing OGpharma Co. Ltd. Nanjing 210036 China
| | - Wan-Zhou Zhao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), Nanjing OGpharma Co. Ltd. Nanjing 210036 China
| | - Yu Tang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Yushan Road 5 Qingdao 266003 China +86-532-82031087
| | - Sheng-Biao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Yushan Road 5 Qingdao 266003 China +86-532-82031087
| |
Collapse
|
113
|
Zhang H, Zhang X, Li X, Meng WB, Bai ZT, Rui SZ, Wang ZF, Zhou WC, Jin XD. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol 2018; 234:619-631. [PMID: 30069972 DOI: 10.1002/jcp.26816] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/30/2018] [Indexed: 01/09/2023]
Abstract
Pancreatic cancer (PC) is a serious malignancy with high mortality and poor prognosis due to nonspecific incipient symptoms and early metastasis. Also, increasing evidence indicates that a panel of genes is newly identified in the pathogenesis of PC. As is a regulatory subunit, elevated cyclin B1 (CCNB1) expression has been detected in different cancers including PC. This study is designed to investigate the effects of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in PC. PC tissues and normal pancreatic tissues were collected. Cells were transfected and assigned into different groups. The expressions of CCNB1, p53, MDM2, Bax, caspase-9, caspase-3, and p21 in tissues and cells were detected by reverse transcription quantitative polymerase chain reaction and western blot analysis. β-Galactosidase staining, MTT assay, and flow cytometry were conducted to test cell senescence, proliferation, cell cycle, and apoptosis. PC tissues showed higher expressions of CCNB1 and MDM2 and lower expressions of Bax, caspase-9, caspase-3, and p21. Cells transfected with shCCNB1 had lower expressions of CCNB1 and MDM2, whereas higher expressions of Bax, caspase-9, caspase-3, p53, and p21. The shCCNB1 group had decreased proliferation and S-phase cell proportion and increased apoptosis, senescence, and G0/G1-phase cell proportion. The PFT-α group showed higher expressions of MDM2 and lower expressions of Bax, caspase-9, caspase-3, p53, and p21. The PFT-α group had increased proliferation and S-phase cell proportion and declined apoptosis, senescence, and G0/G1-phase cell proportion. CCNB1 silencing inhibits cell proliferation and promotes cell senescence via activation of the p53 signaling pathway in PC.
Collapse
Affiliation(s)
- Hui Zhang
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Xuan Zhang
- Northwest Minzu University, Lanzhou, P. R. China
| | - Xun Li
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Wen-Bo Meng
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Zhong-Tian Bai
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Shao-Zhen Rui
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Zheng-Feng Wang
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Wen-Ce Zhou
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Xiao-Da Jin
- University of South China, Hengyang, P. R. China
| |
Collapse
|
114
|
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 2018; 8:39833-39848. [PMID: 28418855 PMCID: PMC5503657 DOI: 10.18632/oncotarget.16243] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy, one of the most promising minimally invasive treatments, has received increasing focus in tumor therapy research, which has been widely applied in treating superficial tumors. Three basic factors - photosensitizer, the light source, and oxidative stress - are responsible for tumor cell cytotoxicity. However, due to insufficient luminous flux and peripheral tissue damage, the utilization of photodynamic therapy is facing a huge limitation in deep tumor therapy. Osteosarcoma is the typical deep tumor, which is the most commonly occurring malignancy in children and adolescents. Despite developments in surgery, high risks of the amputation still threatens the health of osteosarcoma patients. In this review, we summarize recent developments in the field of photodynamic therapy and specifically PDT research in OS treatment modalities. In addition, we also provide some novel suggestions, which could potentially be a breakthrough in PDT-induced OS therapies. PDT has the potential to become an effective therapy while the its limitations still present when applied on the treatment of OS or other types of deep tumors. Thus, more researches and studies in the field are required.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Minzu Wu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengyi Ye
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
115
|
Cui S, Wang Y, Gong Y, Lin X, Zhao Y, Zhi D, Zhou Q, Zhang S. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (Camb) 2018; 7:473-479. [PMID: 30090597 PMCID: PMC6062336 DOI: 10.1039/c8tx00005k] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
As effective non-viral vectors of gene therapy, cationic lipids still have the problem of toxicity, which has become one of the main bottlenecks for their applications. The toxicity of cationic lipids is strongly connected to the headgroup structures. In this article, we studied the cytotoxicity of two cationic lipids with a quaternary ammonium headgroup (CDA14) and a tri-peptide headgroup (CDO14), respectively, and with the same linker bond and hydrophobic domain. The IC50 values of CDA14 and CDO14 against NCI-H460 cells were 109.4 μg mL-1 and 340.5 μg mL-1, respectively. To determine the effects of headgroup structures of cationic lipids on cytotoxicity, apoptosis related pathways were investigated. As the lipids with a quaternary ammonium headgroup could induce more apoptotic cells than the ones with a peptide headgroup, the enzymatic activity of caspase-9 and caspase-3 increased obviously, whereas the mitochondrial membrane potential (MMP) decreased. At the same time, the reactive oxygen species (ROS) levels also increased and the cell cycle was arrested at the S phase. The results showed that the toxicity of the cationic lipid had a close relationship with its headgroup structures, and the cytotoxic mechanism was mainly via the caspase activation dependent signaling pathway and mitochondrial dysfunction. Through this study, we hope to provide the scientific basis for exploiting safer and more efficient cationic lipids for gene delivery.
Collapse
Affiliation(s)
- Shaohui Cui
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yan Gong
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Xiao Lin
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Quan Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| |
Collapse
|
116
|
Liu X, Wu J, Zhang D, Wang K, Duan X, Meng Z, Zhang X. Network Pharmacology-Based Approach to Investigate the Mechanisms of Hedyotis diffusa Willd. in the Treatment of Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7802639. [PMID: 29853970 PMCID: PMC5954954 DOI: 10.1155/2018/7802639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hedyotis diffusa Willd. (HDW) is one of the renowned herbs often used in the treatment of gastric cancer (GC). However, its curative mechanism has not been fully elucidated. OBJECTIVE To systematically investigate the mechanisms of HDW in GC. METHODS A network pharmacology approach mainly comprising target prediction, network construction, and module analysis was adopted in this study. RESULTS A total of 353 targets of the 32 bioactive compounds in HDW were obtained. The network analysis showed that CA isoenzymes, p53, PIK3CA, CDK2, P27Kip1, cyclin D1, cyclin B1, cyclin A2, AKT1, BCL2, MAPK1, and VEGFA were identified as key targets of HDW in the treatment of GC. The functional enrichment analysis indicated that HDW probably produced the therapeutic effects against GC by synergistically regulating many biological pathways, such as nucleotide excision repair, apoptosis, cell cycle, PI3K/AKT/mTOR signaling pathway, VEGF signaling pathway, and Ras signaling pathway. CONCLUSIONS This study holistically illuminates the fact that the pharmacological mechanisms of HDW in GC might be strongly associated with its synergic modulation of apoptosis, cell cycle, differentiation, proliferation, migration, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Kaihuan Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaojiao Duan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
117
|
Guo WH, Chen ZY, Chen H, Lin T, Zhao ML, Liu H, Yu J, Hu YF, Li GX. [Sericin regulates proliferation of human gastric cancer MKN45 cells through autophagic pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:148-154. [PMID: 29502052 PMCID: PMC6743869 DOI: 10.3969/j.issn.1673-4254.2018.02.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effect of sericin on the proliferation of human gastric cancer MKN45 cells and explore the underlying molecular mechanism. METHODS MKN45 cells were transfected by LC3 double fluorescent autophagic virus, and the positive cells screened by puromycin were divided into blank group, sericin group and sericin∓3-MA group. After incubation with sericin for 48 h, the cells were examined for proliferation, apoptosis and cell cycle using CCK-8 assay and flow cytometry. Cell autophagy was detected by transmission electron microscopy (TEM) and fluorescent inverted microscope, and the autophagy-related markers including LC3, p62 and Beclin proteins were detected with Western blotting. Nude mice bearing gastric cancer xenograft were treated with normal saline or sericin injections (n=5) and the changes in the tumor volume and weight were measured. RESULTS Compared with the blank group, MKN45 cells with sericin treatment showed significantly inhibited proliferation both in vitro and in nude mice. Autophagosomes were observed in sericin-treated cells under TEM and fluorescent inverted microscope. Sericin treatment of the cells significantly increased the cell apoptosis (P<0.01), caused obvious cell cycle arrest in G2/M phase (P<0.01), up-regulated the expressions of both LC3-2 and Beclin, and down-regulated the expression of p62. The autophagy inhibitor 3-MA obviously antagonized the effects of sericin on cell apoptosis, cell cycle and autophagic protein expressions. CONCLUSION Sericin can inhibit the proliferation of human gastric cancer MKN45 cells by regulating cell autophagy to serve as potential anti-tumor agent.
Collapse
Affiliation(s)
- Wei-Hong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China. E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Oridonin inhibits oral cancer growth and PI3K/Akt signaling pathway. Biomed Pharmacother 2018; 100:226-232. [PMID: 29432993 DOI: 10.1016/j.biopha.2018.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/19/2023] Open
Abstract
Oridonin, a bioactive diterpenoid purified from Rabdosia rubescens, has been shown to possess anticancer capacity in several cancer types. However, its effects on oral squamous cell carcinoma (OSCC) cells remain unclear. This study aimed to investigate the anticancer ability of oridonin in OSCC cells, including proliferation, apoptosis and underlying mechanisms using the OSCC cell lines, UM1 and SCC25. The results showed that oridonin not only inhibited proliferation and clonal formation but also induced G2/M cell cycle arrest and apoptosis in UM1 and SCC25 cells in a dose-dependent manner. Western blot revealed that oridonin treatment increased the ratio of Bax/Bcl-2, and activated the cleavage of caspase-3, caspase-9 and PARP-1. Oridonin also induced G2/M phase arrest in OSCC cells via down-regulating the G2/M transition-related proteins such as cyclin B1 or up-regulating cyclin D1, cyclin D3, P21, p-CDK1 and cyclin A2. In addition, oridonin treatment significantly inhibited the phosphorylation of PI3K and Akt and inhibited tumor growth of OSCC xenograft in nude mice. Taken together, these results suggested that oridonin possesses anti-oral cancer capacity via inhibiting the PI3K/Akt signaling and induce apoptosis and G2/M-phase arrest. Therefore, oridonin may be a potential anticancer drug for the treatment of oral cancer.
Collapse
|
119
|
Fann LY, Chen Y, Chu DC, Weng SJ, Chu HC, Wu ATH, Lee JF, Ali AAA, Chen TC, Huang HS, Ma KH. Identification and preclinical evaluation of the small molecule, NSC745887, for treating glioblastomas via suppressing DcR3-associated signaling pathways. Oncotarget 2017; 9:11922-11937. [PMID: 29552282 PMCID: PMC5844718 DOI: 10.18632/oncotarget.23714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022] Open
Abstract
The small-molecule naphtha [2,3-f]quinoxaline-7,12-dione (NSC745887) can effectively inhibit the proliferation of various cancers by trapping DNA-topoisomerase cleavage. The aim of this study was to elucidate cellular responses of NSC745887 in human glioblastoma multiforme (GBM, U118MG and U87MG cells) and investigate the underlying molecular mechanisms. NSC745887 reduced the cell survival rate and increased the sub-G1 population in dose- and time-dependent manners in GBM cells. Moreover, NSC745887 increased expression of γH2AX and caused DNA fragmentation leading to DNA damage. Furthermore, Annexin V/propidium iodide and Br-dTP staining showed the apoptotic effect of NSC745887 in GBM cells. DNA repair proteins of ataxia-telangiectasia mutated (ATM), ATM and Rad3-related, and decoy receptor 3 also decreased with NSC745887 treatment. In addition, NSC745887 caused apoptosis by the caspase-8/9-caspase-3-poly(ADP-ribose) polymerase cascade. An in vivo study indicated that NSC745887 suppressed the [18F]-FDG-specific uptake value in brain tumors. Histological staining also indicated a decrease in Ki-67 and increases in γH2AX and cleaved caspase-3 in the brain tumor area. These data provide preclinical evidence for NSC745887 as a potential new small molecule drug for managing glioblastomas.
Collapse
Affiliation(s)
- Li-Yun Fann
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.,Department of Nursing and Department of Neurosurgery, Taipei City Hospital, Taipei, Taiwan, ROC.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ying Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Da-Chen Chu
- Department of Nursing and Department of Neurosurgery, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Heng-Cheng Chu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Alexander T H Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Jiann-Fong Lee
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ahmed Atef Ahmed Ali
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Tsung-Chih Chen
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsu-Shan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Kuo-Hsing Ma
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
120
|
Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest. Biochem J 2017; 474:4207-4218. [PMID: 29150436 DOI: 10.1042/bcj20170682] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/05/2017] [Accepted: 11/15/2017] [Indexed: 01/07/2023]
Abstract
Studies have demonstrated that microvesicles (MVs) derived from human Wharton's Jelly mesenchymal stromal cells (hWJMSCs) could ameliorate renal ischemia/reperfusion injury (IRI); however, the underlying mechanisms were not clear yet. Here, MVs were isolated and injected intravenously into rats immediately after ischemia of the left kidney, and Erk1/2 activator hepatocyte growth factor (HGF) or inhibitor U0126 was administrated. Tubular cell proliferation and apoptosis were identified by Ki67 or terminal-deoxynucleotidyl transferase-mediated nick end labeling immunostaining. Masson's tri-chrome straining and alpha-smooth muscle actin staining were used for assessing renal fibrosis. The mRNA or protein expression in the kidney was measured by quantitative reverse transcription-PCR or Western blot, respectively. The total collagen concentration was also determined. In vitro, NRK-52E cells that treated with MVs under hypoxia injury and with HGF or U0126 administration were used, and cell cycle analysis was performed. The effects of hWJMSC-MVs on enhancing the proliferation and mitigating the apoptosis of renal cells, abrogating IRI-induced fibrosis, improving renal function, decreasing collagen deposition, and altering the expression levels of epithelial-mesenchymal transition and cell cycle-related proteins in IRI rats were found. In vitro experiment showed that hWJMSC-MVs could induce G2/M cell cycle arrest and decrease the expression of collagen deposition-related proteins in NRK-52E cells after 24 or 48 h. However, U0126 treatment reversed these effects. In conclusion, MVs derived from hWJMSCs ameliorate IR-induced renal fibrosis by inducing G2/M cell cycle arrest via Erk1/2 signaling.
Collapse
|
121
|
Cai C, Qiu J, Qiu G, Chen Y, Song Z, Li J, Gong X. Long non-coding RNA MALAT1 protects preterm infants with bronchopulmonary dysplasia by inhibiting cell apoptosis. BMC Pulm Med 2017; 17:199. [PMID: 29237426 PMCID: PMC5729463 DOI: 10.1186/s12890-017-0524-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/24/2017] [Indexed: 01/10/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a neonatal chronic lung disease characterized by impaired pulmonary alveolar development in preterm infants. Until now, little is known about the molecular and cellular basis of BPD. There is increasing evidence that lncRNAs regulate cell proliferation and apoptosis during lung organogenesis. The potential role of lncRNAs in the pathogenesis of BPD is unclear. This study aims to clarify the role of MALAT1 during the process of BPD in preterm infants and illustrate the protective effect of MALAT1 involved in preterm infants. Methods We assessed the expression of MALAT1 in BPD mice lung tissues by reanalyzing dataset GSE25286 (Mouse GEO Genome 4302 Array) from gene expression database gene expression omnibus (GEO), and verified MALAT1 expression in BPD patients by realtime q-PCR. Then the role of MALAT1 in regulating cell biology was examined by profiling dataset GSE43830. The expression of CDC6, a known antiapoptopic gene was verified in BPD patients and the alveolar epithelial cell line A549 cells in which MALAT1 was knocked down. Cell apoptosis was determined by FACS using PI/Annexin-V staining. Results The expression of MALAT1 was significantly evaluated in lung tissues of BPD mice at day 14 and day 29 compared to WT (P < 0.05). In consistent with mRNA array profiling analysis, MALAT1 expression level in blood samples from preterm infants with BPD was significantly increased. Bioinformative data analysis of MALAT1 knockdown in WI-38 cells showed various differentially expressed genes were found enriched in apoptosis related pathway. Down-regulation of antiapoptopic gene, CDC6 expression was further verified by q-PCR result. PI/Annexin-V apoptisis assay results showed that MALAT1 knocked down in the alveolar epithelial cell line (A549) promotes cell apoptosis. Conclusions In our study, we found that up-regulation of lncRNA MALAT1 could protect preterm infants with BPD by inhibiting cell apoptosis. These data provide novel insights into MALAT1 regulation which may be relevant to cell fate and shed light on BPD prevention and treatment. Electronic supplementary material The online version of this article (10.1186/s12890-017-0524-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Jiajun Qiu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Gang Qiu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Yihuan Chen
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Zhijun Song
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Juan Li
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062.
| |
Collapse
|
122
|
Liu S, Cai X, Xia L, Jiang C, Chen P, Wang X, Zhang B, Zhao HY. Chloroquine exerts antitumor effects on NB4 acute promyelocytic leukemia cells and functions synergistically with arsenic trioxide. Oncol Lett 2017; 15:2024-2030. [PMID: 29434902 DOI: 10.3892/ol.2017.7488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/26/2017] [Indexed: 01/17/2023] Open
Abstract
Chloroquine (CQ) has been confirmed to exhibit antitumor effects on different types of cancer cell, but whether it exerts the same effect on acute promyelocytic leukemia (APL) cells remains to be confirmed. In the present study, the effects of various concentrations of CQ on the growth, apoptosis and cell cycle distribution of NB4 cells, as well as the potential mechanisms underlying these effects, were examined. The combined effect of CQ and arsenic trioxide (ATO) on the growth of NB4 cells was also determined. The results of the present study demonstrated that CQ treatment inhibited cell proliferation, and induced mitochondrial pathway apoptosis and S phase arrest in a dose-dependent manner by regulating apoptosis- and cell cycle-related proteins. CQ and ATO had a synergistic effect on the growth inhibition of NB4 cells, which may have been induced through the inhibition of autophagy. In conclusion, the results of the present study indicated that CQ exhibits a cytotoxic effect on NB4 cells and has a synergistic effect when combined with ATO, which thereby improves the curative effect of ATO on APL.
Collapse
Affiliation(s)
- Shousheng Liu
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Xiuyu Cai
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Liangping Xia
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Chang Jiang
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Ping Chen
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaopai Wang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Bei Zhang
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Hong Yun Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
123
|
Yang IH, Shin JA, Lee KE, Kim J, Cho NP, Cho SD. Oridonin induces apoptosis in human oral cancer cells via phosphorylation of histone H2AX. Eur J Oral Sci 2017; 125:438-443. [PMID: 29083074 DOI: 10.1111/eos.12387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oridonin, a natural diterpenoid purified from Rabdosia rubescens, has displayed beneficial biological activities, including anti-proliferation and anti-angiogenesis effects, in various types of cancers. However, the anti-cancer potential of oridonin and its mechanism in oral cancer have never previously been studied. In this study, we assessed the role of oridonin as an inducer of apoptosis in HSC-3 and HSC-4 human oral cancer cells. Our results showed that oridonin reduces the viability of human oral cancer cells and significantly increases the expression of γH2AX, a well-known marker of DNA damage. 4',6-Diamidino-2-phenylindole (DAPI) staining and western blotting showed that oridonin causes nuclear condensation and fragmentation, and induces cleavage of poly(ADP-ribose) polymerase (PARP). Moreover, oridonin-induced γH2AX accumulation was partially abrogated by Z-VAD, a pan-caspase inhibitor. Taken together, our results suggest that oridonin can effectively induce apoptosis by augmenting the expression of γH2AX in response to DNA damage and might be a promising anti-cancer drug candidate for the treatment of oral cancer.
Collapse
Affiliation(s)
- In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Eun Lee
- Department of Oral Medicine, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
124
|
Wen Y, Cao L, Lian WP, Li GX. The prognostic significance of high/positive expression of cyclin B1 in patients with three common digestive cancers: a systematic review and meta-analysis. Oncotarget 2017; 8:96373-96383. [PMID: 29221213 PMCID: PMC5707107 DOI: 10.18632/oncotarget.21273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/08/2017] [Indexed: 01/19/2023] Open
Abstract
Recently, several studies have reported that the expression of cyclin B1 may be associated with the prognosis of cancer. Nevertheless, their conclusions were still controversial. The present was designed to analyze and evaluate the prognostic role of cyclin B1 expression in patients with digestive cancer. PubMed, Embase, Cochrane Library and Web of Science were searched to January, 2017. Pooled odds ratio (OR) with 95% confidence intervals (CIs) were estimated. For the pooled OR estimates of OS, we performed subgroup analysis. Besides, sensitivity analysis was performed to examine the stability of the combined results. All statistical analyses were performed using standard statistical procedures provided in RevMan 5.2. A total of 12 studies (N = 2080 participants) were included for this meta-analysis. The positive/high expression of cyclin B1 had an obvious association with both 3-year overall survival (OR 0.21, 95% CI 0.12-0.37; P < 0.00001) and 5-year overall survival (OR 0.20, 95% CI 0.12-0.34; P < 0.00001) in esophageal cancer, and 5-year overall survival of colorectal cancer (OR 2.01, 95% CI 1.32-3.08; P = 0.001). This meta-analysis indicated that positive/high expression of cyclin B1 may have a close association with worse survival in patients with esophageal cancer, but better prognosis in patients with colorectal cancer.
Collapse
Affiliation(s)
- Yong Wen
- Chinese Medicine Department, Southwest Medical University Affiliated Hospital, Luzhou 646000, China
| | - Lei Cao
- Department of Pediatrics, Gansu Provincial Maternity and Child Care Hospital, Lanzhou 730000, China
| | - Wen-Ping Lian
- Department of Clinical Laboratory, The Third People's Hospital of He'nan Province, Zhengzhou 450000, China
| | - Guo-Xia Li
- Department of Pathology, Shanghai Minhang District Central Hospital, Shanghai 201199, China
| |
Collapse
|
125
|
Nan L, Huang M, Lai W, Jia R, Zheng Y, Yang L, Xie Q, Peng W. Impacts of the serum containing total flavonoids of Ajuga on rat glomerular mesangial cells. Mol Med Rep 2017; 16:4895-4902. [PMID: 28791415 DOI: 10.3892/mmr.2017.7194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to investigate the impacts and possible mechanisms of total flavonoids of Ajuga (TFA) on glomerular mesangial cells (GMC) through in vitro observations of the impacts of TFA‑containing serum on GMC proliferation and extracellular matrix (ECM) secretion in lipopolysaccharides (LPS)‑induced rats. Rat GMC was cultured in vitro, using LPS to stimulate the proliferation of GMC and the secretion of ECM; meanwhile, TFA‑containing serum (TFA‑S) was used for the intervention. Methyl thiazolyl tetrazolium (MTT) assay was performed to test the proliferation of GMC; enzyme‑linked immunosorbent assay (ELISA) was used to detect the expressions of fibronectin (FN) and collagen IV (Col‑IV) in cell supernatant, flow cytometry was performed to detect the cell cycle, and reverse transcription-polymerase chain reaction was performed to detect the expression levels of matrix metalloproteinase 9 (MMP‑9) mRNA and transforming growth factor β1 (TGF‑β1) mRNA. The GMC proliferation and the expressions of FN and Col‑IV in cell supernatant were significantly reduced after 24 and 48 h TFA‑S intervention (P<0.05 or 0.01). A total of 48 h subsequent to the intervention, the proportion of GMC in the G1 phase and the relative expression of MMP‑9 mRNA were significantly increased (P<0.05 or 0.01), however the proportion of GMC in S phase and the relative expression of TGF‑β1 mRNA were significantly reduced (P<0.05 or 0.01). TFA‑S can inhibit LPS‑induced GMC proliferation and ECM accumulation, and its roles are associated with regulating the cell cycle and the expression levels of TGF‑β1 and MMP‑9.
Collapse
Affiliation(s)
- Lihong Nan
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Mei Huang
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wenfang Lai
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ru Jia
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yanfang Zheng
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lan Yang
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qingqing Xie
- College of Pharmacy, School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Weihua Peng
- Department of Nephrology, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
126
|
Jie Z, Baoqin W, Changan L, Xiangli T, Zegeng L. Qibai Pingfei capsule medicated serum inhibits the proliferation of hypoxia-induced pulmonary arterial smooth muscle cells via the Ca 2+ /calcineurin/nuclear factor of activated T-cells 3 pathway. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
127
|
Tang Y, Xie M, Jiang N, Huang F, Zhang X, Li R, Lu J, Liao S, Liu Y. Icarisid II inhibits the proliferation of human osteosarcoma cells by inducing apoptosis and cell cycle arrest. Tumour Biol 2017. [PMID: 28621234 DOI: 10.1177/1010428317705745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Icarisid II, one of the main active components of Herba Epimedii extracts, shows potent antitumor activity in various cancer cell lines, including osteosarcoma cells. However, the anticancer mechanism of icarisid II against osteosarcoma U2OS needs further exploration. This study aims to investigate further antitumor effects of icarisid II on human osteosarcoma cells and elucidate the underlying mechanism. We cultivated human osteosarcoma USO2 cells in vitro using different concentrations of icarisid II (0-30 µM). Cell viability was detected at 24, 48, and 72 h using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis. Cell cycle was tested by flow cytometry after treatment with icarisid II for 48 h. Annexin V-allophycocyanin and 7-aminoactinomycin D staining were conducted to detect cell apoptosis. Quantitative real-time polymerase chain reaction and Western blot assay were performed to measure the levels of genes and proteins related to cell cycle and apoptosis. Results showed that icarisid II significantly inhibited the proliferation and induced apoptosis of human osteosarcoma U2OS cells. The half maximal inhibitory concentration values were 14.44, 11.02, and 7.37 µM at 24, 48, and 72 h, respectively. Cell cycle was arrested in the G2/M phase in vitro. In addition, icarisid II upregulated the expression levels of P21 and CyclinB1 whereas downregulated the expression levels of CyclinD1, CDC2, and P-Cdc25C, which were related to cell cycle arrest in U2OS cells. The cell apoptotic rate increased in a dose-dependent manner after treatment with icarisid II for 48 h. Icarisid II induced apoptosis by upregulating Bax, downregulating Bcl-2, and activating apoptosis-related proteins, including cleaved caspase-3, caspase-7, caspase-9, and poly (ADP-ribose) polymerase. These data indicate that icarisid II exhibits an antiproliferation effect on human osteosarcoma cells and induces apoptosis by activating the caspase family in a time- and dose-dependent manner in vitro. Therefore, icarisid II may be used as a candidate agent for the clinical treatment of osteosarcoma in the future.
Collapse
Affiliation(s)
- Yuanyuan Tang
- 1 The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mao Xie
- 1 The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Neng Jiang
- 2 Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
| | - Feifei Huang
- 1 The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao Zhang
- 1 The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruishan Li
- 1 The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingjing Lu
- 1 The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijie Liao
- 3 Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Liu
- 3 Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
128
|
Kopp M, Rotan O, Papadopoulos C, Schulze N, Meyer H, Epple M. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells. PLoS One 2017; 12:e0178260. [PMID: 28586345 PMCID: PMC5460861 DOI: 10.1371/journal.pone.0178260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.
Collapse
Affiliation(s)
- Mathis Kopp
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | | | - Nina Schulze
- Imaging Centre Campus Essen (ICCE), University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
129
|
Liu X, Su J, Shi Y, Guo Y, Suheryani I, Zhao S, Deng Y, Meng W, Chen Y, Sun L, Dai R. Herbal Formula, Baogan Yihao (BGYH), Prevented Dimethylnitrosamine(DMN)-Induced Liver Injury in Rats. Drug Dev Res 2017; 78:155-163. [PMID: 28524372 DOI: 10.1002/ddr.21388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023]
Abstract
Preclinical Research Baogan Yihao (BGYH) is a traditional Chinese herbal medicine for the treatment of chronic liver diseases. In this study, the effects of BGYH on dimethylnitrosamine (DMN)-induced liver fibrosis were investigated using a rat model. BGYH alleviate liver damage, as indicated by decreased levels of AST, ALT, γ-GT, and AKP. BGYH also prevented collagen deposition and reduced pathological tissue injury in liver tissue. In fibrosis, high levels of α-SMA and TGF-β in liver tissue were markedly attenuated by BGYH. The inhibitory effect of BGYH on HSC-T6 proliferation demonstrated that BGYH exhibited significant hepatoprotective and antifibrogenic effects on DMN-induced liver injury. These findings suggest that BGYH may have therapeutic potential in the prevention and therapy of liver fibrosis. Drug Dev Res 78 : 155-163, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiujie Liu
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Jing Su
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Yu Shi
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, PR China
| | - Ying Guo
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Imran Suheryani
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Shicong Zhao
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Weiwei Meng
- Beijing BIT&GY Pharmaceutical R&D Co. Ltd, Beijing, PR China
| | - Yan Chen
- Beijing BIT&GY Pharmaceutical R&D Co. Ltd, Beijing, PR China
| | - Lili Sun
- Beijing BIT&GY Pharmaceutical R&D Co. Ltd, Beijing, PR China
| | - Rongji Dai
- School of Life Science, Beijing Institute of Technology, Beijing, PR China
| |
Collapse
|
130
|
Zhang QQ, Chen J, Zhou DL, Duan YF, Qi CL, Li JC, He XD, Zhang M, Yang YX, Wang L. Dipalmitoylphosphatidic acid inhibits tumor growth in triple-negative breast cancer. Int J Biol Sci 2017; 13:471-479. [PMID: 28529455 PMCID: PMC5436567 DOI: 10.7150/ijbs.16290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis, accounting for approximately 12-24% of breast cancer cases. Accumulating evidence has indicated that there is no effective targeted therapy available for TNBC. Dipalmitoylphosphatidic acid (DPPA) is a bioactive phospholipid. However, the function of DPPA in the growth of TNBC has not yet been studied. In this study, we employed TNBC cells and a subcutaneous tumor model to elucidate the possible effect of DPPA on tumor growth in TNBC. We showed that DPPA significantly inhibited tumor growth in the mouse subcutaneous tumor model and suppressed cell proliferation and angiogenesis in TNBC tumor tissues. This inhibition was mediated partly by suppressing the expression of cyclin B1 (CCNB1), which directly promoted the accumulation of cells in the G2 phase and arrested cell cycle progression in human TNBC. In addition, the inhibition of tumor growth by DPPA may also be mediated by the suppression of tumor angiogenesis in TNBC. This work provides initial evidence that DPPA might be vital as an anti-tumor drug to treat TNBC.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jian Chen
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Da-Lei Zhou
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - You-Fa Duan
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cui-Ling Qi
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiang-Chao Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao-Dong He
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Min Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yong-Xia Yang
- School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
131
|
Zheng M, Zhu Z, Zhao Y, Yao D, Wu M, Sun G. Oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation. Mol Med Rep 2016; 15:375-379. [PMID: 27959435 DOI: 10.3892/mmr.2016.6008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/09/2016] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that oridonin, a tetracyclic diterpenoid compound extracted from Rabdosia rubescens, inhibits proliferation and induces apoptosis in several tumor cell lines. However, the mechanism by which oridonin inhibits the cell cycle remains poorly understood. In the present study, possible mechanisms by which oridonin affects cell cycle progression were explored in A549 lung cancer cells. Flow cytometry analysis indicated that oridonin inhibited the proliferation of A549 cells by inducing G2/M cell cycle arrest in a dose‑dependent manner. Western blot analysis revealed that in oridonin treated cells, phosphorylated (p‑)ATM serine/threonine kinase (S1981), p‑checkpoint kinase 2 (CHK2) (T68), p‑p53, and phosphorylated H2A histone family member X protein levels were visibly increased, indicating that oridonin promoted G2/M arrest in A549 cells through the ATM‑p53‑CHK2 pathway. This data suggests that oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation, which is likely a common mechanism in other tumor cell types when using this drug for cancer treatment.
Collapse
Affiliation(s)
- Mingxing Zheng
- Department of Respiratory Medicine, Clinical College of Anhui Medical University Affiliated Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zhibing Zhu
- Department of Gastrointestinal Surgery, Clinical College of Anhui Medical University Affiliated Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Yongzhao Zhao
- School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Da Yao
- Department of Thoracic Surgery, Clinical College of Anhui Medical University Affiliated Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Maoqing Wu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gengyun Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
132
|
Gui Z, Luo F, Yang Y, Shen C, Li S, Xu J. Oridonin inhibition and miR‑200b‑3p/ZEB1 axis in human pancreatic cancer. Int J Oncol 2016; 50:111-120. [PMID: 27878247 DOI: 10.3892/ijo.2016.3772] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
The relationship among oridonin, miR-200b-3p and pancreatic cancer on epithelial-to-mesenchymal transition (EMT) was investigated for the molecular mechanism or signaling pathways on the migration in pancreatic cancer. BxPC-3 and PANC-1 cells were cultivated and the IC50 of oridonin in BxPC-3 and PANC-1 cells were obtained by the CCK-8 array. The expression of miR‑200b-3p was verified by using real-time PCR and its target gene was predicted. BxPC-3 and PANC-1 cells were treated with oridonin or transfected by miR-200b-3p, those cells were used for western blot assay, Transwell assay, ELISA, immunofluorescence staining, tumorigenesis assay in nude mice and immunohistochemical assay to verify the effects of oridonin or miR-200b-3p on pancreatic cancer. We found that oridonin inhibited the proliferation of BxPC-3 and PANC-1 cells in a dose-dependent manner. miR-200b-3p was downregulated by oridonin in BxPC-3 and PANC-1 cells. ZEB1 was a target gene for miR-200b-3p. Oridonin or overexpression of miR‑200b-3p can inhibit the cell migration in BxPC-3 and PANC-1 cells. miR-200b-3p can inhibit the EMT and oridonin can inhibit the expression of ZEB1, N-cadherin and fibronectin but not increase the expression of E-cadherin, while the cell adhesion molecules ICAM-1 and VCAM-1 were decreased by oridonin in BxPC-3 and PANC-1 cells and the cytoskeleton was altered by oridonin in PANC-1 cells compared with the control. In summary, the results demonstrate that miR‑200b-3p was able to inhibit the EMT of human pancreatic cancer in vivo and in vitro by targeted ZEB1. In vitro, oridonin had a certain effect on the migration in BxPC-3 and PANC-1 cells, but not though type III EMT by miR-200-3p/ZEB1 axis, and may be related to type Ⅱ EMT, tumor microenvironment or altering the cytoskeleton. In vivo, oridonin inhibited the cancer migration in the nude mouse model though inhibiting EMT.
Collapse
Affiliation(s)
- Zhifang Gui
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Feng Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yayang Yang
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Can Shen
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shuquan Li
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jian Xu
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
133
|
R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase. Mar Drugs 2016; 14:md14090166. [PMID: 27626431 PMCID: PMC5039537 DOI: 10.3390/md14090166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 02/04/2023] Open
Abstract
R-Phycoerythrin (R-PE), one of the chemical constituents of red algae, could produce singlet oxygen upon excitation with the appropriate radiation and possibly be used in photodynamic therapy (PDT) for cancer. Documents reported that R-PE could inhibit cell proliferation in HepG2 and A549 cells, which was significative for cancer therapy. This is due to the fact that R-PE could kill cancer cells directly as well as by PDT. However, little is known about the cytotoxicity of R-PE to the SGC-7901 cell. In this study, it has been found that R-PE could inhibit SGC-7901 proliferation and induce cell apoptosis, which was achieved by arresting the SGC-7901 cell at S phase. CyclinA, CDK2 and CDC25A are proteins associated with the S phase, and it was found that R-PE could increase the expression of cyclin A protein and decrease the expression of CDK2 and CDC25A proteins. Thus, it was concluded that R-PE reduced the CDK2 protein activated through decreasing the CDC25A factor, which reduced the formation of Cyclin-CDK complex. The reduction of Cyclin-CDK complex made the SGC-7901 cells arrest at the S phase. Therefore, R-PE induced apoptosis by arresting the SGC-7901 cell at S phase was successful, which was achieved by the expression of the CDC25A protein, which reduced the CDK2 protein actived and the formation of Cyclin-CDK complex.
Collapse
|
134
|
Li D, Han T, Liao J, Hu X, Xu S, Tian K, Gu X, Cheng K, Li Z, Hua H, Xu J. Oridonin, a Promising ent-Kaurane Diterpenoid Lead Compound. Int J Mol Sci 2016; 17:E1395. [PMID: 27563888 PMCID: PMC5037675 DOI: 10.3390/ijms17091395] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
Oridonin belongs to ent-kaurane tetracyclic diterpenoid and was first isolated from Isodon species. It exhibits inhibitory activities against a variety of tumor cells, and pharmacological study shows that oridonin could inhibit cell proliferation, DNA, RNA and protein synthesis of cancer cells, induce apoptosis and exhibit an antimutagenic effect. In addition, the large amount of the commercially-available supply is also very important for the natural lead oridonin. Moreover, the good stability, suitable molecular weight and drug-like property guarantee its further generation of a natural-like compound library. Oridonin has become the hot molecule in recent years, and from the year 2010, more than 200 publications can be found. In this review, we summarize the synthetic medicinal chemistry work of oridonin from the first publication 40 years ago and share our research experience of oridonin for about 10 years, which may provide useful information to those who are interested in this research field.
Collapse
Affiliation(s)
- Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Tong Han
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jie Liao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Kangtao Tian
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, China.
| | - Keguang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, and School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
135
|
Wu QX, Yuan SX, Ren CM, Yu Y, Sun WJ, He BC, Wu K. Oridonin upregulates PTEN through activating p38 MAPK and inhibits proliferation in human colon cancer cells. Oncol Rep 2016; 35:3341-8. [PMID: 27108927 DOI: 10.3892/or.2016.4735] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022] Open
Abstract
Oridonin (ORI) has been reported as an antiproliferation and apoptosis-inducing natural product in various cancer cells. However, the exact molecular mechanism underlying these effects remains unclear. In the present study, we demonstrated the antiproliferation effect of ORI in HCT116 cells, and analyzed the possible molecular mechanism which mediates this effect. We found that ORI inhibits proliferation, induces cell cycle arrest and apoptosis in HCT116 cells, thus also tumor growth. Mechanically, we found that ORI has no substantial effect on mRNA expression of phosphatase and tensin homologue (PTEN), but increases the total protein level of PTEN and markedly reduces the phosphorylation of PTEN; Exogenous expression of PTEN potentiates the anticancer effect of ORI, while knockdown of PTEN attenuates it. ORI also increases the phosphorylation of p38 MAPK, and p38 MAPK-specific inhibitor reduces the antiproliferation effect ORI in HCT116 cells. Moreover, inhibition of p38 MAPK increases the phosphorylation of PTEN, and reverses ORI-induced decrease of PTEN phosphorylation. Our findings suggested that ORI may be a potential anticancer drug for colon cancer, this effect may be mediated by enhancing the function of PTEN through reducing its phosphorylation, which may be resulted from the ORI-induced activation of p38 MAPK.
Collapse
Affiliation(s)
- Qiu-Xiang Wu
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Shuang-Xue Yuan
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Chun-Mei Ren
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Yu Yu
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Wen-Juan Sun
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Bai-Cheng He
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Ke Wu
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
136
|
Gao S, Tan H, Zhu N, Gao H, Lv C, Gang J, Ji Y. Oridonin induces apoptosis through the mitochondrial pathway in human gastric cancer SGC-7901 cells. Int J Oncol 2016; 48:2453-60. [PMID: 27082253 DOI: 10.3892/ijo.2016.3479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/21/2016] [Indexed: 11/05/2022] Open
Abstract
Oridonin is one of the most important antitumor active ingredients of Rabdosia rubescens. Recently published studies from our laboratory have demonstrated that oridonin was able to arrest human gastric cancer SGC-7901 cells at G2/M phase. However, little is known about inducing apoptosis in gastric cancer. The aim of this study was to investigate the effect of oridonin on antineoplastic capability of SGC-7901 cells and the detailed molecular mechanism of oridonin-mediated intrinsic pathway of apoptosis. Cell proliferation was assessed by MTT assay while apoptosis induced by oridonin was determined by Hoechst 33342 staining assay and Annexin V/PI double staining assay. Early apoptotic rate was stained by Annexin V/PI and detected by flow cytometry. Apoptosis pathway was analyzed by western blot analysis of Bcl-2, Bax, cytochrome c and caspase-3 expression. The results showed that oridonin was able to inhibit the SGC-7901 cell proliferation, the 50% growth inhibition (IC50) was 22.74 µM. Oridonin could induce cell apoptosis of SGC-7901 cells and the early apoptotic rates induced by 0, 20, 40, 80 µmol/l oridonin were 1.53±0.67, 3.33±0.29, 84.80±0.82 and 96.43±0.51%, respectively. Western blot analysis revealed that oridonin downregulated Bcl-2 protein (the anti-apoptotic factor) and upregulated Bax protein (pro-apoptotic factor), eventually leading to a reduction in the ratio of Bcl-2/Bax proteins. Furthermore, oridonin induced the release of cytochrome c from the mitochondria to the cytosol and the activation of caspase-3. Taken together, the current study suggested that oridonin induced apoptosis in SGC-7901 cells via the mitochondrial signal pathway, which may represent one of the major mechanisms of oridonin-mediated apoptosis in SGC-7901 cells.
Collapse
Affiliation(s)
- Shiyong Gao
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, P.R. China
| | - Huixin Tan
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Nan Zhu
- Engineering Research Center of Natural Anticancer Drugs of Ministry of Education, Harbin University of Commerce, Harbin 150076, P.R. China
| | - Haiyu Gao
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, P.R. China
| | - Chunyu Lv
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, P.R. China
| | - Jian Gang
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, P.R. China
| | - Yubin Ji
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, P.R. China
| |
Collapse
|
137
|
Wang G, Gao M. Influence of Toxoplasma gondii on in vitro proliferation and apoptosis of hepatoma carcinoma H7402 cell. ASIAN PAC J TROP MED 2015; 9:63-6. [PMID: 26851789 DOI: 10.1016/j.apjtm.2015.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To discuss the influence of tachyzoite of Toxoplasma gondii (T. gondii) RH strain on proliferation and apoptosis of hepatoma carcinoma (HCC) H7402 cell. METHODS The HCC H7402 cell in logarithmic phase and tachyzoite of T. gondii RH strain in different concentrations (1 × 10(7)/mL, 2 × 10(7)/mL, 4 × 10(7)/mL, 8 × 10(7)/mL and 16 × 10(7)/mL) were co-cultured. CCK-8 was utilized to determine the inhibition rate of T. gondii tachyzoite on H7402 cell growth. Flow cytometry was used to detect the change of cell cycle. RT-PCR method was used to detect the expression of cyclinB1 and cdc2-two genes related to cell cycle. Western blot method was used to detect the expression of apoptosis-related proteins Caspase-3 and Bcl-2. RESULTS The tachyzoite of T. gondii RH strain can inhibit the proliferation of HCC H7402 cells. The inhibition rate of tumor cell growth increased with the increase of concentration of T. gondii tachyzoite. With the increase of concentration of T. gondii tachyzoite, the proportion of G0/G1 phase of H7402 cell increased, the proportion of S phase decreased, and PI value decreased accordingly. The expression of cyclinB1 and cdc2 genes decreased with the increase of the concentration of T. gondii tachyzoite. With the increase of the concentration of tachyzoite of T. gondii RH strain, the expression quantity of Caspase-3 in H7402 cell increased, but the expression quantity of Bcl-2 protein decreased. CONCLUSIONS T. gondii can inhibit the in vitro proliferation of HCC H7402 cell, and induce its apoptosis. This effect shows a trend of concentration-dependent increase. Moreover, it is related to the down-regulation of cyclinB1 and cdc2 (cell cycle-related genes), the increase of apoptosis-related protein Caspase-3, and the decrease of Bcl-2 expression.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, People's Hospital of Zhengzhou, Zhengzhou 450012, China
| | - Ming Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
138
|
Reddy VR, Annamalai T, Narayanan V, Ramanathan A. Hypermethylation of promoter region of LATS1--a CDK interacting protein in oral squamous cell carcinomas--a pilot study in India. Asian Pac J Cancer Prev 2015; 16:1599-603. [PMID: 25743838 DOI: 10.7314/apjcp.2015.16.4.1599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic silencing of tumor suppressor genes due to promoter hypermethylation is one of the frequent mechanisms observed in cancers. Hypermethylation of several tumor suppressor genes involved in cell cycle regulation has been reported in many types of tumors including oral squamous cell carcinomas. LATS1 (Large Tumor Suppressor, isoform 1) is a novel tumor suppressor gene that regulates cell cycle progression by forming complexes with the cyclin dependent kinase, CDK1. Promoter hypermethylation of the LATS1 gene has been observed in several carcinomas and also has been linked with prognosis. However, the methylation status of LATS1 in oral squamous cell carcinomas is not known. As oral cancer is one of the most prevalent forms of cancer in India, the present study was designed to investigate the methylation status of LATS1 promoter and associate it with histopathological findings in order to determine any associations of the genetic status with stage of differentiation. MATERIALS AND METHODS Tumor chromosomal DNA isolated from biopsy tissues of thirteen oral squamous cell carcinoma biopsy tissues were subjected to digestion with methylation sensitive HpaII enzyme followed by amplification with primers flanking CCGG motifs in promoter region of LATS1 gene. The PCR amplicons were subsequently subjected to agarose gel electrophoresis along with undigested amplification control. RESULTS HpaII enzyme based methylation sensitive PCR identified LATS1 promoter hypermethylation in seven out of thirteen oral squamous cell carcinoma samples. CONCLUSIONS The identification of LATS1 promoter hypermethylation in seven oral squamous cell carcinoma samples (54%), which included one sample with epithelial dysplasia, two early invasive and one moderately differentiated lesions indicates that the hypermethylation of this gene may be one of the early event during carcinogenesis. To the best of our knowledge, this is the first study to have explored and identified positive association between LATS1 promoter hypermethylation with histopathological features in oral squamous cell carcinomas.
Collapse
Affiliation(s)
- Vijaya Ramakrishna Reddy
- Oral and Maxillofacial Surgery, Rajah Muthiah Dental College and Hospital, Annamalai University, Annamalai Nagar, India E-mail :
| | | | | | | |
Collapse
|
139
|
Lu X, Sun W, Tang Y, Zhu L, Li Y, Ou C, Yang C, Su J, Luo C, Hu Y, Cao J. Identification of key genes in hepatocellular carcinoma and validation of the candidate gene, cdc25a, using gene set enrichment analysis, meta-analysis and cross-species comparison. Mol Med Rep 2015; 13:1172-8. [PMID: 26647881 PMCID: PMC4732839 DOI: 10.3892/mmr.2015.4646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to determine key pathways and genes involved in the pathogenesis of hepatocellular carcinoma (HCC) through bioinformatic analyses of HCC microarray data based on cross-species comparison. Microarray data of gene expression in HCC in different species were analyzed using gene set enrichment analysis (GSEA) and meta-analysis. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to determine the mRNA and protein expression levels of cdc25a, one of the identified candidate genes, in human, rat and tree shrew samples. The cell cycle pathway had the largest overlap between the GSEA and meta-analysis. Meta-analyses showed that 25 genes, including cdc25a, in the cell cycle pathway were differentially expressed. Cdc25a mRNA levels in HCC tissues were higher than those in normal liver tissues in humans, rats and tree shrews, and the expression level of cdc25a in HCC tissues was higher than in corresponding paraneoplastic tissues in humans and rats. In human HCC tissues, the cdc25a mRNA level was significantly correlated with clinical stage, portal vein tumor thrombosis and extrahepatic metastasis. Western blotting showed that, cdc25a protein levels were significantly upregulated in HCC tissues in humans, rats and tree shrews. In conclusion, GSEA and meta-analysis can be combined to identify key molecules and pathways involved in HCC. This study demonstrated that the cell cycle pathway and the cdc25a gene may be crucial in the pathogenesis and progression of HCC.
Collapse
Affiliation(s)
- Xiaoxu Lu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wen Sun
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanping Tang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lingqun Zhu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuan Li
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chao Ou
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chun Yang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianjia Su
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chengpiao Luo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanling Hu
- The Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Ji Cao
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
140
|
Lin TY, Lee CC, Chen KC, Lin CJ, Shih CM. Inhibition of RNA transportation induces glioma cell apoptosis via downregulation of RanGAP1 expression. Chem Biol Interact 2015; 232:49-57. [DOI: 10.1016/j.cbi.2015.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/14/2015] [Accepted: 02/23/2015] [Indexed: 02/04/2023]
|
141
|
Luo Y, Wu Y, Peng Y, Liu X, Bie J, Li S. Systematic analysis to identify a key role of CDK1 in mediating gene interaction networks in cervical cancer development. Ir J Med Sci 2015; 185:231-9. [PMID: 25786624 DOI: 10.1007/s11845-015-1283-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aims to identify corresponding differentially expressed genes in cervical cancer by comparing gene expression profiles between normal and cervical cancer samples. METHOD To identify differentially expressed genes in cervical cancer, two groups of Affymetrix microarray data available online were analyzed. One group consisted of 43 carcinomatous cervical epithelial cell samples, and the other was composed of 17 healthy cervical epithelial cell samples, both from the Amerindian. R packages-GO.db, KEGG.db and KEGGREST were used to detect GO categories and KEGG pathways with significant overrepresentation in differentially expressed genes comparing with the whole genome. Cytoscape was utilized to construct biological networks. RESULTS By comparing gene expression profile of normal and cervical cancer samples, 122 differentially expressed genes were identified including 46 up-regulated genes and 76 down-regulated genes. Using the identified differentially expressed genes, a large and a small biological network was constructed. In addition, 402 GO biological processes and 9 KEGG pathways were over-represented. Top significant biological processes included cell cycle and cell proliferation. Moreover, top significant KEGG pathways were oocyte meiosis, cell cycle and progesterone-mediated oocyte maturation. Most importantly, CDK1 frequently appeared in these processes and pathways, which indicated its significant role in the progression of cervical cancer. CONCLUSION CDK1 plays a comprehensive role in mediating genetic networks implicated in the progression of cervical cancer. Novel therapeutics targeting CDK1 or its related pathways might help improve prognosis of advanced stage cervical cancer.
Collapse
Affiliation(s)
- Y Luo
- Department of Gynaecology and Obstetrics, Nanchong Central Hospital, North Sichuan Medical College, NO.97 South Renmin Road, Nanchong, 637000, Sichuan, China.
| | - Y Wu
- Department of Gynaecology and Obstetrics, Nanchong Central Hospital, North Sichuan Medical College, NO.97 South Renmin Road, Nanchong, 637000, Sichuan, China
| | - Y Peng
- Department of Gynaecology and Obstetrics, Nanchong Central Hospital, North Sichuan Medical College, NO.97 South Renmin Road, Nanchong, 637000, Sichuan, China
| | - X Liu
- Department of Gynaecology and Obstetrics, Nanchong Central Hospital, North Sichuan Medical College, NO.97 South Renmin Road, Nanchong, 637000, Sichuan, China
| | - J Bie
- Department of Oncology, Nanchong Central Hospital, North Sichuan Medical College, NO.112 Chenshou Road Nanchong, Nanchong, 637000, Sichuan, China
| | - S Li
- Department of Oncology, Nanchong Central Hospital, North Sichuan Medical College, NO.112 Chenshou Road Nanchong, Nanchong, 637000, Sichuan, China
| |
Collapse
|
142
|
Gao SY, Gong YF, Sun QJ, Bai J, Wang L, Fan ZQ, Sun Y, Su YJ, Gang J, Ji YB. Screening antitumor bioactive fraction from Sauromatum giganteum (Engl.) Cusimano & Hett and sensitive cell lines with the serum pharmacology method and identification by UPLC-TOF-MS. Molecules 2015; 20:4290-306. [PMID: 25756649 PMCID: PMC6272407 DOI: 10.3390/molecules20034290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/09/2014] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Sauromatum giganteum (Engl.) Cusimano & Hett Tuber are used in Chinese folklore medicine for treatment of neoplasms. However, the claim has not been scientifically validated. The aim of the study is to screen the antitumor bioactive fraction of Sauromatum giganteum (Engl.) Cusimano & Hett Tuber and sensitive tumor cell lines using a cytotoxicity assay in vitro and tumor transplantation method in vivo, to support its use in folk medicine. The petroleum ether fraction, chloroform fraction, ethyl acetate fraction, n-butanol fraction and water fraction were successively extracted by turn by the maceration under reflux assay. Screening of antitumor bioactive fraction and sensitive cell lines were measured by MTT assay and the serum pharmacology method, and in vivo the antitumor activities of the active fraction was evaluated by using S180 or H22 tumor-bearing mice model and Kunming mice. The active constituents of ethyl acetate fraction of Sauromatum giganteum (Engl.) Cusimano & Hett were characterized by UPLC-TOF-MS. Compared with control groups, mice serum containing ethyl acetate fraction had a inhibition effect on SMMC-7721 cell, SGC-7901 cell, MCF-7 cell, HeLa cell, A549 cell, HT-29, and MDA-MB-231, respectively, but mice serum containing other four fractions had no different with that of control group. The inhibition capabilities of mice serum containing ethyl acetate fraction on the seven cell lines in descending order is SGC-7901 > SMMC-7721 > MCF-7 > HT-29 > A549 > HeLa > MDA-MB-231. In vivo the inhibition rate of 106, 318, 954 mg/kg·d ethyl acetate fraction dry extract to sarcoma S180 is 15.22%, 26.15% and 40.24%, respectively, and life prolonging rate to hepatoma H22 is 33.61%, 40.16% and 55.74%. A total of 14 compounds were identified in the ethyl acetate fraction of Sauromatum giganteum (Engl.) Cusimano & Hett. The results of the experimental studies proved the antitumor activity of Sauromatum giganteum (Engl.) Cusimano & Hett and supported the traditional use of this plant. These data indicate the potential for the use of ethyl acetate fraction of Sauromatum giganteum (Engl.) Cusimano & Hett Tuber in tumor therapy, anti-tumor activity on cancer cell line in descending order is SGC-7901 > SMMC-7721 > MCF-7 > HT-29 > A549 > HeLa > MDA-MB-231.
Collapse
Affiliation(s)
- Shi-Yong Gao
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin Commerce University, Harbin 150076, Heilongjiang, China.
| | - Yun-Fei Gong
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin Commerce University, Harbin 150076, Heilongjiang, China.
| | - Qiu-Jia Sun
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin Commerce University, Harbin 150076, Heilongjiang, China.
| | - Jing Bai
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin Commerce University, Harbin 150076, Heilongjiang, China.
| | - Long Wang
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin Commerce University, Harbin 150076, Heilongjiang, China.
- Engineering Research Center of Natural Anticancer Drugs of Ministry of Education, Harbin University of Commerce, Harbin 150076, Heilongjiang, China.
| | - Zi-Quan Fan
- China Solution Center, Waters Technolygies (Shanghai) Ltd., Shanghai 201206, China.
| | - Yu Sun
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin Commerce University, Harbin 150076, Heilongjiang, China.
- Engineering Research Center of Natural Anticancer Drugs of Ministry of Education, Harbin University of Commerce, Harbin 150076, Heilongjiang, China.
| | - Yi-Jun Su
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin Commerce University, Harbin 150076, Heilongjiang, China.
| | - Jian Gang
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin Commerce University, Harbin 150076, Heilongjiang, China.
| | - Yu-Bin Ji
- The Institute of Materia Medica, The Research Center of Life Sciences and Environmental Sciences, Harbin Commerce University, Harbin 150076, Heilongjiang, China.
| |
Collapse
|
143
|
Gao SY, Li J, Wang L, Sun QJ, Gong YF, Gang J, Su YJ, Ji YB. Ethanol but not aqueous extracts of tubers of Sauromatum Giganteum(Engl.) Cusimano and Hett inhibit cancer cell proliferation. Asian Pac J Cancer Prev 2015; 15:10613-9. [PMID: 25605148 DOI: 10.7314/apjcp.2014.15.24.10613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both alcohol and aqueous extracts of Sauromatum giganteum(Engl.) Cusimano and Hett, the dried root tuber of which is named Baifuzi in Chinese, have been used for folklore treatment of cancer in Northeast of China. However, little is known about which is most suitable to the cancer therapy. MATERIALS AND METHODS Serum pharmacology and MTT assays were adopted to detect the effects of ethanol and aqueous extracts of Sauromatum giganteum(Engl.) Cusimano and Hett , prepared by heat reflux methods, on proliferation of different cancer cells. RESULTS Cancer cells treated with medium supplemented with 10%, 20%, 40% serum(v/v) containing ethanol extract had a decline in viability, with inhibition rates of 7.69%, 21.8%, 41.9% in MCF-7 cells, 42.8%, 48.1%, 51.8% in SGC-7901 cells, 44.1%, 49.2%, 53.7% in SMMC-7721 cells, 6.8%, 15.2%, 39.8% in HepG2 cells, 7.57%, 16.3%, 36.2% in HeLa cells, 6.24%, 12.5%, 27.4% in A549 cells, and 7.20%, 17.5%, 31.3% in MDA-MB-231 cells, respectively. Viability in the aqueous extract groups was no different with that of controls. CONCLUSIONS An ethanol extract of Sauromatum giganteum(Engl.) Cusimano and Hett inhibited the proliferation of SMMC-7721, SGC-7901 and MCF-7 cells, which supports the use of alcoholic but not aqueous extracts for control of sensive cancers, which might include hepatocarcinoma, gastric cancer and breast cancer.
Collapse
Affiliation(s)
- Shi-Yong Gao
- Institute of Materia Medica, Research Center of Life Science and Environmental Science, Harbin University of Commerce, and Key Laboratory of Cancer Prevention and Anticancer Drugs of Heilongjiang Province, Harbin, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|