101
|
Babulal GM, Quiroz YT, Albensi BC, Arenaza-Urquijo E, Astell AJ, Babiloni C, Bahar-Fuchs A, Bell J, Bowman GL, Brickman AM, Chételat G, Ciro C, Cohen AD, Dilworth-Anderson P, Dodge HH, Dreux S, Edland S, Esbensen A, Evered L, Ewers M, Fargo KN, Fortea J, Gonzalez H, Gustafson DR, Head E, Hendrix JA, Hofer SM, Johnson LA, Jutten R, Kilborn K, Lanctôt KL, Manly JJ, Martins RN, Mielke MM, Morris MC, Murray ME, Oh ES, Parra MA, Rissman RA, Roe CM, Santos OA, Scarmeas N, Schneider LS, Schupf N, Sikkes S, Snyder HM, Sohrabi HR, Stern Y, Strydom A, Tang Y, Terrera GM, Teunissen C, Melo van Lent D, Weinborn M, Wesselman L, Wilcock DM, Zetterberg H, O'Bryant SE. Perspectives on ethnic and racial disparities in Alzheimer's disease and related dementias: Update and areas of immediate need. Alzheimers Dement 2019; 15:292-312. [PMID: 30555031 PMCID: PMC6368893 DOI: 10.1016/j.jalz.2018.09.009] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease and related dementias (ADRDs) are a global crisis facing the aging population and society as a whole. With the numbers of people with ADRDs predicted to rise dramatically across the world, the scientific community can no longer neglect the need for research focusing on ADRDs among underrepresented ethnoracial diverse groups. The Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART; alz.org/ISTAART) comprises a number of professional interest areas (PIAs), each focusing on a major scientific area associated with ADRDs. We leverage the expertise of the existing international cadre of ISTAART scientists and experts to synthesize a cross-PIA white paper that provides both a concise "state-of-the-science" report of ethnoracial factors across PIA foci and updated recommendations to address immediate needs to advance ADRD science across ethnoracial populations.
Collapse
Affiliation(s)
- Ganesh M Babulal
- Department of Neurology and Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Arlene J Astell
- Department of Occupational Sciences & Occupational Therapy, University of Toronto, CA; School of Psychology and Clinical Language Sciences, University of Reading, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Neuroscience, IRCCS-Hospital San Raffaele Pisana of Rome and Cassino, Rome and Cassino, Italy
| | - Alex Bahar-Fuchs
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, the University of Melbourne, Australia
| | | | - Gene L Bowman
- Nutrition and Brain Health Laboratory, Nestlé Institute of Health Sciences, Lausanne, Switzerland; Department of Neurology, Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Adam M Brickman
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Gaël Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Carrie Ciro
- Department of Occupational Therapy Education, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Hiroko H Dodge
- Department of Neurology, Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Simone Dreux
- Undergraduate Program of History and Science, Harvard College, Cambridge, MA, USA
| | - Steven Edland
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Anna Esbensen
- Department of Pediatrics, University of Cincinnati College of Medicine & Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lisbeth Evered
- Melbourne Medical School, University of Melbourne, Australia
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Keith N Fargo
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Hector Gonzalez
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Research Center, University of San Diego, CA, USA
| | - Deborah R Gustafson
- Department of Neurology, Section for NeuroEpidemiology, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - James A Hendrix
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Scott M Hofer
- Adult Development and Aging, University of Victoria, British Columbia, CA, USA
| | - Leigh A Johnson
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Roos Jutten
- VU University Medical Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Kerry Kilborn
- Department of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Krista L Lanctôt
- Sunnybrook Research Institute of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Jennifer J Manly
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Ralph N Martins
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Michelle M Mielke
- Department of Epidemiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Esther S Oh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mario A Parra
- School of Social Sciences, Department of Psychology, Heriot-Watt University, UK; Universidad Autónoma del Caribe, Barranquilla, Colombia; Neuroprogressive and Dementia Network, UK
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, CA, USA
| | - Catherine M Roe
- Department of Neurology and Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Octavio A Santos
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Nikolaos Scarmeas
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA; Aiginition Hospital, 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Lon S Schneider
- Department of Psychiatry and The Behavioral Sciences, University of Southern California, CA, USA
| | - Nicole Schupf
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Sietske Sikkes
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Heather M Snyder
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Hamid R Sohrabi
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Yaakov Stern
- Department of Neurology, Columbia University, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Yi Tang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Graciela Muniz Terrera
- Centers for Clinical Brain Sciences and Dementia Prevention, University in Edinburgh, Scotland, UK
| | - Charlotte Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Debora Melo van Lent
- Department of Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Weinborn
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | | | - Donna M Wilcock
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sid E O'Bryant
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
102
|
Association of Alzheimer's Disease with the Risk of Developing Epilepsy: a 10-Year Nationwide Cohort Study. Dement Neurocogn Disord 2019; 17:156-162. [PMID: 30906405 PMCID: PMC6425886 DOI: 10.12779/dnd.2018.17.4.156] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose Previous studies have reported conflicting results about the prevalence of seizures in Alzheimer's disease (AD). There are few epidemiological studies on this topic in Asia. Thus, the objective of this study was to examine demographic and clinical characteristics as well as incidence for seizures in AD patients compared to non-AD patients in a prospective, longitudinal, community-based cohort with a long follow-up. Methods Data were collected from National Health Insurance Service-National Elderly Cohort (NHIS-elderly) Database to define patients with AD from 2004–2006 using Korean Classification Diseases codes G30 and F00. We performed a 1:5 case-control propensity score matching based on age, sex, and household income. We conducted Cox proportional hazards regression analysis to estimate the risk of epilepsy in AD patients. Results In the cohort study, patients with AD had higher risk for epilepsy than those without AD, with hazard ratio of 2.773 (95% confidence interval [CI], 2.515–3.057). This study also showed that male gender and comorbidities such as hypertension, hyperlipidemia, diabetes, and chronic kidney disease increased the risk of developing epilepsy. Patients with AD had 1.527 (95% CI, 1.375–1.695) times higher mortality rate than those in the control group. Conclusions AD patients have significantly higher risk of developing epilepsy than non-AD patients.
Collapse
|
103
|
Kawakami O, Koike Y, Ando T, Sugiura M, Kato H, Hiraga K, Kito H, Kondo H. Incidence of dementia in patients with adult-onset epilepsy of unknown causes. J Neurol Sci 2018; 395:71-76. [DOI: 10.1016/j.jns.2018.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 01/02/2023]
|
104
|
Ourdev D, Schmaus A, Kar S. Kainate Receptor Activation Enhances Amyloidogenic Processing of APP in Astrocytes. Mol Neurobiol 2018; 56:5095-5110. [PMID: 30484111 DOI: 10.1007/s12035-018-1427-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Kainic acid (KA) is an analogue of the excitatory neurotransmitter glutamate that, when injected systemically into adult rats, can trigger seizures and progressive neuronal loss in a manner that mirrors the neuropathology of human mesial temporal lobe epilepsy. However, biomolecular mechanisms responsible for the neuronal loss that occurs as a consequence of this treatment remains elusive. We have recently reported that toxicity induced by KA can partly be mediated by astrocyte-derived amyloid β (Aβ) peptides, which are critical in the development of Alzheimer's disease (AD). Nonetheless, little is known how KA can influence amyloid precursor protein (APP) levels and processing in astrocytes. Thus, in the present study using human U-373 astrocytoma and rat primary astrocytes, we evaluated the role of KA on APP metabolism. Our results revealed that KA treatment increased the levels of APP and its cleaved products (α-/β-CTFs) in cultured U-373 astrocytoma and primary astrocytes, without altering the cell viability. The cellular and secretory levels of Aβ1-40/Aβ1-42 were markedly increased in KA-treated astrocytes. We also demonstrated that the steady-state levels of APP-secretases were not altered but the activity of γ-secretase is enhanced in KA-treated U-373 astrocytoma. Furthermore, using selective receptor antagonists, we showed that the effects of KA is mediated by activation of kainate receptors and not NMDA or AMPA receptors. These results suggest that KA can enhance amyloidogenic processing of APP by activating its own receptor leading to increased production/secretion of Aβ-related peptides from activated astrocytes which may contribute to the pathogenesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- D Ourdev
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - A Schmaus
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Satyabrata Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
105
|
Vu LC, Piccenna L, Kwan P, O'Brien TJ. New-onset epilepsy in the elderly. Br J Clin Pharmacol 2018; 84:2208-2217. [PMID: 29856080 PMCID: PMC6138506 DOI: 10.1111/bcp.13653] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
People who are 60 years old and older have the highest incidence of developing new-onset epilepsy. The increase of the ageing population has resulted in a greater number of patients with new-onset epilepsy or at risk of developing the condition. Previously published review articles regarding epilepsy in older patients have had a broad focus, including people who were diagnosed with epilepsy in their childhood or middle age. The present review focuses on the causes, treatment, prognosis and psychosocial impact of new-onset epilepsy in people aged ≥60 years. Following a search of the medical electronic databases and relevant references, we identified 22 studies overall that met the inclusion criteria. Only four randomized clinical trials (RCTs) were identified that compared different antiepileptic drug treatments in this population, demonstrating that newer-generation antiepileptic drugs (e.g. lamotrigine and levetiracetam) were generally better tolerated. One uncontrolled study provided promising evidence of good outcomes and safety for surgical resection as a treatment for people with uncontrolled seizures. Five studies reported that people ≥60 years with new-onset epilepsy have significant cognitive impairments (e.g. memory loss) and psychological issues including depression, anxiety and fatigue. We found that there is limited evidence to guide treatment in people with Alzheimer's disease and epilepsy. The specific features of new-onset epilepsy in this target population significantly influences the choice of treatment. Cognitive and psychiatric screening before treatment may be useful for management. Two studies with proposed guidelines were identified but no formal clinical practice guidelines exist for this special population to assist with appropriate management. There is a need for more RCTs that investigate effective treatments with limited side effects. More research studies on the psychosocial effects of new-onset epilepsy, and long-term outcomes, for people aged ≥60 years are also required.
Collapse
Affiliation(s)
- Lily Chi Vu
- Melbourne Brain Centre at the Royal Melbourne Hospital; Departments of Medicine and Neurology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoria3050Australia
| | - Loretta Piccenna
- Departments of Neuroscience and Neurology, Central Clinical SchoolMonash University, The Alfred HospitalMelbourneVictoria3004Australia
| | - Patrick Kwan
- Melbourne Brain Centre at the Royal Melbourne Hospital; Departments of Medicine and Neurology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoria3050Australia
- Departments of Neuroscience and Neurology, Central Clinical SchoolMonash University, The Alfred HospitalMelbourneVictoria3004Australia
| | - Terence J. O'Brien
- Melbourne Brain Centre at the Royal Melbourne Hospital; Departments of Medicine and Neurology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoria3050Australia
- Departments of Neuroscience and Neurology, Central Clinical SchoolMonash University, The Alfred HospitalMelbourneVictoria3004Australia
| |
Collapse
|
106
|
Kitchigina VF. Alterations of Coherent Theta and Gamma Network Oscillations as an Early Biomarker of Temporal Lobe Epilepsy and Alzheimer's Disease. Front Integr Neurosci 2018; 12:36. [PMID: 30210311 PMCID: PMC6119809 DOI: 10.3389/fnint.2018.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) and temporal lobe epilepsy (TLE) are the most common forms of neurodegenerative disorders characterized by the loss of cells and progressive irreversible alteration of cognitive functions, such as attention and memory. AD may be an important cause of epilepsy in the elderly. Early diagnosis of diseases is very important for their successful treatment. Many efforts have been done for defining new biomarkers of these diseases. Significant advances have been made in the searching of some AD and TLE reliable biomarkers, including cerebrospinal fluid and plasma measurements and glucose positron emission tomography. However, there is a great need for the biomarkers that would reflect changes of brain activity within few milliseconds to obtain information about cognitive disturbances. Successful early detection of AD and TLE requires specific biomarkers capable of distinguishing individuals with the progressing disease from ones with other pathologies that affect cognition. In this article, we review recent evidence suggesting that magnetoencephalographic recordings and coherent analysis coupled with behavioral evaluation can be a promising approach to an early detection of AD and TLE. Highlights -Data reviewed include the results of clinical and experimental studies.-Theta and gamma rhythms are disturbed in epilepsy and AD.-Common and different behavioral and oscillatory features of pathologies are compared.-Coherent analysis can be useful for an early diagnostics of diseases.
Collapse
Affiliation(s)
- Valentina F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences (RAS), Pushchino, Russia
| |
Collapse
|
107
|
Novel Quantitative Analyses of Spontaneous Synaptic Events in Cortical Pyramidal Cells Reveal Subtle Parvalbumin-Expressing Interneuron Dysfunction in a Knock-In Mouse Model of Alzheimer's Disease. eNeuro 2018; 5:eN-CFN-0059-18. [PMID: 30105300 PMCID: PMC6088364 DOI: 10.1523/eneuro.0059-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that has become a compelling global public health concern. Besides pathological hallmarks such as extracellular amyloid plaques, intracellular neurofibrillary tangles (NFTs), and loss of neurons and synapses, clinical reports have shown that epileptiform activity, even seizures, can occur early in the disease. Aberrant synaptic and network activities as well as epileptiform discharges have also been observed in various mouse models of AD. The new AppNL-F mouse model is generated by a gene knock-in approach and there are limited studies on basic synaptic properties in AppNL-F mice. Therefore, we applied quantitative methods to analyze spontaneous excitatory and inhibitory synaptic events in parietal cortex layer 2/3 pyramidal cells. First, by an objective amplitude distribution analysis, we found decreased amplitudes of spontaneous IPSCs (sIPSCs) in aged AppNL-F mice caused by a reduction in the amplitudes of the large sIPSCs with fast rates of rise, consistent with deficits in the function of parvalbumin-expressing interneurons (PV INs). Second, we calculated the burstiness and memory in a series of successive synaptic events. Lastly, by using a novel approach to determine the excitation-to-inhibition (E/I) ratio, we found no changes in the AppNL-F mice, indicating that homeostatic mechanisms may have maintained the overall balance of excitation and inhibition in spite of a mildly impaired PV IN function.
Collapse
|
108
|
Hahm J, Kim KK, Kim DW. Seizure-Related Cortical Volume Alterations in Alzheimer's Disease: A Preliminary Study. J Epilepsy Res 2018; 8:33-40. [PMID: 30090760 PMCID: PMC6066695 DOI: 10.14581/jer.18006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/05/2018] [Indexed: 11/03/2022] Open
Abstract
Background and Purpose Alzheimer’s disease (AD) leads to cognitive dysfunction and neuronal loss, both of which can be exacerbated by seizures. For the treatment and diagnosis of AD, it is imperative to identify the cortical characteristics of comorbidities of AD such as seizures. The present study investigated the alterations in cortical volumes in patients with comorbid AD and seizures. Methods In this retrospective study, magnetic resonance T1-weighted brain images were collected from six patients with early AD or amnestic mild cognitive impairment without seizures (AD-No Seizure, age: 66.17 ± 4.92 years) and six individuals with seizures (AD-Seizure, age: 80.33 ± 4.63 years). The gray matter volumes estimated from the T1 images were compared between the groups using nuisance variables (e.g., age). Subsequently, a correlation analysis was performed to investigate the relationship between cortical structure and global cognitive function. Results AD-Seizure group showed volumetric alterations compared with AD-No Seizure group. In the volumetrically altered regions, correlation analysis revealed that the AD-Seizure group showed a positive correlation between the mini-mental state examination (MMSE) score and cortical volume, with smaller volumes than the AD-No Seizure group in the right parahippocampal gyrus, left angular gyrus, and middle temporal gyrus. The AD-No Seizure group showed negative correlations with MMSE score in the volume of right inferior frontal gyrus and cerebellar culmen and a positive correlation with the volume of the left middle frontal gyrus. Conclusions Our findings revealed that smaller temporal region volumes are predictive of cognitive dysfunction in AD patients with seizures. Given that these temporal areas overlap with regions showing abnormal brain activities in AD patients with seizures, these results suggest synergistic effects of AD and seizures on cortical volume and cognitive function.
Collapse
Affiliation(s)
- Jarang Hahm
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Kwang Ki Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
109
|
Ali I, Silva JC, Liu S, Shultz SR, Kwan P, Jones NC, O'Brien TJ. Targeting neurodegeneration to prevent post-traumatic epilepsy. Neurobiol Dis 2018; 123:100-109. [PMID: 30099094 DOI: 10.1016/j.nbd.2018.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
In the quest for developing new therapeutic targets for post-traumatic epilepsies (PTE), identifying mechanisms relevant to development and progression of disease is critical. A growing body of literature suggests involvement of neurodegenerative mechanisms in the pathophysiology of acquired epilepsies, including following traumatic brain injury (TBI). In this review, we discuss the potential of some of these mechanisms to be targets for the development of a therapy against PTE.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Juliana C Silva
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Shijie Liu
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
110
|
Jin N, Lipponen A, Koivisto H, Gurevicius K, Tanila H. Increased cortical beta power and spike-wave discharges in middle-aged APP/PS1 mice. Neurobiol Aging 2018; 71:127-141. [PMID: 30138766 DOI: 10.1016/j.neurobiolaging.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/12/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022]
Abstract
Amyloid plaque-forming transgenic mice display neuronal hyperexcitability, epilepsy, and sudden deaths in early adulthood. However, it is unknown whether hyperexcitability persists until middle ages when memory impairment manifests. We recorded multichannel video electroencephalography (EEG), local field potentials, and auditory evoked potentials in transgenic mice carrying mutated human amyloid precursor protein (APP) and presenilin-1 (PS1) genes and wild-type littermates at 14-16 months and compared the results with data we have earlier collected from 4-month-old mice. Furthermore, we monitored acoustic startle responses in other APP/PS1 and wild-type mice from 3 to 11 months of age. Independent of the age APP/PS1 mice demonstrated increased cortical power at 8-60 Hz. They also displayed over 5-fold increase in the occurrence of spike-wave discharges and augmented auditory evoked potentials compared with nontransgenic littermates. In contrast to evoked potentials, APP/PS1 mice showed normalization of acoustic startle responses with aging. Increased cortical power and spike-wave discharges provide powerful new biomarkers to monitor progression of amyloid pathology in preclinical intervention studies.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Arto Lipponen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
111
|
DiFrancesco JC, Tremolizzo L, Polonia V, Giussani G, Bianchi E, Franchi C, Nobili A, Appollonio I, Beghi E, Ferrarese C. Adult-Onset Epilepsy in Presymptomatic Alzheimer's Disease: A Retrospective Study. J Alzheimers Dis 2018; 60:1267-1274. [PMID: 28968234 DOI: 10.3233/jad-170392] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The prevalence of epilepsy with onset in adulthood increases with age, mainly due to the accumulation of brain damage. However, a significant proportion of patients experience seizures of unknown cause. Alzheimer's disease (AD) is associated with an increased risk of seizures. Seizure activity is interpreted as a secondary event related to hyperexcitability caused by amyloid-β aggregation. OBJECTIVE Since neurodegenerative processes begin several years before clinical symptoms, epilepsy could be more frequent in the presymptomatic stages of dementia. METHODS We retrospectively reviewed the prevalence of epilepsy of unknown origin with adult onset before cognitive decline in a large cohort of AD patients (EPS-AD) recruited based on clinical and neuropsychological data. Data of patients with epilepsy followed by AD were compared with two control groups: patients with AD without seizures (no EPS-AD) and a large reference population (RP). RESULTS In AD patients, the prevalence of epilepsy of unknown origin, with onset in the adulthood before cognitive decline is 17.1 times higher compared with the RP (95% CI: 10.3-28.3). In EPS-AD, seizures begin on average 4.6 years (median 2.0) before the onset of cognitive symptoms and cognitive decline starts 3.6 years earlier compared with noEPS-AD. CONCLUSIONS Neurodegenerative processes of dementia could play a key role in the pathogenesis of epilepsy in a subgroup of individuals intended to develop cognitive decline. Adult-onset epilepsy of undefined cause could thus represent a risk factor for the ongoing neurodegenerative damage, even preceding by years the onset of clinical symptoms of dementia.
Collapse
Affiliation(s)
- Jacopo C DiFrancesco
- Department of Neurology, San Gerardo Hospital, Monza, Italy.,School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| | - Lucio Tremolizzo
- Department of Neurology, San Gerardo Hospital, Monza, Italy.,School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| | - Valeria Polonia
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| | - Giorgia Giussani
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Elisa Bianchi
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Carlotta Franchi
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Alessandro Nobili
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Ildebrando Appollonio
- Department of Neurology, San Gerardo Hospital, Monza, Italy.,School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| | - Ettore Beghi
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Carlo Ferrarese
- Department of Neurology, San Gerardo Hospital, Monza, Italy.,School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
112
|
Cortini F, Cantoni C, Villa C. Epileptic seizures in autosomal dominant forms of Alzheimer's disease. Seizure 2018; 61:4-7. [PMID: 30041064 DOI: 10.1016/j.seizure.2018.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and represents the most common form of dementia in the elderly. Mutations in genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2) and amyloid precursor protein (APP) are responsible for early-onset familial AD (EOFAD). Several pieces of evidence report that patients with rare autosomal dominant forms of AD carry a significant risk to develop seizures. However, the molecular mechanisms linking epilepsy and AD are needed to be clarified: the pathophysiology of seizures in AD may be related to an increased production of amyloid-β (Aβ) peptide or structural alterations in neurons probably due to cerebrovascular changes, neurotransmitter or cytoskeletal dysfunctions. Seizures have traditionally been related to neuronal loss in the late stages of AD as a consequence of neurodegeneration, however, recent studies indicated that seizures may contribute to the emergence of AD symptoms in early stages of the disease, mainly in familial AD. So, a better understanding of possible common neural mechanisms might help to improve the clinical management of both conditions. This review aims to give a comprehensive overview and to analyze the association between epilepsy and EOFAD, focusing on possible overlapping pathological mechanisms.
Collapse
Affiliation(s)
- Francesca Cortini
- Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation, Milano, Italy; Genetics Laboratory, IRCCS Ca' Granda Foundation, Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, USA
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
113
|
Cretin B. Pharmacotherapeutic strategies for treating epilepsy in patients with Alzheimer’s disease. Expert Opin Pharmacother 2018; 19:1201-1209. [DOI: 10.1080/14656566.2018.1496237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Benjamin Cretin
- Unité de Neuropsychologie, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Centre Mémoire, de Ressources et de Recherche d’Alsace (Strasbourg-Colmar), Strasbourg, France
- ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, team IMIS/Neurocrypto, Strasbourg, France
- Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
114
|
Gschwind T, Lafourcade C, Gfeller T, Zaichuk M, Rambousek L, Knuesel I, Fritschy JM. Contribution of early Alzheimer's disease-related pathophysiology to the development of acquired epilepsy. Eur J Neurosci 2018; 47:1534-1562. [DOI: 10.1111/ejn.13983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tilo Gschwind
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Carlos Lafourcade
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Laboratorio de Neurociencias; Universidad de los Andes; Santiago Chile
| | - Tim Gfeller
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
| | - Mariana Zaichuk
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Lukas Rambousek
- Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| | - Irene Knuesel
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Roche Pharmaceutical Research and Early Development; NORD Discovery & Translational Area; Roche Innovation Center Basel; Basel Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| |
Collapse
|
115
|
Cavanagh C, Wong TP. Preventing synaptic deficits in Alzheimer's disease by inhibiting tumor necrosis factor alpha signaling. IBRO Rep 2018; 4:18-21. [PMID: 30135948 PMCID: PMC6084902 DOI: 10.1016/j.ibror.2018.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/31/2018] [Indexed: 11/21/2022] Open
Abstract
The characterization of preclinical stages of Alzheimer's disease (AD) would provide a therapeutic window for prevention. One of the challenges of developing preventive therapy for AD is to identify early biomarkers for intervention studies. We have recently shown that in the TgCRND8 transgenic AD mouse model, increased hippocampal levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and enhanced excitatory synaptic transmission were early-onset changes that occurred weeks before amyloid plaque formation. Inhibiting TNFα before plaque formation not only normalized excitatory synaptic function, but also prevented the impairment of synaptic function 4 months later. In this review paper, we will examine the potential contributions of TNFα to the alteration of brain function in preclinical AD. The prospective use of TNFα inhibitors for preventing AD will be discussed.
Collapse
Affiliation(s)
- Chelsea Cavanagh
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
116
|
Musaeus CS, Shafi MM, Santarnecchi E, Herman ST, Press DZ. Levetiracetam Alters Oscillatory Connectivity in Alzheimer's Disease. J Alzheimers Dis 2018; 58:1065-1076. [PMID: 28527204 DOI: 10.3233/jad-160742] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seizures occur at a higher frequency in people with Alzheimer's disease (AD) but overt, clinically obvious events are infrequent. Evidence from animal models and studies in mild cognitive impairment suggest that subclinical epileptic discharges may play a role in the clinical and pathophysiological manifestations of AD. In this feasibility study, the neurophysiological and cognitive effects of acute administration of levetiracetam (LEV) are measured in patients with mild AD to test whether it could have a therapeutic benefit. AD participants were administered low dose LEV (2.5 mg/kg), higher dose LEV (7.5 mg/kg), or placebo in a double-blind, within-subject repeated measures study with EEG recorded at rest before and after administration. After administration of higher dose of LEV, we found significant decreases in coherence in the delta band (1-3.99 Hz) and increases in the low beta (13-17.99 Hz) and the high beta band (24-29.99 Hz). Furthermore, we found trends toward increased power in the frontal and central regions in the high beta band (24-29.99 Hz). However, there were no significant changes in cognitive performance after this single dose administration. The pattern of decreased coherence in the lower frequency bands and increased coherence in the higher frequency bands suggests a beneficial effect of LEV for patients with AD. Larger longitudinal studies and studies with healthy age-matched controls are needed to determine whether this represents a relative normalization of EEG patterns, whether it is unique to AD as compared to normal aging, and whether longer term administration is associated with a beneficial clinical effect.
Collapse
Affiliation(s)
- Christian S Musaeus
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Mouhsin M Shafi
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, Brain Investigation and Neuromodulation Lab, (Si-BIN Lab), University of Siena, Italy
| | - Susan T Herman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Z Press
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
117
|
Beagle AJ, Darwish SM, Ranasinghe KG, La AL, Karageorgiou E, Vossel KA. Relative Incidence of Seizures and Myoclonus in Alzheimer's Disease, Dementia with Lewy Bodies, and Frontotemporal Dementia. J Alzheimers Dis 2018; 60:211-223. [PMID: 28826176 DOI: 10.3233/jad-170031] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) are more prone to seizures and myoclonus, but relative risk of these symptoms among other dementia types is unknown. OBJECTIVE To determine incidence of seizures and myoclonus in the three most common neurodegenerative dementias: AD, dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). METHODS Our institution's medical records were reviewed for new-onset unprovoked seizures and myoclonus in patients meeting criteria for AD (n = 1,320), DLB (n = 178), and FTD (n = 348). Cumulative probabilities of developing seizures and myoclonus were compared between diagnostic groups, whereas age-stratified incidence rates were determined relative to control populations. RESULTS The cumulative probability of developing seizures after disease onset was 11.5% overall, highest in AD (13.4%) and DLB (14.7%) and lowest in FTD (3.0%). The cumulative probability of developing myoclonus was 42.1% overall, highest in DLB (58.1%). The seizure incidence rates, relative to control populations, were nearly 10-fold in AD and DLB, and 6-fold in FTD. Relative seizure rates increased with earlier age-at-onset in AD (age <50, 127-fold; 50-69, 21-fold; 70+, 2-fold) and FTD (age <50, 53-fold; 50-69, 9-fold), and relative myoclonus rates increased with earlier age-at-onset in all groups. Seizures began an average of 3.9 years after the onset of cognitive or motor decline, and myoclonus began 5.4 years after onset. CONCLUSIONS Seizures and myoclonus occur with greater incidence in patients with AD, DLB, and FTD than in the general population, but rates vary with diagnosis, suggesting varied pathomechanisms of network hyperexcitability. Patients often experience these symptoms early in disease, suggesting hyperexcitability could be an important target for interventions.
Collapse
Affiliation(s)
- Alexander J Beagle
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Sonja M Darwish
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alice L La
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Elissaios Karageorgiou
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.,Neurological Institute of Athens, Athens, Greece
| | - Keith A Vossel
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.,N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, and Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
118
|
Epilepsy in neuropathologically verified Alzheimer’s disease. Seizure 2018; 58:9-12. [DOI: 10.1016/j.seizure.2018.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
|
119
|
Sánchez MP, García-Cabrero AM, Sánchez-Elexpuru G, Burgos DF, Serratosa JM. Tau-Induced Pathology in Epilepsy and Dementia: Notions from Patients and Animal Models. Int J Mol Sci 2018; 19:ijms19041092. [PMID: 29621183 PMCID: PMC5979593 DOI: 10.3390/ijms19041092] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Patients with dementia present epilepsy more frequently than the general population. Seizures are more common in patients with Alzheimer’s disease (AD), dementia with Lewy bodies (LBD), frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP) than in other dementias. Missense mutations in the microtubule associated protein tau (MAPT) gene have been found to cause familial FTD and PSP, while the P301S mutation in MAPT has been associated with early-onset fast progressive dementia and the presence of seizures. Brains of patients with AD, LBD, FTD and PSP show hyperphosphorylated tau aggregates, amyloid-β plaques and neuropil threads. Increasing evidence suggests the existence of overlapping mechanisms related to the generation of network hyperexcitability and cognitive decline. Neuronal overexpression of tau with various mutations found in FTD with parkinsonism-linked to chromosome 17 (FTDP-17) in mice produces epileptic activity. On the other hand, the use of certain antiepileptic drugs in animal models with AD prevents cognitive impairment. Further efforts should be made to search for plausible common targets for both conditions. Moreover, attempts should also be made to evaluate the use of drugs targeting tau and amyloid-β as suitable pharmacological interventions in epileptic disorders. The diagnosis of dementia and epilepsy in early stages of those diseases may be helpful for the initiation of treatments that could prevent the generation of epileptic activity and cognitive deterioration.
Collapse
Affiliation(s)
- Marina P Sánchez
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - Ana M García-Cabrero
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
- Department of Immunology and Oncology and Protein Tools Unit, Biotechnology National Center (CNB/CSIC), 28049 Madrid, Spain.
| | - Gentzane Sánchez-Elexpuru
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - Daniel F Burgos
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - José M Serratosa
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| |
Collapse
|
120
|
Yang G, Wang H, He X, Xu P, Dang R, Feng Q, Jiang P. Association between BACE1 gene polymorphisms and focal seizures in a Chinese Han population. Medicine (Baltimore) 2018; 97:e0222. [PMID: 29595667 PMCID: PMC5895388 DOI: 10.1097/md.0000000000010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Beta-secretase 1 (BACE1) is attracting increasing attention for its vital role in pathogenesis of many neuropsychiatric disorders and many studies also have indicated BACE1 as a possible risk factor for seizures, but not any studies have reported association between BACE1 gene polymorphisms and seizures. Therefore, we investigated the possible association between focal seizures and BACE1 gene polymorphisms in the present study. METHODS A total of 162 patients and 211 health controls were enrolled in this study and polymorphisms of BACE1 gene were detected using polymerase chain reaction (PCR)-ligase detection reaction method. RESULTS The frequency of genotype AT for BACE1 rs535860 (A>T) was significantly higher (24.1%) in patients compared to controls (14.7%) (OR = 1.836, 95% CI = 1.086-3.102, P = .023). Intriguingly, we only found the significant difference of BACE1 SNP genotype and allele frequency among males but not females. However, no statistically significant results were presented for the genotype distributions of rs525493 (G>T) and rs638405(C>G) polymorphisms between patients and controls. CONCLUSION Our study demonstrated there may exist an association between BACE1 rs535860 (A>T) polymorphism and focal seizures in Chinese Han males.
Collapse
Affiliation(s)
- Guangsheng Yang
- Phase I Clinical Research Center, Department of Pharmacy, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University, Jiangsu, Lianyungang
| | - Haidong Wang
- Phase I Clinical Research Center, Department of Pharmacy, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University, Jiangsu, Lianyungang
| | - Xin He
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining
| | - Ruili Dang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining
| | - Qingyan Feng
- Department of Neurology, Jining First People's Hospital, Jining Medical University, Jining
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining
| |
Collapse
|
121
|
Gulisano W, Maugeri D, Baltrons MA, Fà M, Amato A, Palmeri A, D’Adamio L, Grassi C, Devanand D, Honig LS, Puzzo D, Arancio O. Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. J Alzheimers Dis 2018; 64:S611-S631. [PMID: 29865055 PMCID: PMC8371153 DOI: 10.3233/jad-179935] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The "Amyloid Cascade Hypothesis" has dominated the Alzheimer's disease (AD) field in the last 25 years. It posits that the increase of amyloid-β (Aβ) is the key event in AD that triggers tau pathology followed by neuronal death and eventually, the disease. However, therapeutic approaches aimed at decreasing Aβ levels have so far failed, and tau-based clinical trials have not yet produced positive findings. This begs the question of whether the hypothesis is correct. Here we have examined literature on the role of Aβ and tau in synaptic dysfunction, memory loss, and seeding and spreading of AD, highlighting important parallelisms between the two proteins in all of these phenomena. We discuss novel findings showing binding of both Aβ and tau oligomers to amyloid-β protein precursor (AβPP), and the requirement for the presence of this protein for both Aβ and tau to enter neurons and induce abnormal synaptic function and memory. Most importantly, we propose a novel view of AD pathogenesis in which extracellular oligomers of Aβ and tau act in parallel and upstream of AβPP. Such a view will call for a reconsideration of therapeutic approaches directed against Aβ and tau, paving the way to an increased interest toward AβPP, both for understanding the pathogenesis of the disease and elaborating new therapeutic strategies.
Collapse
Affiliation(s)
- Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Daniele Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Marian A. Baltrons
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biology and Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mauro Fà
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Arianna Amato
- Department of Anaesthesiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ, USA
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - D.P. Devanand
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
122
|
Reyes-Marin KE, Nuñez A. Seizure susceptibility in the APP/PS1 mouse model of Alzheimer's disease and relationship with amyloid β plaques. Brain Res 2017; 1677:93-100. [PMID: 28963050 DOI: 10.1016/j.brainres.2017.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a common age associated neurodegenerative disorder associated with an elevated risk of seizures that may be fundamentally connected to cognitive dysfunction. We used 4-9month-old mice of the APP/PS1 mouse model of Alzheimer's disease to study the presence of epileptiform-like discharges and to establish if the amyloid-β plaques affect their generation. The EEG of the APP/PS1 transgenic mice revealed a higher incidence of epileptiform-like discharges i.e. seizure events (interictal spikes, sharp waves, or polyspikes) than in the controls. Also, APP/PS1 mice showed a lower latency to evoke seizure events than in the control animals when pentylenetetrazole (60mg/kg; i.p.) was injected. Moreover, physostigmine injection (1mg/kg; i.p.) also increased the frequency of spontaneous epileptiform-like discharges in the APP/PS1 mice. We also found a correlation between the frequency of epileptiform-like discharges and the number of amyloid-β plaques. Application of N-(2-chloroethyl)-N-ethyl-bromobenzylamine (50mg/kg) generated amyloid-β plaques in the cortex and seizure activity appeared. Taken together, these data indicate that deposits of amyloid-β plaques may be responsible for the epileptiform-like discharges recorded in the APP/PS1 mice and could be responsible for the elevated risk for seizures of Alzheimer's patients.
Collapse
Affiliation(s)
- Karen E Reyes-Marin
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
123
|
Tun MZ, Soo WK, Wu K, Kane R. Dementia with Lewy bodies presenting as probable epileptic seizure. BMJ Case Rep 2017; 2017:bcr-2017-221454. [PMID: 28954753 DOI: 10.1136/bcr-2017-221454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We discuss the case of an 83-year-old man admitted to the hospital after losing control of his vehicle due to an unexplained episode of altered consciousness. This occurred on a background of multiple similar episodes associated with acute confusion, superimposed on a gradual cognitive decline spanning 6 years. Organic aetiologies for delirium were excluded and CT and MRI of the brain were negative for cerebrovascular accidents or other epileptogenic foci. Electroencephalogram (EEG) was negative for epileptiform activity. A diagnosis of seizure in the setting of dementia with Lewy bodies (DLB) was deemed probable. Subsequent brain single-photon emission computed tomography (SPECT) and flurodeoxy glucose-positron emission tomography (FDG-PET) studies supported the underlying diagnosis of DLB. Acute changes in consciousness or cognition are often related to strokes or seizures in the older person. As illustrated in this case, however, it is important to consider alternative comorbidities that may coexist.
Collapse
Affiliation(s)
- Mya Z Tun
- Geriatric Medicine, Monash Health, Victoria, Australia
| | - Wee Kheng Soo
- Eastern Health Clinical School, Monash University, Victoria, Australia.,Geriatric Medicine, Eastern Health, Victoria, Australia
| | - Kevin Wu
- Geriatric Medicine, Eastern Health, Victoria, Australia
| | - Richard Kane
- Geriatric Medicine, Eastern Health, Monash University, Victoria, Australia.,Monash University, Victoria, Australia
| |
Collapse
|
124
|
Corticothalamic network dysfunction and Alzheimer's disease. Brain Res 2017; 1702:38-45. [PMID: 28919464 DOI: 10.1016/j.brainres.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that is characterized by progressive cognitive decline and a prominent loss of hippocampal-dependent memory. Therefore, much focus has been placed on understanding the function and dysfunction of the hippocampus in AD. However, AD is also accompanied by a number of other debilitating cognitive and behavioral alterations including deficits in attention, cognitive processing, and sleep maintenance. The underlying mechanisms that give rise to impairments in such diverse behavioral domains are unknown, and identifying them would shed insight into the multifactorial nature of AD as well as reveal potential new therapeutic targets to improve overall function in AD. We present here several lines of evidence that suggest that dysregulation of the corticothalamic network may be a common denominator that contributes to the diverse cognitive and behavioral alterations in AD. First, we will review the mechanisms by which this network regulates processes that include attention, cognitive processing, learning and memory, and sleep maintenance. Then we will review how these behavioral and cognitive domains are altered in AD. We will also discuss how dysregulation of tightly regulated activity in the corticothalamic network can give rise to non-convulsive seizures and other forms of epileptiform activity that have also been documented in both AD patients and transgenic mouse models of AD. In summary, the corticothalamic network has the potential to be a master regulator of diverse cognitive and behavioral domains that are affected in AD.
Collapse
|
125
|
Matsuzawa T, Zalányi L, Kiss T, Érdi P. Multi-scale modeling of altered synaptic plasticity related to Amyloid β effects. Neural Netw 2017; 93:230-239. [PMID: 28672189 DOI: 10.1016/j.neunet.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/16/2017] [Accepted: 06/04/2017] [Indexed: 11/25/2022]
Abstract
As suggested by Palop and Mucke (2010) pathologically elevated β-amyloid (Aβ) impairs long term potentiation (LTP) and enhances long term depression (LTD) possible underlying mechanisms in Alzheimer's Disease (AD). In the present paper we adopt and further elaborate a phenomenological computational model of bidirectional plasticity based on the calcium control hypothesis of Shouval et al. (2002). First, to account for Aβ effects the activation function Ω was modified assuming competition between LTP and LTD, and parameter sets were identified that well describe both normal and pathological synaptic plasticity processes. Second, a biophysically plausible kinetic model of bidirectional synaptic plasticity by D'Alcantara et al. (2003) was used to support findings of the phenomenological model and to further explain underlying kinetic processes. Model fitting pointed out molecular contributors, particularly calcineurin and type 1 protein phosphatase that might contribute to observed physiological disturbances in AD.
Collapse
Affiliation(s)
- Takumi Matsuzawa
- Center for Complex Systems Studies, Kalamazoo College, 1200 Academy Street, MI 49006, Kalamazoo, USA.
| | - László Zalányi
- Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary.
| | - Tamás Kiss
- Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary.
| | - Péter Érdi
- Center for Complex Systems Studies, Kalamazoo College, 1200 Academy Street, MI 49006, Kalamazoo, USA; Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary.
| |
Collapse
|
126
|
Kavčič A, Hofmann WE. Unprovoked seizures in multiple sclerosis: Why are they rare? Brain Behav 2017; 7:e00726. [PMID: 28729933 PMCID: PMC5516601 DOI: 10.1002/brb3.726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/19/2017] [Accepted: 03/31/2017] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION The frequency of seizures in patients with multiple sclerosis (MS) ranges from 1.5% to 7.8% and is considerably more common than chance events. The etiopathogenesis of seizures in MS is still poorly understood. METHOD A review of the literature on seizures and MS using PubMed. RESULTS Cortical gray matter involvement appears to be an all-too-common pathological finding in MS to play a primary role in the pathogenesis of seizures in MS patients. There is no clear relationship between seizures and the severity of MS. In approximately 10% of cases, a seizure is actually an initial neurological symptom of MS. CONCLUSION Searching for coherence in the occurrence of unprovoked seizures in MS directs attention to the dichotomy in MS pathology characterized by a complex intertwining of neuroinflammatory and neurodegenerative processes. The appearance (or nonappearance) of seizures in MS in relation to disease activity and disease progression indicates a distinct clinical phenotype of MS that opens up new perspectives in MS research.
Collapse
Affiliation(s)
- Anamarija Kavčič
- Gemeinschaftspraxis Dr. Hofmann & Olschewski Aschaffenburg Germany
| | - Werner E Hofmann
- Gemeinschaftspraxis Dr. Hofmann & Olschewski Aschaffenburg Germany
| |
Collapse
|
127
|
Cretin B, Philippi N, Bousiges O, Dibitonto L, Sellal F, Martin-Hunyadi C, Blanc F. Do we know how to diagnose epilepsy early in Alzheimer's disease? Rev Neurol (Paris) 2017; 173:374-380. [DOI: 10.1016/j.neurol.2017.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 01/04/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
128
|
Aβ levels in the jugular vein and high molecular weight Aβ oligomer levels in CSF can be used as biomarkers to indicate the anti-amyloid effect of IVIg for Alzheimer's disease. PLoS One 2017; 12:e0174630. [PMID: 28394917 PMCID: PMC5386327 DOI: 10.1371/journal.pone.0174630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) has been a candidate as a potential anti-amyloid immunotherapy for Alzheimer disease (AD) because it contains anti-amyloid β (Aβ) antibodies. Although several studies with IVIg in AD have been published, changing levels of Aβ efflux from the brain, or disaggregation of Aβ species induced by immunotherapy, have not been properly investigated. Here, we carried out an open label study of therapy with IVIg in five patients with AD. We collected plasma from a peripheral vein (peripheral-plasma) and from the internal jugular vein (jugular-plasma) to estimate directly the efflux of soluble Aβ from the brain. We also measured high molecular weight (HMW) Aβ oligomers in CSF as a marker to detect disaggregated Aβ. IVIg infusions were well tolerated in the majority of cases. However, one study subject had epileptic seizures after IVIg. Levels of HMW CSF Aβ oligomers in all participants were significantly increased after IVIg. Aβ40 and Aβ42 levels in jugular-plasma were continuously or temporarily elevated after treatment in three of five patients who showed preserved cognitive function, whereas levels of those in peripheral-plasma did not correlate with reactivity to the treatment. Other conventional biomarkers including 11C-Pittsburgh compound B retention were not altered after the treatment. These findings imply that HMW Aβ oligomer levels could be a better biomarker to reflect the anti-amyloid effects of IVIg than conventional Aβ species; moreover, Aβ in jugular-plasma seems to be a more direct and precise biomarker to estimate clearance of Aβ from the brain rather than Aβ in peripheral-plasma. TRIAL REGISTRATION UMIN000022319.
Collapse
|
129
|
Kazim SF, Chuang SC, Zhao W, Wong RKS, Bianchi R, Iqbal K. Early-Onset Network Hyperexcitability in Presymptomatic Alzheimer's Disease Transgenic Mice Is Suppressed by Passive Immunization with Anti-Human APP/Aβ Antibody and by mGluR5 Blockade. Front Aging Neurosci 2017; 9:71. [PMID: 28392767 PMCID: PMC5364175 DOI: 10.3389/fnagi.2017.00071] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/08/2017] [Indexed: 11/26/2022] Open
Abstract
Cortical and hippocampal network hyperexcitability appears to be an early event in Alzheimer’s disease (AD) pathogenesis, and may contribute to memory impairment. It remains unclear if network hyperexcitability precedes memory impairment in mouse models of AD and what are the underlying cellular mechanisms. We thus evaluated seizure susceptibility and hippocampal network hyperexcitability at ~3 weeks of age [prior to amyloid beta (Aβ) plaque deposition, neurofibrillary pathology, and cognitive impairment] in a triple transgenic mouse model of familial AD (3xTg-AD mouse) that harbors mutated human Aβ precursor protein (APP), tau and presenilin 1 (PS1) genes. Audiogenic seizures were elicited in a higher proportion of 3xTg-AD mice compared with wild type (WT) controls. Seizure susceptibility in 3xTg-AD mice was attenuated either by passive immunization with anti-human APP/Aβ antibody (6E10) or by blockade of metabotropic glutamate receptor 5 (mGluR5) with the selective antagonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). In in vitro hippocampal slices, suppression of synaptic inhibition with the GABAA receptor antagonist, bicuculline, induced prolonged epileptiform (>1.5 s in duration) ictal-like discharges in the CA3 neuronal network in the majority of the slices from 3xTg-AD mice. In contrast, only short epileptiform (<1.5 s in duration) interictal-like discharges were observed following bicuculline application in the CA3 region of WT slices. The ictal-like activity in CA3 region of the hippocampus was significantly reduced in the 6E10-immunized compared to the saline-treated 3xTg-AD mice. MPEP acutely suppressed the ictal-like discharges in 3xTg-AD slices. Remarkably, epileptiform discharge duration positively correlated with intraneuronal human (transgenic) APP/Aβ expression in the CA3 region of the hippocampus. Our data suggest that in a mouse model of familial AD, hypersynchronous network activity underlying seizure susceptibility precedes Aβ plaque pathology and memory impairment. This early-onset network hyperexcitability can be suppressed by passive immunization with an anti-human APP/Aβ antibody and by mGluR5 blockade in 3xTg-AD mice.
Collapse
Affiliation(s)
- Syed F Kazim
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical CenterBrooklyn, NY, USA; Department of Neurochemistry and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR)Staten Island, NY, USA; Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical CenterBrooklyn, NY, USA
| | - Shih-Chieh Chuang
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Wangfa Zhao
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Robert K S Wong
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Riccardo Bianchi
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR) Staten Island, NY, USA
| |
Collapse
|
130
|
Criscuolo C, Fontebasso V, Middei S, Stazi M, Ammassari-Teule M, Yan SS, Origlia N. Entorhinal Cortex dysfunction can be rescued by inhibition of microglial RAGE in an Alzheimer's disease mouse model. Sci Rep 2017; 7:42370. [PMID: 28205565 PMCID: PMC5304222 DOI: 10.1038/srep42370] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
The Entorhinal cortex (EC) has been implicated in the early stages of Alzheimer's disease (AD). In particular, spreading of neuronal dysfunction within the EC-Hippocampal network has been suggested. We have investigated the time course of EC dysfunction in the AD mouse model carrying human mutation of amyloid precursor protein (mhAPP) expressing human Aβ. We found that in mhAPP mice plasticity impairment is first observed in EC superficial layer and further affected with time. A selective impairment of LTP was observed in layer II horizontal connections of EC slices from 2 month old mhAPP mice, whereas at later stage of neurodegeneration (6 month) basal synaptic transmission and LTD were also affected. Accordingly, early synaptic deficit in the mhAPP mice were associated with a selective impairment in EC-dependent associative memory tasks. The introduction of the dominant-negative form of RAGE lacking RAGE signalling targeted to microglia (DNMSR) in mhAPP mice prevented synaptic and behavioural deficit, reducing the activation of stress related kinases (p38MAPK and JNK). Our results support the involvement of the EC in the development and progression of the synaptic and behavioural deficit during amyloid-dependent neurodegeneration and demonstrate that microglial RAGE activation in presence of Aβ-enriched environment contributes to the EC vulnerability.
Collapse
Affiliation(s)
- Chiara Criscuolo
- Neuroscience Institute, Italian National Research Council, Pisa, 56100 Pisa, Italy
| | - Veronica Fontebasso
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, 00143 Roma, Italy
| | - Silvia Middei
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, 00143 Roma, Italy
- Santa Lucia Foundation, Roma 00143, Italy
| | - Martina Stazi
- Neuroscience Institute, Italian National Research Council, Pisa, 56100 Pisa, Italy
| | - Martine Ammassari-Teule
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, 00143 Roma, Italy
- Santa Lucia Foundation, Roma 00143, Italy
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | - Nicola Origlia
- Neuroscience Institute, Italian National Research Council, Pisa, 56100 Pisa, Italy
| |
Collapse
|
131
|
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 2017; 136:139-156. [PMID: 28212850 PMCID: PMC5766741 DOI: 10.1016/j.brainresbull.2017.02.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
132
|
Horváth A, Szűcs A, Barcs G, Kamondi A. Sleep EEG Detects Epileptiform Activity in Alzheimer’s Disease with High Sensitivity. J Alzheimers Dis 2017; 56:1175-1183. [DOI: 10.3233/jad-160994] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- András Horváth
- National Institute of Clinical Neurosciences, Budapest, Hungary
- Semmelweis University School of PhD Studies, János Szentágothai Doctoral School of Neurosciences, Budapest, Hungary
| | - Anna Szűcs
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Gábor Barcs
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Anita Kamondi
- National Institute of Clinical Neurosciences, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
133
|
Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 2016; 17:777-792. [PMID: 27829687 DOI: 10.1038/nrn.2016.141] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of neural circuits and networks can be controlled, in part, by modulating the synchrony of their components' activities. Network hypersynchrony and altered oscillatory rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this condition, network activities that support cognition are altered decades before clinical disease onset, and these alterations predict future pathology and brain atrophy. Although the precise causes and pathophysiological consequences of these network alterations remain to be defined, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating these mechanisms may help to improve brain function in these conditions.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| |
Collapse
|
134
|
Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, Darwish SM, Van Berlo V, Barnes DE, Mantle M, Karydas AM, Coppola G, Roberson ED, Miller BL, Garcia PA, Kirsch HE, Mucke L, Nagarajan SS. Incidence and impact of subclinical epileptiform activity in Alzheimer's disease. Ann Neurol 2016; 80:858-870. [PMID: 27696483 DOI: 10.1002/ana.24794] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Seizures are more frequent in patients with Alzheimer's disease (AD) and can hasten cognitive decline. However, the incidence of subclinical epileptiform activity in AD and its consequences are unknown. Motivated by results from animal studies, we hypothesized higher than expected rates of subclinical epileptiform activity in AD with deleterious effects on cognition. METHODS We prospectively enrolled 33 patients (mean age, 62 years) who met criteria for AD, but had no history of seizures, and 19 age-matched, cognitively normal controls. Subclinical epileptiform activity was assessed, blinded to diagnosis, by overnight long-term video-electroencephalography (EEG) and a 1-hour resting magnetoencephalography exam with simultaneous EEG. Patients also had comprehensive clinical and cognitive evaluations, assessed longitudinally over an average period of 3.3 years. RESULTS Subclinical epileptiform activity was detected in 42.4% of AD patients and 10.5% of controls (p = 0.02). At the time of monitoring, AD patients with epileptiform activity did not differ clinically from those without such activity. However, patients with subclinical epileptiform activity showed faster declines in global cognition, determined by the Mini-Mental State Examination (3.9 points/year in patients with epileptiform activity vs 1.6 points/year in patients without; p = 0.006), and in executive function (p = 0.01). INTERPRETATION Extended monitoring detects subclinical epileptiform activity in a substantial proportion of patients with AD. Patients with this indicator of network hyperexcitability are at risk for accelerated cognitive decline and might benefit from antiepileptic therapies. These data call for more sensitive and comprehensive neurophysiological assessments in AD patient evaluations and impending clinical trials. Ann Neurol 2016;80:858-870.
Collapse
Affiliation(s)
- Keith A Vossel
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
- Gladstone Institute of Neurological Disease, San Francisco, CA
| | - Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Alexander J Beagle
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Danielle Mizuiri
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Susanne M Honma
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Anne F Dowling
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Sonja M Darwish
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Victoria Van Berlo
- Department of Neurology and Semel Institute for Neuroscience and Human Behavior in the Department of Psychiatry, University of California Los Angeles, Los Angeles, CA
| | - Deborah E Barnes
- Departments of Psychiatry and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
- Veterans Affairs Medical Center, San Francisco, CA
| | - Mary Mantle
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Anna M Karydas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Giovanni Coppola
- Department of Neurology and Semel Institute for Neuroscience and Human Behavior in the Department of Psychiatry, University of California Los Angeles, Los Angeles, CA
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Paul A Garcia
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Heidi E Kirsch
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Lennart Mucke
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
- Gladstone Institute of Neurological Disease, San Francisco, CA
| | - Srikantan S Nagarajan
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| |
Collapse
|
135
|
|
136
|
Giorgi FS, Guida M, Vergallo A, Bonuccelli U, Zaccara G. Treatment of epilepsy in patients with Alzheimer’s disease. Expert Rev Neurother 2016; 17:309-318. [DOI: 10.1080/14737175.2017.1243469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Filippo Sean Giorgi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa-Pisa University Hospital, Pisa, Italy
| | - Melania Guida
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa-Pisa University Hospital, Pisa, Italy
| | - Andrea Vergallo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa-Pisa University Hospital, Pisa, Italy
| | - Ubaldo Bonuccelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa-Pisa University Hospital, Pisa, Italy
| | - Gaetano Zaccara
- Neurology Unit, Department of Medicine, Florence Health Authority, Firenze, Italy
| |
Collapse
|
137
|
Abstract
A breakthrough in Alzheimer's disease (AD) research came with the discovery of the link between activity-dependent release of amyloid-β (Aβ) from neurons and formation of amyloid plaques. Along with elucidating the cellular basis of behavioral-dependent fluctuations in Aβ levels in the brain, insights have been gained toward understanding the mechanisms that warrant selective vulnerability of various forebrain circuits to amyloid pathology. The notion of elevated activity as a source of excessive Aβ production and plaque formation is, however, in conflict with ample electrophysiological data, which demonstrate exceedingly intense activity (both intrinsic and synaptic) of neurons in several brain regions that are spared or marginally affected by amyloid plaques of AD. Thus, the link between the functional load of brain circuits and their vulnerability to amyloidosis, while evident, is also complex and remains poorly understood. Here, we discuss emerging data suggestive of a major role for super-intense synchronous activity of cortical and limbic networks in excessive Aβ production and plaque formation. It is proposed that dense recurrent wiring of associative areas prone to epileptic seizures might be of critical relevance to their higher susceptibility to plaque pathology and related functional impairments.
Collapse
Affiliation(s)
- Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Republic of Ireland
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| |
Collapse
|
138
|
Costa C, Parnetti L, D'Amelio M, Tozzi A, Tantucci M, Romigi A, Siliquini S, Cavallucci V, Di Filippo M, Mazzocchetti P, Liguori C, Nobili A, Eusebi P, Mercuri NB, Calabresi P. Epilepsy, amyloid-β, and D1 dopamine receptors: a possible pathogenetic link? Neurobiol Aging 2016; 48:161-171. [PMID: 27701029 DOI: 10.1016/j.neurobiolaging.2016.08.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/05/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022]
Abstract
Experimental and clinical observations indicate that amyloid-β1-42 (Aβ1-42) peptide not only represents a major actor in neurodegenerative mechanisms but also induce hyperexcitation in individual neurons and neural circuits. In this abnormal excitability, possibly leading to seizures, the D1 dopamine (DA) receptors may play a role. Cerebrospinal fluid levels of Aβ1-42 were measured in patients with late-onset epilepsy of unknown etiology. Moreover, the effect of amyloid peptide on the hippocampal epileptic threshold and synaptic plasticity and its link to D1 receptor function were tested in experimental mouse model of cerebral amyloidosis and in acute model of Aβ1-42-induced neurotoxicity. Among 272 evaluated epileptic patients, aged >55 years, 35 suffered from late-onset epilepsy of unknown etiology. In these subjects, cerebrospinal fluid Aβ1-42 levels were measured. The effects of Aβ1-42, amyloid oligomers, and D1 receptor modulation on epileptic threshold were analyzed by electrophysiological recordings in the dentate gyrus of mice hippocampal slices. We found that Aβ1-42 levels were significantly decreased in cerebrospinal fluid of patients with late-onset epilepsy of unknown etiology with respect to controls suggesting the cerebral deposition of this peptide in these patients. Aβ1-42 enhanced epileptic activity in mice through a mechanism involving increased surface expression of D1 receptor, and this effect was mimicked by D1 receptor stimulation and blocked by SCH 23390, a D1 receptor antagonist. Aβ1-42 may contribute to the pathophysiology of late-onset epilepsy of unknown origin. Our preclinical findings indicate that the D1 receptor is involved in mediating the epileptic effects of Aβ1-42. This novel link between Aβ1-42 and D1 receptor signaling might represent a potential therapeutic target.
Collapse
Affiliation(s)
- Cinzia Costa
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy.
| | - Lucilla Parnetti
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Marcello D'Amelio
- Laboratory of Molecular Neuroscience, Department of Medicine, Campus Bio-Medico University, Rome, Italy; Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alessandro Tozzi
- Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy; Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Michela Tantucci
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Andrea Romigi
- Neurophysiopathology Unit, Department of Systems Medicine, Sleep and Epilepsy Medicine Centre, Tor Vergata University and Hospital, Rome, Italy
| | - Sabrina Siliquini
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Virve Cavallucci
- Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| | - Massimiliano Di Filippo
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Petra Mazzocchetti
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Claudio Liguori
- Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| | - Annalisa Nobili
- Laboratory of Molecular Neuroscience, Department of Medicine, Campus Bio-Medico University, Rome, Italy; Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paolo Eusebi
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Nicola B Mercuri
- Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy; Neurophysiopathology Unit, Department of Systems Medicine, Sleep and Epilepsy Medicine Centre, Tor Vergata University and Hospital, Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy; Department of Experimental Neurosciences, "Istituto di Ricovero e Cura a Carattere Scientifico", IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
139
|
Tuk B. Overstimulation of the inhibitory nervous system plays a role in the pathogenesis of neuromuscular and neurological diseases: a novel hypothesis. F1000Res 2016; 5:1435. [PMID: 27547379 PMCID: PMC4984481 DOI: 10.12688/f1000research.8774.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 11/20/2022] Open
Abstract
Based upon a thorough review of published clinical observations regarding the inhibitory system, I hypothesize that this system may play a key role in the pathogenesis of a variety of neuromuscular and neurological diseases. Specifically, excitatory overstimulation, which is commonly reported in neuromuscular and neurological diseases, may be a homeostatic response to inhibitory overstimulation. Involvement of the inhibitory system in disease pathogenesis is highly relevant, given that most approaches currently being developed for treating neuromuscular and neurological diseases focus on reducing excitatory activity rather than reducing inhibitory activity.
Collapse
Affiliation(s)
- Bert Tuk
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Leiden, 2333 CC, Netherlands; Ry Pharma, Hofstraat 1, Willemstad, 4797 AC, Netherlands
| |
Collapse
|
140
|
Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML. The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 2016; 132:1-21. [PMID: 26961251 PMCID: PMC6774634 DOI: 10.1007/s00401-016-1553-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/15/2022]
Abstract
Kir4.1 is an inwardly rectifying K(+) channel expressed exclusively in glial cells in the central nervous system. In glia, Kir4.1 is implicated in several functions including extracellular K(+) homeostasis, maintenance of astrocyte resting membrane potential, cell volume regulation, and facilitation of glutamate uptake. Knockout of Kir4.1 in rodent models leads to severe neurological deficits, including ataxia, seizures, sensorineural deafness, and early postnatal death. Accumulating evidence indicates that Kir4.1 plays an integral role in the central nervous system, prompting many laboratories to study the potential role that Kir4.1 plays in human disease. In this article, we review the growing evidence implicating Kir4.1 in a wide array of neurological disease. Recent literature suggests Kir4.1 dysfunction facilitates neuronal hyperexcitability and may contribute to epilepsy. Genetic screens demonstrate that mutations of KCNJ10, the gene encoding Kir4.1, causes SeSAME/EAST syndrome, which is characterized by early onset seizures, compromised verbal and motor skills, profound cognitive deficits, and salt-wasting. KCNJ10 has also been linked to developmental disorders including autism. Cerebral trauma, ischemia, and inflammation are all associated with decreased astrocytic Kir4.1 current amplitude and astrocytic dysfunction. Additionally, neurodegenerative diseases such as Alzheimer disease and amyotrophic lateral sclerosis demonstrate loss of Kir4.1. This is particularly exciting in the context of Huntington disease, another neurodegenerative disorder in which restoration of Kir4.1 ameliorated motor deficits, decreased medium spiny neuron hyperexcitability, and extended survival in mouse models. Understanding the expression and regulation of Kir4.1 will be critical in determining if this channel can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Sinifunanya E Nwaobi
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Vishnu A Cuddapah
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Kelsey C Patterson
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Anita C Randolph
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Michelle L Olsen
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK.
| |
Collapse
|
141
|
Tao H, Zhao J, Zhou X, Ma Z, Chen Y, Sun F, Cui L, Zhou H, Cai Y, Chen Y, Zhao S, Yao L, Zhao B, Li K. Promoter Variants of the ADAM10 Gene and Their Roles in Temporal Lobe Epilepsy. Front Neurol 2016; 7:108. [PMID: 27445971 PMCID: PMC4928100 DOI: 10.3389/fneur.2016.00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Previous evidence has indicated that downregulated ADAM10 gives rise to epileptic seizures in Alzheimer's disease, and this study investigated the association of ADAM10 with temporal lobe epilepsy (TLE) from a genetic perspective. A total of 496 TLE patients and 528 healthy individuals were enrolled and genotyped for ADAM10 promoter variants (rs653765 G > A and rs514049 A > C). The alleles, genotypes, and haplotypes were then compared with clarify the association of these variants with TLE and their impacts upon age at onset, initial seizure types before treatments, and responses to drug treatments. In cohorts I, II, and I + II, the frequencies of the A allele and AA genotype at rs514049 were consistently increased in the cases compared with the controls (p = 0.020 and p = 0.009; p = 0.008 and p = 0.009; p = 0.000 and p = 0.000; q = 0.003 and q = 0.002, respectively). In contrast, the frequency of the AC haplotype (rs653765-rs514049) decreased in cohorts I + II (p = 0.013). Further analyses of the TLE patients indicated that the AA genotype functioned as a predisposing factor to drug-resistant TLE and the AC haplotype as a protective factor against generalized tonic-clonic seizures (GTCS) and drug-resistant TLE. This study is the first to demonstrate an association of the ADAM10 promoter variants with TLE. In particular, the AA genotype and AC haplotype showed their effects upon GTCS and drug-resistant TLE.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianghao Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu Zhou
- Clinical Research Center, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Zhonghua Ma
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University , Beijing , China
| | - Ying Chen
- Department of Neurology, Central People's Hospital of Zhanjiang , Zhanjiang, Guangdong , China
| | - Fuhai Sun
- Department of Neurology, The First People's Hospital of Pingdingshan , Pingdingshan, Hebei , China
| | - Lili Cui
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Shu Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University , Harbin, Heilongjiang , China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Keshen Li
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China; Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
142
|
Somogyi A, Katonai Z, Alpár A, Wolf E. A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2016; 10:152. [PMID: 27378850 PMCID: PMC4909742 DOI: 10.3389/fncel.2016.00152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/27/2016] [Indexed: 12/02/2022] Open
Abstract
One century after its first description, pathology of Alzheimer’s disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD-related neuronal hyperexcitability cannot be accounted for by altered subthreshold dendritic signaling in these neurons but hyperexcitability is related to changes in active membrane properties and network connectivity.
Collapse
Affiliation(s)
- Attila Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary; Kenézy Gyula Hospital Ltd., Department of Emergency MedicineDebrecen, Hungary
| | - Zoltán Katonai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Alán Alpár
- MTA-SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of SciencesBudapest, Hungary; Department of Anatomy, Semmelweis UniversityBudapest, Hungary
| | - Ervin Wolf
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
143
|
|
144
|
Khan MZ. A possible significant role of zinc and GPR39 zinc sensing receptor in Alzheimer disease and epilepsy. Biomed Pharmacother 2016; 79:263-72. [PMID: 27044837 DOI: 10.1016/j.biopha.2016.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Zinc the essential trace element, plays a significant role in the brain development and in the proper brain functions at every stage of life. Misbalance of zinc (Zn(2+)) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as Alzheimer's disease, Depression, and Epilepsy. In brain, Zn(2+) has been identified as a ligand, capable of activating and inhibiting the receptors including the NMDA-type glutamate receptors (NMDARs), GABAA receptors, nicotinic acetylcholine receptors (nAChRs), glycine receptors (glyR) and serotonin receptors (5-HT3). Recently GPR39 has been identified as a zinc-specific receptor, widely expressed in brain tissues including the frontal cortex, amygdala, and hippocampus. GPR39, when binding with Zn(2+) has shown promising therapeutic potentials. This review presents current knowledge regarding the role of GPR39 zinc sensing receptor in brain, with a focus on Alzheimer's disease and Epilepsy. Although the results are encouraging, further research is needed to clarify zinc and GPR39 role in the treatment of Alzheimer's disease and Epilepsy.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
145
|
Ferlazzo E, Sueri C, Gasparini S, Aguglia U. Challenges in the pharmacological management of epilepsy and its causes in the elderly. Pharmacol Res 2016; 106:21-26. [PMID: 26896787 DOI: 10.1016/j.phrs.2016.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
Epilepsy represents the third most common neurological disorders in the elderly after cerebrovascular disorders and dementias. The incidence of new-onset epilepsy peaks in this age group. The most peculiar aetiologies of late-onset epilepsy are stroke, dementia, and brain tumours. However, aetiology remains unknown in about half of the patients. Diagnosis of epilepsy may be challenging due to the frequent absence of ocular witnesses and the high prevalence of seizure-mimics (i.e. transient ischemic attacks, syncope, transient global amnesia or vertigo) in the elderly. The diagnostic difficulties are even greater when patients have cognitive impairment or cardiac diseases. The management of late-onset epilepsy deserves special considerations. The elderly can reach seizure control with low antiepileptic drugs (AEDs) doses, and seizure-freedom is possible in the vast majority of patients. Pharmacological management should take into account pharmacokinetics and pharmacodynamics of AEDs and the frequent occurrence of comorbidities and polytherapy in this age group. Evidences from double-blind and open-label studies indicate lamotrigine, levetiracetam and controlled-release carbamazepine as first line treatment in late-onset epilepsy.
Collapse
Affiliation(s)
- Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Chiara Sueri
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy.
| |
Collapse
|
146
|
Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2016; 144:121-41. [PMID: 26797041 DOI: 10.1016/j.pneurobio.2016.01.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta protein triggers reactive gliosis, a prominent neuropathological feature in the brains of Alzheimer's patients. The cytoskeletal and morphological changes of astrogliosis are its evident features, while changes in oxidative stress defense, cholesterol metabolism, and gene transcription programs are less manifest. However, these latter molecular changes may underlie a disruption in homeostatic regulation that keeps the brain environment balanced. Astrocytes in Alzheimer's disease show changes in glutamate and GABA signaling and recycling, potassium buffering, and in cholinergic, purinergic, and calcium signaling. Ultimately the dysregulation of homeostasis maintained by astrocytes can have grave consequences for the stability of microcircuits within key brain regions. Specifically, altered inhibition influenced by astrocytes can lead to local circuit imbalance with farther reaching consequences for the functioning of larger neuronal networks. Healthy astrocytes have a role in maintaining and modulating normal neuronal communication, synaptic physiology and energy metabolism, astrogliosis interferes with these functions. This review considers the molecular and functional changes occurring during astrogliosis in Alzheimer's disease, and proposes that astrocytes are key players in the development of dementia.
Collapse
|
147
|
Behr C, Goltzene MA, Kosmalski G, Hirsch E, Ryvlin P. Epidemiology of epilepsy. Rev Neurol (Paris) 2016; 172:27-36. [PMID: 26754036 DOI: 10.1016/j.neurol.2015.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 12/25/2022]
Abstract
Epilepsy is a burden affecting no fewer than 50 million patients worldwide. It is a heterogeneous group of disorders comprising both common and very rare forms, thus rendering its epidemiological investigations rather difficult. Moreover, making an epilepsy diagnosis per se can be challenging due to an evolving system of classification, and its dependency on local habits and culture. Any attempt at meta-analyses must consider such biases when pooling data from different centers and countries. Differentiating a contextual seizure from chronic epilepsy is every epileptologist's daily mission, yet it is also crucial for achieving a proper estimation of the epidemiology of epilepsy. Our present objective was to provide an overview of the epidemiology of both syndromic and non-syndromic epilepsy. Most epileptic syndromes tend to be rare and, thus, the feasibility of epidemiological quantification in populations is also addressed. Regarding its prevalence and cost, epilepsy deserves greater attention than it generally receives, as it appears to continue to be a condition under persistent taboos.
Collapse
Affiliation(s)
- C Behr
- Department of neurology, university hospital of Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France.
| | - M A Goltzene
- Department of neurology, university hospital of Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - G Kosmalski
- Department of pharmacology, university hospital of Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - E Hirsch
- Department of neurology, university hospital of Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - P Ryvlin
- Department of clinical neurosciences, CHUV, champ de l'Air, 21, rue du Bugnon, 1011 Lausanne, Switzerland
| |
Collapse
|
148
|
Abstract
With increasing age, the prevalence and incidence of epilepsy and seizures increases correspondingly. New-onset epilepsy in elderly people often has underlying etiology, including cerebrovascular diseases, primary neuron degenerative disorders, intracerebral tumors, and traumatic head injury. In addition, an acute symptomatic seizure cannot be called epilepsy, which manifests usually as a common symptom secondary to metabolic or toxicity factors in older people. In this review, we have mainly focused on the causes of new-onset epilepsy and seizures in elderly people. This knowledge will certainly help us to understand the reasons for high incidences of epilepsy and seizures in elderly people. We look forward to controlling epileptic seizures via the treatment of primary diseases in the future.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Weihua Yu
- Department of Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
149
|
Li BY, Chen SD. Potential Similarities in Temporal Lobe Epilepsy and Alzheimer’s Disease: From Clinic to Pathology. Am J Alzheimers Dis Other Demen 2015; 30:723-8. [PMID: 24906967 PMCID: PMC10852563 DOI: 10.1177/1533317514537547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) is clinically characterized by insidious onset of memory and cognitive impairments, which are also presented in patients with temporal lobe epilepsy (TLE). Many studies have shown that seizures occur in some patients with AD, and AD is a risk factor for epilepsy, mainly complex partial and secondary generalized seizure. Here, we focus on the relationship between TLE and AD in clinical and pathological aspects, as they are having similar comorbidities and mechanisms. In this study, we first reviewed the clinical observations that showed concomitant AD and TLE. Then, we picked up common genetic and pathological changes in both the diseases from neurobiological researches. Although both the diseases have delicate differences in many aspects, their common characteristics intrigue more detailed research to be done by newer technology.
Collapse
Affiliation(s)
- Bin-Yin Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
150
|
Bungenberg J, Surano N, Grote A, Surges R, Pernhorst K, Hofmann A, Schoch S, Helmstaedter C, Becker AJ. Gene expression variance in hippocampal tissue of temporal lobe epilepsy patients corresponds to differential memory performance. Neurobiol Dis 2015; 86:121-30. [PMID: 26631617 DOI: 10.1016/j.nbd.2015.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/27/2015] [Accepted: 11/13/2015] [Indexed: 01/05/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a severe brain disorder affecting particularly young adults. TLE is frequently associated with memory deterioration and neuronal damage of the hippocampal formation. It thereby reveals striking parallels to neurodegenerative disorders including Alzheimer's disease (AD). TLE patients differ with respect to their cognitive performance, but currently little is known about relevant molecular-genetic factors. Here, we correlated differential memory performance of pharmacoresistant TLE patients undergoing neurosurgery for seizure control with in-vitro findings of their hippocampal tissues. We analyzed mRNA transcripts and subsequently promoter variants specifically altered in brain tissue of individuals with 'very severe' memory impairment. TLE patients (n=79) were stratified according to preoperative memory impairment using an established four-tiered grading system ranging from 'average' to 'very severely'. Multimodal cluster analyses revealed molecules specifically associated with synaptic function and abundantly expressed in TLE patients with very impaired memory performance. In a subsequent promoter analysis, we found the single nucleotide polymorphism rs744373 C-allele to be associated with high mRNA levels of bridging integrator 1 (BIN1)/Amphiphysin 2, i.e. a major component of the endocytotic machinery and located in a crucial genetic AD risk locus. Using in vitro luciferase transfection assays, we found that BIN1 promoter activation is genotype dependent and strongly increased by reduced binding of the transcriptional repressor TGIF. Our data indicate that poor memory performance in patients with TLE strongly corresponds to distinctly altered neuronal transcript signatures, which - as demonstrated for BIN1 - can correlate with a particular allelic promoter variant. Our data suggest aberrant transcriptional signaling to significantly impact synaptic dynamics in TLE resulting in impaired memory performance and may serve as basis for future therapy development of this severe comorbidity.
Collapse
Affiliation(s)
- Julia Bungenberg
- Dept. of Neuropathology, University of Bonn Medical Center, Germany
| | - Natascha Surano
- Dept. of Neuropathology, University of Bonn Medical Center, Germany
| | - Alexander Grote
- Dept. of Neurosurgery, University of Bonn Medical Center, Germany
| | - Rainer Surges
- Dept. of Epileptology, University of Bonn Medical Center, Germany
| | | | - Andrea Hofmann
- Institute of Human Genetics, Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Susanne Schoch
- Dept. of Neuropathology, University of Bonn Medical Center, Germany
| | | | - Albert J Becker
- Dept. of Neuropathology, University of Bonn Medical Center, Germany.
| |
Collapse
|