101
|
Dong X, Wang K, Yang H, Cheng R, Li Y, Hou Y, Chang J, Yuan L. The Nomogram predicting the overall survival of patients with pancreatic cancer treated with radiotherapy: a study based on the SEER database and a Chinese cohort. Front Endocrinol (Lausanne) 2023; 14:1266318. [PMID: 37955009 PMCID: PMC10634587 DOI: 10.3389/fendo.2023.1266318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Objective Patients with pancreatic cancer (PC) have a poor prognosis. Radiotherapy (RT) is a standard palliative treatment in clinical practice, and there is no effective clinical prediction model to predict the prognosis of PC patients receiving radiotherapy. This study aimed to analyze PC's clinical characteristics, find the factors affecting PC patients' prognosis, and construct a visual Nomogram to predict overall survival (OS). Methods SEER*Stat software was used to collect clinical data from the Surveillance, Epidemiology, and End Results (SEER) database of 3570 patients treated with RT. At the same time, the relevant clinical data of 115 patients were collected from the Affiliated Cancer Hospital of Zhengzhou University. The SEER database data were randomly divided into the training and internal validation cohorts in a 7:3 ratio, with all patients at The Affiliated Cancer Hospital of Zhengzhou University as the external validation cohort. The lasso regression was used to screen the relevant variables. All non-zero variables were included in the multivariate analysis. Multivariate Cox proportional risk regression analysis was used to determine the independent prognostic factors. The Kaplan-Meier(K-M) method was used to plot the survival curves for different treatments (surgery, RT, chemotherapy, and combination therapy) and calculate the median OS. The Nomogram was constructed to predict the survival rates at 1, 3, and 5 years, and the time-dependent receiver operating characteristic curves (ROC) were plotted with the calculated curves. Calculate the area under the curve (AUC), the Bootstrap method was used to plot the calibration curve, and the clinical efficacy of the prediction model was evaluated using decision curve analysis (DCA). Results The median OS was 25.0, 18.0, 11.0, and 4.0 months in the surgery combined with chemoradiotherapy (SCRT), surgery combined with radiotherapy, chemoradiotherapy (CRT), and RT alone cohorts, respectively. Multivariate Cox regression analysis showed that age, N stage, M stage, chemotherapy, surgery, lymph node surgery, and Grade were independent prognostic factors for patients. Nomogram models were constructed to predict patients' OS. 1-, 3-, and 5-year Time-dependent ROC curves were plotted, and AUC values were calculated. The results suggested that the AUCs were 0.77, 0.79, and 0.79 for the training cohort, 0.79, 0.82, and 0.81 for the internal validation cohort, and 0.73, 0.93, and 0.88 for the external validation cohort. The calibration curves Show that the model prediction probability is in high agreement with the actual observation probability, and the DCA curve shows a high net return. Conclusion SCRT significantly improves the OS of PC patients. We developed and validated a Nomogram to predict the OS of PC patients receiving RT.
Collapse
Affiliation(s)
- Xiaotao Dong
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kunlun Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruilan Cheng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital Affiliated to China Medical University, Shenzhen, China
| | - Yan Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanqi Hou
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiali Chang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
102
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
103
|
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4:101170. [PMID: 37652015 PMCID: PMC10518608 DOI: 10.1016/j.xcrm.2023.101170] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
The tumor microenvironment (TME) is influenced by a "disorganized" extracellular matrix (ECM) that sensitizes cancer cells toward mechanical stress, signaling, and structural alterations. In hepatocellular carcinoma (HCC), lack of knowledge about key ECM proteins driving the TME refractory to targeted therapies poses a barrier to the identification of new therapeutic targets. Herein, we discuss the contributions of various ECM components that impact hepatocytes and their surrounding support network during tumorigenesis. In addition, the underpinnings by which ECM proteins transduce mechanical signals to the liver TME are detailed. Finally, in view of the bidirectional feedback between the ECM, transformed hepatocytes, and immune cells, we highlight the potential role of the ECM disorganization process in shaping responses to immune checkpoint inhibitors and targeted therapies. Our comprehensive characterization of these ECM components may provide a roadmap for innovative therapeutic approaches to restrain HCC.
Collapse
Affiliation(s)
- Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sayan Chakraborty
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263.
| |
Collapse
|
104
|
Nagai M, Nakamura K, Terai T, Kohara Y, Yasuda S, Matsuo Y, Doi S, Sakata T, Sho M. Significance of multiple tumor markers measurements in conversion surgery for unresectable locally advanced pancreatic cancer. Pancreatology 2023; 23:721-728. [PMID: 37328387 DOI: 10.1016/j.pan.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND This study aimed to evaluate the significance of multiple tumor markers (TMs) measurements in determining the indications for conversion surgery (CS) in the management of unresectable locally advanced pancreatic cancer (UR-LAPC). METHODS A total of 103 patients with UR-LAPC, treated between 2008 and June 2021, were enrolled in this study. Three TMs, including carbohydrate antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA), and Duke pancreatic monoclonal antigen type 2 (DUPAN-2), were measured. RESULTS Twenty-five patients (24%) underwent CS. The median preoperative treatment period was 9.5 months. The median survival time (MST) from the initial treatment for patients with CS was significantly longer than that for patients without surgery (34.6 vs. 18.9 months, P < 0.001). The number of elevated TMs before CS was one in five patients and two in five patients, while 15 patients had normal levels of all three TMs. Notably, the MST from the initial treatment for patients with all three preoperative normal TMs levels was favorable for 70.5 months. In contrast, patients with one or two preoperatively elevated TMs levels had a significantly worse prognosis (25.4 and 21.0 months, respectively, P < 0.001). Furthermore, the relapse-free survival of patients with three preoperative normal TMs levels was significantly longer than those with one or two elevated TMs levels (21.9 vs. 11.3 or 3.0 months, respectively, P < 0.001). Non-normal values of all TMs before CS were identified as independent poor prognostic factors. CONCLUSIONS Simultaneous measurement and assessment of the three TMs levels may help determine the surgical indications for UR-LAPC after systemic anticancer treatment.
Collapse
Affiliation(s)
- Minako Nagai
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Kota Nakamura
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Taichi Terai
- Department of Surgery, Nara Medical University, Nara, Japan
| | | | - Satoshi Yasuda
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Yasuko Matsuo
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Shunsuke Doi
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Takeshi Sakata
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Nara, Japan.
| |
Collapse
|
105
|
An YF, Pu N, Jia JB, Wang WQ, Liu L. Therapeutic advances targeting tumor angiogenesis in pancreatic cancer: Current dilemmas and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188958. [PMID: 37495194 DOI: 10.1016/j.bbcan.2023.188958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies, which is generally resistant to various treatments. Tumor angiogenesis is deemed to be a pivotal rate-determining step for tumor growth and metastasis. Therefore, anti-angiogenetic therapy is a rational strategy to treat various cancers. However, numerous clinical trials on anti-angiogenetic therapies for PC are overwhelmingly disappointing. The unique characteristics of tumor blood vessels in PC, which are desperately lacking and highly compressed by the dense desmoplastic stroma, are reconsidered to explore some optimized strategies. In this review, we mainly focus on its specific characteristics of tumor blood vessels, discuss the current dilemmas of anti-angiogenic therapy in PC and their underlying mechanisms. Furthermore, we point out the future directions, including remodeling the abnormal vasculature or even reshaping the whole tumor microenvironment in which they are embedded to improve tumor microcirculation, and then create therapeutic vulnerabilities to the current available therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Fei An
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Basic Medicine, Chang Zhi Medical College, Changzhi 046000,China; Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Bin Jia
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
106
|
Oba A, Del Chiaro M, Fujii T, Okano K, Stoop TF, Wu YHA, Maekawa A, Yoshida Y, Hashimoto D, Sugawara T, Inoue Y, Tanabe M, Sho M, Sasaki T, Takahashi Y, Matsumoto I, Sasahira N, Nagakawa Y, Satoi S, Schulick RD, Yoon YS, He J, Jang JY, Wolfgang CL, Hackert T, Besselink MG, Takaori K, Takeyama Y. "Conversion surgery" for locally advanced pancreatic cancer: A position paper by the study group at the joint meeting of the International Association of Pancreatology (IAP) & Japan Pancreas Society (JPS) 2022. Pancreatology 2023; 23:712-720. [PMID: 37336669 DOI: 10.1016/j.pan.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Locally advanced pancreatic cancer (LAPC), which progresses locally and surrounds major vessels, has historically been deemed unresectable. Surgery alone failed to provide curative resection and improve overall survival. With the advancements in treatment, reports have shown favorable results in LAPC after undergoing successful chemotherapy therapy or chemoradiation therapy followed by surgical resection, so-called "conversion surgery", at experienced high-volume centers. However, recognizing significant regional and institutional disparities in the management of LAPC, an international consensus meeting on conversion surgery for LAPC was held during the Joint Congress of the 26th Meeting of the International Association of Pancreatology (IAP) and the 53rd Annual Meeting of Japan Pancreas Society (JPS) in Kyoto in July 2022. During the meeting, presenters reported the current best multidisciplinary practices for LAPC, including preoperative modalities, best systemic treatment regimens and durations, procedures of conversion surgery with or without vascular resections, biomarkers, and genetic studies. It was unanimously agreed among the experts in this meeting that "cancer biology is surpassing locoregional anatomical resectability" in the era of effective multiagent treatment. The biology of pancreatic cancer has yet to be further elucidated, and we believe it is essential to improve the treatment outcomes of LAPC patients through continued efforts from each institution and more international collaboration. This article summarizes the agreement during the discussion amongst the experts in the meeting. We hope that this will serve as a foundation for future international collaboration and recommendations for future guidelines.
Collapse
Affiliation(s)
- Atsushi Oba
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan; Division of Surgical Oncology, Department of Surgery, University of Colorado of Medicine, Anschutz Medical Campus, Aurora, CO, USA; Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Kagawa University School of Medicine, Kagawa, Japan
| | - Thomas F Stoop
- Amsterdam UMC, Location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Y H Andrew Wu
- Department Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aya Maekawa
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan; Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuta Yoshida
- Department of Surgery, Kindai University, Osaka, Japan
| | | | - Toshitaka Sugawara
- Division of Surgical Oncology, Department of Surgery, University of Colorado of Medicine, Anschutz Medical Campus, Aurora, CO, USA; Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Inoue
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | | | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Sohei Satoi
- Division of Surgical Oncology, Department of Surgery, University of Colorado of Medicine, Anschutz Medical Campus, Aurora, CO, USA; Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Richard D Schulick
- Division of Surgical Oncology, Department of Surgery, University of Colorado of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Yoo-Seok Yoon
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jin He
- Department Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany; Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
| | - Marc G Besselink
- Amsterdam UMC, Location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | | |
Collapse
|
107
|
Igata Y, Kojima M, Suzuki T, Ishii G, Morisue R, Suzuki T, Kudo M, Sugimoto M, Kobayashi S, Martin JD, Stylianopoulos T, Cabral H, Kano MR, Konishi M, Gotohda N. Relationships between physical and immunological tumor microenvironment in pancreatic ductal adenocarcinoma. Cancer Sci 2023; 114:3783-3792. [PMID: 37337413 PMCID: PMC10475771 DOI: 10.1111/cas.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 06/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is physically palpated as a hard tumor with an unfavorable prognosis. Assessing physical features and their association with pathological features could help to elucidate the mechanism of physical abnormalities in cancer tissues. A total of 93 patients who underwent radical surgery for pancreatic and bile duct cancers at a single center hospital during a 28-month period were recruited for this study that aimed to estimate the stiffness of PDAC tissues compared to the other neoplasms and assess relationships between tumor stiffness and pathological features. Physical alterations and pathological features of PDAC, with or without preoperative therapy, were analyzed. The immunological tumor microenvironment was evaluated using multiplexed fluorescent immunohistochemistry. The stiffness of PDAC correlated with the ratio of Azan-Mallory staining, α-smooth muscle actin, and collagen I-positive areas of the tumors. Densities of CD8+ T cells and CD204+ macrophages were associated with tumor stiffness in cases without preoperative therapy. Pancreatic ductal adenocarcinoma treated with preoperative therapy was softer than that without, and the association between tumor stiffness and immune cell infiltration was not shown after preoperative therapy. We observed the relationship between tumor stiffness and immunological features in human PDAC for the first time. Immune cell densities in the tumor center were smaller in hard tumors than in soft tumors without preoperative therapies. Preoperative therapy could alter physical and immunological aspects, warranting further study. Understanding of the correlations between physical and immunological aspects could lead to the development of new therapies.
Collapse
Affiliation(s)
- Yu Igata
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
- Course of Advanced Clinical Research of CancerJuntendo University Graduate School of MedicineTokyoJapan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| | | | - Genichiro Ishii
- Department of Pathology and Clinical LaboratoriesNational Cancer Center Hospital EastKashiwaJapan
| | - Ryo Morisue
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
- Division of Pathology, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| | - Toshihiro Suzuki
- Division of Pharmacology, School of MedicineTeikyo UniversityTokyoJapan
- Department of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| | - Masashi Kudo
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Motokazu Sugimoto
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Shin Kobayashi
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | | | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health SystemsOkayama UniversityOkayamaJapan
| | - Masaru Konishi
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Naoto Gotohda
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
- Course of Advanced Clinical Research of CancerJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
108
|
Knipper K, Lyu SI, Quaas A, Bruns CJ, Schmidt T. Cancer-Associated Fibroblast Heterogeneity and Its Influence on the Extracellular Matrix and the Tumor Microenvironment. Int J Mol Sci 2023; 24:13482. [PMID: 37686288 PMCID: PMC10487587 DOI: 10.3390/ijms241713482] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment comprises multiple cell types, like cancer cells, endothelial cells, fibroblasts, and immune cells. In recent years, there have been massive research efforts focusing not only on cancer cells, but also on other cell types of the tumor microenvironment, thereby aiming to expand and determine novel treatment options. Fibroblasts represent a heterogenous cell family consisting of numerous subtypes, which can alter immune cell fractions, facilitate or inhibit tumor growth, build pre-metastatic niches, or stabilize vessels. These effects can be achieved through cell-cell interactions, which form the extracellular matrix, or via the secretion of cytokines or chemokines. The pro- or antitumorigenic fibroblast phenotypes show variability not only among different cancer entities, but also among intraindividual sites, including primary tumors or metastatic lesions. Commonly prescribed for arterial hypertension, the inhibitors of the renin-angiotensin system have recently been described as having an inhibitory effect on fibroblasts. This inhibition leads to modified immune cell fractions and increased tissue stiffness, thereby contributing to overcoming therapy resistance and ultimately inhibiting tumor growth. However, it is important to note that the inhibition of fibroblasts can also have the opposite effect, potentially resulting in increased tumor growth. We aim to summarize the latest state of research regarding fibroblast heterogeneity and its intricate impact on the tumor microenvironment and extracellular matrix. Specifically, we focus on highlighting recent advancements in the comprehension of intraindividual heterogeneity and therapy options within this context.
Collapse
Affiliation(s)
- Karl Knipper
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| | - Su Ir Lyu
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (S.I.L.); (A.Q.)
| | - Alexander Quaas
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (S.I.L.); (A.Q.)
| | - Christiane J. Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| |
Collapse
|
109
|
Jan IS, Ch'ang HJ. Selection of patients with pancreatic adenocarcinoma who may benefit from radiotherapy. Radiat Oncol 2023; 18:137. [PMID: 37596627 PMCID: PMC10439654 DOI: 10.1186/s13014-023-02328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Despite combination chemotherapy demonstrating a positive effect on survival, the clinical outcomes of pancreatic adenocarcinoma (PDAC) remain poor. Radiotherapy was previously a component of the curative treatment of PDAC. Advances in imaging and computer sciences have enabled the prescription of higher dosage of radiation focused on tumours with minimal toxicity to normal tissue. However, the role of radiotherapy has not been established in the curative treatment of localized PDAC because of the conflicting results from large prospective trials. Most studies have demonstrated improved locoregional control but no survival benefit from additional chemoradiotherapy (CRT) in addition to chemotherapy for resectable, borderline or locally advanced PDAC. The improved locoregional control enabled by CRT does not cause extended survival because of rapid distant progression in a significant proportion of patients with PDAC. Several single-institute studies of prescribing intensive chemotherapy with modern ablative radiotherapy for locally advanced PDAC have demonstrated extended survival with an acceptable safety profile. In an analysis after long-term follow-up, the PREOPANC study demonstrated a survival benefit from neoadjuvant gemcitabine-based CRT in resected PDAC relative to upfront surgery followed by adjuvant gemcitabine only. These observations indicated that the role of radiotherapy in PDAC should be evaluated in a subgroup of patients without rapid distant progression because systemic therapy for PDAC remains underdeveloped. We reviewed critical imaging, tissue, liquid and clinical biomarkers to differentiate the heterogeneous biologic spectra of patients with PDAC to identify those who may benefit the most from local radiotherapy. Exclusion of patients with localised PDAC who develop distant progression in a short time and undergo extended upfront chemotherapy for over 4 months may enable the identification of a survival benefit of local radiotherapy. Though promising, the effectiveness of biomarkers must be validated in a multi-institutional prospective study of patients with PDAC receiving CRT or not receiving CRT.
Collapse
Affiliation(s)
- I-Shiow Jan
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hui Ju Ch'ang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Department of Radiation Oncology, Taipei Medical University, Taipei, Taiwan.
- Department of Oncology, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
110
|
Wang X, Zhang H, Chen X, Wu C, Ding K, Sun G, Luo Y, Xiang D. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery. Acta Biomater 2023; 166:42-68. [PMID: 37257574 DOI: 10.1016/j.actbio.2023.05.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
In order to achieve targeted delivery of anticancer drugs, efficacy improvement, and side effect reduction, various types of nanoparticles are employed. However, their therapeutic effects are not ideal. This phenomenon is caused by tumor microenvironment abnormalities such as abnormal blood vessels, elevated interstitial fluid pressure, and dense extracellular matrix that affect nanoparticle penetration into the tumor's interstitium. Furthermore, nanoparticle properties including size, charge, and shape affect nanoparticle transport into tumors. This review comprehensively goes over the factors hindering nanoparticle penetration into tumors and describes methods for improving nanoparticle distribution by remodeling the tumor microenvironment and optimizing nanoparticle physicochemical properties. Finally, a critical analysis of future development of nanodrug delivery in oncology is further discussed. STATEMENT OF SIGNIFICANCE: This article reviews the factors that hinder the distribution of nanoparticles in tumors, and describes existing methods and approaches for improving the tumor accumulation from the aspects of remodeling the tumor microenvironment and optimizing the properties of nanoparticles. The description of the existing methods and approaches is followed by highlighting their advantages and disadvantages and put forward possible directions for the future researches. At last, the challenges of improving tumor accumulation in nanomedicines design were also discussed. This review will be of great interest to the broad readers who are committed to delivering nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Ke Ding
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Guiyin Sun
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| |
Collapse
|
111
|
Macfie R, Berger Y, Liu H, Li T, Imtiaz S, Ang C, Sarpel U, Hiotis S, Labow D, Golas B, Cohen NA. Major Postoperative Complications Limit Adjuvant Therapy Administration in Patients Undergoing Pancreatoduodenectomy for Distal Cholangiocarcinoma or Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2023; 30:5027-5034. [PMID: 37210446 DOI: 10.1245/s10434-023-13533-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Guidelines for perioperative systemic therapy administration in patients undergoing pancreatoduodenectomy for pancreatic adenocarcinoma (PDAC) and distal cholangiocarcinoma (dCCA) are evolving. Decisions regarding adjuvant therapy are influenced by postoperative morbidity, which is common after pancreatoduodenectomy. We evaluated whether postoperative complications are associated with receipt of adjuvant therapy after pancreatoduodenectomy. METHODS A retrospective analysis of patients undergoing pancreatoduodenectomy for PDAC or dCCA from 2015 to 2020 was conducted. Demographic, clinicopathologic, and postoperative variables were analyzed. RESULTS Overall, 186 patients were included-145 with PDAC and 41 with dCCA. Postoperative complication rates were similar for both pathologies (61% and 66% for PDAC and dCCA, respectively). Major postoperative complications (MPCs), defined as Clavien-Dindo >3, occurred in 15% and 24% of PDAC and dCCA patients, respectively. Patients with MPCs received lower rates of adjuvant therapy administration, irrespective of primary tumor (PDAC: 21 vs. 72%, p = 0.008; dCCA: 20 vs. 58%, p = 0.065). Recurrence-free survival (RFS) was worse for patients with PDAC who experienced an MPC [8 months (interquartile range [IQR] 1-15) vs. 23 months (IQR 19-27), p < 0.001] or who did not receive any perioperative systemic therapy [11 months (IQR 7-15) vs. 23 months (IQR 18-29), p = 0.038]. In patients with dCCA, 1-year RFS was worse for patients who did not receive adjuvant therapy (55 vs. 77%, p = 0.038). CONCLUSION Patients who underwent pancreatoduodenectomy for either PDAC or dCCA and who experienced an MPC had lower rates of adjuvant therapy and worse RFS, suggesting that clinicians adopt a standard neoadjuvant systemic therapy strategy in patients with PDAC. Our results propose a paradigm shift towards preoperative systemic therapy in patients with dCCA.
Collapse
Affiliation(s)
- Rebekah Macfie
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA.
| | - Yael Berger
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Hongdau Liu
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Thomas Li
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Sayed Imtiaz
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Celina Ang
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Umut Sarpel
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Spiros Hiotis
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Daniel Labow
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Benjamin Golas
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Noah A Cohen
- Division of Surgical Oncology, Department of Surgery, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
112
|
Shafqat A, Omer MH, Ahmed EN, Mushtaq A, Ijaz E, Ahmed Z, Alkattan K, Yaqinuddin A. Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy. Front Immunol 2023; 14:1200941. [PMID: 37520562 PMCID: PMC10374407 DOI: 10.3389/fimmu.2023.1200941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
This review focuses on the immunosuppressive effects of tumor angiogenesis and coagulation on the tumor microenvironment (TME). We summarize previous research efforts leveraging these observations and targeting these processes to enhance immunotherapy outcomes. Clinical trials have documented improved outcomes when combining anti-angiogenic agents and immunotherapy. However, their overall survival benefit over conventional therapy remains limited and certain tumors exhibit poor response to anti-angiogenic therapy. Additionally, whilst preclinical studies have shown several components of the tumor coagulome to curb effective anti-tumor immune responses, the clinical studies reporting combinations of anticoagulants with immunotherapies have demonstrated variable treatment outcomes. By reviewing the current state of the literature on this topic, we address the key questions and future directions in the field, the answers of which are crucial for developing effective strategies to reprogram the TME in order to further the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Ali Mushtaq
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Eman Ijaz
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
113
|
Zhao Q, Chen J, Zhang Z, Xiao C, Zeng H, Xu C, Yang X, Li Z. Modulating tumor mechanics with nanomedicine for cancer therapy. Biomater Sci 2023; 11:4471-4489. [PMID: 37221958 DOI: 10.1039/d3bm00363a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the past several decades, the importance of the tumor mechanical microenvironment (TMME) in cancer progression or cancer therapy has been recognized by researchers worldwide. The abnormal mechanical properties of tumor tissues include high mechanical stiffness, high solid stress, and high interstitial fluid pressure (IFP), which form physical barriers resulting in suboptimal treatment efficacy and resistance to different types of therapy by preventing drugs infiltrating the tumor parenchyma. Therefore, preventing or reversing the establishment of the abnormal TMME is critical for cancer therapy. Nanomedicines can enhance drug delivery by exploiting the enhanced permeability and retention (EPR) effect, so nanomedicines that target and modulate the TMME can further boost antitumor efficacy. Herein, we mainly discuss the nanomedicines that can regulate mechanical stiffness, solid stress, and IFP, with a focus on how nanomedicines change abnormal mechanical properties and facilitate drug delivery. We first introduce the formation, characterizing methods and biological effects of tumor mechanical properties. Conventional TMME modulation strategies will be briefly summarized. Then, we highlight representative nanomedicines capable of modulating the TMME for augmented cancer therapy. Finally, current challenges and future opportunities for regulating the TMME with nanomedicines will be provided.
Collapse
Affiliation(s)
- Qingfu Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Haowen Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
114
|
Voutouri C, Mpekris F, Panagi M, Krolak C, Michael C, Martin JD, Averkiou MA, Stylianopoulos T. Ultrasound stiffness and perfusion markers correlate with tumor volume responses to immunotherapy. Acta Biomater 2023:S1742-7061(23)00332-X. [PMID: 37321529 DOI: 10.1016/j.actbio.2023.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Immunotherapy has revolutionized the treatment of dozens of cancers and became a standard of care for some tumor types. However, the majority of patients do not benefit from current immunotherapeutics and many develop severe toxicities. Therefore, the identification of biomarkers to classify patients as likely responders or non-responders to immunotherapy is a timely task. Here, we test ultrasound imaging markers of tumor stiffness and perfusion. Ultrasound imaging is non-invasive and clinically available and can be used both for stiffness and perfusion evaluation. In this study, we employed syngeneic orthotopic models of two breast cancers, a fibrosarcoma and melanoma, to demonstrate that ultrasound-derived measures of tumor stiffness and perfusion (i.e., blood volume) correlate with the efficacy of immune checkpoint inhibition (ICI) in terms of changes in primary tumor volume. To modulate tumor stiffness and perfusion and thus, get a range of therapeutic outcomes, we employed the mechanotherapeutic tranilast. Mechanotherapeutics combined with ICI are advancing through clinical trials, but biomarkers of response have not been tested until now. We found the existence of linear correlations between tumor stiffness and perfusion imaging biomarkers as well as strong linear correlations between the stiffness and perfusion markers with ICI efficacy on primary tumor growth rates. Our findings set the basis for ultrasound imaging biomarkers predictive of ICI therapy in combination with mechanotherapeutics. STATEMENT OF SIGNIFICANCE: Hypothesis: Monitoring Tumor Microenvironment (TME) mechanical abnormalities can predict the efficacy of immune checkpoint inhibition (ICI) and provide biomarkers predictive of response. Tumor stiffening and solid stress elevation are hallmarks of tumor patho-physiology in desmoplastic tumors. They induce hypo-perfusion and hypoxia by compressing tumor vessels, posing major barriers to immunotherapy. Mechanotherapeutics is a new class of drugs that target the TME to reduce stiffness and improve perfusion and oxygenation. In this study, we show that measures of stiffness and perfusion derived from ultrasound shear wave elastography and contrast enhanced ultrasound can provide biomarkers of tumor response.
Collapse
Affiliation(s)
- Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus
| | - Connor Krolak
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus
| | | | | | | |
Collapse
|
115
|
Fong ZV, Verdugo FL, Fernandez-Del Castillo C, Ferrone CR, Allen JN, Blaszkowsky LS, Clark JW, Parikh AR, Ryan DP, Weekes CD, Hong TS, Wo JY, Lillemoe KD, Qadan M. Tolerability, Attrition Rates, and Survival Outcomes of Neoadjuvant FOLFIRINOX for Nonmetastatic Pancreatic Adenocarcinoma: Intent-to-Treat Analysis. J Am Coll Surg 2023; 236:1126-1136. [PMID: 36729817 DOI: 10.1097/xcs.0000000000000499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND FOLFIRINOX is increasingly used in the management of pancreatic ductal adenocarcinoma (PDAC). However, neoadjuvant therapy is associated with toxicity, possible disease progression, and biopsy-related and biliary complications that may preclude operative exploration. Data on the true attrition rate outside of clinical trials or resected surgical series are lacking. STUDY DESIGN Patients with nonmetastatic PDAC who initiated FOLFIRINOX from 2015 to 2020 were identified from our institution's pharmacy records. Multivariable regression and Cox proportional hazard models were used for adjusted analyses of categorical and survival outcomes, respectively. RESULTS Of 254 patients who initiated first-line neoadjuvant FOLFIRINOX, 199 (78.3%) underwent exploration, and 54 (21.3%) did not complete their chemotherapy cycles due to poor tolerability (46.3%), poor response (31.5%), or disease progression (14.8%), among other causes (7.4%). A total of 109 (42.9%) patients experienced grade 3/4 FOLFIRINOX-related toxicity, of whom 73 (28.7%) and 100 (39.4%) required an emergency department visit or inpatient admission, respectively. Finally, not undergoing surgical exploration was associated with impaired overall survival (hazard ratio 7.0; 95% CI 3.8 to 12.8; p < 0.001). Independent predictors of not undergoing exploration were remote history of chemotherapy receipt (odds ratio [OR] 0.06; p = 0.02), inability to complete FOLFIRINOX cycles (OR 0.2, p = 0.003), increase in ECOG score (OR 0.2, p < 0.001), and being single or divorced (OR 0.3, p = 0.018). CONCLUSIONS Among 254 patients with nonmetastatic PDAC initiated on FOLFIRINOX, of whom 52% were locally advanced, a total of 199 (78.3%) were explored, 142 (71.4%) underwent successful resection, and 129 (90.8%) were resected with negative margins. Despite 109 (42.9)% of patients experiencing significant toxicity, most patients could be managed through treatment-related complications to complete planned neoadjuvant chemotherapy and undergo planned surgical exploration.
Collapse
Affiliation(s)
- Zhi Ven Fong
- From the Department of Surgery, Massachusetts General Hospital, Boston, MA (Fong, Verdugo, Fernandez-del Castillo, Ferrone, Qadan)
| | - Fidel Lopez Verdugo
- From the Department of Surgery, Massachusetts General Hospital, Boston, MA (Fong, Verdugo, Fernandez-del Castillo, Ferrone, Qadan)
| | - Carlos Fernandez-Del Castillo
- From the Department of Surgery, Massachusetts General Hospital, Boston, MA (Fong, Verdugo, Fernandez-del Castillo, Ferrone, Qadan)
| | - Cristina R Ferrone
- From the Department of Surgery, Massachusetts General Hospital, Boston, MA (Fong, Verdugo, Fernandez-del Castillo, Ferrone, Qadan)
| | - Jill N Allen
- the Department of Medicine, Massachusetts General Hospital, Boston, MA (Allen, Blaszkowsky, Clark, Parikh, Ryan, Weekes)
| | - Lawrence S Blaszkowsky
- the Department of Medicine, Massachusetts General Hospital, Boston, MA (Allen, Blaszkowsky, Clark, Parikh, Ryan, Weekes)
| | - Jeffrey W Clark
- the Department of Medicine, Massachusetts General Hospital, Boston, MA (Allen, Blaszkowsky, Clark, Parikh, Ryan, Weekes)
| | - Aparna R Parikh
- the Department of Medicine, Massachusetts General Hospital, Boston, MA (Allen, Blaszkowsky, Clark, Parikh, Ryan, Weekes)
| | - David P Ryan
- the Department of Medicine, Massachusetts General Hospital, Boston, MA (Allen, Blaszkowsky, Clark, Parikh, Ryan, Weekes)
| | - Colin D Weekes
- the Department of Medicine, Massachusetts General Hospital, Boston, MA (Allen, Blaszkowsky, Clark, Parikh, Ryan, Weekes)
| | - Theodore S Hong
- the Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (Hong, Wo)
| | - Jennifer Y Wo
- the Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (Hong, Wo)
| | - Keith D Lillemoe
- From the Department of Surgery, Massachusetts General Hospital, Boston, MA (Fong, Verdugo, Fernandez-del Castillo, Ferrone, Qadan)
- the Department of Medicine, Massachusetts General Hospital, Boston, MA (Allen, Blaszkowsky, Clark, Parikh, Ryan, Weekes)
- the Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (Hong, Wo)
| | - Motaz Qadan
- From the Department of Surgery, Massachusetts General Hospital, Boston, MA (Fong, Verdugo, Fernandez-del Castillo, Ferrone, Qadan)
| |
Collapse
|
116
|
Rebelo R, Xavier CPR, Giovannetti E, Vasconcelos MH. Fibroblasts in pancreatic cancer: molecular and clinical perspectives. Trends Mol Med 2023; 29:439-453. [PMID: 37100646 DOI: 10.1016/j.molmed.2023.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2023]
Abstract
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.
Collapse
Affiliation(s)
- Rita Rebelo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - M Helena Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal.
| |
Collapse
|
117
|
Ding Y, Xiu H, Zhang Y, Ke M, Lin L, Yan H, Hu P, Xiao M, He X, Zhang T. Learning and Investigation of the Role of Angiotensin-Converting Enzyme in Radiotherapy for Nasopharyngeal Carcinoma. Biomedicines 2023; 11:1581. [PMID: 37371679 DOI: 10.3390/biomedicines11061581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Ionizing radiation (IR) is an important treatment for nasopharyngeal carcinoma (NPC) that mainly kills tumor cells by producing large amounts of reactive oxygen species (ROS). Intracellular ROS levels affect the sensitivity of tumor cells to IR. Recently, angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin-converting enzyme (ACE) have been found to affect the intracellular levels of ROS. Therefore, we performed a health informatics assessment of ACE in the TCGA database. We explored the effect of ACE in NPC cells. We found that either knockdown of ACE or inhibition of ACE by enalaprilat could decrease ROS levels in NPC cells. Furthermore, knockdown of ACE or inhibition of ACE by enalaprilat could reduce IR-induced ROS levels. ACE knockdown or inhibition reduced IR-induced DNA damage and apoptosis. ACE overexpression increased the level of ROS in NPC cells and further increased sensitivity to IR. These findings indicate that ACE influences the effect of IR by regulating the level of ROS in NPC cells.
Collapse
Affiliation(s)
- Yanan Ding
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Huanhuan Xiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510062, China
| | - Yanling Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Miaola Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Letao Lin
- Minimally Invasive Interventional Division, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huzheng Yan
- Department of Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Pan Hu
- Minimally Invasive Interventional Division, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meigui Xiao
- Minimally Invasive Interventional Division, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xu He
- Interventional Medical Center, Zhuhai People's Hospital, Zhuhai 519050, China
| | - Tao Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| |
Collapse
|
118
|
Mizuno N, Ioka T, Ogawa G, Nakamura S, Hiraoka N, Ito Y, Katayama H, Takada R, Kobayashi S, Ikeda M, Miwa H, Okano N, Kuramochi H, Sekimoto M, Okusaka T, Ozaka M, Todaka A, Gotoh K, Tobimatsu K, Yamaguchi H, Nakagohri T, Kajiura S, Sudo K, Okamura K, Shimizu S, Shirakawa H, Kato N, Sano K, Iwai T, Fujimori N, Ueno M, Ishii H, Furuse J. Effect of systemic inflammatory response on induction chemotherapy followed by chemoradiotherapy for locally advanced pancreatic cancer: an exploratory subgroup analysis on systemic inflammatory response in JCOG1106. Jpn J Clin Oncol 2023:7185478. [PMID: 37248668 PMCID: PMC10390851 DOI: 10.1093/jjco/hyad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVE JCOG1106, a randomized phase II trial conducted to compare chemoradiotherapy (S-1 concurrent radiotherapy) with (Arm B) or without (Arm A) induction chemotherapy using gemcitabine in patients with locally advanced pancreatic cancer, showed a more favorable long-term survival in Arm A. This study was aimed at exploring whether some subgroups classified by the systemic inflammatory response might derive greater benefit from either treatment. METHODS All subjects eligible for JCOG1106 were included in this analysis (n = 51/49 in Arm A/B). This exploratory subgroup analysis was performed by Cox regression analysis to investigate the impact of the systemic inflammatory response, as assessed based on the serum C-reactive protein, serum albumin (albumin), Glasgow Prognostic Score and derived neutrophil-lymphocyte ratio, at the baseline on overall survival. P values <0.1 for the interaction were regarded as denoting significant association. RESULTS Glasgow prognostic score showed significant treatment interactions for overall survival. Hazard ratios of Arm B to Arm A were 1.35 (95% confidence interval, 0.82-2.23) in the Glasgow Prognostic Score 0 (C-reactive protein ≤10 mg/L and albumin ≥35 g/L) (n = 44/34 in Arm A/B) and 0.59 (95% confidence interval, 0.24-1.50) in the Glasgow Prognostic Score 1/2 (C-reactive protein >10 mg/L and/or albumin <35 g/L) (n = 7/15) (P-interaction = 0.06). C-reactive protein alone and albumin alone also showed significant treatment interactions for overall survival. CONCLUSIONS Survival benefits of induction chemotherapy in chemoradiotherapy for locally advanced pancreatic cancer were observed in patients with elevated Glasgow Prognostic Score, high C-reactive protein and low albumin. These results suggest that systemic inflammatory response might be considered to apply induction chemotherapy preceding chemoradiotherapy.
Collapse
Affiliation(s)
- Nobumasa Mizuno
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Yamaguchi, Japan
- Department of Cancer Survey and Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Gakuto Ogawa
- JCOG Data Center/Operations Office, National Cancer Center Hospital, Tokyo, Japan
| | - Satoaki Nakamura
- Division of Radiation Oncology, Kansai Medical University Hospital, Osaka, Japan
| | - Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshinori Ito
- Department of Radiation Oncology, Showa Universtity School of Medicine, Tokyo, Japan
| | - Hiroshi Katayama
- JCOG Data Center/Operations Office, National Cancer Center Hospital, Tokyo, Japan
| | - Ryoji Takada
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Satoshi Kobayashi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Haruo Miwa
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Hidekazu Kuramochi
- Department of Chemotherapy and Palliative Care, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akiko Todaka
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Sunto-gun, Japan
| | - Kunihito Gotoh
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Kazutoshi Tobimatsu
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Toshio Nakagohri
- Department of Gastroenterological Surgery, School of Medicine Tokai University, Isehara, Japan
| | - Shinya Kajiura
- Department of Clinical oncology, Toyama University Hospital, Toyama, Japan
| | - Kentaro Sudo
- Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Keiya Okamura
- Department of Bilio-Pancreatology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Satoshi Shimizu
- Department of Gastroenterology, Saitama Cancer Center, Kita-adachi-gun, Japan
| | - Hirofumi Shirakawa
- Department of Hepatobiliary-Pancreatic Surgery, Tochigi Cancer Center, Utsunomiya, Japan
| | - Naoya Kato
- Department of Gastroenterology, Chiba University School of Medicine, Chiba, Japan
| | - Keiji Sano
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Tomohisa Iwai
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroshi Ishii
- Clinical Research Center, Chiba Cancer Center, Chiba, Japan
| | - Junji Furuse
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Mitaka, Japan
| |
Collapse
|
119
|
Sarfraz H, Saha A, Jhaveri K, Kim DW. Review of Current Systemic Therapy and Novel Systemic Therapy for Pancreatic Ductal Adenocarcinoma. Curr Oncol 2023; 30:5322-5336. [PMID: 37366887 PMCID: PMC10296812 DOI: 10.3390/curroncol30060404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND This review aims to describe the systemic treatment options for pancreatic ductal adenocarcinoma and includes a summary of the current treatments as well as the ongoing clinical trials which may be efficacious in the treatment of this aggressive malignancy. METHODS A literature review was performed using MEDLINE/PubMed between August 1996 and February 2023. The reviewed studies are categorized into these categories: current standard of care treatments, targeted therapies, immunotherapy and clinical trials. The current treatment modality for the treatment of advanced pancreatic cancer is mainly systemic chemotherapy. RESULTS The introduction of polychemotherapy regimens including gemcitabine/nab-paclitaxel and FOLFIRINOX (oxaliplatin, irinotecan, folinic acid and fluorouracil) has improved the clinical outcome of advanced pancreatic cancer. For further improvement in clinical outcomes, several novel approaches have been extensively studied in pancreatic cancer. The review discusses the current standard chemotherapy regimen and the novel treatment options in the field. CONCLUSIONS While there are novel treatments being explored for metastatic pancreatic, it remains a debilitating and aggressive disease with high mortality that warrants continued efforts to advance therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Dae Won Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (H.S.); (A.S.); (K.J.)
| |
Collapse
|
120
|
Brichkina A, Polo P, Sharma SD, Visestamkul N, Lauth M. A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15092614. [PMID: 37174079 PMCID: PMC10177377 DOI: 10.3390/cancers15092614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer represents one of the most desmoplastic malignancies and is characterized by an extensive deposition of extracellular matrix. The latter is provided by activated cancer-associated fibroblasts (CAFs), which are abundant cells in the pancreatic tumor microenvironment. Many recent studies have made it clear that CAFs are not a singular cellular entity but represent a multitude of potentially dynamic subgroups that affect tumor biology at several levels. As mentioned before, CAFs significantly contribute to the fibrotic reaction and the biomechanical properties of the tumor, but they can also modulate the local immune environment and the response to targeted, chemo or radiotherapy. As the number of known and emerging CAF subgroups is steadily increasing, it is becoming increasingly difficult to keep up with these developments and to clearly discriminate the cellular subsets identified so far. This review aims to provide a helpful overview that enables readers to quickly familiarize themselves with field of CAF heterogeneity and to grasp the phenotypic, functional and therapeutic distinctions of the various stromal subpopulations.
Collapse
Affiliation(s)
- Anna Brichkina
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Pierfrancesco Polo
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Shrey Dharamvir Sharma
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Nico Visestamkul
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| |
Collapse
|
121
|
Hank T, Klaiber U, Hinz U, Schütte D, Leonhardt CS, Bergmann F, Hackert T, Jäger D, Büchler MW, Strobel O. Oncological Outcome of Conversion Surgery After Preoperative Chemotherapy for Metastatic Pancreatic Cancer. Ann Surg 2023; 277:e1089-e1098. [PMID: 35758505 PMCID: PMC10082047 DOI: 10.1097/sla.0000000000005481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the outcome of conversion surgery in patients with metastatic pancreatic cancer (mPDAC) and to identify patients who may benefit from this approach. BACKGROUND The role of conversion surgery in patients with mPDAC and exceptional response to chemotherapy remains unclear. METHODS Patients who underwent surgical exploration for mPDAC following chemotherapy between 2006 and 2019 were included. Data on demographics, oncologic treatment, pathology, and postoperative outcomes were analyzed. Univariate and multivariate survival analyses were performed. RESULTS Some 173 patients received preoperative chemotherapy and underwent surgical exploration. Ninety-three patients underwent resection of the primary tumor and metastatic sites, 80 patients underwent exploration only. In the resection subgroup, 45 patients had complete pathological response of metastases (ypM0) and 48 patients had residual metastases (ypM1). ypM0 status was associated with lower carcinoembryonic antigen levels and lower ypN stage. Overall survival after resection was 25.5 months in ypM0, 10.7 months in ypM1, and 8.1 months in patients without resection ( P <0.001). Additional adjuvant chemotherapy was significantly associated with prolonged survival in resected patients (29.0 vs 14.8 mo, P =0.024) as well as in ypM0 (29.1 vs 19.2 mo, P =0.047). Multivariable analysis identified conversion surgery, carbohydrate antigen 19-9 (CA19-9) and time of resection as independent prognostic markers for the entire cohort. CA19-9, ypM0 and adjuvant treatment were independent predictors of survival in the resection subgroup. CONCLUSION In patients with mPDAC and ypM0 status after chemotherapy, surgical resection is associated with encouraging survival. mPDAC patients with exceptional response to chemotherapy may be candidates for exploration and for resection in ypM0. Adjuvant chemotherapy may provide an additional survival advantage.
Collapse
Affiliation(s)
- Thomas Hank
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulla Klaiber
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulf Hinz
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Denise Schütte
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Carl-Stephan Leonhardt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
122
|
Myo Min KK, Ffrench CB, Jessup CF, Shepherdson M, Barreto SG, Bonder CS. Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers (Basel) 2023; 15:2354. [PMID: 37190281 PMCID: PMC10137060 DOI: 10.3390/cancers15082354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progression, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply, as well as increased inflammation through an influx of inflammatory cells and cytokines, creating an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the development of PDAC, the drivers that initiate and/or sustain the progression of the disease and the complex and interwoven nature of the cellular and acellular components that come together to make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME of PDAC to improve the efficacy of therapy for better patient outcomes.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Charlie B. Ffrench
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Claire F. Jessup
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Mia Shepherdson
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Savio George Barreto
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
123
|
Fang YT, Yang WW, Niu YR, Sun YK. Recent advances in targeted therapy for pancreatic adenocarcinoma. World J Gastrointest Oncol 2023; 15:571-595. [PMID: 37123059 PMCID: PMC10134207 DOI: 10.4251/wjgo.v15.i4.571] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a fatal disease with a 5-year survival rate of 8% and a median survival of 6 mo. In PDAC, several mutations in the genes are involved, with Kirsten rat sarcoma oncogene (90%), cyclin-dependent kinase inhibitor 2A (90%), and tumor suppressor 53 (75%–90%) being the most common. Mothers against decapentaplegic homolog 4 represents 50%. In addition, the self-preserving cancer stem cells, dense tumor microenvironment (fibrous accounting for 90% of the tumor volume), and suppressive and relatively depleted immune niche of PDAC are also constitutive and relevant elements of PDAC. Molecular targeted therapy is widely utilized and effective in several solid tumors. In PDAC, targeted therapy has been extensively evaluated; however, survival improvement of this aggressive disease using a targeted strategy has been minimal. There is currently only one United States Food and Drug Administration-approved targeted therapy for PDAC – erlotinib, but the absolute benefit of erlotinib in combination with gemcitabine is also minimal (2 wk). In this review, we summarize current targeted therapies and clinical trials targeting dysregulated signaling pathways and components of the PDAC oncogenic process, analyze possible reasons for the lack of positive results in clinical trials, and suggest ways to improve them. We also discuss emerging trends in targeted therapies for PDAC: combining targeted inhibitors of multiple pathways. The PubMed database and National Center for Biotechnology Information clinical trial website (www.clinicaltrials.gov) were queried to identify completed and published (PubMed) and ongoing (clinicaltrials.gov) clinical trials (from 2003-2022) using the keywords pancreatic cancer and targeted therapy. The PubMed database was also queried to search for information about the pathogenesis and molecular pathways of pancreatic cancer using the keywords pancreatic cancer and molecular pathways.
Collapse
Affiliation(s)
- Yu-Ting Fang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Wei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ya-Ru Niu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Kun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang 065001, Hebei Province, China
| |
Collapse
|
124
|
Boucher Y, Posada JM, Subudhi S, Kumar AS, Rosario SR, Gu L, Kumra H, Mino-Kenudson M, Talele NP, Duda DG, Fukumura D, Wo JY, Clark JW, Ryan DP, Fernandez-Del Castillo C, Hong TS, Pittet MJ, Jain RK. Addition of Losartan to FOLFIRINOX and Chemoradiation Reduces Immunosuppression-Associated Genes, Tregs, and FOXP3+ Cancer Cells in Locally Advanced Pancreatic Cancer. Clin Cancer Res 2023; 29:1605-1619. [PMID: 36749873 PMCID: PMC10106451 DOI: 10.1158/1078-0432.ccr-22-1630] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/31/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Adding losartan (LOS) to FOLFIRINOX (FFX) chemotherapy followed by chemoradiation (CRT) resulted in 61% R0 surgical resection in our phase II trial in patients with locally advanced pancreatic cancer (LAPC). Here we identify potential mechanisms of benefit by assessing the effects of neoadjuvant LOS on the tumor microenvironment. EXPERIMENTAL DESIGN We performed a gene expression and immunofluorescence (IF) analysis using archived surgical samples from patients treated with LOS+FFX+CRT (NCT01821729), FFX+CRT (NCT01591733), or surgery upfront, without any neoadjuvant therapy. We also conducted a longitudinal analysis of multiple biomarkers in the plasma of treated patients. RESULTS In comparison with FFX+CRT, LOS+FFX+CRT downregulated immunosuppression and pro-invasion genes. Overall survival (OS) was associated with dendritic cell (DC) and antigen presentation genes for patients treated with FFX+CRT, and with immunosuppression and invasion genes or DC- and blood vessel-related genes for those treated with LOS+FFX+CRT. Furthermore, LOS induced specific changes in circulating levels of IL-8, sTie2, and TGF-β. IF revealed significantly less residual disease in lesions treated with LOS+FFX+CRT. Finally, patients with a complete/near complete pathologic response in the LOS+FFX+CRT-treated group had reduced CD4+FOXP3+ regulatory T cells (Tregs), fewer immunosuppressive FOXP3+ cancer cells (C-FOXP3), and increased CD8+ T cells in pancreatic ductal adenocarcinoma lesions. CONCLUSIONS Adding LOS to FFX+CRT reduced pro-invasion and immunosuppression-related genes, which were associated with improved OS in patients with LAPC. Lesions from responders in the LOS+FFX+CRT-treated group had reduced Tregs, decreased C-FOXP3 and increased CD8+ T cells. These findings suggest that LOS may potentiate the benefit of FFX+CRT by reducing immunosuppression.
Collapse
Affiliation(s)
- Yves Boucher
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jessica M. Posada
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Pathology, Brigham and Women’s Hospital, Boston, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sonu Subudhi
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Ashwin S. Kumar
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, University of Geneva, CH-1211 Geneva, Switzerland
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, University of Geneva, CH-1211 Geneva, Switzerland
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, University of Geneva, CH-1211 Geneva, Switzerland
| | - Liqun Gu
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Heena Kumra
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Mari Mino-Kenudson
- Department of Pathology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nilesh P. Talele
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Dan G. Duda
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Dai Fukumura
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jennifer Y. Wo
- Department of Radiation Oncology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jeffrey W. Clark
- Department of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - David P. Ryan
- Department of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | | | - Theodore S. Hong
- Department of Radiation Oncology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Mikael J. Pittet
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
- Ludwig Institute for Cancer Research, 1005 Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Rakesh K. Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
125
|
Minini M, Fouassier L. Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Curr Oncol 2023; 30:4185-4196. [PMID: 37185432 PMCID: PMC10137461 DOI: 10.3390/curroncol30040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
During the last decade, immunotherapy has radically changed perspectives on anti-tumor treatments. However, solid tumor treatment by immunotherapy has not met expectations. Indeed, poor clinical response to treatment has highlighted the need to understand and avoid immunotherapy resistance. Cholangiocarcinoma (CCA) is the second cause of hepatic cancer-related deaths because of drug inefficacy and chemo-resistance in a majority of patients. Thus, intense research is ongoing to better understand the mechanisms involved in the chemo-resistance processes. The tumor microenvironment (TME) may be involved in tumor therapy resistance by limiting drug access. Indeed, cells such as cancer-associated fibroblasts (CAFs) alter TME by producing in excess an aberrant extracellular matrix (ECM). Interestingly, CAFs are the dominant stromal component in CCA that secrete large amounts of stiff ECM. Stiff ECM could contribute to immune exclusion by limiting anti-tumor T-cells drop-in. Herein, we summarize features, functions, and interactions among CAFs, tumor-associated ECM, and immune cells in TME. Moreover, we discuss the strategies targeting CAFs and the remodeling of the ECM to improve immunotherapy and drug therapies.
Collapse
Affiliation(s)
- Mirko Minini
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
| | - Laura Fouassier
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
- Association Pour L'étude des Cancers et Affections des Voies Biliaires (ACABi), 75012 Paris, France
| |
Collapse
|
126
|
Morita S, Duda DG. Refining genetic and molecular classifications to facilitate breakthrough treatments in intrahepatic cholangiocarcinoma: are we there yet? Gut 2023; 72:608-610. [PMID: 35772925 PMCID: PMC10435277 DOI: 10.1136/gutjnl-2022-327782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Satoru Morita
- Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dan G Duda
- Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
127
|
Botta GP, Huynh TR, Spierling‐Bagsic SR, Agelidis A, Schaffer R, Lin R, Sigal D. Neoadjuvant chemotherapy and radiotherapy outcomes in borderline-resectable and locally-advanced pancreatic cancer patients. Cancer Med 2023; 12:7713-7723. [PMID: 36478411 PMCID: PMC10134275 DOI: 10.1002/cam4.5523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is no agreed upon standard of care for borderline-resectable pancreatic cancer (BRPC) or locally-advanced pancreatic cancer (LAPC) patients regarding the benefit of chemotherapy or radiation alone or in combination. PATIENTS AND METHODS We completed a retrospective cohort analysis of BRPC and LAPC patients at a cancer center with expertise in multi-disciplinary pancreatic ductal adenocarcinoma (PDAC) treatment over a 5-year period from 03/01/2014 to 03/01/2019 (cut-off date). The total evaluable newly diagnosed, treatment naïve, BRPC, and LAPC patients with adequate organ function and ability to obtain treatment after multidisciplinary review was 52 patients. After analysis, patients were evaluated for rates of resection, extent of resection (R0 or R1), median progression-free survival (mPFS), and median overall survival (mOS). RESULTS Patients were treated with chemotherapy alone (gemcitabine and nab-paclitaxel = 77% (20/26); FOLFIRINOX = 19% (5/26); single agent gemcitabine 3.8% (1/26)), or chemotherapy followed by chemoradiation (gemcitabine +5 Gy × 5 weeks), or chemoradiation alone prior to re-staging and potential resection. Of the 29% (15/52) of patients who went on to surgical resection, 73% (11/15) achieved R0 resection. An R0 resection was achieved in 35% (9/26) of patients treated with chemotherapy alone, 7.6% (1/13) in a patient treated with chemotherapy followed by radiation, and 7.6% (1/13) with concurrent chemoradiotherapy alone. Chemotherapy alone achieved a mPFS of 16.4 months (p < 0.0025) and mOS of 26.2 months (p < 0.0001), chemotherapy followed by chemoradiation was 13.0 months and 14.9 months respectively, while concurrent chemoradiotherapy was 6.9 months and 7.3 months. CONCLUSIONS AND RELEVANCE BRPC and LAPC patients capable of surgery after only receiving neoadjuvant treatment with chemotherapy had higher rates of R0 resection with prolonged median PFS and OS compared with any patient needing combination chemotherapy with radiotherapy.
Collapse
Affiliation(s)
- Gregory P. Botta
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
- Division of Medical OncologyScripps MD Anderson Cancer CenterLa JollaCaliforniaUSA
- Scripps Research Translational InstituteLa JollaCaliforniaUSA
| | - Tridu R. Huynh
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
- Scripps Research Translational InstituteLa JollaCaliforniaUSA
- Division of Internal MedicineScripps Clinic/Green HospitalLa JollaCaliforniaUSA
| | | | - Alexander Agelidis
- Scripps Research Translational InstituteLa JollaCaliforniaUSA
- Division of Internal MedicineScripps Clinic/Green HospitalLa JollaCaliforniaUSA
| | - Randolph Schaffer
- Division of Hepatopancreatobiliary SurgeryScripps MD Anderson Cancer CenterLa JollaCaliforniaUSA
| | - Ray Lin
- Division of Radiation OncologyScripps MD Anderson Cancer CenterLa JollaCaliforniaUSA
| | - Darren Sigal
- Division of Medical OncologyScripps MD Anderson Cancer CenterLa JollaCaliforniaUSA
| |
Collapse
|
128
|
Raskov H, Gaggar S, Tajik A, Orhan A, Gögenur I. The Matrix Reloaded-The Role of the Extracellular Matrix in Cancer. Cancers (Basel) 2023; 15:2057. [PMID: 37046716 PMCID: PMC10093330 DOI: 10.3390/cancers15072057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
As the core component of all organs, the extracellular matrix (ECM) is an interlocking macromolecular meshwork of proteins, glycoproteins, and proteoglycans that provides mechanical support to cells and tissues. In cancer, the ECM can be remodelled in response to environmental cues, and it controls a plethora of cellular functions, including metabolism, cell polarity, migration, and proliferation, to sustain and support oncogenesis. The biophysical and biochemical properties of the ECM, such as its structural arrangement and being a reservoir for bioactive molecules, control several intra- and intercellular signalling pathways and induce cytoskeletal changes that alter cell shapes, behaviour, and viability. Desmoplasia is a major component of solid tumours. The abnormal deposition and composition of the tumour matrix lead to biochemical and biomechanical alterations that determine disease development and resistance to treatment. This review summarises the complex roles of ECM in cancer and highlights the possible therapeutic targets and how to potentially remodel the dysregulated ECM in the future. Furthering our understanding of the ECM in cancer is important as the modification of the ECM will probably become an important tool in the characterisation of individual tumours and personalised treatment options.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Shruti Gaggar
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Asma Tajik
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
129
|
Butti R, Khaladkar A, Bhardwaj P, Prakasam G. Heterotypic signaling of cancer-associated fibroblasts in shaping the cancer cell drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:182-204. [PMID: 37065872 PMCID: PMC10099601 DOI: 10.20517/cdr.2022.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 03/29/2023]
Abstract
The context-dependent reciprocal interaction between the cancer cells and surrounding fibroblasts is imperative for regulating malignant potential, metabolic reprogramming, immunosuppression, and ECM deposition. However, recent evidence also suggests that cancer-associated fibroblasts induce chemoresistance in cancer cells to various anticancer regimens. Because of the protumorigenic function of cancer-associated fibroblasts, these stromal cell types have emerged as fascinating therapeutic targets for cancer. However, this notion was recently challenged by studies that targeted cancer-associated fibroblasts and highlighted the underlying heterogeneity by identifying a subset of these cells with tumor-restricting functions. Hence, it is imperative to understand the heterogeneity and heterotypic signaling of cancer-associated fibroblasts to target tumor-promoting signaling processes by sparing tumor-restricting ones. In this review, we discuss the heterogeneity and heterotypic signaling of cancer-associated fibroblasts in shaping drug resistance and also list the cancer-associated fibroblast-targeting therapeutics.
Collapse
Affiliation(s)
- Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Ashwini Khaladkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Bombay 400076, India
- Authors contributed equally
| | - Priya Bhardwaj
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
- Authors contributed equally
| | - Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
130
|
Takagi K, Noma K, Nagai Y, Kikuchi S, Umeda Y, Yoshida R, Fuji T, Yasui K, Tanaka T, Kashima H, Yagi T, Fujiwara T. Impact of cancer-associated fibroblasts on survival of patients with ampullary carcinoma. Front Oncol 2023; 13:1072106. [PMID: 37007101 PMCID: PMC10060636 DOI: 10.3389/fonc.2023.1072106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundCancer-associated fibroblasts (CAFs) reportedly enhance the progression of gastrointestinal surgery; however, the role of CAFs in ampullary carcinomas remains poorly examined. This study aimed to investigate the effect of CAFs on the survival of patients with ampullary carcinoma.Materials and methodsA retrospective analysis of 67 patients who underwent pancreatoduodenectomy between January 2000 and December 2021 was performed. CAFs were defined as spindle-shaped cells that expressed α-smooth muscle actin (α-SMA) and fibroblast activation protein (FAP). The impact of CAFs on survival, including recurrence-free (RFS) and disease-specific survival (DSS), as well as prognostic factors associated with survival, was analyzed.ResultsThe high-α-SMA group had significantly worse 5-year RFS (47.6% vs. 82.2%, p = 0.003) and 5-year DSS (67.5% vs. 93.3%, p = 0.01) than the low-α-SMA group. RFS (p = 0.04) and DSS (p = 0.02) in the high-FAP group were significantly worse than those in the low-FAP group. Multivariable analyses found that high α-SMA expression was an independent predictor of RFS [hazard ratio (HR): 3.68; 95% confidence intervals (CI): 1.21–12.4; p = 0.02] and DSS (HR: 8.54; 95% CI: 1.21–170; p = 0.03).ConclusionsCAFs, particularly α-SMA, can be useful predictors of survival in patients undergoing radical resection for ampullary carcinomas.
Collapse
Affiliation(s)
- Kosei Takagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Kosei Takagi,
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuo Nagai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomokazu Fuji
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
131
|
Caramelo B, Zagorac S, Corral S, Marqués M, Real FX. Cancer-associated Fibroblasts in Bladder Cancer: Origin, Biology, and Therapeutic Opportunities. Eur Urol Oncol 2023:S2588-9311(23)00043-3. [PMID: 36890105 DOI: 10.1016/j.euo.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
CONTEXT Bladder cancer (BLCA) is a highly prevalent tumour and a health problem worldwide, especially among men. Recent work has highlighted the relevance of the tumour microenvironment (TME) in cancer biology with translational implications. Cancer-associated fibroblasts (CAFs) are a prominent, heterogeneous population of cells in the TME. CAFs have been associated with tumour development, progression, and poor prognosis in several neoplasms. However, their role in BLCA has not yet been exploited deeply. OBJECTIVE To review the role of CAFs in BLCA biology and provide an understanding of CAF origin, subtypes, markers, and phenotypic and functional characteristics to improve patient management. EVIDENCE ACQUISITION A PubMed search was performed to review manuscripts published using the terms "cancer associated fibroblast" and "bladder cancer" or "urothelial cancer". All abstracts were reviewed, and the full content of all relevant manuscripts was analysed. In addition, selected manuscripts on CAFs in other tumours were considered. EVIDENCE SYNTHESIS CAFs have been studied less extensively in BLCA than in other tumours. Thanks to new techniques, such as single-cell RNA-seq and spatial transcriptomics, it is now possible to accurately map and molecularly define the phenotype of fibroblasts in normal bladder and BLCA. Bulk transcriptomic analyses have revealed the existence of subtypes among both non-muscle-invasive and muscle-invasive BLCA; these subtypes display distinct features regarding their CAF content. We provide a higher-resolution map of the phenotypic diversity of CAFs in these tumour subtypes. Preclinical studies and recent promising clinical trials leverage on this knowledge through the combined targeting of CAFs or their effectors and the immune microenvironment. CONCLUSIONS Current knowledge of BLCA CAFs and the TME is being increasingly applied to improve BLCA therapy. There is a need to acquire a deeper understanding of CAF biology in BLCA. PATIENT SUMMARY Tumour cells are surrounded by nontumoural cells that contribute to the determination of the behaviour of cancers. Among them are cancer-associated fibroblasts. The "neighbourhoods" established through these cellular interactions can now be studied with much greater resolution. Understanding these features of tumours will contribute to the designing of more effective therapies, especially in relationship to bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Belén Caramelo
- Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain; Hospital Sierrallana, Torrelavega, Spain
| | - Sladjana Zagorac
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Miriam Marqués
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain.
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
132
|
van Eijck CWF, de Koning W, van der Sijde F, Moskie M, Groot Koerkamp B, Homs MYV, van der Burg SH, van Eijck CHJ, Mustafa DAM. A multigene circulating biomarker to predict the lack of FOLFIRINOX response after a single cycle in patients with pancreatic ductal adenocarcinoma. Eur J Cancer 2023; 181:119-134. [PMID: 36652890 DOI: 10.1016/j.ejca.2022.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION 5-fluorouracil, folinic acid, irinotecan and oxaliplatin (FOLFIRINOX) is promising in treating patients with pancreatic ductal adenocarcinoma. However, many patients and physicians are reluctant to start FOLFIRINOX due to its high toxicity and limited clinical response rates. In this study, we investigated the effect of a single FOLFIRINOX cycle, in combination with a granulocyte colony-stimulating factor, on the blood immune transcriptome of patients with pancreatic ductal adenocarcinoma. We aimed to identify an early circulating biomarker to predict the lack of FOLFIRINOX response. METHODS Blood samples of 68 patients from all disease stages, who received at least four FOLFIRINOX cycles, were collected at baseline and after the first cycle. The response to treatment was radiologically evaluated following the Response Evaluation Criteria in Solid Tumours criteria 1.1. Targeted immune-gene expression profiling (GEP) was performed using NanoString technologies. To predict the lack of FOLFIRINOX response, we developed a FOLFIRINOX delta GEP (FFX-ΔGEP) score. RESULTS A single FOLFIRINOX cycle significantly altered 395 genes, correlating to 30 significant alterations in relative immune cell abundances and pathway activities. The eight-gene (BID, FOXP3, KIR3DL1, MAF, PDGFRB, RRAD, SIGLEC1 and TGFB2) FFX-ΔGEP score predicted the lack of FOLFIRINOX response with a leave-one-out cross-validated area under the curve (95% confidence interval) of 0.87 (0.60-0.98), thereby outperforming the predictiveness of absolute and proportional Δcarbohydrate antigen19-9 values. CONCLUSIONS A single FOLFIRINOX cycle, combined with granulocyte colony-stimulating factor, alters the peripheral immune transcriptome indisputably. Our novel FFX-ΔGEP is, to our knowledge, the first multigene early circulating biomarker that predicts the lack of FOLFIRINOX response after one cycle. Validation in a larger independent patient cohort is crucial before clinical implementation.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands; Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Willem de Koning
- Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands; Department of Pathology Unit of Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Fleur van der Sijde
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands; Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Miranda Moskie
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Marjolein Y V Homs
- Department of Medical Oncology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands; Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Dana A M Mustafa
- Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
133
|
Hill CS, Herman JM. The Current Role of Radiation in Pancreatic Cancer and Future Directions. Clin Colorectal Cancer 2023; 22:12-23. [PMID: 36804206 DOI: 10.1016/j.clcc.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Survival outcomes for localized pancreatic adenocarcinoma remains poor. Multimodality therapeutic regimens are critical to maximizing survival outcomes for these patients, which includes the use of systemic therapy, surgery, and radiation. In this review, the evolution of radiation techniques are discussed with a focus on modern techniques such as intensity modulated radiation and stereotactic body radiation therapy. However, the current role of radiation within the most common clinical scenarios for pancreatic cancer in the neoadjuvant, definitive, and adjuvant settings continues to be highly debated. The role of radiation in these settings is reviewed in the context of historical and modern clinical studies. In addition, emerging concepts including dose-escalated radiation, magnetic resonance-guided radiation therapy, and particle therapy are discussed to promote an understanding of how such concepts may change the role of radiation in the future.
Collapse
Affiliation(s)
- Colin S Hill
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY.
| | - Joseph M Herman
- Radiation Medicine, Zucker School of Medicine at Hofstra/Northwell, New York, NY
| |
Collapse
|
134
|
Liu H, Nassour I, Lebowitz S, D'Alesio M, Hampton E, Desilva A, Hammad A, AlMasri S, Khachfe HH, Singhi A, Bahary N, Lee K, Zureikat A, Paniccia A. The use of angiotensin system inhibitors correlates with longer survival in resected pancreatic adenocarcinoma patients. HPB (Oxford) 2023; 25:320-329. [PMID: 36610939 PMCID: PMC11199074 DOI: 10.1016/j.hpb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Activities and inhibition of the Renin-Angiotensin-Aldosterone System (RAAS) may affect the survival of resected pancreatic ductal adenocarcinoma (PDAC) patients METHOD: A single-institution retrospective analysis of resected PDAC patients between 2010 and 2019. To estimate the effect of angiotensin system inhibitors (ASIs) on patient survival, we performed Kaplan Meier analysis, Cox Proportional Hazards model, Propensity Score Matching (PSM), and inverse probability weighting (IPW) analysis. RESULTS 742 patients were included in the analysis. The average age was 67.0 years, with a median follow-up of 24.1 months. The use of ASI was associated with significantly longer overall survival in univariate (p = 0.004) and multivariable (HR = 0.70 [0.56-0.88],p = 0.003) adjusted analysis. In a propensity score-matched cohort of 400 patients, ASI use was again associated with longer overall survival (p = 0.039). Lastly, inverse probability weighting (IPW) analysis suggested that the use of ASI was associated with an average treatment effect on the treated (ATT) of HR = 0.68 [0.53-0.86],p = 0.002) for overall survival. CONCLUSION In this single-institution retrospective study focusing on resected PDAC patients, the use of ASI was associated with longer overall survival in multiple statistical models. Prospective clinical trials are needed before routine clinical implementation of ASI as an adjuvant to existing therapy can be recommended.
Collapse
Affiliation(s)
- Hao Liu
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ibrahim Nassour
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Steven Lebowitz
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark D'Alesio
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erica Hampton
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Annissa Desilva
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Abdulrahman Hammad
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Samer AlMasri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussein H Khachfe
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Aatur Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Nathan Bahary
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Amer Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
135
|
Li J, Wu X, Ni X, Li Y, Xu L, Hao X, Zhao W, Zhu X, Yin X. Angiotensin receptor blockers retard the progression and fibrosis via inhibiting the viability of AGTR1+ CAFs in intrahepatic cholangiocarcinoma. Clin Transl Med 2023; 13:e1213. [PMID: 36855786 PMCID: PMC9975461 DOI: 10.1002/ctm2.1213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal malignancy characterized by massive fibrosis and has ineffective adjuvant therapies. Here, we demonstrate the potential of angiotensin receptor blockers (ARBs) in targeting iCCA. METHODS Masson's trichrome staining was used to assess the effect of ARBs in iCCA specimens, CCK8 and gel contraction assays in vitro and in xenograft models in vivo. RNA-seq and ATAC-seq were used for mechanistic investigations. RESULTS Patients with iCCA who were administered ARBs had a better prognosis and a lower proportion of tumour stroma, indicating alleviated fibrosis. The presence of AGTR1, the ARBs receptor, is associated with a poor prognosis of iCCA and is highly expressed in tumour tissues and cancer-associated fibroblasts (CAFs). The ARBs strongly attenuated the viability of AGTR1+ CAFs in vitro and retarded tumour progression and fibrosis in xenograft models of co-cultured CAFs and iCCA cells. Still, they did not have a significant effect on AGTR1- CAFs. Moreover, ARBs decreased the secretion of AGTR1+ CAF-derived MFAP5 via the Hippo pathway, weakened the interaction between CAFs and iCCA cells, and impaired the aggressiveness of iCCA cells by attenuating the activation of the Notch1 pathway in iCCA cells. CONCLUSIONS ARBs exhibit anti-fibrotic function by inhibiting the viability of AGTR1+ CAFs. These findings support using ARBs as a novel therapeutic option for targeting iCCA.
Collapse
Affiliation(s)
- Jian‐Hui Li
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiao Wu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xuhao Ni
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ya‐Xiong Li
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Long Xu
- Key Laboratory of Stem Cells and Tissue EngineeringSun Yat‐sen UniversityMinistry of EducationGuangzhouGuangdongChina
| | - Xiao‐Yi Hao
- Lau Luen Hung Private Medical CenterUnit 3 (Surgery)The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wei Zhao
- Department of Physiology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiao‐Xu Zhu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiao‐Yu Yin
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
136
|
Seo D, Park BG, Jung D, Hwang HK, Kim SH, Hong SS, Kang CM. Pancreatoduodenectomy following neoadjuvant chemotherapy in duodenal adenocarcinoma. Ann Hepatobiliary Pancreat Surg 2023; 27:114-119. [PMID: 36536505 PMCID: PMC9947377 DOI: 10.14701/ahbps.22-069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
A 51-year-old male patient had four times of massive hematochezia episode three days before arrival. Carbohydrate antigen (CA) 19-9 level was extremely elevated. Computed tomography, magnetic resonance imaging, and positron emission tomography-computed tomography identified 5.7 cm sized periampullary duodenal cancer with regional metastatic lymph nodes and vascular invasion to aberrant right hepatic artery, main portal vein, and superior mesenteric vein. Diagnosed as duodenal adenocarcinoma through endoscopic biopsy, 16 times of FOLFIRI (5-fluorouracil, leucovorin, irinotecan) was conducted. The regimen changed to XELOX (capecitabine, oxaliplatine), four times of administration was done, and the CA19-9 level dramatically decreased. The tumor decreased to 2.1 cm. After R0 laparoscopic pylorus preserving pancreatoduodenectomy, no adjuvant therapy was given. No sign of recurrence or metastasis was reported, and the patient reached complete remission after five years. We reported a case where neoadjuvant chemotherapy for locally advanced duodenal adenocarcinoma was shown to be effective.
Collapse
Affiliation(s)
- Dongjin Seo
- Yonsei University College of Medicine, Seoul, Korea
| | | | - Dawn Jung
- Yonsei University College of Medicine, Seoul, Korea
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Kyoung Hwang
- Yonsei University College of Medicine, Seoul, Korea
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| | - Sung Hyun Kim
- Yonsei University College of Medicine, Seoul, Korea
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| | - Seung Soo Hong
- Yonsei University College of Medicine, Seoul, Korea
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| | - Chang Moo Kang
- Yonsei University College of Medicine, Seoul, Korea
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
137
|
Shetu SA, James N, Rivera G, Bandyopadhyay D. Molecular Research in Pancreatic Cancer: Small Molecule Inhibitors, Their Mechanistic Pathways and Beyond. Curr Issues Mol Biol 2023; 45:1914-1949. [PMID: 36975494 PMCID: PMC10047141 DOI: 10.3390/cimb45030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Pancreatic enzymes assist metabolic digestion, and hormones like insulin and glucagon play a critical role in maintaining our blood sugar levels. A malignant pancreas is incapable of doing its regular functions, which results in a health catastrophe. To date, there is no effective biomarker to detect early-stage pancreatic cancer, which makes pancreatic cancer the cancer with the highest mortality rate of all cancer types. Primarily, mutations of the KRAS, CDKN2A, TP53, and SMAD4 genes are responsible for pancreatic cancer, of which mutations of the KRAS gene are present in more than 80% of pancreatic cancer cases. Accordingly, there is a desperate need to develop effective inhibitors of the proteins that are responsible for the proliferation, propagation, regulation, invasion, angiogenesis, and metastasis of pancreatic cancer. This article discusses the effectiveness and mode of action at the molecular level of a wide range of small molecule inhibitors that include pharmaceutically privileged molecules, compounds under clinical trials, and commercial drugs. Both natural and synthetic small molecule inhibitors have been counted. Anti-pancreatic cancer activity and related benefits of using single and combined therapy have been discussed separately. This article sheds light on the scenario, constraints, and future aspects of various small molecule inhibitors for treating pancreatic cancer-the most dreadful cancer so far.
Collapse
Affiliation(s)
- Shaila A. Shetu
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Nneoma James
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
138
|
Datta M, Chatterjee S, Perez EM, Gritsch S, Roberge S, Duquette M, Chen IX, Naxerova K, Kumar AS, Ghosh M, Emblem KE, Ng MR, Ho WW, Kumar P, Krishnan S, Dong X, Speranza MC, Neagu MR, Iorgulescu JB, Huang RY, Youssef G, Reardon DA, Sharpe AH, Freeman GJ, Suvà ML, Xu L, Jain RK. Losartan controls immune checkpoint blocker-induced edema and improves survival in glioblastoma mouse models. Proc Natl Acad Sci U S A 2023; 120:e2219199120. [PMID: 36724255 PMCID: PMC9963691 DOI: 10.1073/pnas.2219199120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023] Open
Abstract
Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma trials. Here, we found that ICBs induce cerebral edema in some patients and mice with glioblastoma. Through single-cell RNA sequencing, intravital imaging, and CD8+ T cell blocking studies in mice, we demonstrated that this edema results from an inflammatory response following antiprogrammed death 1 (PD1) antibody treatment that disrupts the blood-tumor barrier. Used in lieu of immunosuppressive corticosteroids, the angiotensin receptor blocker losartan prevented this ICB-induced edema and reprogrammed the tumor microenvironment, curing 20% of mice which increased to 40% in combination with standard of care treatment. Using a bihemispheric tumor model, we identified a "hot" tumor immune signature prior to losartan+anti-PD1 therapy that predicted long-term survival. Our findings provide the rationale and associated biomarkers to test losartan with ICBs in glioblastoma patients.
Collapse
Affiliation(s)
- Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Sampurna Chatterjee
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Elizabeth M. Perez
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Broad Institute of MIT and Harvard, Cambridge, MA02142
- Department of Systems Biology, Harvard Medical School, Boston, MA02115
| | - Simon Gritsch
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Broad Institute of MIT and Harvard, Cambridge, MA02142
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Mark Duquette
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Ivy X. Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Kamila Naxerova
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Ashwin S. Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Mitrajit Ghosh
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Kyrre E. Emblem
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, 0372Norway
| | - Mei R. Ng
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - William W. Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Pragya Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Shanmugarajan Krishnan
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Xinyue Dong
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Maria C. Speranza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Martha R. Neagu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Raymond Y. Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA02115
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - David A. Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Arlene H. Sharpe
- Broad Institute of MIT and Harvard, Cambridge, MA02142
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Broad Institute of MIT and Harvard, Cambridge, MA02142
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| |
Collapse
|
139
|
Zhu YH, Zheng JH, Jia QY, Duan ZH, Yao HF, Yang J, Sun YW, Jiang SH, Liu DJ, Huo YM. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46:17-48. [PMID: 36367669 DOI: 10.1007/s13402-022-00741-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jia-Hao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, 200240, People's Republic of China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
140
|
Dings MPG, Manoukian P, Waasdorp C, Quik JSE, Strijker M, Lodestijn SC, van Neerven SM, Moreno LF, de Oliveira RL, Bonsing BA, Bruno MJ, Busch OR, Doukas M, van Eijck CH, Mohammad NH, de Hingh IH, Molenaar QI, Besselink MG, Vermeulen L, Medema JP, van Laarhoven HWM, Bijlsma MF. Serum levels of iCAF-derived osteoglycin predict favorable outcome in pancreatic cancer. Int J Cancer 2023; 152:511-523. [PMID: 36069222 PMCID: PMC10087204 DOI: 10.1002/ijc.34276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma, the main cellular constituents of which are cancer-associated fibroblasts (CAFs). Stroma-targeting agents have been proposed to improve the poor outcome of current treatments. However, clinical trials using these agents showed disappointing results. Heterogeneity in the PDAC CAF population was recently delineated demonstrating that both tumor-promoting and tumor-suppressive activities co-exist in the stroma. Here, we aimed to identify biomarkers for the CAF population that contribute to a favorable outcome. RNA-sequencing reads from patient-derived xenografts (PDXs) were mapped to the human and mouse genome to allocate the expression of genes to the tumor or stroma. Survival meta-analysis for stromal genes was performed and applied to human protein atlas data to identify circulating biomarkers. The candidate protein was perturbed in co-cultures and assessed in existing and novel single-cell gene expression analysis from control, pancreatitis, pancreatitis-recovered and PDAC mouse models. Serum levels of the candidate biomarker were measured in two independent cohorts totaling 148 PDAC patients and related them to overall survival. Osteoglycin (OGN) was identified as a candidate serum prognostic marker. Single-cell analysis indicated that Ogn is derived from a subgroup of inflammatory CAFs. Ogn-expressing fibroblasts are distinct from resident healthy pancreatic stellate cells and arise during pancreatitis. Serum OGN levels were prognostic for favorable overall survival in two independent PDAC cohorts (HR = 0.47, P = .042 and HR = 0.53, P = .006). Altogether, we conclude that high circulating OGN levels inform on a previously unrecognized subgroup of CAFs and predict favorable outcomes in resectable PDAC.
Collapse
Affiliation(s)
- Mark P G Dings
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Paul Manoukian
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Cynthia Waasdorp
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Judith S E Quik
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Marin Strijker
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Sophie C Lodestijn
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Sanne M van Neerven
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Leandro F Moreno
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Rodrigo Leite de Oliveira
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,CRISPR Expertise Center, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Doukas
- Department of Pathology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Casper H van Eijck
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ignace H de Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Quintus I Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St Antonius Hospital, Nieuwegein, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Louis Vermeulen
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
141
|
Tezcan O, Elshafei AS, Benderski K, Rama E, Wagner M, Moeckel D, Pola R, Pechar M, Etrych T, von Stillfried S, Kiessling F, Weiskirchen R, Meurer S, Lammers T. Effect of Cellular and Microenvironmental Multidrug Resistance on Tumor-Targeted Drug Delivery in Triple-Negative Breast cancer. J Control Release 2023; 354:784-793. [PMID: 36599395 PMCID: PMC7614501 DOI: 10.1016/j.jconrel.2022.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Multidrug resistance (MDR) reduces the efficacy of chemotherapy. Besides inducing the expression of drug efflux pumps, chemotherapy treatment alters the composition of the tumor microenvironment (TME), thereby potentially limiting tumor-directed drug delivery. To study the impact of MDR signaling in cancer cells on TME remodeling and nanomedicine delivery, we generated multidrug-resistant 4T1 triple-negative breast cancer (TNBC) cells by exposing sensitive 4T1 cells to gradually increasing doxorubicin concentrations. In 2D and 3D cell cultures, resistant 4T1 cells are presented with a more mesenchymal phenotype and produced increased amounts of collagen. While sensitive and resistant 4T1 cells showed similar tumor growth kinetics in vivo, the TME of resistant tumors was enriched in collagen and fibronectin. Vascular perfusion was also significantly increased. Fluorophore-labeled polymeric (∼10 nm) and liposomal (∼100 nm) drug carriers were administered to mice with resistant and sensitive tumors. Their tumor accumulation and penetration were studied using multimodal and multiscale optical imaging. At the whole tumor level, polymers accumulate more efficiently in resistant than in sensitive tumors. For liposomes, the trend was similar, but the differences in tumor accumulation were insignificant. At the individual blood vessel level, both polymers and liposomes were less able to extravasate out of the vasculature and penetrate the interstitium in resistant tumors. In a final in vivo efficacy study, we observed a stronger inhibitory effect of cellular and microenvironmental MDR on liposomal doxorubicin performance than free doxorubicin. These results exemplify that besides classical cellular MDR, microenvironmental drug resistance features should be considered when aiming to target and treat multidrug-resistant tumors more efficiently.
Collapse
Affiliation(s)
- Okan Tezcan
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany.; UT Brown Foundation Institute of Molecular Medicine, UTHealth Houston, Houston, TX, USA.
| | - Asmaa Said Elshafei
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Elena Rama
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Maike Wagner
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Diana Moeckel
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Tomas Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Saskia von Stillfried
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University Hospital RWTH Aachen, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Steffen Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany..
| |
Collapse
|
142
|
Curry DE, Al-Sayed AA, Trites J, Wheelock M, Acott PD, Midgen C, Johnson LB, Bezuhly M. Oral Losartan After Limited Mandibulectomy for Treatment of Desmoid-Type Fibromatosis. EAR, NOSE & THROAT JOURNAL 2023; 102:NP49-NP52. [PMID: 33491484 DOI: 10.1177/0145561320987641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Desmoid-type fibromatosis (DF) is a rare soft tissue lesion with an annual incidence of 2 to 4 per million population and peak incidence occurring at approximately 4.5 years of age. While benign, the tumor has a locally aggressive infiltrative growth pattern and a high rate of recurrence. Given the functional and aesthetic implications of excision and reconstruction in the facial skeleton, novel medical treatment options are highly desirable. We describe the case of a 3-year-old boy who presented with an enlarging, asymptomatic mass involving the left mandible. Biopsy revealed an immunohistochemical profile consistent with DF. Despite the high likelihood of recurrence, conservative, mandible-sparing en bloc resection and limited mandibulectomy were performed. Pathological and immunohistochemical analysis of the resection specimen revealed DF with grossly positive margins and elevated expression of angiotensin II type 1 receptor. Postoperative medical treatment with the angiotensin receptor blocker losartan was initiated. The patient remains medically stable and disease progression-free on repeat imaging at 20 months post-resection. We describe for the first time the successful use of the angiotensin blocker losartan following conservative surgery for management of DF.
Collapse
Affiliation(s)
- Dennis E Curry
- Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ahmed A Al-Sayed
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jonathan Trites
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Margaret Wheelock
- Division of Plastic Surgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Philip D Acott
- Division of Nephrology, Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Craig Midgen
- Department of Pathology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Liane B Johnson
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael Bezuhly
- Division of Plastic Surgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
143
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
144
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
145
|
Siegel JB, Nasarre P, Hsu L, Mukherjee R, Gormley M, Richardson B, Khan I, Morningstar JE, Hilliard E, O’Bryan JP, Helke KL, Spruill L, Dolloff NG, Klauber-DeMore N. Secreted frizzled related-protein 2 is prognostic for human pancreatic cancer patient survival and is associated with fibrosis. Cancer Biomark 2023; 38:287-300. [PMID: 37955079 PMCID: PMC10977449 DOI: 10.3233/cbm-220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/14/2023] [Indexed: 11/14/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the deadliest cancers, with five-year survival rates of 9%. We hypothesized that secreted frizzled-related protein 2 (SFRP2) may influence stromal growth in pancreatic cancer, since it increases fibrosis and collagen production in non-neoplastic pathologies. We assessed SFRP2 value as a biomarker and assessed its function in PDAC. SFRP2 gene expression in patients with PDAC was analyzed using TCGA data. Disease free survival (DFS) was analyzed using Kaplan Meier test. The effect of KRAS inhibition on SFRP2 expression in PDAC cells was assessed. The associations of stromal content with SFPR2 mRNA and protein with fibrosis were analyzed. The role of SFRP2 in mesenchymal transformation was assessed by western blot in fibroblasts. Of all cancers in TCGA, SFRP2 levels were highest in PDAC, and higher in PDAC than normal tissues (n= 234, p= 0.0003). High SFRP2 levels correlated with decreased DFS (p= 0.0097). KRAS inhibition reduced SFRP2 levels. Spearman correlation was 0.81 between stromal RNA and SFRP2 in human PDAC, and 0.75 between fibrosis and SFRP2 levels in PDAC tumors. SFRP2-treated fibroblasts displayed mesenchymal characteristics. SFRP2 is prognostic for PDAC survival, regulated by KRAS, and associated with PDAC fibrosis.
Collapse
Affiliation(s)
- Julie B. Siegel
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick Nasarre
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Lillian Hsu
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rupak Mukherjee
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Meghan Gormley
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bailey Richardson
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Imran Khan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston SC, USA
| | - Eleanor Hilliard
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - John P. O’Bryan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Nathan G. Dolloff
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
146
|
Chawla A, Ferrone CR. Surgeon-Led Clinical Trials in Pancreatic Cancer. Surg Oncol Clin N Am 2023; 32:143-151. [PMID: 36410914 DOI: 10.1016/j.soc.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The review also highlights key landmark adjuvant, neoadjuvant and perioperative trials with an emphasis on surgeon-run clinical trials that have helped to define the pancreatic cancer treatment paradigms.
Collapse
Affiliation(s)
- Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, 676 N. St. Clair St., Suite 650Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | | |
Collapse
|
147
|
Ramaswamy A, Shah D, Bhargava P, Srinivas S, Kannan S, Shah M, Suman M, Das S, Trikha M, Ostwal V. Modified FOLFIRINOX compared to Gemcitabine & nab-Paclitaxel in advanced pancreatic ductal adenocarcinoma - results of a match-pair analysis. Indian J Med Res 2023; 157:57-65. [PMID: 37040228 PMCID: PMC10284354 DOI: 10.4103/ijmr.ijmr_980_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND & OBJECTIVES FOLFIRINOX and gemcitabine plus nab-paclitaxel (GN) are the most commonly used regimens in advanced pancreatic ductal adenocarcinomas (PDACs). As there is limited data on comparison of these two regimens, the present study was aimed to compare survivals and tolerance for both regimens through a match-pair analysis. METHODS The data of 350 patients with metastatic and locally advanced PDAC, treated between January 2013 and December 2019, were retrieved. A 1:1 matching, using age and performance status, without replacement was performed by using nearest neighbour matching method. RESULTS A total of 260 patients (130 modified FOLFIRINOX and 130 GN) were matched. The median overall survival (OS) was 12.98 months [95% confidence interval (CI) 7.257-8.776 months] in modifications of FOLFIRINOX (mFOLFIRINOX) cohort and 12.06 months (95% CI 6.690-8.88 months) in GN group (P=0.080). The incidence of grade 3 and 4 infections, diarrhoea, oral mucositis, and fatigue was higher with mFOLFIRINOX. Patients who received second line therapy had improved OS as compared to those who did not (14.06 vs. 9.07 months, P<0.001). INTERPRETATION & CONCLUSIONS GN and mFOLFIRINOX appear to have similar survival outcomes in an unselected match paired patient population with advanced PDAC. A markedly increased incidence of non-myelosuppressive grade 3 and grade 4 side-effects and lack of survival improvements suggest a need for nuanced use of the mFOLFIRINOX regimen. Administration of second-line chemotherapy improves OS in patients with advanced PDAC.
Collapse
Affiliation(s)
- Anant Ramaswamy
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Darshit Shah
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Prabhat Bhargava
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sujay Srinivas
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sadhana Kannan
- Department of Biostatistics, Clinical Research Secretariat, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Minit Shah
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mannavi Suman
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Shasanka Das
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mehak Trikha
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vikas Ostwal
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
148
|
Wang C, Wang Q, Wang H, Li Z, Chen J, Zhang Z, Zeng H, Yu X, Yang X, Yang X, Li Z. Hydroxyethyl starch-folic acid conjugates stabilized theranostic nanoparticles for cancer therapy. J Control Release 2023; 353:391-410. [PMID: 36473606 DOI: 10.1016/j.jconrel.2022.11.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Small molecular prodrug-based nanomedicines with high drug-loading efficiency and tumor selectivity have attracted great attention for cancer therapy against solid tumors, including triple negative breast cancers (TNBC). However, abnormal tumor mechanical microenvironment (TMME) severely restricts antitumor efficacy of prodrug nanomedicines by limiting drug delivery and fostering cancer stem cells (CSCs). Herein, we employed carbamate disulfide bridged doxorubicin dimeric prodrug as pharmaceutical ingredient, marketed IR780 iodide as photothermal agent, and biocompatible hydroxyethyl starch-folic acid conjugates as amphiphilic surfactant to prepare a theranostic nanomedicine (FDINs), which could actively target at TNBC 4T1 tumor tissues and achieve reduction-responsive drug release with high glutathione concentration in cancer cells and CSCs. Importantly, in addition to directly causing damage to cancer cells and sensitizing chemotherapy, FDINs-mediated photothermal effect regulates aberrant TMME via reducing cancer associated fibroblasts and depleting extracellular matrix proteins, thereby normalizing intratumor vessel structure and function to facilitate drug and oxygen delivery. Furthermore, FDINs potently eliminate CSCs by disrupting unique CSCs niche and consuming intracellular GSH in CSCs. As a result, FDINs significantly suppress tumor growth in both subcutaneous and orthotopic 4T1 tumors. This study provides novel insights on rational design of prodrug nanomedicines for superior therapeutic effect against stroma- and CSCs-rich solid malignancies.
Collapse
Affiliation(s)
- Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haowen Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ximiao Yu
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaoquan Yang
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
149
|
Maloney LT, Latour E, Chen Y, Rice D, Grossblatt-Wait A, Nabavizadeh N, Thomas CR, Young KH, Walker JM, Holland J, Grossberg AJ. Angiotensin receptor blockade and stereotactic body radiation therapy for early stage lung cancer ARB & SBRT for early stage lung cancer. Cancer Biol Ther 2022; 23:1-8. [PMID: 36201632 PMCID: PMC9542943 DOI: 10.1080/15384047.2022.2126250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) demonstrates excellent local control in early stage lung cancer, however a quarter of patients develop recurrence or distant metastasis. Transforming growth factor-beta (TGF-β) supports metastasis and treatment resistance, and angiotensin receptor blockade (ARB) indirectly suppresses TGF-β signaling. This study investigates whether patients taking ARBs while undergoing SBRT for early stage lung cancer exhibited improved overall survival (OS) or recurrence free survival (RFS) compared to patients not taking ARBs. This was a single institution retrospective analysis of 272 patients treated with SBRT for early stage lung cancer between 2009 and 2018. Patient health data was abstracted from the electronic medical record. OS and RFS were assessed using Kaplan-Meier method. Log-rank test was used to compare unadjusted survival between groups. Univariable and multivariable Cox proportional hazard regression models were used to estimate hazard ratios (HRs). Of 247 patients analyzed, 24 (10%) patients took ARBs for the duration of radiotherapy. There was no difference in mean age, median tumor diameter, or median biologic effective dose between patients taking ARBs or not. Patients taking ARBs exhibited increased OS (ARB = 96.7 mo.; no ARB = 43.3 mo.; HR = 0.25 [95% CI: 0.10 to 0.62, P = .003]) and increased RFS (median RFS, ARB = 64.3 mo.; No ARB = 35.1 mo.; HR = 0.26 [95% CI: 0.10 to 0.63, P = .003]). These effects were not seen in patients taking angiotensin converting enzyme inhibitors (ACEIs) or statins. ARB use while undergoing SBRT for early stage lung cancer may increase OS and RFS, but ACEI use does not show the same effect.
Collapse
Affiliation(s)
- Lauren T. Maloney
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Emile Latour
- Biostatistics Shared Resource, Oregon Health and Science University, Portland, OR, USA
| | - Yiyi Chen
- Biostatistics Shared Resource, Oregon Health and Science University, Portland, OR, USA
| | - Douglas Rice
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Alison Grossblatt-Wait
- Brenden Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Charles R. Thomas
- Department of Radiation Oncology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Kristina H. Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA,The Oregon Clinic, Radiation Oncology Division, Portland, OR, USA
| | - Joshua M. Walker
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - John Holland
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Aaron J. Grossberg
- Brenden Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA,Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA,CONTACT Aaron J. Grossberg Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
150
|
Repurposing Drugs in Small Animal Oncology. Animals (Basel) 2022; 13:ani13010139. [PMID: 36611747 PMCID: PMC9817697 DOI: 10.3390/ani13010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Repurposing drugs in oncology consists of using off-label drugs that are licensed for various non-oncological medical conditions to treat cancer. Repurposing drugs has the advantage of using drugs that are already commercialized, with known mechanisms of action, proven safety profiles, and known toxicology, pharmacokinetics and pharmacodynamics, and posology. These drugs are usually cheaper than new anti-cancer drugs and thus more affordable, even in low-income countries. The interest in repurposed anti-cancer drugs has led to numerous in vivo and in vitro studies, with some promising results. Some randomized clinical trials have also been performed in humans, with certain drugs showing some degree of clinical efficacy, but the true clinical benefit for most of these drugs remains unknown. Repurposing drugs in veterinary oncology is a very new concept and only a few studies have been published so far. In this review, we summarize both the benefits and challenges of using repurposed anti-cancer drugs; we report and discuss the most relevant studies that have been previously published in small animal oncology, and we suggest potential drugs that could be clinically investigated for anti-cancer treatment in dogs and cats.
Collapse
|