101
|
Vilas Boas D, Almeida C, Sillankorva S, Nicolau A, Azeredo J, Azevedo NF. Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). BIOFOULING 2016; 32:179-190. [PMID: 26813295 DOI: 10.1080/08927014.2015.1131821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r = 0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.
Collapse
Affiliation(s)
- Diana Vilas Boas
- b Laboratory for Process, Environment, Biotechnology and Energy Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Carina Almeida
- a LIBRO -Laboratório de Investigação em Biofilmes Rosário Oliveira , Centre of Biological Engineering, University of Minho , Braga , Portugal
- b Laboratory for Process, Environment, Biotechnology and Energy Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Sanna Sillankorva
- a LIBRO -Laboratório de Investigação em Biofilmes Rosário Oliveira , Centre of Biological Engineering, University of Minho , Braga , Portugal
| | - Ana Nicolau
- b Laboratory for Process, Environment, Biotechnology and Energy Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Joana Azeredo
- b Laboratory for Process, Environment, Biotechnology and Energy Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Nuno F Azevedo
- b Laboratory for Process, Environment, Biotechnology and Energy Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| |
Collapse
|
102
|
Haddad PA, Mah TF, Mussivand T. In Vitro Assessment of Electric Currents Increasing the Effectiveness of Vancomycin Against Staphylococcus epidermidis Biofilms. Artif Organs 2015; 40:804-10. [PMID: 26713750 DOI: 10.1111/aor.12678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biofilms are communities of bacteria that can cause infections which are resistant to the immune system and antimicrobial treatments, posing a significant threat for patients with implantable and indwelling medical devices. The purpose of our research was to determine if utilizing specific parameters for electric currents in conjunction with antibiotics could effectively treat a highly resistant biofilm. Our study evaluated the impact of 16 μg/mL of vancomycin with or without 22 or 333 μA of direct electric current (DC) generated by stainless steel electrodes against 24-, 48-, and 72-h-old Staphylococcus epidermidis biofilms formed on titanium coupons. An increase in effectiveness of vancomycin was observed with the combination of 333 μA of electric current against 48-h-old biofilms (P value = 0.01) as well as in combination with 22 μA of electric current against 72-h-old biofilms (P value = 0.04); 333 μA of electric current showed the most significant impact on the effectiveness of vancomycin against S. epidermidis biofilms demonstrating a bioelectric effect previously not observed against this strain of bacteria.
Collapse
Affiliation(s)
- Peter A Haddad
- University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Medical Devices Innovation Institute, Ottawa, Ontario, Canada
| | | | - Tofy Mussivand
- University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Medical Devices Innovation Institute, Ottawa, Ontario, Canada
| |
Collapse
|
103
|
Pellizzoni E, Ravalico F, Scaini D, Delneri A, Rizzo R, Cescutti P. Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides. MICROBIOLOGY-SGM 2015; 162:283-294. [PMID: 26586192 DOI: 10.1099/mic.0.000214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the Burkholderia cepacia complex species, Burkholderia cenocepacia is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, B. cenocepacia strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by 1H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs.
Collapse
Affiliation(s)
- Elena Pellizzoni
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Fabio Ravalico
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Denis Scaini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Ambra Delneri
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| |
Collapse
|
104
|
Clark ST, Diaz Caballero J, Cheang M, Coburn B, Wang PW, Donaldson SL, Zhang Y, Liu M, Keshavjee S, Yau YC, Waters VJ, Elizabeth Tullis D, Guttman DS, Hwang DM. Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis. Sci Rep 2015; 5:10932. [PMID: 26047320 PMCID: PMC4456944 DOI: 10.1038/srep10932] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023] Open
Abstract
Chronic airway infections caused by Pseudomonas aeruginosa contribute to the progression of pulmonary disease in individuals with cystic fibrosis (CF). In the setting of CF, within-patient adaptation of a P. aeruginosa strain generates phenotypic diversity that can complicate microbiological analysis of patient samples. We investigated within- and between- sample diversity of 34 phenotypes among 235 P. aeruginosa isolates cultured from sputum samples collected from a single CF patient over the span of one year, and assessed colony morphology as a screening tool for predicting phenotypes, including antimicrobial susceptibilities. We identified 15 distinct colony morphotypes that varied significantly in abundance both within and between sputum samples. Substantial within sample phenotypic heterogeneity was also noted in other phenotypes, with morphotypes being unreliable predictors of antimicrobial susceptibility and other phenotypes. Emergence of isolates with reduced susceptibility to β-lactams was observed during periods of clinical therapy with aztreonam. Our findings confirm that the P. aeruginosa population in chronic CF lung infections is highly dynamic, and that intra-sample phenotypic diversity is underestimated if only one or few colonies are analyzed per sample.
Collapse
Affiliation(s)
- Shawn T. Clark
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto, Canada
| | | | - Mary Cheang
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto, Canada
| | - Bryan Coburn
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Pauline W. Wang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Sylva L. Donaldson
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Yu Zhang
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto, Canada
| | - Yvonne C.W. Yau
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pediatric Laboratory Medicine, Division of Microbiology, The Hospital for Sick Children, Toronto, Canada
| | - Valerie J. Waters
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pediatrics, Division of Infectious Diseases, The Hospital for Sick Children, Toronto, Canada
| | - D. Elizabeth Tullis
- Department of Medicine, Division of Respirology, St. Michael’s Hospital, Toronto, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - David M. Hwang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| |
Collapse
|
105
|
Dwivedi D, Singh V. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans. J Tradit Complement Med 2015; 6:57-61. [PMID: 26870681 PMCID: PMC4738039 DOI: 10.1016/j.jtcme.2014.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 11/02/2022] Open
Abstract
We aimed to evaluate the effects of the natural compounds embelin and piperine on the biofilm-formation property of Streptococcus mutans. A total of 30 clinical isolates were identified as S. mutans and screened for biofilm formation using the microtiter plate method. The strongest biofilm producer (SM03) was used for identifying both minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC). We subsequently used this concentration against each of the strong biofilm producer isolates at A 492 < 0.5 optical density (OD). Of the 30 isolates screened for biofilm formation, 18 isolates showed strong biofilm formation, 09 isolates showed moderate formation, and 03 isolates showed poor/nonbiofilm formation. The MIC of embelin for the strongest biofilm producer (SM03) was 0.55 ± 0.02, whereas that of piperine was 0.33 ± 0.02. The MBIC of embelin was 0.0620 ± 0.03, whereas that of piperine was 0.0407 ± 0.03, which was lower than that of embelin. At OD492 < 0.5, the MBIC of both compounds significantly inhibited biofilm formation of all the 18 strong biofilm-forming isolates. The results of this study demonstrate a significant antibiofilm effect of the natural compounds embelin and piperine, which can contribute towards the development of a database for novel drug candidates for treating oral infections caused by S. mutans.
Collapse
Affiliation(s)
- Deepak Dwivedi
- Minor Forest Produce Processing and Research Center, Bhopal, Madhya Pradesh, India
| | - Vinod Singh
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
106
|
Brackman G, Coenye T. In Vitro and In Vivo Biofilm Wound Models and Their Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 897:15-32. [DOI: 10.1007/5584_2015_5002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
107
|
Crouzet M, Le Senechal C, Brözel VS, Costaglioli P, Barthe C, Bonneu M, Garbay B, Vilain S. Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiol 2014; 14:253. [PMID: 25266973 PMCID: PMC4189659 DOI: 10.1186/s12866-014-0253-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 09/24/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Bacterial biofilms are predominant in natural ecosystems and constitute a public health threat because of their outstanding resistance to antibacterial treatments and especially to antibiotics. To date, several systems have been developed to grow bacterial biofilms in order to study their phenotypes and the physiology of sessile cells. Although relevant, such systems permit analysis of various aspects of the biofilm state but often after several hours of bacterial growth. RESULTS Here we describe a simple and easy-to-use system for growing P. aeruginosa biofilm based on the medium adsorption onto glass wool fibers. This approach which promotes bacterial contact onto the support, makes it possible to obtain in a few minutes a large population of sessile bacteria. Using this growth system, we demonstrated the feasibility of exploring the early stages of biofilm formation by separating by electrophoresis proteins extracted directly from immobilized cells. Moreover, the involvement of protein synthesis in P. aeruginosa attachment is demonstrated. CONCLUSIONS Our system provides sufficient sessile biomass to perform biochemical and proteomic analyses from the early incubation period, thus paving the way for the molecular analysis of the early stages of colonization that were inaccessible to date.
Collapse
Affiliation(s)
- Marc Crouzet
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
| | - Caroline Le Senechal
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
| | - Volker S Brözel
- />Department of Biology & Microbiology, South Dakota State University, Brookings, SD 57007 USA
- />Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, 0083 South Africa
| | - Patricia Costaglioli
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
- />ENSTBB, 146 rue Léo Saignat, case 87, 33076 Bordeaux cedex, France
| | - Christophe Barthe
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
| | - Marc Bonneu
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Université de Bordeaux, Centre Génomique Fonctionnelle de Bordeaux, Plateforme Protéome, Bordeaux, F-33000 France
- />ENSTBB, 146 rue Léo Saignat, case 87, 33076 Bordeaux cedex, France
| | - Bertrand Garbay
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
- />ENSTBB, 146 rue Léo Saignat, case 87, 33076 Bordeaux cedex, France
| | - Sebastien Vilain
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
- />ENSTBB, 146 rue Léo Saignat, case 87, 33076 Bordeaux cedex, France
| |
Collapse
|
108
|
Hor YY, Liong MT. Use of extracellular extracts of lactic acid bacteria and bifidobacteria for the inhibition of dermatological pathogen Staphylococcus aureus. DERMATOL SIN 2014. [DOI: 10.1016/j.dsi.2014.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
109
|
Sandrini S, Alghofaili F, Freestone P, Yesilkaya H. Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression. BMC Microbiol 2014; 14:180. [PMID: 24996423 PMCID: PMC4105557 DOI: 10.1186/1471-2180-14-180] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/26/2014] [Indexed: 12/13/2022] Open
Abstract
Background Host signals are being shown to have a major impact on the bacterial phenotype. One of them is the endogenously produced catecholamine stress hormones, which are also used therapeutically as inotropes. Recent work form our laboratories have found that stress hormones can markedly increase bacterial growth and virulence. This report reveals that Streptococcus pneumoniae, a commensal that can also be a major cause of community acquired and nosocomial pneumonia, is highly inotrope responsive. Therapeutic levels of the stress hormone norepinephrine increased pneumococcal growth via a mechanism involving provision of iron from serum-transferrin and inotrope uptake, as well as enhancing expression of key genes in central metabolism and virulence. Collectively, our data suggests that Streptococcus pneumoniae recognises host stress as an environmental cue to initiate growth and pathogenic processes. Results Effects of a clinically attainable concentration of norepinephrine on S. pneumoniae pathogenicity were explored using in vitro growth and virulence assays, and RT-PCR gene expression profiling of genes involved in metabolism and virulence. We found that norepinephrine was a potent stimulator of growth, via a mechanism involving norepinephrine-delivery of transferrin-iron and internalisation of the inotrope. Stress hormone exposure also markedly increased biofilm formation. Importantly, gene profiling showed that norepinephrine significantly enhanced expression of genes involved in central metabolism and host colonisation. Analysis of the response of the pneumococcal pspA and pspC mutants to the stress hormone showed them to have a central involvement in the catecholamine response mechanism. Conclusions Collectively, our evidence suggests that the pneumococcus has mechanisms to recognise and process host stress hormones to augment its virulence properties. The ability to respond to host stress signals may be important for the pneumococcal transition from colonization to invasion mode, which is key to its capacity to cause life-threatening pneumonia, septicaemia and meningitis.
Collapse
Affiliation(s)
| | | | - Primrose Freestone
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK.
| | | |
Collapse
|
110
|
Maddocks SE, Jenkins RE, Rowlands RS, Purdy KJ, Cooper RA. Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro. Future Microbiol 2014; 8:1523-36. [PMID: 24266353 DOI: 10.2217/fmb.13.126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To characterize the effect of manuka honey on medically important wound bacteria in vitro, focusing on its antiadhesive properties. MATERIALS & METHODS Crystal violet biofilm assays, fluorescent microscopy, protein adhesion assay and gentamicin protection assay were used to determine the impact of manuka honey on biofilm formation, human protein binding and adherence to/invasion into human keratinocytes. RESULTS Manuka honey effectively disrupted and caused extensive cell death in biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Sublethal doses of manuka honey inhibited bacterial adhesion to the fibronectin, fibrinogen and collagen. Manuka honey impaired adhesion of laboratory and clinical isolates of S. aureus, P. aeruginosa and S. pyogenes to human keratinocytes in vitro, and inhibited invasion by S. pyogenes and homogeneous vancomycin intermediate S. aureus. CONCLUSION Manuka honey can directly affect bacterial cells embedded in a biofilm and exhibits antiadhesive properties against three common wound pathogens.
Collapse
Affiliation(s)
- Sarah Elizabeth Maddocks
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Llandaff, Cardiff, CF5 2YB, UK
| | | | | | | | | |
Collapse
|
111
|
Cuzzi B, Herasimenka Y, Silipo A, Lanzetta R, Liut G, Rizzo R, Cescutti P. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation. PLoS One 2014; 9:e94372. [PMID: 24722641 PMCID: PMC3983119 DOI: 10.1371/journal.pone.0094372] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/15/2014] [Indexed: 11/24/2022] Open
Abstract
The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained from cultures on agar plates with those extracted from biofilms on cellulose membranes showed important differences, thus suggesting that extrapolating data from non-biofilm conditions might not always be applicable.
Collapse
Affiliation(s)
- Bruno Cuzzi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Yury Herasimenka
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gianfranco Liut
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
112
|
Hakonen B, Lönnberg LK, Larkö E, Blom K. A Novel Qualitative and Quantitative Biofilm Assay Based on 3D Soft Tissue. Int J Biomater 2014; 2014:768136. [PMID: 24696687 PMCID: PMC3948644 DOI: 10.1155/2014/768136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/22/2013] [Accepted: 01/09/2014] [Indexed: 12/02/2022] Open
Abstract
The lack of predictable in vitro methods to analyze antimicrobial activity could play a role in the development of resistance to antibiotics. Current used methods analyze planktonic cells but for the method to be clinically relevant, biofilm in in vivo like conditions ought to be studied. Hence, our group has developed a qualitative and quantitative method with in vivo like 3D tissue for prediction of antimicrobial activity in reality. Devices (wound dressings) were applied on top of Pseudomonas aeruginosa inoculated Muller-Hinton (MH) agar or 3D synthetic soft tissues (SST) and incubated for 24 hours. The antibacterial activity was then analyzed visually and by viable counts. On MH agar two out of three silver containing devices showed zone of inhibitions (ZOI) and on SST, ZOI were detected for all three. Corroborating results were found upon evaluating the bacterial load in SST and shown to be silver concentration dependent. In conclusion, a novel method was developed combining visual rapid screening and quantitative evaluation of the antimicrobial activity in both tissue and devices. It uses tissue allowing biofilm formation thus mimicking reality closely. These conditions are essential in order to predict antimicrobial activity of medical devices in the task to prevent device related infections.
Collapse
Affiliation(s)
| | - Linnea K. Lönnberg
- Medibiome AB, 431 53 Mölndal, Sweden
- Department of Medical Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, 413 45 Göteborg, Sweden
| | - Eva Larkö
- Medibiome AB, 431 53 Mölndal, Sweden
| | | |
Collapse
|
113
|
Semenyuk EG, Laning ML, Foley J, Johnston PF, Knight KL, Gerding DN, Driks A. Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 2014; 9:e87757. [PMID: 24498186 PMCID: PMC3907560 DOI: 10.1371/journal.pone.0087757] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/02/2014] [Indexed: 01/05/2023] Open
Abstract
The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.
Collapse
Affiliation(s)
- Ekaterina G. Semenyuk
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Michelle L. Laning
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Jennifer Foley
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Pehga F. Johnston
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Dale N. Gerding
- Hines Veterans Affairs Hospital, Hines, Illinois, United States of America
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
114
|
Manios SG, Skandamis PN. Control of Listeria monocytogenes in the processing environment by understanding biofilm formation and resistance to sanitizers. Methods Mol Biol 2014; 1157:251-261. [PMID: 24792564 DOI: 10.1007/978-1-4939-0703-8_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Listeria monocytogenes can colonize in the food processing environment and thus pose a greater risk of cross-contamination to food. One of the proposed mechanisms that facilitates such colonization is biofilm formation. As part of a biofilm, it is hypothesized that L. monocytogenes can survive sanitization procedures. In addition, biofilms are difficult to remove and may require additional physical and chemical mechanisms to reduce their presence and occurrence. The initial stage of biofilm formation is attachment to surfaces, and therefore it is important to be able to determine the ability of L. monocytogenes strains to attach to various inert surfaces. In this chapter, methods to study bacterial attachment to surfaces are described. Attachment is commonly induced by bringing planktonic cells into contact with plastic, glass, or stainless steel surfaces with or without food residues ("soil") in batch or continuous (e.g., with constant flow of nutrients) culture. Measurement of biofilm formed is carried out by detaching cells (with various mechanical methods) and measuring the viable counts or by measuring the total attached biomass. Resistance of biofilms to sanitizers is commonly carried out by exposure of the whole model surface bearing the attached cells to a solution of sanitizer, followed by measuring the survivors as described above.
Collapse
Affiliation(s)
- Stavros G Manios
- Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | | |
Collapse
|
115
|
Wang M, Hashimoto M, Hashidoko Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS One 2013; 8:e78024. [PMID: 24223754 PMCID: PMC3817171 DOI: 10.1371/journal.pone.0078024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The tropolone-tolerant Trichoderma virens PS1-7 is a biocontrol agent against Burkholderia plantarii, causative of rice seedling blight. When exposed to catechol, this fungus dose-dependently produced carot-4-en-9,10-diol, a sesquiterpene-type autoregulatory signal molecule that promotes self-conidiation of T. virens PS1-7 mycelia. It was, however, uncertain why T. virens PS1-7 attenuates the symptom development of the rice seedlings infested with B. plantarii. METHODOLOGY/PRINCIPAL FINDINGS To reveal the antagonism by T. virens PS1-7 against B. plantarii leading to repression of tropolone production in a coculture system, bioassay-guided screening for active compounds from a 3-d culture of T. virens PS1-7 was conducted. As a result, carot-4-en-9,10-diol was identified and found to repress tropolone production of B. plantarii from 10 to 200 µM in a dose-dependent manner as well as attenuate virulence of B. plantarii on rice seedlings. Quantitative RT-PCR analysis revealed that transcriptional suppression of N-acyl-L-homoserine lactone synthase plaI in B. plantarii was the main mode of action by which carot-4-en-9,10-diol mediated the quorum quenching responsible for repression of tropolone production. In addition, the unique response of B. plantarii to carot-4-en-9,10-diol in the biofilm formed in the static culture system was also found. Although the initial stage of B. plantarii biofilm formation was induced by both tropolone and carot-4-en-9,10-diol, it was induced in different states. Moreover, the B. plantarii biofilm that was induced by carot-4-en-9,10-diol at the late stage showed defects not only in matrix structure but also cell viability. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that carot-4-en-9,10-diol released by T. virens PS1-7 acts as an interkingdom cell-to-cell signaling molecule against B. plantarii to repress tropolone production and induces pseudo-biofilm to the cells. This observation also led to another discovery that tropolone is an autoregulatory cell-to-cell signaling molecule of B. plantarii that induces a functional biofilm other than a simple B. plantarii virulence factor.
Collapse
Affiliation(s)
- Mengcen Wang
- Graduate School of Agriculture & Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Makoto Hashimoto
- Graduate School of Agriculture & Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Hashidoko
- Graduate School of Agriculture & Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
116
|
Corcuera MT, Gómez-Lus ML, Gómez-Aguado F, Maestre JR, Ramos MDC, Alonso MJ, Prieto J. Morphological plasticity of Streptococcus oralis isolates for biofilm production, invasiveness, and architectural patterns. Arch Oral Biol 2013; 58:1584-93. [PMID: 24112723 DOI: 10.1016/j.archoralbio.2013.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 06/03/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Streptococcus oralis is an early coloniser of the oral cavity that contributes to dental plaque formation. Many different genotypes can coexist in the same individual and cause opportunistic infections such as bacterial endocarditis. However, little is known about virulence factors involved in those processes. The aim was to analyze the evolving growth of S. oralis colony/biofilm to find out potentially pathogenic features. DESIGN Thirty-three S. oralis isolates were analyzed for: (1) biofilm production, by spectrophotometric microtiter plate assay; (2) colonial internal architecture, by histological methods and light and electron microscopy; (3) agar invasion, by a new colony-biofilm assay. RESULTS S. oralis colonies showed two different growth patterns: (1) fast growth rate without invasion or minimally invasive; (2) slow growth rate, but high invasion ability. 12.1% of strains were biofilm non-producers and 24.2% not invasive, compared to 51.5% biofilm high-producers and 39.4% very invasive. Both phenotypic characteristics tended to be mutually exclusive. However, a limited number of strains (15%) co-expressed these features at the highest level. CONCLUSIONS Morphological plasticity of S. oralis highlighted in this study may have important ecological and clinical implications. Coexistence of strains with different growth patterns could produce a synergic effect in the formation and development of subgingival dental plaque. Moreover, invasiveness might regulate dissemination and colonisation mechanisms. Simultaneous co-expression of high-invasive and high-biofilm phenotypes gives a fitness advantage during colonisation and may confer higher pathogenic potential.
Collapse
|
117
|
López-Sánchez A, Jiménez-Fernández A, Calero P, Gallego LD, Govantes F. New methods for the isolation and characterization of biofilm-persistent mutants in Pseudomonas putida. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:679-685. [PMID: 24115618 DOI: 10.1111/1758-2229.12067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Here we describe two new methods for the genetic characterization of bacterial biofilm development. First, we have designed a microtitre dish-based approach for high-throughput screening of Pseudomonas putida mutants showing increased biofilm under dispersal conditions. Using this method, nine such biofilm-persistent mutants, bearing transposon insertions in four loci: lapG, bifA, mvaB and dksA, were isolated. Second, we have developed a serial dilution-based scheme to monitor biofilm development and dispersal in microtitre dish wells in a simple, time-efficient and reproducible manner. Using this method, we showed that (i) mutants in bifA and dksA do not undergo starvation-induced biofilm dispersal in LB or minimal medium, (ii) a mvaB mutant does not disperse the biofilm in LB, but shows a normal dispersal response in minimal medium, and (iii) unlike the lapG mutant, the bifA, mvaB and dksA mutants do not show an increase in biofilm production. The procedures shown here are useful tools for the identification of previously uncharacterized biofilm-related genes and considerably simplify the characterization of biofilm growth phenotypes.
Collapse
Affiliation(s)
- Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | | | | | | | | |
Collapse
|
118
|
Kamonwannasit S, Nantapong N, Kumkrai P, Luecha P, Kupittayanant S, Chudapongse N. Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Ann Clin Microbiol Antimicrob 2013; 12:20. [PMID: 23962360 PMCID: PMC3765429 DOI: 10.1186/1476-0711-12-20] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/18/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aquilaria crassna Pierre ex Lecomte has been traditionally used in Thailand for treatment of infectious diseases such as diarrhoea and skin diseases for a long time. The main objectives of this study were to examine antibacterial activity of the Aquilaria crassna leaf extract against Staphylococcus epidermidis and its underlying mechanism. The antioxidant activity and acute toxicity were studied as well. METHODS Antioxidant activities were examined by FRAP, ABTS and DPPH scavenging methods. Antibacterial activity was conducted using disc diffusion assay and the minimum inhibitory concentration (MIC) was determined by dilution method. The minimum bactericidal concentration (MBC) was reported as the lowest concentration producing no growth of microbes in the subcultures. Morphological changes of the microbe were observed by scanning electron microscopy, while an inhibitory effect on biofilm formation was evaluated by phase contrast microscopic analysis. Bacterial cell wall integrity was assessed by transmission electron microscopy. Acute toxicity was conducted in accordance with the OECD for Testing of Chemicals (2001) guidelines. RESULTS The extract exhibited considerable antioxidant activity. Staphylococcus epidermidis was susceptible to the extract with the MIC and MBC of 6 and 12 mg/ml, respectively. The extract caused swelling and distortion of bacterial cells and inhibited bacterial biofilm formation. Rupture of bacterial cell wall occurred after treated with the extract for 24 h. Acute toxicity test in mice showed no sign of toxicity or death at the doses of 2,000 and 15,000 mg/kg body weight. CONCLUSION The aqueous extract of Aquilaria crassna leaves possesses an in vitro antibacterial activity against Staphylococcus epidermidis, with no sign of acute oral toxicity in mice, probably by interfering with bacterial cell wall synthesis and inhibiting biofilm formation.
Collapse
Affiliation(s)
- Sirilak Kamonwannasit
- School of Pharmacology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nawarat Nantapong
- School of Microbiology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pakarang Kumkrai
- School of Pharmacology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Prathan Luecha
- Department of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sajeera Kupittayanant
- School of Physiology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nuannoi Chudapongse
- School of Pharmacology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
119
|
Billings N, Ramirez Millan M, Caldara M, Rusconi R, Tarasova Y, Stocker R, Ribbeck K. The extracellular matrix Component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 2013; 9:e1003526. [PMID: 23950711 PMCID: PMC3738486 DOI: 10.1371/journal.ppat.1003526] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/14/2013] [Indexed: 02/01/2023] Open
Abstract
Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive “non-producing” cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development. Many bacteria have the ability to form multicellular communities, termed biofilms. An important characteristic of a biofilm is the ability of cells to synthesize and secrete an extracellular matrix. This matrix offers structural support, community organization, and added protection, often making the cells impervious to desiccation, predation, and antimicrobials. In this study, we investigate the contributions of polysaccharide components found in the extracellular matrix of Pseudomonas aeruginosa at progressive stages in biofilm development. We first show that one specific polysaccharide, Psl, provides an added defense for P. aeruginosa biofilms against antimicrobials of different properties for young biofilms. Then, by cultivating biofilms that contain both Psl producing and Psl non-producing strains, we find that P. aeruginosa, E. coli, and S. aureus species that lack Psl take advantage of the protection offered by cells producing Psl. Collectively, the data indicate that Psl is likely to play a key protective role in early development of P. aeruginosa biofilm associated infections.
Collapse
Affiliation(s)
- Nicole Billings
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Maria Ramirez Millan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Marina Caldara
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roberto Rusconi
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yekaterina Tarasova
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roman Stocker
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
120
|
Kim D, Sitepu IR, Hashidoko Y. Induction of biofilm formation in the betaproteobacterium Burkholderia unamae CK43B exposed to exogenous indole and gallic acid. Appl Environ Microbiol 2013; 79:4845-52. [PMID: 23747701 PMCID: PMC3754724 DOI: 10.1128/aem.01209-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/02/2013] [Indexed: 12/17/2022] Open
Abstract
Burkholderia unamae CK43B, a member of the Betaproteobacteria that was isolated from the rhizosphere of a Shorea balangeran sapling in a tropical peat swamp forest, produces neither indole nor extracellular polymeric substances associated with biofilm formation. When cultured in a modified Winogradsky's medium supplemented with up to 1.7 mM indole, B. unamae CK43B maintains its planktonic state by cell swelling and effectively degrades exogenous indole. However, in medium supplemented with 1.7 mM exogenous indole and 1.0 mM gallic acid, B. unamae CK43B produced extracellular polymeric substances and formed a biofilm. The concentration indicated above of gallic acid alone had no effect on either the growth or the differentiation of B. unamae CK43B cells above a certain concentration threshold, whereas it inhibited indole degradation by B. unamae CK43B to 3-hydroxyindoxyl. In addition, coculture of B. unamae CK43B with indole-producing Escherichia coli in nutrient-rich Luria-Bertani medium supplemented with 1.0 mM gallic acid led to the formation of mixed cell aggregates. The viability and active growth of B. unamae CK43B cells in a coculture system with Escherichia coli were evidenced by fluorescence in situ hybridization. Our data thus suggest that indole facilitates intergenus communication between indole-producing gammaproteobacteria and some indole-degrading bacteria, particularly in gallic acid-rich environments.
Collapse
Affiliation(s)
- Dongyeop Kim
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Irnayuli R. Sitepu
- Forest Microbiology Laboratory, Forest and Nature Conservation Research and Development Center, Forest Research and Development Agency, Bogor, Indonesia
| | - Yasuyuki Hashidoko
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
121
|
Corcuera MT, Gómez-Aguado F, Gómez-Lus ML, Ramos C, de la Parte MA, Alonso MJ, Prieto J. Qualitative and quantitative agar invasion test based on bacterial colony/biofilm. J Microbiol Methods 2013; 94:267-73. [PMID: 23838131 DOI: 10.1016/j.mimet.2013.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Invasion of the culture medium is a feature frequently studied in yeasts, in which it has been related to a greater virulence, but it is practically unknown in bacteria. Recently, it has been demonstrated that several clinically relevant bacterial species were also able of invading agar media, so it was necessary to design a microbiological assay to study the expression of this character in bacteria. Accordingly, a bacterial agar invasion test based on colony/biofilm development was designed, which allows qualitative and quantitative characterization of bacterial growth into the agar culture medium. Once the culture conditions were optimized, the test was applied to 90 strains from nine bacterial species, validating its usefulness for differentiating invasive strains (positive) from those non invasive (negative). The test also allows sorting invasive strains according to agar invasion intensity (low, moderate, high) and topographic invasion pattern (peripheral, homogeneous, mixed). Moreover, an image analysis routine to quantify the invasion was developed. Implemented method enables direct measuring of two invasion parameters (invasion area and number of invasion dots), automated calculation of three relative variables (invasion relative area, invasion dots relative density, and invasion dot average area), and the establishment of strain specific frequency histograms. This new methodology is simple, fast, reproducible, objective, inexpensive and can be used to study a great number of specimens simultaneously, all of which make it suitable for incorporation to the routine of any microbiology laboratory. It could also be a useful tool for additional studies related to clinical aspects of bacterial isolates such as virulence and antimicrobial response.
Collapse
|
122
|
Biel MA, Pedigo L, Gibbs A, Loebel N. Photodynamic therapy of antibiotic-resistant biofilms in a maxillary sinus model. Int Forum Allergy Rhinol 2013; 3:468-73. [PMID: 23307793 PMCID: PMC3626737 DOI: 10.1002/alr.21134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 10/08/2012] [Accepted: 10/23/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is one of the most common chronic conditions in the United States. There is a significant subpopulation of CRS patients who remain resistant to cure despite rigorous treatment regimens including surgery, allergy therapy, and prolonged antibiotic therapy. Antimicrobial photodynamic therapy (aPDT) is a noninvasive nonantibiotic broad spectrum antimicrobial treatment. Our previous in vitro studies demonstrated that aPDT reduced CRS polymicrobial planktonic bacteria and fungi by >99.9% after a single treatment. However, prior to human treatment, the effectiveness of aPDT to eradicate polymicrobial biofilms in a maxillary sinus cavity must be demonstrated. The objective of this study was to demonstrate the effectiveness of a noninvasive aPDT treatment of antibiotic resistant biofilms known to cause CRS in a novel anatomically correct maxillary sinus in vitro model using an enhanced photosensitizer solution. METHODS Antibiotic resistant polymicrobial biofilms of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) were grown in an anatomically correct novel maxillary sinus model and treated with a methylene blue/ethylenediamine tetraacetic acid (EDTA) photosensitizer and 670-nm nonthermal activating light. Cultures of the biofilms were obtained before and after light treatment to determine efficacy of biofilm reduction. RESULTS The in vitro maxillary sinus CRS biofilm study demonstrated that aPDT reduced the CRS polymicrobial biofilm by >99.99% after a single treatment. CONCLUSION aPDT can effectively treat CRS polymicrobial antibiotic resistant Pseudomonas aeruginosa and MRSA biofilms in a maxillary sinus cavity model.
Collapse
Affiliation(s)
- Merrill A Biel
- Ear, Nose and Throat Specialty Care of Minnesota, Minneapolis, MN 55414, USA.
| | | | | | | |
Collapse
|
123
|
Hosseinidoust Z, Tufenkji N, van de Ven TGM. Predation in homogeneous and heterogeneous phage environments affects virulence determinants of Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2862-71. [PMID: 23435883 PMCID: PMC3623153 DOI: 10.1128/aem.03817-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/14/2013] [Indexed: 01/21/2023] Open
Abstract
The rise of bacterial variants in the presence of lytic phages has been one of the basic grounds for evolution studies. However, there are incongruent results among different studies investigating the effect of phage resistance acquisition on bacterial fitness and virulence. We used experimental evolution to generate three classes of Pseudomonas aeruginosa variants under selective pressure from two different homogeneous phage environments and one heterogeneous phage environment. The fitness and virulence determinants of the variants, such as growth, motility, biofilm formation, resistance to oxidative stress, and the production of siderophores and chromophores, changed significantly compared to the control. Variants with similar colony morphology that were developed through different phage treatments have different phenotypic traits. Also, mRNA transcription for genes associated with certain phenotypic traits changed significantly; however, sequencing did not reveal any point mutations in selected gene loci. Furthermore, the appearance of small colony variants and melanogenic variants and the increase in pyocyanin and pyoverdin production for some variants are believed to affect the virulence of the population. The knowledge gained from this study will fundamentally contribute to our understanding of the evolutionary dynamics of bacteria under phage selective pressure which is crucial to the efficient utilization of bacteriophages in medical contexts.
Collapse
Affiliation(s)
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
124
|
Hosseinidoust Z, Tufenkji N, van de Ven TGM. Formation of biofilms under phage predation: considerations concerning a biofilm increase. BIOFOULING 2013; 29:457-468. [PMID: 23597188 DOI: 10.1080/08927014.2013.779370] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacteriophages are emerging as strong candidates for combating bacterial biofilms. However, reports indicating that host populations can, in some cases, respond to phage predation by an increase in biofilm formation are of concern. This study investigates whether phage predation can enhance the formation of biofilm and if so, if this phenomenon is governed by the emergence of phage-resistance or by non-evolutionary mechanisms (eg spatial refuge). Single-species biofilms of three bacterial pathogens (Pseudomonas aeruginosa, Salmonella enterica serotype Typhimurium, and Staphylococcus aureus) were pretreated and post-treated with species-specific phages. Some of the phage treatments resulted in an increase in the levels of biofilm of their host. It is proposed that the phenotypic change brought about by acquiring phage resistance is the main reason for the increase in the level of biofilm of P. aeruginosa. For biofilms of S. aureus and S. enterica Typhimurium, although resistance was detected, increased formation of biofilm appeared to be a result of non-evolutionary mechanisms.
Collapse
|
125
|
Kraigsley AM, Tang K, Lippa KA, Howarter JA, Lin-Gibson S, Lin NJ. Effect of Polymer Degree of Conversion onStreptococcus mutansBiofilms. Macromol Biosci 2012; 12:1706-13. [DOI: 10.1002/mabi.201200214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/16/2012] [Indexed: 01/22/2023]
|
126
|
|
127
|
Green AE, Rowlands RS, Cooper RA, Maddocks SE. The effect of the flavonol morin on adhesion and aggregation of Streptococcus pyogenes. FEMS Microbiol Lett 2012; 333:54-8. [PMID: 22591139 DOI: 10.1111/j.1574-6968.2012.02598.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022] Open
Abstract
The effect of the flavonol morin on Streptococcus pyogenes biofilm growth was determined using a static biofilm model, in which reduced biofilm biomass was observed in the presence of morin, suggesting that morin inhibited biofilm development. Morin at concentrations exceeding 225 μM had the greatest impact on biofilm biomass causing reductions of up to 65%, which was found to be statistically significant. Morin was also shown to induce rapid bacterial aggregation. Approximately 55% of S. pyogenes in liquid suspension aggregated when incubated with morin at concentrations of 275 and 300 μM for 120 min, compared to the control group in which only 10% of the cells aggregated, this was also shown to be statistically significant.
Collapse
|
128
|
Sella SRBR, Guizelini BP, Gouvea PM, Figueiredo LFM, Ribeiro CAO, Vandenberghe LPS, Minozzo JC, Soccol CR. Relations between phenotypic changes of spores and biofilm production by Bacillus atrophaeus ATCC 9372 growing in solid-state fermentation. Arch Microbiol 2012; 194:815-25. [DOI: 10.1007/s00203-012-0815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/11/2012] [Accepted: 04/06/2012] [Indexed: 11/30/2022]
|