101
|
Yao Y, Li J, Li P, Wang D, Bao W, Xiao Y, Chen X, He S, Hu J, Yang X. Bacterially Synthesized Tellurium Nanorods for Elimination of Advanced Malignant Tumor by Photothermal Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105716. [PMID: 34889048 DOI: 10.1002/smll.202105716] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Probiotic Escherichia coli Nissle 1917 (EcN) are employed as a bioreactor for intracellularly synthesizing tellurium nanorods (TeNRs) providing a biohybrid therapeutic platform (Te@EcN) for the elimination of advanced malignant tumor by photothermal immunotherapy. Te@EcN is found to possess superior photothermal property upon near-infrared irradiation, and can efficiently accumulate and retain in tumors, although EcN loses proliferation ability after the synthesis of TeNRs, thus inducing considerable immunogenic tumor cell death. Under co-stimulation by EcN acting as immunoadjuvants, maturation of dendritic cells and priming of cytotoxic T cells are largely promoted. In addition, Te@EcN can reprogram tumor-associated macrophages to ameliorate the immunosuppressive tumor microenvironment. Thus, tumor metastasis and recurrence can be efficiently suppressed. Most importantly, owing to the non-pathogenicity of probiotic EcN and their non-proliferative characteristics after TeNRs synthesis, Te@EcN is found to be rapidly metabolized and cleared from the normal tissues, showing very slight acute side effects in healthy mice even at a relatively high administration dose. Therefore, the proposed combined therapeutic strategy based on bacteria-synthesized TeNRs may find great potential in improving bacteria-mediated tumor therapy with increased antitumor efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Yuzhu Yao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dongdong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Bao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xue Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shuaicheng He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
102
|
Yao C, Qi H, Jia X, Xu Y, Tong Z, Gu Z, Yang D. A DNA Nanocomplex Containing Cascade DNAzymes and Promoter‐Like Zn‐Mn‐Ferrite for Combined Gene/Chemo‐dynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chi Yao
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Hedong Qi
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Xuemei Jia
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yuwei Xu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering Australian Centre for, NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
103
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
104
|
Cao C, Wang X, Yang N, Song X, Dong X. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chem Sci 2022; 13:863-889. [PMID: 35211255 PMCID: PMC8790788 DOI: 10.1039/d1sc05482a] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
Applying Fenton chemistry in the tumor microenvironment (TME) for cancer therapy is the most significant feature of chemodynamic therapy (CDT). Owing to the mild acid and overexpressed H2O2 in TME, more cytotoxic hydroxyl radicals (˙OH) are generated in tumor cells via Fenton and Fenton-like reactions. Without external stimulus and drug resistance generation, reactive oxygen species (ROS)-mediated CDT exhibits a specific and desirable anticancer effect and has been seen as a promising strategy for cancer therapy. However, optimizing the treatment efficiency of CDT in TME is still challenging because of the limited catalytic efficiency of CDT agents and the strong cancer antioxidant capacity in TME. Hence, scientists are trying their best to design and fabricate many more CDT agents with excellent catalytic activity and remodeling TME for optimal CDT. In this perspective, the latest progress of CDT is discussed, with some representative examples presented. Consequently, promising strategies for further optimizing the efficiency of CDT guided by Fenton chemistry are provided. Most importantly, several feasible ways of developing CDT in the future are offered for reference.
Collapse
Affiliation(s)
- Changyu Cao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Xiaorui Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211800 China
| |
Collapse
|
105
|
Pan P, Dong X, Chen Y, Zeng X, Zhang XZ. Engineered Bacteria for Enhanced Radiotherapy against Breast Carcinoma. ACS NANO 2022; 16:801-812. [PMID: 35029367 DOI: 10.1021/acsnano.1c08350] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Radiotherapy is widely applied for multiple malignant tumors ablation in the clinic. However, redundant doses of X-rays might destroy normal tissue in the periphery of tumor sites. Here, we developed an integrated nanosystem (Bac@BNP) composed of engineered bacteria (Bac) and Bi2S3 nanoparticles (BNPs) for sensitizing radiotherapy. Bac could target and colonize in tumor sites alternatively, which overexpressed cytolysin A (ClyA) protein to regulate the cell cycle from a radioresistant phase to a radiosensitive phase. Simultaneously, peptide-modified BNPs, as a radiosensitizer with a high-Z element, was released from the surface of Bac owing to the matrix metalloproteinase-2 (MMP-2) response in the tumor microenvironment. Under X-ray irradiation, BNPs could enhance the radiotherapy sensitivity by triggering the intracellular generation of reactive oxygen species (ROS), coupled with DNA damage. In this constructed nanosystem, the combination of Bac@BNP and X-ray irradiation led to significant suppression of breast carcinoma in murine models with reduced side effects.
Collapse
Affiliation(s)
- Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xue Dong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ying Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
106
|
Jiménez-Jiménez C, Moreno VM, Vallet-Regí M. Bacteria-Assisted Transport of Nanomaterials to Improve Drug Delivery in Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:288. [PMID: 35055305 PMCID: PMC8781131 DOI: 10.3390/nano12020288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Currently, the design of nanomaterials for the treatment of different pathologies is presenting a major impact on biomedical research. Thanks to this, nanoparticles represent a successful strategy for the delivery of high amounts of drugs for the treatment of cancer. Different nanosystems have been designed to combat this pathology. However, the poor penetration of these nanomaterials into the tumor tissue prevents the drug from entering the inner regions of the tumor. Some bacterial strains have self-propulsion and guiding capacity thanks to their flagella. They also have a preference to accumulate in certain tumor regions due to the presence of different chemo-attractants factors. Bioconjugation reactions allow the binding of nanoparticles in living systems, such as cells or bacteria, in a simple way. Therefore, bacteria are being used as a transport vehicle for nanoparticles, facilitating their penetration and the subsequent release of the drug inside the tumor. This review would summarize the literature on the anchoring methods of diverse nanosystems in bacteria and, interestingly, their advantages and possible applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
| | - Víctor M. Moreno
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| | - María Vallet-Regí
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| |
Collapse
|
107
|
Jiang Q, Qiao B, Lin X, Cao J, Zhang N, Guo H, Liu W, Zhu L, Xie X, Wan L, Tang R, Liang B, Wang D, Wang Z, Zhou Y, Ran H, Li P. A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy. Am J Cancer Res 2022; 12:59-75. [PMID: 34987634 PMCID: PMC8690934 DOI: 10.7150/thno.64862] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
The outcome of sonodynamic immunotherapy is significantly limited by tumor hypoxia. To overcome this obstacle, one common solution is to catalyze the conversion of endogenous H2O2 into O2. However, the effectiveness of this strategy is limited by the insufficient concentration of H2O2 in the tumor microenvironment (TME). Herein, we developed a H2O2 economizer for on-demand O2 supply and sonosensitizer-mediated reactive oxygen species production during ultrasound activation, thereby alleviating hypoxia-associated limitations and augmenting the efficacy of sonodynamic immunotherapy. Methods: The H2O2 economizer is constructed by electrostatic adsorption and π-π interactions between the Fe-doped polydiaminopyridine (Fe-PDAP) nanozyme and chlorin e6. By employing a biomimetic engineering strategy with cancer cell membranes, we addressed the premature leakage issue and increased tumor-site accumulation of nanoparticles (membrane-coated Fe-PDAP/Ce6, MFC). Results: The prepared MFC could significantly attenuate the catalytic activity of Fe-PDAP by reducing their contact with H2O2. Ultrasound irradiation promoted MFC dissociation and the exposure of Fe-PDAP for a more robust O2 supply. Moreover, the combination of MFC-enhanced sonodynamic therapy with anti-programmed cell death protein-1 antibody (aPD-1) immune checkpoint blockade induced a strong antitumor response against both primary tumors and distant tumors. Conclusion: This as-prepared H2O2 economizer significantly alleviates tumor hypoxia via reducing H2O2 expenditure and that on-demand oxygen-elevated sonodynamic immunotherapy can effectively combat tumors.
Collapse
|
108
|
Zhu B, Lv X, Zhang M, Wang H, Chen S, Zhu J. MnO2 Coated Nanotheranostic LDH for Synergistic Cascade Chemo/Chemodynamic Cancer Therapy under the Guidance of MRI-Targeted Diagnosis. Biomater Sci 2022; 10:1317-1325. [DOI: 10.1039/d1bm01806j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Integrating magnetic resonance imaging (MRI)-targeted diagnosis with synergistic cascade treatments, such as chemo/chemodynamic therapy (CT/CDT), is highly desired to promote the antitumor performance; However, the rational design of such “all-in-one”...
Collapse
|
109
|
Zhang Y, Zheng DW, Li CX, Pan P, Zeng SM, Pan T, Zhang XZ. Temulence Therapy to Orthotopic Colorectal Tumor via Oral Administration of Fungi-Based Acetaldehyde Generator. SMALL METHODS 2022; 6:e2100951. [PMID: 35041291 DOI: 10.1002/smtd.202100951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Taking inspiration from percutaneous ethanol injection (PEI) for tumor ablation, an acetaldehyde generator (SC@ZIF@ADH) is constructed for tumor treatment by modifying a metal-organic framework nanocarrier (ZIF), which is loaded with alcohol dehydrogenase (ADH), onto the surface of Saccharomyces cerevisiae (SC). Oral administration of SC@ZIF@ADH can target tumor via mannose-mediated targeting to tumor associated macrophages (TAMs) and generate ethanol at the hypoxic tumor areas. Ethanol is subsequently catalyzed to toxic acetaldehyde by ADH, inducing tumor cells apoptosis and polarizing TAMs toward the anti-tumor phenotype. In vivo animal results show that this acetaldehyde generator can cause a temulence-like reaction in the tumor, significantly inhibiting tumor progression, and might provide an intelligent and nonsurgical substitute for PEI therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Min Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ting Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
110
|
Shi Q, Wang JJ, Chen L, Peng Z, Zeng QH, Zhu Y, Zhao Y. Fenton reaction-assisted photodynamic inactivation of calcined melamine sponge against Salmonella and its application. Food Res Int 2022; 151:110847. [PMID: 34980385 DOI: 10.1016/j.foodres.2021.110847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/30/2021] [Accepted: 11/27/2021] [Indexed: 11/27/2022]
Abstract
Photodynamic inactivation (PDI) is an effective alternative to traditional antibiotics to broadly kill bacteria. This study aimed to develop a potent PDI system by coupling calcinated melamine sponges (CMSs) with the Fenton reaction. The results showed that CMS calcined at 350 ℃ was successfully carbonized with intact and porous structures, and it possessed excellent hydrophilicity and photothermal conversion performance. When Fe2+ was added and internalized, the Fenton reaction in which Fe2+ reacted with H2O2 in cells occurred to produce reactive oxygen species (ROS) (OH, OOH, etc.) and O2, and notably, the O2 molecules could serve as a raw material to absorb the photothermal energy of CMS to generate highly reactive 1O2. Under synergistic effects, CMS-350 coupled with Fe2+ potently inactivated > 6 Log CFU/mL (>99.9999%) of Salmonella under 201.6 J/cm2 blue LED illumination by destroying Na+/K+-ATPase and Ca2+/Mg2+-ATPase, DNA synthesis-related enzymes, cell membranes, etc. Meanwhile, the composite photocatalyst was proven to be nontoxic and could inactivate Salmonella in various foods, including vegetables (Brassica chinensis L), eggs and fresh cucumber juice. As a result, CMS coupled with the Fenton reaction greatly improves the inactivation potency of PDI against harmful bacteria.
Collapse
Affiliation(s)
- Qiandai Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Food Science, Foshan University, Foshan 528000, China; Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 350108, China.
| | - Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China; Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 350108, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| |
Collapse
|
111
|
Manivasagan P, Joe A, Han HW, Thambi T, Selvaraj M, Chidambaram K, Kim J, Jang ES. Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater Today Bio 2022; 13:100197. [PMID: 35036895 PMCID: PMC8753377 DOI: 10.1016/j.mtbio.2021.100197] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Photothermal (PT)-enhanced Fenton-based chemodynamic therapy (CDT) has attracted a significant amount of research attention over the last five years as a highly effective, safe, and tumor-specific nanomedicine-based therapy. CDT is a new emerging nanocatalyst-based therapeutic strategy for the in situ treatment of tumors via the Fenton reaction or Fenton-like reaction, which has got fast progress in recent years because of its high specificity and activation by endogenous substances. A variety of multifunctional nanomaterials such as metal-, metal oxide-, and metal-sulfide-based nanocatalysts have been designed and constructed to trigger the in situ Fenton or Fenton-like reaction within the tumor microenvironment (TME) to generate highly cytotoxic hydroxyl radicals (•OH), which is highly efficient for the killing of tumor cells. However, research is still required to enhance the curative outcomes and minimize its side effects. Specifically, the therapeutic efficiency of certain CDTs is still hindered by the TME, including low levels of endogenous hydrogen peroxide (H2O2), overexpression of reduced glutathione (GSH), and low catalytic efficacy of Fenton or Fenton-like reactions (pH 5.6-6.8), which makes it difficult to completely cure cancer using monotherapy. For this reason, photothermal therapy (PTT) has been utilized in combination with CDT to enhance therapeutic efficacy. More interestingly, tumor heating during PTT not only causes damage to the tumor cells but can also accelerate the generation of •OH via the Fenton and Fenton-like reactions, thus enhancing the CDT efficacy, providing more effective cancer treatment when compared with monotherapy. Currently, synergistic PT-enhanced CDT using multifunctional nanomaterials with both PT and chemodynamic properties has made enormous progress in cancer theranostics. However, there has been no comprehensive review on this subject published to date. In this review, we first summarize the recent progress in PT-enhanced Fenton-based CDT for cancer treatment. We then discuss the potential and challenges in the future development of PT-enhanced Fenton-based nanocatalytic tumor therapy for clinical application.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Department of Chemical and Biological Engineering and R&E Center for Chemical and Biological Engineering (BK21 FOUR), Korea University, Seoul, 02841, Republic of Korea
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Ara Joe
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Hyo-Won Han
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology & Toxicology, School of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Jungbae Kim
- Department of Chemical and Biological Engineering and R&E Center for Chemical and Biological Engineering (BK21 FOUR), Korea University, Seoul, 02841, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| |
Collapse
|
112
|
Song N, Li Y, Wang Y, Wang M, Liu M, Chen L, Zhao J. Organic–inorganic hybrid phosphite-participating S-shaped penta-CeIII incorporated tellurotungstate as electrochemical enzymatic hydrogen peroxide for β-D-glucose detection. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00816e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyoxometalate chemistry has made rapid advances in innovative structural chemistry. The lower valence state and lone electron pair effect of subgroup-valence heteroatom Te(IV) can be introduced into the tungsten-oxygen system...
Collapse
|
113
|
Zhang L, Li C, Wan S, Zhang X. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022; 11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Traditional tumor treatments, including chemotherapy, radiotherapy, photodynamic therapy, and photothermal therapy, are developed and used to treat different types of cancer. Recently, chemodynamic therapy (CDT) has been emerged as a novel cancer therapeutic strategy. CDT utilizes Fenton or Fenton-like reaction to generate highly cytotoxic hydroxyl radicals (•OH) from endogenous hydrogen peroxide (H2 O2 ) to kill cancer cells, which displays promising therapeutic potentials for tumor treatment. However, the low catalytic efficiency and off-target side effects of Fenton reaction limit the biomedical application of CDT. In this regard, various strategies are implemented to potentiate CDT against tumor, including retrofitting the tumor microenvironment (e.g., increasing H2 O2 level, decreasing reductive substances, and reducing pH), enhancing the catalytic efficiency of nanocatalysts, and other strategies. This review aims to summarize the development of CDT and summarize these recent progresses of nanocatalyst-mediated CDT for antitumor application. The future development trend and challenges of CDT are also discussed.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710004 P. R. China
| | - Chu‐Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Shuang‐Shuang Wan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
114
|
Zhang W, Liu J, Li X, Zheng Y, Chen L, Wang D, Foda MF, Ma Z, Zhao Y, Han H. Precise Chemodynamic Therapy of Cancer by Trifunctional Bacterium-Based Nanozymes. ACS NANO 2021; 15:19321-19333. [PMID: 34851608 DOI: 10.1021/acsnano.1c05605] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemodynamic therapy (CDT) destroys cancer cells by converting H2O2 or O2 into reactive oxygen species (ROS), but its therapeutic efficacy is restricted by the antioxidant capacity of tumor. Previous solutions focused on strengthening the nanodrugs with the ability to increase ROS production or weaken the antioxidant capacity of cancer cells. Conversely, we here develop a mild nanodrug with negligible side effects. Specifically, the Au@Pt nanozyme decorated on a bacterial surface (Bac-Au@Pt) is reported to achieve precise CDT. Due to the tumor targeting ability of bacteria and catalytic property of Au@Pt nanozyme under acidic conditions, this nanosystem can release ROS to tumor cells effectively. In addition, the interferon gamma released by T cells specifically decreases the intracellular reductants in tumor cells, while having no obvious effect on normal cells. Therefore, a low dose of Bac-Au@Pt achieves a satisfactory therapeutic efficacy to tumor cells and is nontoxic to normal cells even at their acidic components. This nanosystem enables CDT and immunotherapy to mutually benefit and improve by each other, providing a promising strategy to achieve high anticancer efficacy even with a low dose usage.
Collapse
Affiliation(s)
- Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiawei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xuyu Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yue Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Lianfu Chen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, PR China
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
115
|
Hua Y, Wang Y, Kang X, Xu F, Han Z, Zhang C, Wang ZY, Liu JQ, Zhao X, Chen X, Zang SQ. A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. J Nanobiotechnology 2021; 19:438. [PMID: 34930279 PMCID: PMC8686291 DOI: 10.1186/s12951-021-01191-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As cancer is one of the main leading causes of mortality, a series of monotherapies such as chemotherapy, gene therapy and radiotherapy have been developed to overcome this thorny problem. However, a single treatment approach could not achieve satisfactory effect in many experimental explorations. RESULTS In this study, we report the fabrication of cyclic RGD peptide (cRGD) modified Au4-iron oxide nanoparticle (Au4-IO NP-cRGD) based on aggregation-induced emission (AIE) as a multifunctional theranostic system. Besides Au4 cluster-based fluorescence imaging and enhanced radiotherapy, iron oxide (IO) nanocluster could realize magnetic resonance (MR) imaging and Fenton reaction-based chemotherapy. Abundant toxic reactive oxygen species generated from X-ray irradiation and in situ tumor-specific Fenton reaction under acidic microenvironment leads to the apoptotic and necrotic death of cancer cells. In vivo studies demonstrated good biocompatibility of Au4-IO NP-cRGD and a high tumor suppression rate of 81.1% in the synergistic therapy group. CONCLUSIONS The successful dual-modal imaging and combined tumor therapy demonstrated AIE as a promising strategy for constructing multifunctional cancer theranostic platform.
Collapse
Affiliation(s)
- Yue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue Kang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fan Xu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chong Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun-Qi Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xueli Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, National University of Singapore, Singapore, 117545, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
116
|
Allemailem KS. Innovative Approaches of Engineering Tumor-Targeting Bacteria with Different Therapeutic Payloads to Fight Cancer: A Smart Strategy of Disease Management. Int J Nanomedicine 2021; 16:8159-8184. [PMID: 34938075 PMCID: PMC8687692 DOI: 10.2147/ijn.s338272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional therapies for cancer eradication like surgery, radiotherapy, and chemotherapy, even though most widely used, still suffer from some disappointing outcomes. The limitations of these therapies during cancer recurrence and metastasis demonstrate the need for better alternatives. Some bacteria preferentially colonize and proliferate inside tumor mass; thus these bacteria can be used as ideal candidates to deliver antitumor therapeutic agents. The bacteria like Bacillus spp., Clostridium spp., E. coli, Listeria spp., and Salmonella spp. can be reprogrammed to produce, transport, and deliver anticancer agents, eg, cytotoxic agents, prodrug converting enzymes, immunomodulators, tumor stroma targeting agents, siRNA, and drug-loaded nanoformulations based on clinical requirements. In addition, these bacteria can be genetically modified to express various functional proteins and targeting ligands that can enhance the targeting approach and controlled drug-delivery. Low tumor-targeting and weak penetration power deep inside the tumor mass limits the use of anticancer drug-nanoformulations. By using anticancer drug nanoformulations and other therapeutic payloads in combination with antitumor bacteria, it makes a synergistic effect against cancer by overcoming the individual limitations. The tumor-targeting bacteria can be either used as a monotherapy or in addition with other anticancer therapies like photothermal therapy, photodynamic therapy, and magnetic field therapy to accomplish better clinical outcomes. The toxicity issues on normal tissues is the main concern regarding the use of engineered antitumor bacteria, which requires deeper research. In this article, the mechanism by which bacteria sense tumor microenvironment, role of some anticancer agents, and the recent advancement of engineering bacteria with different therapeutic payloads to combat cancers has been reviewed. In addition, future prospective and some clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
117
|
Hou X, Zeng H, Chi X, Hu X. Pathogen Receptor Membrane-Coating Facet Structures Boost Nanomaterial Immune Escape and Antibacterial Performance. NANO LETTERS 2021; 21:9966-9975. [PMID: 34812644 DOI: 10.1021/acs.nanolett.1c03427] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanomaterials show great potential for the treatment of bacterial infections, but their effects remain limited by low antibacterial efficiency and immune clearance. Facet-dependent nanozymes coated with pathogen receptor membranes were fabricated, providing an approach for producing superphotothermal antibacterial nanomaterials with high biocompatibility and low immune clearance. (100)- and (112)-Faceted CuFeSe2 presented excellent photothermal conversion efficiency (46%). However, the peroxidase-like activity of (100)-faceted CuFeSe2 enhanced the decomposition of H2O2 to hydroxyl radicals (•OH) and was markedly greater than that of (112)-faceted CuFeSe2, with nearly 100% of Staphylococcus aureus being killed under near-infrared (NIR) irradiation. Importantly, bacteria-pretreated immune membranes (i.e., pathogen receptor membranes) coated with CuFeSe2 exhibited superior S. aureus-binding ability, presented obvious immune-evading capability, and resulted in targeted delivery to infected sites. As a proof-of-principle demonstration, these findings hold promise for the use of pathogen receptor membrane-coated facet-dependent nanomaterials in clinical applications and the treatment of bacterial infections.
Collapse
Affiliation(s)
- Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 30080, People's Republic of China
| | - Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 30080, People's Republic of China
| | - Xue Chi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 30080, People's Republic of China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 30080, People's Republic of China
| |
Collapse
|
118
|
Yao C, Qi H, Jia X, Xu Y, Tong Z, Gu Z, Yang D. A DNA Nanocomplex Containing Cascade DNAzymes and Promoter-Like Zn-Mn-Ferrite for Combined Gene/Chemo-dynamic Therapy. Angew Chem Int Ed Engl 2021; 61:e202113619. [PMID: 34866297 DOI: 10.1002/anie.202113619] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Sequential control of exogenous chemical events inside cells is a promising way to regulate cell functions and fate. Herein we report a DNA nanocomplex containing cascade DNAzymes and promoter-like Zn-Mn-Ferrite (ZMF), achieving combined gene/chemo-dynamic therapy. The promoter-like ZMF decomposed in response to intratumoral glutathione to release a sufficient quantity of metal ions, thus promoting cascade DNA/RNA cleavage and free radical generation. Two kinds of DNAzymes were designed for sequential cascade enzymatic reaction, in which metal ions functioned as cofactors. The primary DNAzyme self-cleaved the DNA chain with Zn2+ as cofactor, and produced the secondary DNAzyme; the secondary DNAzyme afterwards cleaved the EGR-1 mRNA, and thus downregulated the expression of target EGR-1 protein, achieving DNAzyme-based gene therapy. Meanwhile, the released Zn2+ , Mn2+ and Fe2+ induced Fenton/Fenton-like reactions, during which free radicals were catalytically generated and efficient chemo-dynamic therapy was achieved. In a breast cancer mouse model, the administration of DNA nanocomplex led to a significant therapeutic efficacy of tumor growth suppression.
Collapse
Affiliation(s)
- Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Hedong Qi
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuemei Jia
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yuwei Xu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Zi Gu
- School of Chemical Engineering, Australian Centre for, NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
119
|
Cao S, Li F, Xu Q, Yao M, Wang S, Zhou Y, Cui X, Man R, Li K, Tai X. Synthesis, crystal structure of a novel tetranuclear Cu (Ⅱ) complex and its application in GSH-triggered generation of reactive oxygen species for chemodynamic therapy. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
120
|
Wang JW, Chen QW, Luo GF, Han ZY, Song WF, Yang J, Chen WH, Zhang XZ. A Self-Driven Bioreactor Based on Bacterium-Metal-Organic Framework Biohybrids for Boosting Chemotherapy via Cyclic Lactate Catabolism. ACS NANO 2021; 15:17870-17884. [PMID: 34747172 DOI: 10.1021/acsnano.1c06123] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The excessive lactate in the tumor microenvironment always leads to poor therapeutic outcomes of chemotherapy. In this study, a self-driven bioreactor (defined as SO@MDH, where SO is Shewanella oneidensis MR-1 and MDH is MIL-101 metal-organic framework nanoparticles/doxorubicin/hyaluronic acid) is rationally constructed via the integration of doxorubicin (DOX)-loaded metal-organic framework (MOF) MIL-101 nanoparticles with SO to sensitize chemotherapy. Owing to the intrinsic tumor tropism and electron-driven respiration of SO, the biohybrid SO@MDH could actively target and colonize hypoxic and eutrophic tumor regions and anaerobically metabolize lactate accompanied by the transfer of electrons to Fe3+, which is the key component of the MIL-101 nanoparticles. As a result, the intratumoral lactate would undergo continuous catabolism coupled with the reduction of Fe3+ to Fe2+ and the subsequent degradation of MIL-101 frameworks, leading to an expeditious drug release for effective chemotherapy. Meanwhile, the generated Fe2+ will be promptly oxidized by the abundant hydrogen peroxide in the tumor microenvironment to reproduce Fe3+, which is, in turn, beneficial to circularly catabolize lactate and boost chemotherapy. More importantly, the consumption of intratumoral lactic acid could significantly inhibit the expression of multidrug resistance-related ABCB1 protein (also named P-glycoprotein (P-gp)) for conquering drug-resistant tumors. SO@MDH demonstrated here holds high tumor specificity and promising chemotherapeutic efficacy for suppressing tumor growth and overcoming multidrug resistance, confirming its potential prospects in cancer therapy.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Fang Song
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Juan Yang
- School of Food Science and Health Preserving, Guangzhou City Polytechnic, Guangzhou 510405, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
121
|
Wang X, Hu A, Du K, Feng F. Biomimetic Polymer-Templated Copper Nanoparticles Stabilize a Temozolomide Intermediate for Chemotherapy against Glioblastoma Multiforme. ACS APPLIED BIO MATERIALS 2021; 4:8004-8012. [DOI: 10.1021/acsabm.1c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xia Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Andi Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
122
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
123
|
Geng Z, Cao Z, Liu R, Liu K, Liu J, Tan W. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat Commun 2021; 12:6584. [PMID: 34782610 PMCID: PMC8593157 DOI: 10.1038/s41467-021-26956-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022] Open
Abstract
Despite bacterial-mediated biotherapies have been widely explored for treating different types of cancer, their implementation has been restricted by low treatment efficacy, due largely to the absence of tumor-specific accumulation following administration. Here, the conjugation of aptamers to bacterial surface is described by a simple and cytocompatible amidation procedure, which can significantly promote the localization of bacteria in tumor site after systemic administration. The surface density of aptamers can be easily adjusted by varying feed ratio and the conjugation is able to increase the stability of anchored aptamers. Optimal bacteria conjugated with an average of 2.8 × 105 aptamers per cell present the highest specificity to tumor cells in vitro, separately generating near 2- and 4-times higher accumulation in tumor tissue at 12 and 60 hours compared to unmodified bacteria. In both 4T1 and H22 tumor-bearing mouse models, aptamer-conjugated attenuated Salmonella show enhanced antitumor efficacy, along with highly activated immune responses inside the tumor. This work demonstrates how bacterial behaviors can be tuned by surface conjugation and supports the potential of aptamer-conjugated bacteria for both targeted intratumoral localization and enhanced tumor biotherapy.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Ke Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Weihong Tan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| |
Collapse
|
124
|
MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat Commun 2021; 12:6399. [PMID: 34737274 PMCID: PMC8569165 DOI: 10.1038/s41467-021-26655-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Targeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe3+-to-Fe2+ reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe2+ and acidification of intracellular microenvironment, respectively. The overexpressed H2O2 in mitochondria, highly reactive Fe2+ and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo. Targeting damage to mitochondria has become an effective strategy antitumor therapies. Here, the authors report on nanoagents with upconversion nanoparticles as cores and photoacid-loaded MOFs as shells for NIR triggered Fenton reaction, acidification and calcium overload to provide synergistic mitochondrial damage.
Collapse
|
125
|
Sun M, Ye H, Shi Q, Xie J, Yu X, Ling H, You S, He Z, Qin B, Sun J. Both-In-One Hybrid Bacteria Suppress the Tumor Metastasis and Relapse via Tandem-Amplifying Reactive Oxygen Species-Immunity Responses. Adv Healthc Mater 2021; 10:e2100950. [PMID: 34541825 DOI: 10.1002/adhm.202100950] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Bacterial therapy, which targets the tumor site and aims at exerting an antitumor immune response, has displayed a great potential against malignant tumors. However, failure of the phase I clinical trial of Salmonella strain VNP20009 alone demonstrates that bacterial treatment alone can unsatisfy the requirements of high efficiency and biosafety. Herein, a strategy of both-in-one hybrid bacteria is proposed, wherein the chemotherapeutic drug doxorubicin (DOX) is integrated onto the surface of glucose dehydrogenase (GDH)-overexpressed non-pathogenic Escherichia coli (E. coli) strain, to potentiate the antitumor efficacy. Nicotinamide adenine dinucleotide phosphate (NADPH), which is produced by GDH from E. coli, promotes the generation of toxic reactive oxygen species (ROS) within the tumor, and ROS is then catalyzed by the DOX-activated NADPH oxidases. Importantly, the hybrid bacteria enhance stimulated systemic antitumor immune responses, thereby leading to effective tumor eradication. When this strategy is applied in four different tumor models, the hybrid bacteria significantly inhibited tumor metastasis, postsurgical regrowth, and primary/distal tumor relapse. The both-in-one ROS-immunity-boosted hybrid bacteria strategy provides knowledge for the rational design of bacteria-based synergistic cancer therapy.
Collapse
Affiliation(s)
- Mengchi Sun
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Hao Ye
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Qinghua Shi
- School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Jun Xie
- School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Xiang Yu
- Department of Radiation Oncology Huzhou Central Hospital Affiliated Huzhou Hospital Zhejiang University School of Medicine Affiliated Central Hospital Huzhou University Huzhou Zhejiang 313000 China
| | - Hao Ling
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Song You
- School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Zhonggui He
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Bin Qin
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Jin Sun
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| |
Collapse
|
126
|
Chen S, Li J, Ma X, Liu F, Yan G. Cationic Peptide-Modified Gold Nanostars as Efficient Delivery Platform for RNA Interference Antitumor Therapy. Polymers (Basel) 2021; 13:polym13213764. [PMID: 34771323 PMCID: PMC8587007 DOI: 10.3390/polym13213764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
siRNA interference therapy can silence tumor cell target genes and specifically regulate tumor cell behavior and function, which is an effective antitumor therapy. However, in somatic circulation, naked siRNAs are not only susceptible to degrade, but it is also difficult to realize the tumor cells' internalization. Therefore, novel siRNA delivery vectors that could promote efficacy need to be developed urgently. Here, we designed high-surface gold nanostars (GNS-P) which are decorated with cationic tumor-targeting peptide as an efficient and functional siRNA delivery nanoplatform for tumor therapy. The positively charged amino acid sequence and huge surface area enabled the vector to load a large amount of siRNA, while the tumor-targeting peptide sequence and nano size enabled it to rapidly and precisely target the tumor regions for fast and effective siRNA delivery. This tumor-targeting nanoplatform, GNS-P, displayed good biocompatibility, low toxicity and an extraordinary tumor accumulation capability.
Collapse
Affiliation(s)
- Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (S.C.); (G.Y.)
| | - Jiguang Li
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
| | - Xiaoyu Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
| | - Fan Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
| | - Guoping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
- Correspondence: (S.C.); (G.Y.)
| |
Collapse
|
127
|
Yang Z, Fu X, Ma D, Wang Y, Peng L, Shi J, Sun J, Gan X, Deng Y, Yang W. Growth Factor-Decorated Ti 3 C 2 MXene/MoS 2 2D Bio-Heterojunctions with Quad-Channel Photonic Disinfection for Effective Regeneration of Bacteria-Invaded Cutaneous Tissue. SMALL 2021; 17:e2103993. [PMID: 34713567 DOI: 10.1002/smll.202103993] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Phototherapy has recently emerged as a competent alternative for combating bacterial infection without antibiotic-resistance risk. However, owing to the bacterial endogenous antioxidative glutathione (GSH), the exogenous reactive oxygen species (ROS) generated by phototherapy can hardly behave desired antibacterial effect. To address the daunting issue, a quad-channel synergistic antibacterial nano-platform of Ti3 C2 MXene/MoS2 (MM) 2D bio-heterojunctions (2D bio-HJs) are devised and fabricated, which possess photothermal, photodynamic, peroxidase-like (POD-like), and glutathione oxidase-like properties. Under near-infrared (NIR) laser exposure, the 2D bio-HJs both yield localized heating and raise extracellular ROS level, leading to bacterial inactivation. Synchronously, Mo4+ ions can easily invade into ruptured bacterial membrane, arouse intracellular ROS, and deplete intracellular GSH. Squeezed between the "ROS hurricane" from both internal and external sides, the bacteria are hugely slaughtered. After being further loaded with fibroblast growth factor-21 (FGF21), the 2D bio-HJs exhibit benign cytocompatibility and boost cell migration in vitro. Notably, the in vivo evaluations employing a mouse-infected wound model demonstrate the excellent photonic disinfection towards bacterial infection and accelerated wound healing. Overall, this work provides a powerful nano-platform for the effective regeneration of bacteria-invaded cutaneous tissue using 2D bio-HJs.
Collapse
Affiliation(s)
- Zhaopu Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinliang Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Daichuan Ma
- Analytical & Testing Center, Sichuan University, Chengdu, 610065, China
| | - Yulin Wang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Liming Peng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiacheng Shi
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
128
|
Wang L, Qin W, Xu W, Huang F, Xie X, Wang F, Ma L, Zhang C. Bacteria-Mediated Tumor Therapy via Photothermally-Programmed Cytolysin A Expression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102932. [PMID: 34472212 DOI: 10.1002/smll.202102932] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
By leveraging the ability of bacteria to express therapeutic protein cytolysin A (ClyA) through plasmid transformation, a thermally-activated biohybrid (TAB@Au) is constructed by biomineralizing gold nanoparticles (AuNPs) on the E. coli surface. Due to the feature of anaerobic bacteria homing to tumor microenvironments, the bacteria-based antitumor vehicles can be efficaciously accumulated at tumor sites. Under NIR laser irradiation, the biomineralized AuNPs harvest transdermal photons and convert them into local heat for photothermal therapy. After that, the produced heat elicits the expression of ClyA for killing tumor cells. In vitro and in vivo experiments verify the conception that the current therapeutic modality greatly inhibits the proliferation of tumor cells. In terms of the spatial specificity and non-invasiveness of NIR laser, the bacteria-based phototherapy represents an appealing way for tumor therapy.
Collapse
Affiliation(s)
- Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Wenjun Qin
- Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wenxuan Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Fan Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Xiaochen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
- Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
129
|
Bacterial-based cancer therapy: An emerging toolbox for targeted drug/gene delivery. Biomaterials 2021; 277:121124. [PMID: 34534860 DOI: 10.1016/j.biomaterials.2021.121124] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Precise targeting and high therapeutic efficiency are the major requisites of personalized cancer treatment. However, some unique features of the tumor microenvironment (TME) such as hypoxia, low pH and elevated interstitial fluid pressure cause cancer cells resistant to most therapies. Bacteria are increasingly being considered for targeted tumor therapy owing to their intrinsic tumor tropism, high motility as well as the ability to rapidly colonize in the favorable TME. Compared to other nano-strategies using peptides, aptamers, and other biomolecules, tumor-targeting bacteria are largely unaffected by the tumor cells and microenvironment. On the contrary, the hypoxic TME is highly conducive to the growth of facultative anaerobes and obligate anaerobes. Live bacteria can be further integrated with anti-cancer drugs and nanomaterials to increase the latter's targeted delivery and accumulation in the tumors. Furthermore, anaerobic and facultatively anaerobic bacteria have also been combined with other anti-cancer therapies to enhance therapeutic effects. In this review, we have summarized the applications and advantages of using bacteria for targeted tumor therapy (Scheme 1) in order to aid in the design of novel intelligent drug delivery systems. The current challenges and future prospects of tumor-targeting bacterial nanocarriers have also been discussed.
Collapse
|
130
|
Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy. Nat Commun 2021; 12:5243. [PMID: 34475406 PMCID: PMC8413279 DOI: 10.1038/s41467-021-25561-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Peroxisome, a special cytoplasmic organelle, possesses one or more kinds of oxidases for hydrogen peroxide (H2O2) production and catalase for H2O2 degradation, which serves as an intracellular H2O2 regulator to degrade toxic peroxides to water. Inspired by this biochemical pathway, we demonstrate the reactive oxygen species (ROS) induced tumor therapy by integrating lactate oxidase (LOx) and catalase (CAT) into Fe3O4 nanoparticle/indocyanine green (ICG) co-loaded hybrid nanogels (designated as FIGs-LC). Based on the O2 redistribution and H2O2 activation by cascading LOx and CAT catalytic metabolic regulation, hydroxyl radical (·OH) and singlet oxygen (1O2) production can be modulated for glutathione (GSH)-activated chemodynamic therapy (CDT) and NIR-triggered photodynamic therapy (PDT), by manipulating the ratio of LOx and CAT to catalyze endogenous lactate to produce H2O2 and further cascade decomposing H2O2 into O2. The regulation reactions of FIGs-LC significantly elevate the intracellular ROS level and cause fatal damage to cancer cells inducing the effective inhibition of tumor growth. Such enzyme complex loaded hybrid nanogel present potential for biomedical ROS regulation, especially for the tumors with different redox state, size, and subcutaneous depth. The control of reactive oxygen species in cancer cells is an attractive approach for anticancer applications. Here, the authors create a peroxisome inspired lactate oxidase and catalase loaded hydrogel with iron nanoparticles and NIR photosensitizer for glutathione activated chemodynamic and photodynamic therapy.
Collapse
|
131
|
Li Z, Wang Y, Liu J, Rawding P, Bu J, Hong S, Hu Q. Chemically and Biologically Engineered Bacteria-Based Delivery Systems for Emerging Diagnosis and Advanced Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102580. [PMID: 34347325 DOI: 10.1002/adma.202102580] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Bacteria are one of the main groups of organisms, which dynamically and closely participate in human health and disease development. With the integration of chemical biotechnology, bacteria have been utilized as an emerging delivery system for various biomedical applications. Given the unique features of bacteria such as their intrinsic biocompatibility and motility, bacteria-based delivery systems have drawn wide interest in the diagnosis and treatment of various diseases, including cancer, infectious diseases, kidney failure, and hyperammonemia. Notably, at the interface of chemical biotechnology and bacteria, many research opportunities have been initiated, opening a promising frontier in biomedical application. Herein, the current synergy of chemical biotechnology and bacteria, the design principles for bacteria-based delivery systems, the microbial modulation, and the clinical translation are reviewed, with a special focus on the emerging advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jun Liu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Piper Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| |
Collapse
|
132
|
Jin D, Yuan K, Du X, Wang Q, Wang S, Zhang L. Domino Reaction Encoded Heterogeneous Colloidal Microswarm with On-Demand Morphological Adaptability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100070. [PMID: 34337789 DOI: 10.1002/adma.202100070] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Emulating natural swarm intelligence with group-level functionality in artificial micro/nanorobotic systems offers an opportunity to sublimate the limited functions of individuals and revolutionize their applications. However, achieving synchronous operation of microswarms with environmental adaptability and cooperative tasking capability remains a challenge. Here, an adaptive and heterogeneous colloidal magnetic microswarm with domino reaction encoded cooperative functions is presented. Through programming external magnetic fields, the system self-organizes into two swarm states, that is, vortex and ribbon microswarms, which can switch between each other reversibly within seconds, allowing to traverse tortuous, branched, and confined environments through adaptive morphological transformation. By specializing subgroups of building blocks with separate functions, cooperative tasking capability is integrated into the heterogeneous system following a "division of labor" manner. Given targeted therapy as a proof-of-concept task, the coordinated delivery of heterogeneous colloidal system across a complex environment with an access rate higher than 90% is demonstrated, and the specialization and cooperation between building blocks to disrupt multiple growth pathways of cancer cells via domino reaction are realized. The reconfigurable microswarm with hierarchical functionality presents a bioinspired approach to adapt to environmental variations and address multitasking requirements, which advances the development of microrobotic swarms and promises major benefits in biomedical fields.
Collapse
Affiliation(s)
- Dongdong Jin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Ke Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Xingzhou Du
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Shijie Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
- T-Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| |
Collapse
|
133
|
Xiang H, You C, Liu W, Wang D, Chen Y, Dong C. Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials 2021; 277:121071. [PMID: 34450576 DOI: 10.1016/j.biomaterials.2021.121071] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Catalytic cascade transformations, which occur in spatially constrained tumor environment to generate therapeutic moieties from prodrugs or intrinsic species, are highly desirable for precise cancer therapy. Nevertheless, it is high challenging to engineer a cascade nanoreactor with tumor microenvironment (TME)-responsive capability for synergistic tumor therapy. Inspired by the biocatalytic cascades in biological processes, here, a tumor-specific nanoreactor was established to activate cascade reactions for oxidative stress-augmented chemotherapy by the integration of an artificial enzyme, Pt(IV)-based prodrug (Pt(IV)), with Cu(II)-based metal-organic frameworks (CuMOF). Upon internalization of CuMOF@Pt(IV) by tumor cells, in addition to chemotherapeutic effect, the activated cisplatin by glutathione (GSH) reduction is capable of acting as an artificial enzyme to elevate the hydrogen peroxide (H2O2) level through cascade reactions for augmenting the therapeutic efficacy of Cu+-mediated chemodynamic therapy (CDT). Meanwhile, CuMOF@Pt(IV) specifically deplete overexpressed GSH at tumor sites, thus amplifying tumor oxidative stress, and finally leading to augmented antitumor efficacy. The orchestrated cooperative effect of chemotherapy and oxidative stress presents splendid therapeutic efficacy on tumor-bearing mice with negligible adverse effects. Therefore, this cascade nanoreactor provides exciting opportunities to develop complementary therapeutic modalities for precise cancer treatment.
Collapse
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Changwen You
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Dongqiong Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China.
| |
Collapse
|
134
|
Guo Y, Zheng X, Gai T, Wei Z, Zhang S. Co-biomembrane-coated Fe 3O 4/MnO 2 multifunctional nanoparticles for targeted delivery and enhanced chemodynamic/photothermal/chemo therapy. Chem Commun (Camb) 2021; 57:5754-5757. [PMID: 34036980 DOI: 10.1039/d1cc01375k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here, the co-membrane system of MCF-7 breast cancer cell membrane (MM) and Escherichia coli membrane (EM)-coated Fe3O4/MnO2 multifunctional composite nanoparticles loaded with DOX (Fe3O4/MnO2/MM/EM/D) was used for targeted drug delivery and biological imaging.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. and School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Xiaofei Zheng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Tingting Gai
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zhiyong Wei
- Linyi people's hospital, Linyi 276005, China
| | - Shusheng Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
135
|
Zhu T, Yu Q, Feng Z, Zhao W, Liu S, Huang W, Zhao Q. Photothermal Responsive Singlet Oxygen Nanocarriers for Hypoxic Cancer Cell Ablation. Chembiochem 2021; 22:2546-2552. [PMID: 34101959 DOI: 10.1002/cbic.202100098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Hypoxia in aggressively proliferating tumor cells has been demonstrated to restrict the efficiency of photodynamic therapy owing to its oxygen (O2 )-dependent generation of singlet oxygen (1 O2 ) from photosensitizers under light irradiation. To address this problem, we propose a small-molecule dye-based 1 O2 capturing agent, B1. B1 not only bears a near-infrared absorbing azo-boron dipyrromethene backbone, but also has 1,4-dimethylnaphthalene, which facilitates the capture of 1 O2 to form endoperoxide (B1-SO). B1-SO undergoes a reversible reaction via near-infrared photothermal stimulation, thus allowing 1 O2 release. Based on this mechanism, stable B1-SO containing micelles (B1-SO NPs) were prepared and employed as 1 O2 nanocarriers to ablate cancer cells in vitro. Taking advantage of this O2 -independent 1 O2 releasing ability, B1-SO NPs were demonstrated to have efficient cytotoxicity under near-infrared irradiation, especially in a hypoxic environment. The unique O2 -independent 1 O2 generation process of B1-SO NPs suggests they can be used as novel cancer phototherapy agents.
Collapse
Affiliation(s)
- Ting Zhu
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| | - Qi Yu
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
- School of Food and Biology Engineering, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Zheng Feng
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| | - Weili Zhao
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE) &, Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| |
Collapse
|
136
|
Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J. Bacteria-mediated cancer therapies: opportunities and challenges. Biomater Sci 2021; 9:5732-5744. [PMID: 34313267 DOI: 10.1039/d1bm00634g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, cancer therapy strategies utilizing live tumor-targeting bacteria have presented unique advantages. Engineered bacteria have the particular ability to distinguish tumors from normal tissues with less toxicity. Live bacteria are naturally capable of homing to tumors, resulting in high levels of local colonization because of insufficient oxygen and low pH in the tumor microenvironment. Bacteria initiate their antitumor effects by directly killing the tumor or by activating innate and adaptive antitumor immune responses. The bacterial vectors can be reprogrammed following advanced DNA synthesis, sophisticated genetic bioengineering, and biosensors to engineer microorganisms with complex functions, and then produce and deliver anticancer agents based on clinical needs. However, because of the lack of knowledge on the mechanisms and side effects of microbial cancer therapy, developing such smart microorganisms to treat or prevent cancer remains a significant challenge. In this review, we summarized the potential, status, opportunities and challenges of this growing field. We illustrated the mechanism of tumor regression induced by engineered bacteria and discussed the recent advances in the application of bacteria-mediated cancer therapy to improve efficacy, safety and drug delivery. Finally, we shared our insights into the future directions of tumor-targeting bacteria in cancer therapy.
Collapse
Affiliation(s)
- Meiyang Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | | | | | | | | | | |
Collapse
|
137
|
Liu Z, Wang X, Chen Q, Ma F, Huang Y, Gao Y, Deng Q, Qiao Z, Xing X, Zhu J, Lu F, Wang H. Regulating Twisted Skeleton to Construct Organ‐Specific Perylene for Intensive Cancer Chemotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhonghua Liu
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Xuejuan Wang
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Qing Chen
- Joint National Laboratory for Antibody Drug Engineering School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Feiyan Ma
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Yijian Gao
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Qingyuan Deng
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Science (UCAS) Beijing 100049 China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering School of Basic Medical Science Henan University Kaifeng 475004 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Science (UCAS) Beijing 100049 China
| |
Collapse
|
138
|
Liu Z, Wang X, Chen Q, Ma F, Huang Y, Gao Y, Deng Q, Qiao ZY, Xing X, Zhu J, Lu F, Wang H. Regulating Twisted Skeleton to Construct Organ-Specific Perylene for Intensive Cancer Chemotherapy. Angew Chem Int Ed Engl 2021; 60:16215-16223. [PMID: 33971079 DOI: 10.1002/anie.202105607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/12/2022]
Abstract
The systemic use of pharmaceutical drugs for cancer patients is a compromise between desirable therapy and side effects because of the intrinsic shortage of organ-specific pharmaceutical drug. Design and construction of pharmaceutical drug to achieve the organ-specific delivery is thus desperately desirable. We herein regulate perylene skeleton to effect organ-specificity and present an example of lung-specific distribution on the basis of bay-twisted PDIC-NC. We further demonstrate that PDIC-NC can target into mitochondria to act as cellular respiration inhibitor, inducing insufficient production of adenosine triphosphate, promoting endogenous H2 O2 and . OH burst, elevating calcium overload, efficiently triggering the synergistic apoptosis, autophagy and endoplasmic reticulum stress of lung cancer cells. The antitumor performance of PDIC-NC is verified on in vivo xenografted, metastasis and orthotopic lung cancer, presenting overwhelming evidences for potentially clinical application. This study contributes a proof-of-concept demonstration of twisted perylene to well attain lung-specific distribution, and meanwhile achieves intensive lung cancer chemotherapy.
Collapse
Affiliation(s)
- Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Xuejuan Wang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Qing Chen
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Feiyan Ma
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Yijian Gao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Qingyuan Deng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science (UCAS), Beijing, 100049, China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science (UCAS), Beijing, 100049, China
| |
Collapse
|
139
|
X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy. Biomaterials 2021; 276:121023. [PMID: 34274779 DOI: 10.1016/j.biomaterials.2021.121023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/18/2023]
Abstract
Nanomaterials with shifting or mixed redox states is one of the most common studied nanozyme with peroxidase-like activity for chemodynamic therapy (CDT), which can decompose hydrogen peroxide (H2O2) of tumor microenvironment into highly toxic reactive oxygen species (ROS) by a nano-catalytic way. However, most of them exhibit an insufficient catalytic efficiency due to their dependence on catalytic condition. Herein, a potential methodology is proposed to enhance their enzymatic activity by accelerating the redox cycling of these nanomaterials with shifting or mixed redox states in the presence of X-ray. In this study, the nanocomposite consisting of SnS2 nanoplates and Fe3O4 quantum dots with shifting or mixed redox states (Fe2+/Fe3+) is used to explore the strategy. Under external X-ray irradiation, SnS2 cofactor as electron donor can be triggered to transfer electrons to Fe3O4, which promotes the regeneration of Fe2+ sites on the surface of the Fe3O4. Consequently, the regenerated Fe2+ sites react with the overexpressed H2O2 to persistently generate ROS for enhanced tumor therapy. The designed nanocomposite displays the synergistic effects of radiotherapy and CDT. The strategy provides a new avenue for the development of artificial nanozymes with shifting or mixed redox states in precise cancer treatments based on X-ray-enhanced enzymatic efficacy.
Collapse
|
140
|
Kang RH, Kim Y, Kim JH, Kim NH, Ko HM, Lee SH, Shim I, Kim JS, Jang HJ, Kim D. Self-Activating Therapeutic Nanoparticle: A Targeted Tumor Therapy Using Reactive Oxygen Species Self-Generation and Switch-on Drug Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30359-30372. [PMID: 34142813 DOI: 10.1021/acsami.1c07037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the recent advances in nanotechnology within the medical field is the development of a nanoformulation of anticancer drugs or photosensitizers. Cancer cell-specific drug delivery and upregulation of the endogenous level of reactive oxygen species (ROS) are important in precision anticancer treatment. Within our article, we report a new therapeutic nanoformulation of cancer cell targeting using endogenous ROS self-generation without an external initiator and a switch-on drug release (ROS-induced cascade nanoparticle degradation and anticancer drug generation). We found a substantial cellular ROS generation by treating an isothiocyanate-containing chemical and functionalizing it onto the surface of porous silicon nanoparticles (pSiNPs) that are biodegradable and ROS-responsive nanocarriers. Simultaneously, we loaded an ROS-responsive prodrug (JS-11) that could be converted to the original anticancer drug, SN-38, and conducted further surface functionalization with a cancer-targeting peptide, CGKRK. We demonstrated the feasibility as a cancer-targeting and self-activating therapeutic nanoparticle in a pancreatic cancer xenograft mouse model, and it showed a superior therapeutic efficacy through ROS-induced therapy and drug-induced cell death. The work presented is a new concept of a nanotherapeutic and provides a more feasible clinical translational pathway.
Collapse
Affiliation(s)
- Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yumi Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Na Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Hyeon Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Inseob Shim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
141
|
Huang L, Zhao S, Wu J, Yu L, Singh N, Yang K, Lan M, Wang P, Kim JS. Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213888] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
142
|
Zhou TJ, Xu Y, Xing L, Wang Y, Jiang HL. A Harmless-Harmful Switchable and Uninterrupted Laccase-Instructed Killer for Activatable Chemodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100114. [PMID: 34062021 DOI: 10.1002/adma.202100114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Chemodynamic therapy (CDT) employs Fenton catalysts to kill cancer cells by converting intracellular hydrogen peroxide (H2 O2 ) into hydroxyl radicals (OH•). Although many studies on H2 O2 supplementation have been conducted to improve the therapeutic effect of CDT, few studies have focused on the application of superoxide radical (O2 -• ) in CDT, which may result in better efficacy. A major concern about O2 -• -mediated CDT is its tendency to induce serious oxidative damage to normal tissues, which may be addressed by using a degradable O2 -• scavenger. Here, a harmless-harmful switchable and uninterrupted laccase (LAC)-instructed killer (HULK) is constructed, which is the first CDT agent accelerated by LAC-instructed O2 -• generation and possesses a harmless-harmful switchable effect because of the photodegradation of the O2 -• scavenger iron-chlorin e6 (FeCe6). LAC-instructed substrate oxidation effectively catalyzes O2 -• production with the help of intracellular reduction, thereby promoting the conversion of Fe3+ to Fe2+ , accelerating the generation of OH•, and inducing tumor cell apoptosis and necrosis. The introduced O2 -• scavenger FeCe6 is quickly photodegraded during irradiation, while LAC-instructed O2 -• generation proceeds as before, resulting in activatable CDT. This work not only provides the first strategy for LAC-instructed O2 -• generation but also presents new insight into activatable CDT.
Collapse
Affiliation(s)
- Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
143
|
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021; 19:192. [PMID: 34183023 PMCID: PMC8240398 DOI: 10.1186/s12951-021-00936-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
It is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.
Collapse
Affiliation(s)
- Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, People's Republic of China.
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
144
|
Ding B, Zheng P, Li D, Wang M, Jiang F, Wang Z, Ma P, Lin J. Tumor microenvironment-triggered in situ cancer vaccines inducing dual immunogenic cell death for elevated antitumor and antimetastatic therapy. NANOSCALE 2021; 13:10906-10915. [PMID: 34128036 DOI: 10.1039/d1nr02018h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer vaccines are made from tumor-specific antigens, which are then injected back into the body to activate immune responses for cancer immunotherapy. Despite the high specificity and therapeutic efficiency, the vaccine has huge challenges such as complex preparation process, expensiveness and limited durational effects. Herein, a strategy to develop in situ cancer vaccines by enhancing the immunomodulatory effects for immunogenic cell death (ICD) is presented. First, amorphous iron oxide-packaged oxaliplatin (AIOoxp) nanoprodrugs with a high drug loading efficiency of 12.9% were prepared. By utilizing tumor microenvironment (TME) as an endogenous stimulus, this inorganic nanoprodrug can effectively realize TME-responsive combined treatments of chemotherapy and chemodynamic therapy (CDT), and thus achieve dual and precise ICD induction. Further, in vivo immunopotentiation performances further prove that this enhanced ICD effect is able to efficiently promote the maturity of dendritic cells (DCs), T cell activation and correlative cytokine secretion. Furthermore, the obtained nanoprodrugs not only reduce systemic toxicities of Oxp and achieve T1/T2 magnetic resonance imaging (MRI), but also dramatically inhibit tumor growth and lung metastasis. We believe that the design of in situ cancer vaccines by enhancing the ICD effects will inspire future studies on cancer vaccines.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Dong Li
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Zhanfeng Wang
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun, 130033, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
145
|
Zhu C, Ji Z, Ma J, Ding Z, Shen J, Wang Q. Recent Advances of Nanotechnology-Facilitated Bacteria-Based Drug and Gene Delivery Systems for Cancer Treatment. Pharmaceutics 2021; 13:940. [PMID: 34202452 PMCID: PMC8308943 DOI: 10.3390/pharmaceutics13070940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most devastating and ubiquitous human diseases. Conventional therapies like chemotherapy and radiotherapy are the most widely used cancer treatments. Despite the notable therapeutic improvements that these measures achieve, disappointing therapeutic outcome and cancer reoccurrence commonly following these therapies demonstrate the need for better alternatives. Among them, bacterial therapy has proven to be effective in its intrinsic cancer targeting ability and various therapeutic mechanisms that can be further bolstered by nanotechnology. In this review, we will discuss recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems in cancer treatment. Therapeutic mechanisms of these hybrid nanoformulations are highlighted to provide an up-to-date understanding of this emerging field.
Collapse
Affiliation(s)
- Chaojie Zhu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China; (Z.J.); (J.M.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiheng Ji
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China; (Z.J.); (J.M.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junkai Ma
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China; (Z.J.); (J.M.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijie Ding
- College of Letters & Science, University of California, Berkeley, CA 94704, USA;
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| |
Collapse
|
146
|
Yao Y, Wang D, Hu J, Yang X. Tumor-targeting inorganic nanomaterials synthesized by living cells. NANOSCALE ADVANCES 2021; 3:2975-2994. [PMID: 36133644 PMCID: PMC9419506 DOI: 10.1039/d1na00155h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 05/09/2023]
Abstract
Inorganic nanomaterials (NMs) have shown potential application in tumor-targeting theranostics, owing to their unique physicochemical properties. Some living cells in nature can absorb surrounding ions in the environment and then convert them into nanomaterials after a series of intracellular/extracellular biochemical reactions. Inspired by that, a variety of living cells have been used as biofactories to produce metallic/metallic alloy NMs, metalloid NMs, oxide NMs and chalcogenide NMs, which are usually automatically capped with biomolecules originating from the living cells, benefitting their tumor-targeting applications. In this review, we summarize the biosynthesis of inorganic nanomaterials in different types of living cells including bacteria, fungi, plant cells and animal cells, accompanied by their application in tumor-targeting theranostics. The mechanisms involving inorganic-ion bioreduction and detoxification as well as biomineralization are emphasized. Based on the mechanisms, we describe the size and morphology control of the products via the modulation of precursor ion concentration, pH, temperature, and incubation time, as well as cell metabolism by a genetic engineering strategy. The strengths and weaknesses of these biosynthetic processes are compared in terms of the controllability, scalability and cooperativity during applications. Future research in this area will add to the diversity of available inorganic nanomaterials as well as their quality and biosafety.
Collapse
Affiliation(s)
- Yuzhu Yao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Dongdong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
147
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
148
|
Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
149
|
Wang XN, Niu MT, Fan JX, Chen QW, Zhang XZ. Photoelectric Bacteria Enhance the In Situ Production of Tetrodotoxin for Antitumor Therapy. NANO LETTERS 2021; 21:4270-4279. [PMID: 33955768 DOI: 10.1021/acs.nanolett.1c00408] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineered bacteria are promising bioagents to synthesize antitumor drugs at tumor sites with the advantages of avoiding drug leakage and degradation during delivery. Here, we report an optically controlled material-assisted microbial system by biosynthesizing gold nanoparticles (AuNPs) on the surface of Shewanella algae K3259 (S. algae) to obtain Bac@Au. Leveraging the dual directional electron transport mechanism of S. algae, the hybrid biosystem enhances in situ synthesis of antineoplastic tetrodotoxin (TTX) for a promising antitumor effect. Because of tumor hypoxia-targeting feature of facultative anaerobic S. algae, Bac@Au selectively target and colonize at tumor. Upon light irradiation, photoelectrons produced by AuNPs deposited on bacterial surface are transferred into bacterial cytoplasm and participate in accelerated cell metabolism to increase the production of TTX for antitumor therapy. The optically controlled material-assisted microbial system enhances the efficiency of bacterial drug synthesis in situ and provides an antitumor strategy that could broaden conventional therapy boundaries.
Collapse
Affiliation(s)
- Xia-Nan Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Mei-Ting Niu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
150
|
Abstract
The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host interactions, has elicited substantial interest and opened up exciting avenues of research. More recently, advancements in genetic engineering have given way to more complex and elegant systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in nanotherapeutic applications, as they preserve many of the features from the original bacteria while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven successful in combatting both cancer and infectious disease.
Collapse
Affiliation(s)
- Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica Pihl
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|