101
|
Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X. The Chemistry of Organic Contrast Agents in the NIR-II Window. Angew Chem Int Ed Engl 2021; 61:e202114722. [PMID: 34873810 DOI: 10.1002/anie.202114722] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/08/2022]
Abstract
Optical imaging, especially fluorescence and photoacoustic imaging, possesses non-invasiveness, high spatial and temporal resolution, and high sensitivity, etc., compared to positron emission tomography (PET) or magnetic resonance imaging (MRI). Due to the merits from the second near infrared (NIR-II) window imaging, like deeper penetration depth, high signal-to-noise ratio, high resolution, and low tissue damage, researchers devote great efforts to develop contrast agents with NIR-II absorption or emission. In this review, we summarized recently developed organic luminescent and photoacoustic materials, ranging from small molecules to conjugated polymers. Then, we systematically introduced engineering strategies and their imaging performance, classified by the skeleton cores. Finally, we elucidated the challenges and prospective of these NIR-II organic dyes for potential clinical applications. We hope our summary can inspire further development of NIR-II contrast agents.
Collapse
Affiliation(s)
- Jing Mu
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Ming Xiao
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Yu Shi
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Xuewen Geng
- University of Rochester, Department of Biology, UNITED STATES
| | - Hui Li
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Yuxin Yin
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Xiaoyuan Chen
- National University of Singapore, School of Medicine and Faculty of Engineering, 10 Medical Dr, 117597, Singapore, SINGAPORE
| |
Collapse
|
102
|
Ren F, Jiang Z, Han M, Zhang H, Yun B, Zhu H, Li Z. NIR‐II Fluorescence imaging for cerebrovascular diseases. VIEW 2021. [DOI: 10.1002/viw.20200128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Feng Ren
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| |
Collapse
|
103
|
Ma H, Wang J, Zhang XD. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
104
|
Wei Z, Duan G, Huang B, Qiu S, Zhou D, Zeng J, Cui J, Hu C, Wang X, Wen L, Gao M. Rapidly liver-clearable rare-earth core-shell nanoprobe for dual-modal breast cancer imaging in the second near-infrared window. J Nanobiotechnology 2021; 19:369. [PMID: 34789288 PMCID: PMC8600917 DOI: 10.1186/s12951-021-01112-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fluorescence imaging as the beacon for optical navigation has wildly developed in preclinical studies due to its prominent advantages, including noninvasiveness and superior temporal resolution. However, the traditional optical methods based on ultraviolet (UV, 200-400 nm) and visible light (Vis, 400-650 nm) limited by their low penetration, signal-to-noise ratio, and high background auto-fluorescence interference. Therefore, the development of near-infrared-II (NIR-II 1000-1700 nm) nanoprobe attracted significant attentions toward in vivo imaging. Regrettably, most of the NIR-II fluorescence probes, especially for inorganic NPs, were hardly excreted from the reticuloendothelial system (RES), yielding the anonymous long-term circulatory safety issue. RESULTS Here, we develop a facile strategy for the fabrication of Nd3+-doped rare-earth core-shell nanoparticles (Nd-RENPs), NaGdF4:5%Nd@NaLuF4, with strong emission in the NIR-II window. What's more, the Nd-RENPs could be quickly eliminated from the hepatobiliary pathway, reducing the potential risk with the long-term retention in the RES. Further, the Nd-RENPs are successfully utilized for NIR-II in vivo imaging and magnetic resonance imaging (MRI) contrast agents, enabling the precise detection of breast cancer. CONCLUSIONS The rationally designed Nd-RENPs nanoprobes manifest rapid-clearance property revealing the potential application toward the noninvasive preoperative imaging of tumor lesions and real-time intra-operative supervision.
Collapse
Affiliation(s)
- Zhuxin Wei
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Guangxin Duan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Shanshan Qiu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jiabin Cui
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| | - Ling Wen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
105
|
Yang S, Tan X, Tang L, Yang Q. Near-Infrared-II Bioimaging for in Vivo Quantitative Analysis. Front Chem 2021; 9:763495. [PMID: 34869206 PMCID: PMC8634491 DOI: 10.3389/fchem.2021.763495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Near-Infrared-II (NIR-II) bioimaging is a newly emerging visualization modality in real-time investigations of biological processes research. Owning to advances in reducing photon scattering and low tissue autofluorescence levels in NIR-II region (1,000-1700 nm), NIR-II bioimaging affords high resolution with increasing tissue penetration depth, and it shows greater application potential for in vivo detection to obtain more detailed qualitative and quantitative parameters. Herein, this review summarizes recent progresses made on NIR-II bioimaging for quantitative analysis. These emergences of various NIR-II fluorescence, photoacoustic (PA), luminescence lifetime imaging probes and their quantitative analysis applications are comprehensively discussed, and perspectives on potential challenges facing in this direction are also raised.
Collapse
Affiliation(s)
- Sha Yang
- The First Affiliated Hospital and Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
- Department of Pathology and Tumor Pathology Research Group, Xiangnan University, Chenzhou, China
| | - Xiaofeng Tan
- The First Affiliated Hospital and Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Tang
- The First Affiliated Hospital and Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Qinglai Yang
- The First Affiliated Hospital and Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
106
|
Li W, Zhang G, Liu L. Near-Infrared Inorganic Nanomaterials for Precise Diagnosis and Therapy. Front Bioeng Biotechnol 2021; 9:768927. [PMID: 34765596 PMCID: PMC8576183 DOI: 10.3389/fbioe.2021.768927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Traditional wavelengths (400–700 nm) have made tremendous inroads in vivo fluorescence imaging. However, the ability of visible light photon penetration hampered the bio-applications. With reduced photon scattering, minimal tissue absorption and negligible autofluorescence properties, near-infrared light (NIR 700–1700 nm) demonstrates better resolution, high signal-to-background ratios, and deep tissue penetration capability, which will be of great significance for in-vivo determination in deep tissue. In this review, we summarized the latest novel NIR inorganic nanomaterials and the emission mechanism including single-walled carbon nanotubes, rare-earth nanoparticles, quantum dots, metal nanomaterials. Subsequently, the recent progress of precise noninvasive diagnosis in biomedicine and cancer therapy utilizing near-infrared inorganic nanomaterials are discussed. In addition, this review will highlight the concerns, challenges and future directions of near-infrared light utilization.
Collapse
Affiliation(s)
- Wenling Li
- Medicine and Pharmacy Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Guilong Zhang
- Medicine and Pharmacy Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Liu
- Medicine and Pharmacy Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
107
|
Skripka A, Mendez-Gonzalez D, Marin R, Ximendes E, Del Rosal B, Jaque D, Rodríguez-Sevilla P. Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: recent developments in multifunctional nanomaterials. NANOSCALE ADVANCES 2021; 3:6310-6329. [PMID: 36133487 PMCID: PMC9417871 DOI: 10.1039/d1na00502b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/03/2021] [Indexed: 05/17/2023]
Abstract
Research in novel materials has been extremely active over the past few decades, wherein a major area of interest has been nanoparticles with special optical properties. These structures can overcome some of the intrinsic limitations of contrast agents routinely used in medical practice, while offering additional functionalities. Materials that absorb or scatter near infrared light, to which biological tissues are partially transparent, have attracted significant attention and demonstrated their potential in preclinical research. In this review, we provide an at-a-glance overview of the most recent developments in near infrared nanoparticles that could have far-reaching applications in the life sciences. We focus on materials that offer additional functionalities besides diagnosis based on optical contrast: multiple imaging modalities (multimodal imaging), sensing of physical and chemical cues (multivariate diagnosis), or therapeutic activity (theranostics). Besides presenting relevant case studies for each class of optically active materials, we discuss their design and safety considerations, detailing the potential hurdles that may complicate their clinical translation. While multifunctional nanomaterials have shown promise in preclinical research, the field is still in its infancy; there is plenty of room to maximize its impact in preclinical studies as well as to deliver it to the clinics.
Collapse
Affiliation(s)
- Artiom Skripka
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Diego Mendez-Gonzalez
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Blanca Del Rosal
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University 124 La Trobe St Melbourne VIC 3000 Australia
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|
108
|
Jiang M, Wang K, Xiao X, Zong Q, Zheng R, Yuan Y. Theranostic Heterodimeric Prodrug with Dual-Channel Fluorescence Turn-On and Dual-Prodrug Activation for Synergistic Cancer Therapy. Adv Healthc Mater 2021; 10:e2101144. [PMID: 34453773 DOI: 10.1002/adhm.202101144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Indexed: 11/06/2022]
Abstract
Theranostic prodrugs that can precisely monitor drug activation with synergistic therapeutic effects are highly desirable for personalized medicine. In this study, a theranostic heterodimeric prodrug, CyNH-SS-DOX, with synchronous and independent dual-channel fluorescence turn-on and dual-prodrug activation for synergistic cancer therapy is developed. A hemicyanine fluorescent drug, CyNH2 , with good therapeutic effects found in this work, is conjugated to doxorubicin (DOX) through a disulfide linker to form CyNH-SS-DOX. Before activation, both the fluorescence of DOX and CyNH2 are in the off state and the toxicity is low. In the presence of intracellular glutathione, both the fluorescence of DOX and CyNH2 at different channels are turned on. Meanwhile, DOX and CyNH2 are activated in a synergistic anticancer effect. It is believed that CyNH-SS-DOX is promising for monitoring prodrug activation in dual-fluorescence channels and for enhancing therapeutic efficacy with few side effects.
Collapse
Affiliation(s)
- Maolin Jiang
- School of Biomedical Sciences and Engineering Guangzhou International Campus South China University of Technology Guangzhou 511442 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Kewei Wang
- School of Biomedical Sciences and Engineering Guangzhou International Campus South China University of Technology Guangzhou 511442 P. R. China
| | - Xuan Xiao
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Qingyu Zong
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510006 P. R. China
| | - Rui Zheng
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education and Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering Guangzhou International Campus South China University of Technology Guangzhou 511442 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
109
|
Dai H, Wang X, Shao J, Wang W, Mou X, Dong X. NIR-II Organic Nanotheranostics for Precision Oncotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102646. [PMID: 34382346 DOI: 10.1002/smll.202102646] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Precision oncotherapy can remove tumors without causing any apparent iatrogenic damage or irreversible side effects to normal tissues. Second near-infrared (NIR-II) nanotheranostics can simultaneously perform diagnostic and therapeutic modalities in a single nanoplatform, which exhibits prominent perspectives in tumor precision treatment. Among all NIR-II nanotheranostics, NIR-II organic nanotheranostics have shown an exceptional promise for translation in clinical tumor treatment than NIR-II inorganic nanotheranostics in virtue of their good biocompatibility, excellent reproducibility, desirable excretion, and high biosafety. In this review, recent progress of NIR-II organic nanotheranostics with the integration of tumor diagnosis and therapy is systematically summarized, focusing on the theranostic modes and performances. Furthermore, the current status quo, problems, and challenges are discussed, aiming to provide a certain guiding significance for the future development of NIR-II organic nanotheranostics for precision oncotherapy.
Collapse
Affiliation(s)
- Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaorui Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
110
|
Xu P, Hu L, Yu C, Yang W, Kang F, Zhang M, Jiang P, Wang J. Unsymmetrical cyanine dye via in vivo hitchhiking endogenous albumin affords high-performance NIR-II/photoacoustic imaging and photothermal therapy. J Nanobiotechnology 2021; 19:334. [PMID: 34689764 PMCID: PMC8543934 DOI: 10.1186/s12951-021-01075-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Herein, an unprecedented synergistic strategy for the development of high-performance NIR-II fluorophore is proposed and validated. Based on an unsymmetrical cyanine dye design strategy, the NIR-II emissive dye NIC was successfully developed by replacing only one of the indoline donors of symmetrical cyanine dye ICG with a fully conjugated benz[c,d]indole donor. This minor structural change maximally maintains the high extinction coefficient advantage of cyanine dyes. NIC-ER with endogenous albumin-hitchhiking capability was constructed to further enhance its in vivo fluorescence brightness. In the presence of HSA (Human serum albumin), NIC-ER spontaneously resides in the albumin pocket, and a brilliant ~89-fold increase in fluorescence was observed. Due to its high molar absorptivity and moderate quantum yield, NIC-ER in HSA exhibits bright NIR-II emission with high photostability and significant Stokes shift (>110 nm). Moreover, NIC-ER was successfully employed for tumor-targeted NIR-II/PA imaging and efficient photothermal tumor elimination. Overall, our strategy may open up a new avenue for designing and constructing high-performance NIR-II fluorophores. ![]()
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China.,Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Linan Hu
- Departments of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Cheng Yu
- Departments of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China.
| |
Collapse
|
111
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
112
|
Wang Z, Wang X, Wan JB, Xu F, Zhao N, Chen M. Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103780. [PMID: 34643028 DOI: 10.1002/smll.202103780] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Optical imaging in the second near infrared region (NIR-II, 1000-1700 nm) provides higher resolution and deeper penetration depth for accurate and real-time vascular anatomy, blood dynamics, and function information, effectively contributing to the early diagnosis and curative effect assessment of vascular anomalies. Currently, NIR-II optical imaging demonstrates encouraging results including long-term monitoring of vascular injury and regeneration, real-time feedback of blood perfusion, tracking of lymphatic metastases, and imaging-guided surgery. This review summarizes the latest progresses of NIR-II optical imaging for angiography including fluorescence imaging, photoacoustic (PA) imaging, and optical coherence tomography (OCT). The development of current NIR-II fluorescence, PA, and OCT probes (i.e., single-walled carbon nanotubes, quantum dots, rare earth doped nanoparticles, noble metal-based nanostructures, organic dye-based probes, and semiconductor polymer nanoparticles), highlighting probe optimization regarding high brightness, longwave emission, and biocompatibility through chemical modification or nanotechnology, is first introduced. The application of NIR-II probes in angiography based on the classification of peripheral vascular, cerebrovascular, tumor vessel, and cardiovascular, is then reviewed. Major challenges and opportunities in the NIR-II optical imaging for vascular imaging are finally discussed.
Collapse
Affiliation(s)
- Zi'an Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Fujian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100000, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100000, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
113
|
Feng Z, Tang T, Wu T, Yu X, Zhang Y, Wang M, Zheng J, Ying Y, Chen S, Zhou J, Fan X, Zhang D, Li S, Zhang M, Qian J. Perfecting and extending the near-infrared imaging window. LIGHT, SCIENCE & APPLICATIONS 2021; 10:197. [PMID: 34561416 PMCID: PMC8463572 DOI: 10.1038/s41377-021-00628-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/05/2023]
Abstract
In vivo fluorescence imaging in the second near-infrared window (NIR-II) has been considered as a promising technique for visualizing mammals. However, the definition of the NIR-II region and the mechanism accounting for the excellent performance still need to be perfected. Herein, we simulate the photon propagation in the NIR region (to 2340 nm), confirm the positive contribution of moderate light absorption by water in intravital imaging and perfect the NIR-II window as 900-1880 nm, where 1400-1500 and 1700-1880 nm are defined as NIR-IIx and NIR-IIc regions, respectively. Moreover, 2080-2340 nm is newly proposed as the third near-infrared (NIR-III) window, which is believed to provide the best imaging quality. The wide-field fluorescence microscopy in the brain is performed around the NIR-IIx region, with excellent optical sectioning strength and the largest imaging depth of intravital NIR-II fluorescence microscopy to date. We also propose 1400 nm long-pass detection in off-peak NIR-II imaging whose performance exceeds that of NIR-IIb imaging, using bright fluorophores with short emission wavelength.
Collapse
Affiliation(s)
- Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, 314000, Jiaxing, Zhejiang Province, China
| | - Tao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Tianxiang Wu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoming Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Yuhuang Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, 314000, Jiaxing, Zhejiang Province, China
| | - Meng Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Junyan Zheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Siyi Chen
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Jing Zhou
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoxiao Fan
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, 314000, Jiaxing, Zhejiang Province, China.
| |
Collapse
|
114
|
Zhang X, Li X, Shi W, Ma H. Sensitive imaging of tumors using a nitroreductase-activated fluorescence probe in the NIR-II window. Chem Commun (Camb) 2021; 57:8174-8177. [PMID: 34318817 DOI: 10.1039/d1cc03232a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A nitroreductase (NTR)-activated NIR-II fluorescence probe for tumor imaging is reported. The probe can emit fluorescence in the range of 900-1300 nm, and target hypoxic tumors with NTR overexpression, thus allowing for accurate delineation of tumor margins through deep penetration.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
115
|
Li Y, Zha M, Yang G, Wang S, Ni JS, Li K. NIR-II Fluorescent Brightness Promoted by "Ring Fusion" for the Detection of Intestinal Inflammation. Chemistry 2021; 27:13085-13091. [PMID: 34224191 DOI: 10.1002/chem.202101767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Fluorophores with emission in the second near-infrared window (NIR-II) have displayed salient advantages for biomedical applications. However, the common strategy of reducing the energy bandgap of fluorophores so as to achieve red-shifted wavelengths always leads to compromised fluorescent brightness. Herein, we propose a molecular design concept of "ring-fusion" to modify the acceptor of AIEgen that can extend the luminous wavelength from NIR-I to NIR-II. The fused-acceptor-containing fluorophore yielded, TTQP, has an enhanced absorption coefficient with a higher brightness in nanoparticle formation compared to its NIR-I emissive counterpart (TTQ-DP) with a non-fused acceptor. Theoretical calculation further confirms that the ring fusion can efficiently promote the rigidity and planarity of the electron-deficient core, leading to a lower reorganization energy and nonradiative decay. The TTQP NPs yielded thus allow sensitive NIR-II fluorescence imaging of vasculature and intestinal inflammation in mice models. Therefore, we anticipate that our work will provide a promising molecular-engineering strategy to enrich the library and broaden the application scope of NIR-II fluorophores.
Collapse
Affiliation(s)
- Yaxi Li
- Harbin Institute of Technology, Harbin, 150001, P. R. China.,Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Guang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Shuxian Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Jen-Shyang Ni
- Department of Chemical and Materials Engineering Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| |
Collapse
|
116
|
Cosco ED, Lim I, Sletten EM. Photophysical Properties of Indocyanine Green in the Shortwave Infrared Region. CHEMPHOTOCHEM 2021; 5:727-734. [PMID: 34504949 PMCID: PMC8423351 DOI: 10.1002/cptc.202100045] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 02/04/2023]
Abstract
With the growing development of new contrast agents for optical imaging using near-infrared and shortwave infrared (SWIR) wavelengths, it is essential to have consistent bench-marks for emitters in these regions. Indocyanine green (ICG), a ubiquitous and FDA-approved organic dye and optical imaging agent, is commonly employed as a standard for photophysical properties and biological performance for imaging experiments at these wavelengths. Yet, its reported photophysical properties across organic and aqueous solvents vary greatly in the literature, which hinders its ability to be used as a consistent benchmark. Herein, we measure photophysical properties in organic and aqueous solvents using InGaAs detection (~950-1,700 nm), providing particular relevance for SWIR imaging.
Collapse
Affiliation(s)
- Emily D Cosco
- Dr. E. D. Cosco, I. Lim, Prof. E. M. Sletten Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095 (USA)
| | - Irene Lim
- Dr. E. D. Cosco, I. Lim, Prof. E. M. Sletten Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095 (USA)
| | - Ellen M Sletten
- Dr. E. D. Cosco, I. Lim, Prof. E. M. Sletten Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095 (USA)
| |
Collapse
|
117
|
Yang Z, Fan X, Li H, Li X, Li S, Zhang Z, Lin H, Qian J, Hua J. A Small-Molecule Diketopyrrolopyrrole-Based Dye for in vivo NIR-IIa Fluorescence Bioimaging. Chemistry 2021; 27:14240-14249. [PMID: 34337810 DOI: 10.1002/chem.202102312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 02/01/2023]
Abstract
Organic small-molecule fluorophores with near-infrared IIa (NIR-IIa) emission have great potential in pre-clinical detection and inoperative imaging due to the high-spatial resolution and deep penetration. However, developments of the NIR-IIa fluorophores are still facing considerable challenges. In this work, a series of diketopyrrolopyrrole (DPP)-based fluorophores were designed and synthesized. Subsequently, nanomaterial T25@F127 with significant NIR-IIa emission properties was rationally prepared by encapsulating DPP-based fluorophore T25, and was selected for fluorescence angiography and cerebral vascular microscopic imaging with nearly 800 μm penetrating depth and excellent signal-background ratio of 4.07 and 2.26 (at 250 and 400 μm), respectively. Furthermore, the nanomaterial T25@cRGD with tumor targeting ability can image tiny metastatic tumor on intestine with a small size of 0.3 mm×1.0 mm and high-spatial resolution (SBR=3.84). This study demonstrates that the nanomaterials which encapsulated T25 behave as excellent NIR-IIa fluorescence imaging agents and have a great potential for in vivo biological application.
Collapse
Affiliation(s)
- Zhicheng Yang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310000, P. R. China.,State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - He Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xinsheng Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Sifan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310000, P. R. China
| | - Jun Qian
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310000, P. R. China.,State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Jianli Hua
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
118
|
Wang Z, Xia H, Chen B, Wang Y, Yin Q, Yan Y, Yang Y, Tang M, Liu J, Zhao R, Li W, Zhang Q, Wang Y. pH‐Amplified CRET Nanoparticles for In Vivo Imaging of Tumor Metastatic Lymph Nodes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zenghui Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 China
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Heming Xia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 China
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 China
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Qingqing Yin
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Ye Yang
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Mingmei Tang
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Jianxiong Liu
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Ruiyang Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 China
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 China
- Beijing Key Laboratory of Molecular Pharmaceutics School of Pharmaceutical Sciences Peking University Beijing 100191 China
| |
Collapse
|
119
|
Song D, Zhu M, Chi S, Xia L, Li Z, Liu Z. Sensitizing the Luminescence of Lanthanide-Doped Nanoparticles over 1500 nm for High-Contrast and Deep Imaging of Brain Injury. Anal Chem 2021; 93:7949-7957. [PMID: 34032404 DOI: 10.1021/acs.analchem.1c00731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Real-time and in situ visualization of cerebrovascular dysfunction is significant for studying brain injury, which however, is restricted by the complex brain structure and limited imaging strategies. Luminescence imaging in NIR-IIb region (1500-1700 nm) is a promising tool owing to its merits including deep penetration, high resolution, and fast data acquisition. Unfortunately, a luminescent material in this region with sufficient brightness and biocompatibility is scarce. Herein, Ag2Se quantum dot-sensitized lanthanide-doped nanocrystals (QDs-LnNCs) with emission beyond 1500 nm were fabricated to image the cerebrovascular structure and hemodynamics in ischemic stroke and traumatic brain injury. The sensitization by QDs provided an over 100-fold enhanced brightness of LnNCs and a remarkable penetration depth of 11 mm. Dynamic information of blood perfusion and flow rates were acquired and the damage of the blood-brain barrier in the two injury models was investigated. Our results proved QDs-LnNCs as a kind of competent nanomaterial for noninvasive brain imaging.
Collapse
Affiliation(s)
- Dan Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mengting Zhu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Siyu Chi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lan Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
120
|
Wang D, Wang H, Ji L, Xu M, Bai B, Wan X, Hou D, Qiao ZY, Wang H, Zhang J. Hybrid Plasmonic Nanodumbbells Engineering for Multi-Intensified Second Near-Infrared Light Induced Photodynamic Therapy. ACS NANO 2021; 15:8694-8705. [PMID: 33957753 DOI: 10.1021/acsnano.1c00772] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSexSy with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O2-) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core-shell ACA. In vivo results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy.
Collapse
Affiliation(s)
- Dong Wang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Hongzhi Wang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Lei Ji
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Meng Xu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Bing Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaodong Wan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Dayong Hou
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
121
|
pH‐Amplified CRET Nanoparticles for In Vivo Imaging of Tumor Metastatic Lymph Nodes. Angew Chem Int Ed Engl 2021; 60:14512-14520. [DOI: 10.1002/anie.202102044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Indexed: 12/12/2022]
|
122
|
Zhang NN, Lu CY, Chen MJ, Xu XL, Shu GF, Du YZ, Ji JS. Recent advances in near-infrared II imaging technology for biological detection. J Nanobiotechnology 2021; 19:132. [PMID: 33971910 PMCID: PMC8112043 DOI: 10.1186/s12951-021-00870-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular imaging technology enables us to observe the physiological or pathological processes in living tissue at the molecular level to accurately diagnose diseases at an early stage. Optical imaging can be employed to achieve the dynamic monitoring of tissue and pathological processes and has promising applications in biomedicine. The traditional first near-infrared (NIR-I) window (NIR-I, range from 700 to 900 nm) imaging technique has been available for more than two decades and has been extensively utilized in clinical diagnosis, treatment and scientific research. Compared with NIR-I, the second NIR window optical imaging (NIR-II, range from 1000 to 1700 nm) technology has low autofluorescence, a high signal-to-noise ratio, a high tissue penetration depth and a large Stokes shift. Recently, this technology has attracted significant attention and has also become a heavily researched topic in biomedicine. In this study, the optical characteristics of different fluorescence nanoprobes and the latest reports regarding the application of NIR-II nanoprobes in different biological tissues will be described. Furthermore, the existing problems and future application perspectives of NIR-II optical imaging probes will also be discussed.![]()
Collapse
Affiliation(s)
- Nan-Nan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Chen-Ying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
123
|
Hettie KS. Targeting Contrast Agents With Peak Near-Infrared-II (NIR-II) Fluorescence Emission for Non-invasive Real-Time Direct Visualization of Thrombosis. Front Mol Biosci 2021; 8:670251. [PMID: 34026844 PMCID: PMC8138325 DOI: 10.3389/fmolb.2021.670251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Thrombosis within the vasculature arises when pathological factors compromise normal hemostasis. On doing so, arterial thrombosis (AT) and venous thrombosis (VT) can lead to life-threatening cardio-cerebrovascular complications. Unfortunately, the therapeutic window following the onset of AT and VT is insufficient for effective treatment. As such, acute AT is the leading cause of heart attacks and constitutes ∼80% of stroke incidences, while acute VT can lead to fatal therapy complications. Early lesion detection, their accurate identification, and the subsequent appropriate treatment of thrombi can reduce the risk of thrombosis as well as its sequelae. As the success rate of therapy of fresh thrombi is higher than that of old thrombi, detection of the former and accurate identification of lesions as thrombi are of paramount importance. Magnetic resonance imaging, x-ray computed tomography (CT), and ultrasound (US) are the conventional non-invasive imaging modalities used for the detection and identification of AT and VT, but these modalities have the drawback of providing only image-delayed indirect visualization of only late stages of thrombi development. To overcome such limitations, near-infrared (NIR, ca. 700-1,700 nm) fluorescence (NIRF) imaging has been implemented due to its capability of providing non-invasive real-time direct visualization of biological structures and processes. Contrast agents designed for providing real-time direct or indirect visualization of thrombi using NIRF imaging primarily provide peak NIR-I fluorescence emission (ca. 700-1,000 nm), which affords limited tissue penetration depth and suboptimal spatiotemporal resolution. To facilitate the enhancement of the visualization of thrombosis via providing detection of smaller, fresh, and/or deep-seated thrombi in real time, the development of contrast agents with peak NIR-II fluorescence emission (ca. 1000-1,700 nm) has been recently underway. Currently, however, most contrast agents that provide peak NIR-II fluorescence emissions that are purportedly capable of providing direct visualization of thrombi or their resultant occlusions actually afford only the indirect visualization of such because they only provide for the (i) measuring of the surrounding vascular blood flow and/or (ii) simple tracing of the vasculature. These contrast agents do not target thrombi or occlusions. As such, this mini review summarizes the extremely limited number of targeting contrast agents with peak NIR-II fluorescence emission developed for non-invasive real-time direct visualization of thrombosis that have been recently reported.
Collapse
Affiliation(s)
- Kenneth S. Hettie
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
124
|
Sun B, Hettie KS, Zhu S. Near-infrared Fluorophores for Thrombosis Diagnosis and Therapy. ADVANCED THERAPEUTICS 2021; 4:2000278. [PMID: 33997270 PMCID: PMC8115206 DOI: 10.1002/adtp.202000278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/23/2022]
Abstract
Thrombosis is an adverse physiological event wherein the resulting thrombus and thrombus-induced diseases collectively result in high morbidity and mortality rates. Currently, nano-medicines that incorporate fluorophores emitting in the near-infrared-I (NIR-I, 700-900 nm) spectral region into their systems have been adopted to afford thrombosis theranostics. However, several unsolved problems such as limited penetration depth and image quality severely impede further applications of such nano-medicine systems. Fortunately, the ability to incorporate fluorophores emitting in the NIR-II (1000-1700 nm) window into nano-medicine systems can unambiguously identify biological processes with high signal-to-noise, deep tissue penetration depth, and high image resolution. Considering the inherently favorable properties of NIR-II fluorophores, we believe such have enormous potential to quickly become incorporated into nano-medicine systems for thrombosis theranostics. In this review, we i) discuss the development of NIR fluorescence as an imaging modality and fluorescent agents; ii) comprehensively summarize the recent development of NIR-I fluorophore-based nano-medicine systems for thrombosis theranostics; iii) highlight the state-of-the-art NIR-II fluorophores that have been designed for the specific purpose of affording thrombotic diagnosis; iv) speculate on possible forward avenues for the use of NIR-II fluorophores towards thrombosis diagnosis and therapy; and v) discuss the potential for their clinical translation.
Collapse
Affiliation(s)
- Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
125
|
J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. Nat Commun 2021; 12:2376. [PMID: 33888714 PMCID: PMC8062432 DOI: 10.1038/s41467-021-22686-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
J-aggregation is an efficient strategy for the development of fluorescent imaging agents in the second near-infrared window. However, the design of the second near-infrared fluorescent J-aggregates is challenging due to the lack of suitable J-aggregation dyes. Herein, we report meso-[2.2]paracyclophanyl-3,5-bis-N,N-dimethylaminostyrl BODIPY (PCP-BDP2) as an example of BODIPY dye with J-aggregation induced the second near-infrared fluorescence. PCP-BDP2 shows an emission maximum at 1010 nm in the J-aggregation state. Mechanism studies reveal that the steric and conjugation effect of the PCP group on the BODIPY play key roles in the J-aggregation behavior and photophysical properties tuning. Notably, PCP-BDP2 J-aggregates can be utilized for lymph node imaging and fluorescence-guided surgery in the nude mouse, which demonstrates their potential clinical application. This study demonstrates BODIPY dye as an alternate J-aggregation platform for developing the second near-infrared imaging agents. J-aggregation has been proved to be an efficient strategy for the development of fluorescent imaging agents in the NIR-II spectral region but the design of appropriate J-aggregates is challenging. Here, the authors demonstrate J-aggregation of a BODIPY dye with NIR-II emission and demonstrate lymph node imaging for fluorescence guided surgery.
Collapse
|
126
|
Chen H, Shou K, Chen S, Qu C, Wang Z, Jiang L, Zhu M, Ding B, Qian K, Ji A, Lou H, Tong L, Hsu A, Wang Y, Felsher DW, Hu Z, Tian J, Cheng Z. Smart Self-Assembly Amphiphilic Cyclopeptide-Dye for Near-Infrared Window-II Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006902. [PMID: 33709533 DOI: 10.1002/adma.202006902] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Development of novel nanomaterials for disease theranostics represents an important direction in chemistry and precision medicine. Fluorescent molecular probes in the second near-infrared window (NIR-II, 1000-1700 nm) show high promise because of their exceptional high detection sensitivity, resolution, and deep imaging depth. Here, a sharp pH-sensitive self-assembling cyclopeptide-dye, SIMM1000, as a smart nanoprobe for NIR-II imaging of diseases in living animals, is reported. This small molecule assembled nanoprobe exhibits smart properties by responding to a sharp decrease of pH in the tumor microenvironment (pH 7.0 to 6.8), aggregating from small nanoprobe (80 nm at pH 7.0) into large nanoparticles (>500 nm at pH 6.8) with ≈20-30 times enhanced fluorescence compared with the non-self-assembled CH-4T. It yields micrometer-scale resolution in blood vessel imaging and high contrast and resolution in bone and tumor imaging in mice. Because of its self-aggregation in acidic tumor microenvironments in situ, SIMM1000 exhibits high tumor accumulation and extremely long tumor retention (>19 days), while being excretable from normal tissues and safe. This smart self-assembling small molecule strategy can shift the paradigm of designing new nanomaterials for molecular imaging and drug development.
Collapse
Affiliation(s)
- Hao Chen
- Center for Molecular Imaging Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangquan Shou
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Si Chen
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Chunrong Qu
- Center for Molecular Imaging Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhiming Wang
- Center for Molecular Imaging Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Jiang
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Mark Zhu
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Bingbing Ding
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Kun Qian
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Aiyan Ji
- Center for Molecular Imaging Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongyue Lou
- Center for Molecular Imaging Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander Hsu
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Yuebing Wang
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| |
Collapse
|
127
|
Gil HM, Price TW, Chelani K, Bouillard JSG, Calaminus SD, Stasiuk GJ. NIR-quantum dots in biomedical imaging and their future. iScience 2021; 24:102189. [PMID: 33718839 PMCID: PMC7921844 DOI: 10.1016/j.isci.2021.102189] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fluorescence imaging has gathered interest over the recent years for its real-time response and high sensitivity. Developing probes for this modality has proven to be a challenge. Quantum dots (QDs) are colloidal nanoparticles that possess unique optical and electronic properties due to quantum confinement effects, whose excellent optical properties make them ideal for fluorescence imaging of biological systems. By selectively controlling the synthetic methodologies it is possible to obtain QDs that emit in the first (650-950 nm) and second (1000-1400 nm) near infra-red (NIR) windows, allowing for superior imaging properties. Despite the excellent optical properties and biocompatibility shown by some NIR QDs, there are still some challenges to overcome to enable there use in clinical applications. In this review, we discuss the latest advances in the application of NIR QDs in preclinical settings, together with the synthetic approaches and material developments that make NIR QDs promising for future biomedical applications.
Collapse
Affiliation(s)
- Hélio M. Gil
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, London, UK
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, HU6 7RX Hull, UK
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, London, UK
| | - Kanik Chelani
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, London, UK
| | | | - Simon D.J. Calaminus
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Cottingham Road, HU6 7RX, Hull, UK
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, London, UK
| |
Collapse
|
128
|
Yang RQ, Lou KL, Wang PY, Gao YY, Zhang YQ, Chen M, Huang WH, Zhang GJ. Surgical Navigation for Malignancies Guided by Near-Infrared-II Fluorescence Imaging. SMALL METHODS 2021; 5:e2001066. [PMID: 34927825 DOI: 10.1002/smtd.202001066] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/30/2020] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) fluorescence imaging is an emerging noninvasive imaging modality, with unique advantages in guiding tumor resection surgery, thanks to its high sensitivity and instantaneity. In the past decade, studies on the conventional NIR window (NIR-I, 750-900 nm) have gradually focused on the second NIR window (NIR-II, 1000-1700 nm). With its reduced light scattering, photon absorption, and auto-fluorescence qualities, NIR-II fluorescence imaging significantly improves penetration depths and signal-to-noise ratios in bio-imaging. Recently, several studies have applied NIR-II imaging to navigating cancer surgery, including localizing cancers, assessing surgical margins, tracing lymph nodes, and mapping important anatomical structures. These studies have exemplified the significant prospects of this new approach. In this review, several NIR-II fluorescence agents and some of the complex applications for guiding cancer surgeries are summarized. Future prospects and the challenges of clinical translation are also discussed.
Collapse
Affiliation(s)
- Rui-Qin Yang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Kang-Liang Lou
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Pei-Yuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350000, China
| | - Yi-Yang Gao
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Yong-Qu Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Min Chen
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Wen-He Huang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Guo-Jun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
129
|
Cheng X, Cheng K. Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer Metastasis Rev 2021; 40:71-88. [PMID: 33156478 PMCID: PMC7897269 DOI: 10.1007/s10555-020-09942-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Metastasis is a multistep process that accounts for the majority of cancer-related death. By the end of metastasize dissemination, circulating tumor cells (CTC) need to extravasate the blood vessels at metastatic sites to form new colonization. Although cancer cell extravasation is a crucial step in cancer metastasis, it has not been successfully targeted by current anti-metastasis strategies due to the lack of a thorough understanding of the molecular mechanisms that regulate this process. This review focuses on recent progress in cancer extravasation visualization techniques, including the development of both in vitro and in vivo cancer extravasation models, that shed light on the underlying mechanisms. Specifically, multiple cancer extravasation stages, such as the adhesion to the endothelium and transendothelial migration, are successfully probed using these technologies. Moreover, the roles of different cell adhesive molecules, chemokines, and growth factors, as well as the mechanical factors in these stages are well illustrated. Deeper understandings of cancer extravasation mechanisms offer us new opportunities to escalate the discovery of anti-extravasation drugs and therapies and improve the prognosis of cancer patients.
Collapse
Affiliation(s)
- Xiao Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
130
|
Zheng Z, Jia Z, Qu C, Dai R, Qin Y, Rong S, Liu Y, Cheng Z, Zhang R. Biodegradable Silica-Based Nanotheranostics for Precise MRI/NIR-II Fluorescence Imaging and Self-Reinforcing Antitumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006508. [PMID: 33569918 DOI: 10.1002/smll.202006508] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Multi-modality cancer diagnosis techniques based on the second near-infrared window fluorescence (NIR-II FL, 1000-1700 nm) imaging have become the focus of research attention. For such multimodality probes, how to take advantage of the tumor microenvironments (TME) characteristics to better image diseases and combine efficient therapeutics to achieve theranostics is still a big challenge. Herein, a novel TME-activated nanosystem (FMSN-MnO2 -BCQ) employing degradable silica-based nanoplatform is designed, adjusting the ratio of intratumoral hydrogen peroxide (H2 O2 )/glutathione (GSH) for magnetic resonance imaging (MRI)/NIR-II FL imaging and self-reinforcing chemodynamic therapy (CDT). Innovative bovine serum albumin (BSA)-modified fusiform-like mesoporous silica nanoparticles (FMSN) is fabricated as a carrier for NIR-II small molecule (CQ4T) and MRI reporter MnO2 . Remarkably, the BSA modification helped to achieve the dual-functions of high biocompatibility and enhance NIR-II fluorescence. The FMSN-MnO2 -BCQ with FMSN framework featuring a stepwise degradability in tumor interior released MnO2 and BCQ nanoparticles. Through the specific degradation of MnO2 by the TME, the produced Mn2+ ions are effectively exerted Fenton-like activity to generate hydroxyl radical (•OH) from endogenous H2 O2 to eradicate tumor cells. More importantly, the GSH depletion due to the synergistic effect of tetrasulfide bond and MnO2 in turn induced the oxidative cytotoxicity for self-reinforcing CDT.
Collapse
Affiliation(s)
- Ziliang Zheng
- Center for Translational Medicine Research, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhuo Jia
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Chunrong Qu
- Molecular Imaging Program at Stanford (MIPS) Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Rong Dai
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yufei Qin
- Center for Translational Medicine Research, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Rong
- Center for Translational Medicine Research, Shanxi Medical University, Taiyuan, 030001, China
| | - Yulong Liu
- Department of Radiology, third hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS) Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA
| | - Ruiping Zhang
- Department of Radiology, third hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| |
Collapse
|
131
|
Deng Z, Bi S, Jiang M, Zeng S. Endogenous H 2S-Activated Orthogonal Second Near-Infrared Emissive Nanoprobe for In Situ Ratiometric Fluorescence Imaging of Metformin-Induced Liver Injury. ACS NANO 2021; 15:3201-3211. [PMID: 33481569 DOI: 10.1021/acsnano.0c09799] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Metformin as a hypoglycemic drug for antidiabetic treatment has emerged as a multipotential drug for many disease treatments such as cognitive disorders, cancers, promoting weight loss. However, overdose uptake may upregulate the hepatic H2S level, subsequently leading to serious liver injury and toxicity. Therefore, developing intelligent second near-infrared (NIR-II) emitting nanoprobes by using endogenous H2S as a smart trigger for noninvasive highly specific in situ monitoring of the metformin-induced hepatotoxicity is highly desirable, which is rarely explored. Herein, an endogenous H2S activated orthogonal NIR-II emitting myrica rubra-like nanoprobe based on NaYF4:Gd/Yb/Er@NaYF4:Yb@SiO2 coated with Ag nanodots was explored for highly specific in vivo ratiometrically monitoring of hepatotoxicity. The designed nanoprobes were mainly uptaken by the liver and subsequently converted to NaYF4:Gd/Yb/Er@NaYF4:Yb@SiO2@Ag2S via in situ sulfuration reaction triggered by the overexpressed endogenous H2S in the injured liver tissues, finally leading to a turn-on orthogonal emission centered at 1053 nm (irradiation by 808 nm laser) and 1525 nm (irradiation by 980 nm laser). The designed nanoprobe presents a high detection limit down to 0.7 nM of H2S. More importantly, the in situ highly specific ratiometric imaging of the metformin-induced hepatotoxicity was successfully achieved by using the activatable orthogonal NIR-II emitting probe. Our results provide an NIR-II ratiometric fluorescence imaging strategy for highly sensitive/specific diagnosis of hepatotoxicity levels induced by metformin.
Collapse
Affiliation(s)
- Zhiming Deng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, P.R. China
| | - Shenghui Bi
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, P.R. China
| | - Mingyang Jiang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, P.R. China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, P.R. China
| |
Collapse
|
132
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
133
|
Lei Z, Zhang F. Molecular Engineering of NIR‐II Fluorophores for Improved Biomedical Detection. Angew Chem Int Ed Engl 2021; 60:16294-16308. [DOI: 10.1002/anie.202007040] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Zuhai Lei
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and iChEM Fudan University Shanghai 200433 P. R. China
- School of Pharmacy Fudan University Shanghai 200433 P. R. China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and iChEM Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
134
|
Lei Z, Zhang F. Molecular Engineering of NIR‐II Fluorophores for Improved Biomedical Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007040] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zuhai Lei
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and iChEM Fudan University Shanghai 200433 P. R. China
- School of Pharmacy Fudan University Shanghai 200433 P. R. China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and iChEM Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
135
|
Li T, Liu L, Xu P, Yuan P, Tian Y, Cheng Q, Yan L. Multifunctional Nanotheranostic Agent for NIR‐II Imaging‐Guided Synergetic Photothermal/Photodynamic Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Le Liu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Pengping Xu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Youliang Tian
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Quan Cheng
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
136
|
Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, Lu L, Zhao M, Zhang H, Zhang F. Bright and Stable NIR‐II J‐Aggregated AIE Dibodipy‐Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angew Chem Int Ed Engl 2020; 60:3967-3973. [DOI: 10.1002/anie.202012427] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Qisong Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Yong Fan
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Haisheng He
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Xuan Liu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Lingfei Lu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| |
Collapse
|
137
|
Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, Lu L, Zhao M, Zhang H, Zhang F. Bright and Stable NIR‐II J‐Aggregated AIE Dibodipy‐Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012427] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qisong Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Yong Fan
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Haisheng He
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Xuan Liu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Lingfei Lu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| |
Collapse
|
138
|
Jarockyte G, Karabanovas V, Rotomskis R, Mobasheri A. Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6890. [PMID: 33276535 PMCID: PMC7729484 DOI: 10.3390/s20236890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
The ever-growing demand for fast, cheap, and reliable diagnostic tools for personalised medicine is encouraging scientists to improve existing technology platforms and to create new methods for the detection and quantification of biomarkers of clinical significance. Simultaneous detection of multiple analytes allows more accurate assessment of changes in biomarker expression and offers the possibility of disease diagnosis at the earliest stages. The concept of multiplexing, where multiple analytes can be detected in a single sample, can be tackled using several types of nanomaterial-based biosensors. Quantum dots are widely used photoluminescent nanoparticles and represent one of the most frequent choices for different multiplex systems. However, nanoparticles that incorporate gold, silver, and rare earth metals with their unique optical properties are an emerging perspective in the multiplexing field. In this review, we summarise progress in various nanoparticle applications for multiplexed biomarkers.
Collapse
Affiliation(s)
- Greta Jarockyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Vitalijus Karabanovas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
139
|
Hua C, Huang B, Jiang Y, Zhu S, Cui R. Near-infrared-IIb probe affords ultrahigh contrast inflammation imaging. RSC Adv 2020; 10:33602-33607. [PMID: 35515075 PMCID: PMC9056738 DOI: 10.1039/d0ra06249a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/06/2020] [Indexed: 01/02/2023] Open
Abstract
Deep tissue imaging in the near-infrared II (NIR-II) window with significantly reduced tissue autofluorescence and scattering provides an important modality to visualize various biological events. Current commercially used contrast agents in the near-infrared spectrum suffer from severe photobleaching, high tissue scattering, and background signals, hampering high-quality in vivo bioimaging, particularly in small animals. Here, we applied a NIR-IIb quantum dot (QD) probe with greatly suppressed photon scattering and zero autofluorescence to map inflammatory processes. Two-layer surface modification by a combination of amphiphilic polymer and mixed linear and multi-armed polyethylene glycol chains prolonged probe circulation in vivo and improved its accumulation in the inflammation sites. Compared to indocyanine green, a widely applied dye in the clinic, our QD probe showed greater photostability and capacity for deeper tissue imaging with superior contrast. The longer circulation of QDs also improved vessel imaging, which is vital for better understanding of biological mechanisms of the inflammation microenvironment. Our proposed NIR-IIb in vivo imaging modality proved effective for the visualization of inflammation in small animals, and its use may be extended in future to studies of immunity and cancer.
Collapse
Affiliation(s)
- Cong Hua
- Department of Surgical Neuro-oncology, The First Hospital of Jilin University Changchun 130061 PR China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430070 PR China
| | - Yingying Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University Changchun 130061 PR China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430070 PR China
| |
Collapse
|
140
|
Tian R, Ke C, Rao L, Lau J, Chen X. Multimodal stratified imaging of nanovaccines in lymph nodes for improving cancer immunotherapy. Adv Drug Deliv Rev 2020; 161-162:145-160. [PMID: 32827558 DOI: 10.1016/j.addr.2020.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
Vaccines hold enormous potential in cancer immunotherapy by stimulating the body's immune response; unfortunately, the clinical response rates of cancer vaccines are less than 30%. Nanovaccines show the potential to enhance the treatment efficacy of conventional vaccines due to their unique properties, such as efficient co-delivery of cocktail to the secondary lymphatic system, high tumor accumulation and penetration, and customizable delivery of antigens and adjuvants. Meanwhile, the non-invasive visualization of vaccines after their delivery can yield information about in vivo distribution and performance, and aid in their subsequent optimization and translational studies. In this review, we summarize the strategies for the spatiotemporal visualization of nanovaccines in lymph nodes, including whole-body in vivo imaging, intravital organ/cell imaging, and ex vivo tissue/cell imaging. The application of imaging modalities in nanovaccine development is discussed. Moreover, strategies to achieve different combinations of imaging modalities are proposed.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Chaomin Ke
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
141
|
Santos HDA, Zabala Gutiérrez I, Shen Y, Lifante J, Ximendes E, Laurenti M, Méndez-González D, Melle S, Calderón OG, López Cabarcos E, Fernández N, Chaves-Coira I, Lucena-Agell D, Monge L, Mackenzie MD, Marqués-Hueso J, Jones CMS, Jacinto C, Del Rosal B, Kar AK, Rubio-Retama J, Jaque D. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat Commun 2020; 11:2933. [PMID: 32523065 PMCID: PMC7286912 DOI: 10.1038/s41467-020-16333-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag2S superdots) derived from chemically synthesized Ag2S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag2S superdots enable deep-tissue in vivo imaging at low excitation intensities (<10 mW cm−2) and doses (<0.5 mg kg−1), emerging as unrivaled contrast agents for NIR-II preclinical bioimaging. These results establish an approach for developing superbright NIR-II contrast agents based on the synergy between chemical synthesis and ultrafast laser processing. Deep tissue imaging has been limited by the low brightness of probes emitting in the second near-infrared window. Here, the authors use femtosecond laser irradiation to grow a protective shell on Ag2S nanoparticles, achieving 80-fold quantum yield enhancement and imaging with low excitation intensities.
Collapse
Affiliation(s)
- Harrisson D A Santos
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Group of Nano-Photonics and Imaging, Instituto de Física, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| | - Irene Zabala Gutiérrez
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Yingli Shen
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Lifante
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, 28034, Madrid, Spain.,Fluorescence Imaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Erving Ximendes
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, 28034, Madrid, Spain
| | - Marco Laurenti
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid, 28040, Spain.,Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, 28034, Madrid, Spain
| | - Diego Méndez-González
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Sonia Melle
- Department of Optics, Complutense University of Madrid, 28037, Madrid, Spain
| | - Oscar G Calderón
- Department of Optics, Complutense University of Madrid, 28037, Madrid, Spain
| | - Enrique López Cabarcos
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Nuria Fernández
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, 28034, Madrid, Spain.,Fluorescence Imaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Irene Chaves-Coira
- Departament of Anatomy, Histology and Neuroscience, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Daniel Lucena-Agell
- Chemical and Physical Biology, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas CIB-CSIC, Madrid, 28040, Spain
| | - Luis Monge
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, 28034, Madrid, Spain.,Fluorescence Imaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Mark D Mackenzie
- Institute of Photonics and Quantum Sciences (IPaQS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - José Marqués-Hueso
- Institute of Sensors, Signals and Systems (ISSS), School of Engineering & Physical Sciences (EPS), Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Callum M S Jones
- Institute of Sensors, Signals and Systems (ISSS), School of Engineering & Physical Sciences (EPS), Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Carlos Jacinto
- Group of Nano-Photonics and Imaging, Instituto de Física, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| | - Blanca Del Rosal
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Mail H74 PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Ajoy K Kar
- Institute of Photonics and Quantum Sciences (IPaQS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Jorge Rubio-Retama
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid, 28040, Spain. .,Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, 28034, Madrid, Spain.
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, 28034, Madrid, Spain.
| |
Collapse
|