101
|
Xu G, Yang G, Wang Y, Shao P, Yau JNN, Liu B, Zhao Y, Sun Y, Xie X, Wang S, Zhang Y, Xia L, Zhao Y. Stereoconvergent, Redox‐Neutral Access to Tetrahydroquinoxalines through Relay Epoxide Opening/Amination of Alcohols. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906199] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guangda Xu
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Guoqiang Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yue Wang
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Pan‐Lin Shao
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jia Ning Nicolette Yau
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Bing Liu
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Yunbo Zhao
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Ye Sun
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Xinxin Xie
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Shuo Wang
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Yao Zhang
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Lixin Xia
- College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
102
|
Cabrera JM, Krische MJ. Total Synthesis of Clavosolide A via Asymmetric Alcohol-Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction. Angew Chem Int Ed Engl 2019; 58:10718-10722. [PMID: 31166641 PMCID: PMC6656614 DOI: 10.1002/anie.201906259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 11/07/2022]
Abstract
The 20-membered marine macrodiolide clavosolide A is prepared in 7 steps (LLS) in the absence of protecting groups or chiral auxiliaries via enantioselective alcohol-mediated carbonyl addition. In 9 prior total syntheses, 11-34 steps (LLS) were required.
Collapse
Affiliation(s)
- James M. Cabrera
- University of Texas at Austin, Department of Chemistry 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
103
|
Cabrera JM, Krische MJ. Total Synthesis of Clavosolide A via Asymmetric Alcohol‐Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- James M. Cabrera
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
104
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Cole C. Meyer
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
105
|
Liu H, Lin S, Jacobsen KM, Poulsen TB. Chemische Synthesen und chemische Biologie von Carboxylpolyether‐Ionophoren: Aktuelle Entwicklungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Han Liu
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Dänemark
| | - Shaoquan Lin
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Dänemark
| | - Kristian M. Jacobsen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Dänemark
| | - Thomas B. Poulsen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Dänemark
| |
Collapse
|
106
|
Liu H, Lin S, Jacobsen KM, Poulsen TB. Chemical Syntheses and Chemical Biology of Carboxyl Polyether Ionophores: Recent Highlights. Angew Chem Int Ed Engl 2019; 58:13630-13642. [PMID: 30793459 DOI: 10.1002/anie.201812982] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 12/21/2022]
Abstract
A central goal of chemical biology is to develop molecular probes that enable fundamental studies of cellular systems. In the hierarchy of bioactive molecules, the so-called ionophore class occupies an unflattering position in the lower branches, with typical labels being "non-specific" and "toxic". In fact, the mere possibility that a candidate molecule possesses "ionophore activity" typically prompts its removal from further studies; ionophores-from a chemical genetics perspective-are molecular outlaws. In stark contrast to this overall poor reputation of ionophores, synthetic chemistry owes some of its most amazing achievements to studies of ionophore natural products, in particular the carboxyl polyethers renowned for their intricate molecular structures. These compounds have for decades been academic battlegrounds where new synthetic methodology is tested and retrosynthetic tactics perfected. Herein, we review the most exciting recent advances in carboxyl polyether ionophore (CPI) synthesis and in addition discuss the burgeoning field of CPI chemical biology.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Shaoquan Lin
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kristian M Jacobsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
107
|
Marcum JS, Cervarich TN, Manan RS, Roberts CC, Meek SJ. (CDC)–Rhodium-Catalyzed Hydroallylation of Vinylarenes and 1,3-Dienes with AllylTrifluoroborates. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Justin S. Marcum
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Tia N. Cervarich
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Rajith S. Manan
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Courtney C. Roberts
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Simon J. Meek
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
108
|
Kim SW, Schempp TT, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed N-Allylation of Indoles and Related Azoles with Racemic Branched Alkyl-Substituted Allylic Acetates. Angew Chem Int Ed Engl 2019; 58:7762-7766. [PMID: 30964961 DOI: 10.1002/anie.201902799] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 12/16/2022]
Abstract
Cyclometallated π-allyliridium C,O-benzoates modified with (S)-tol-BINAP, which are stable to air, water, and SiO2 , catalyze highly enantioselective N-allylations of indoles and related azoles. This reaction complements previously reported metal-catalyzed indole allylations in that complete levels of N versus C3 and branched versus linear regioselectivity are observed.
Collapse
Affiliation(s)
- Seung Wook Kim
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Tabitha T Schempp
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Jason R Zbieg
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Craig E Stivala
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| |
Collapse
|
109
|
Kim SW, Schempp TT, Zbieg JR, Stivala CE, Krische MJ. Regio‐ and Enantioselective Iridium‐Catalyzed N‐Allylation of Indoles and Related Azoles with Racemic Branched Alkyl‐Substituted Allylic Acetates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Seung Wook Kim
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Tabitha T. Schempp
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Jason R. Zbieg
- Discovery ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Craig E. Stivala
- Discovery ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Michael J. Krische
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
110
|
Fu B, Yuan X, Li Y, Wang Y, Zhang Q, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Reductive Allylation of Ketones with 1,3-Dienes. Org Lett 2019; 21:3576-3580. [DOI: 10.1021/acs.orglett.9b00979] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
111
|
Li J, Preinfalk A, Maulide N. Eine flexible Kupplung von Aldehyden und Alkenen ermöglicht die diastereo‐ und enantioselektive Herstellung von Stereotriaden. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Li
- Universität WienInstitut für Organische Chemie Währinger Straße 38 1090 Wien Österreich
| | - Alexander Preinfalk
- Universität WienInstitut für Organische Chemie Währinger Straße 38 1090 Wien Österreich
| | - Nuno Maulide
- Universität WienInstitut für Organische Chemie Währinger Straße 38 1090 Wien Österreich
| |
Collapse
|
112
|
Li J, Preinfalk A, Maulide N. Diastereo- and Enantioselective Access to Stereotriads through a Flexible Coupling of Substituted Aldehydes and Alkenes. Angew Chem Int Ed Engl 2019; 58:5887-5890. [PMID: 30919530 PMCID: PMC6492014 DOI: 10.1002/anie.201900801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 12/31/2022]
Abstract
A flexible redox-neutral coupling of aldehydes and alkenes enables rapid access to stereotriads starting from a single stereocenter with perfect levels of enantio- and diastereoselectivity under mild conditions. The versatility of the method is highlighted by the installation of heteroatoms along the tether, which enables a route to structurally diverse building blocks. The formal synthesis of (+)-neopeltolide further demonstrates the synthetic utility of this approach.
Collapse
Affiliation(s)
- Jing Li
- University of ViennaInstitute of Organic ChemistryWähringer Strasse 381090ViennaAustria
| | - Alexander Preinfalk
- University of ViennaInstitute of Organic ChemistryWähringer Strasse 381090ViennaAustria
| | - Nuno Maulide
- University of ViennaInstitute of Organic ChemistryWähringer Strasse 381090ViennaAustria
| |
Collapse
|
113
|
Swyka RA, Shuler WG, Spinello BJ, Zhang W, Lan C, Krische MJ. Conversion of Aldehydes to Branched or Linear Ketones via Regiodivergent Rhodium-Catalyzed Vinyl Bromide Reductive Coupling-Redox Isomerization Mediated by Formate. J Am Chem Soc 2019; 141:6864-6868. [PMID: 30998328 DOI: 10.1021/jacs.9b03113] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A regiodivergent catalytic method for direct conversion of aldehydes to branched or linear alkyl ketones is described. Rhodium complexes modified by P tBu2Me catalyze formate-mediated aldehyde-vinyl bromide reductive coupling-redox isomerization to form branched ketones. Use of the less strongly coordinating ligand, PPh3, promotes vinyl- to allylrhodium isomerization en route to linear ketones. This method bypasses the 3-step sequence often used to convert aldehydes to ketones involving the addition of pre-metalated reagents to Weinreb or morpholine amides.
Collapse
Affiliation(s)
- Robert A Swyka
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - William G Shuler
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Brian J Spinello
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Wandi Zhang
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Chunling Lan
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
114
|
Verheyen T, van Turnhout L, Vandavasi JK, Isbrandt ES, De Borggraeve WM, Newman SG. Ketone Synthesis by a Nickel-Catalyzed Dehydrogenative Cross-Coupling of Primary Alcohols. J Am Chem Soc 2019; 141:6869-6874. [DOI: 10.1021/jacs.9b03280] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thomas Verheyen
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario Canada, K1N 6N5
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Lars van Turnhout
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario Canada, K1N 6N5
| | - Jaya Kishore Vandavasi
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario Canada, K1N 6N5
| | - Eric S. Isbrandt
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario Canada, K1N 6N5
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario Canada, K1N 6N5
| |
Collapse
|
115
|
Tauber J, Schwartz LA, Krische MJ. Catalytic Enantioselective Synthesis of Chiral Organofluorine Compounds: Alcohol-Mediated Hydrogen Transfer for Catalytic Carbonyl Reductive Coupling. Org Process Res Dev 2019; 23:730-736. [PMID: 32982140 DOI: 10.1021/acs.oprd.9b00035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcohol-mediated carbonyl addition has enabled catalytic enantioselective syntheses of diverse fluorine-containing compounds without the need for stoichiometric metals or discrete redox manipulations. Reactions of this type may be separated into two broad categories: redox-neutral hydrogen auto-transfer reactions wherein lower alcohols and n-unsaturated pronucleophiles are converted to higher alcohols and corresponding 2-propanol mediated carbonyl reductive couplings.
Collapse
Affiliation(s)
- Johannes Tauber
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Leyah A Schwartz
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
116
|
Zhang T, Li T, Wu X, Li J. Theoretical Study of Ruthenium(0)-Catalyzed Transfer Hydrogenative Cycloaddition of Cyclohexadiene and Norbornadiene with 1,2-Diols to Form Bridged Carbocycles. J Org Chem 2019; 84:3377-3387. [PMID: 30775919 DOI: 10.1021/acs.joc.8b03276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The recent success of Krische et al. ( Angew. Chem., Int. Ed. 2017 , 56 , 14667 -14671 ) in achieving a ruthenium(0)-catalyzed transfer hydrogenative cycloaddition of 1,2-diols with cyclohexadiene and norbornadiene in excellent yield with exo- and diastereoselectivity represents an exciting development in the synthesis of bridged carbocycles. In the present work, the possible catalytic mechanisms and origin of the exo- and diastereoselectivity for cyclohexadiene and norbornadiene were studied in detail by density functional theory calculations. The theoretical results indicate that the exoselective pathway for the cyclohexadiene substrate proceeds by a novel two-step successive C-C coupling, while the endoselective pathway undergoes the C-C coupling reaction in a conventional concerted manner. The origin of the preferential chemoselectivity of dione-cyclohexadiene C-C coupling over aromatization to benzene was investigated. Aromatization to benzene is unfavorable because of the large distortion energy of the three-membered ring in the transition state of hydrogen migration. From distortion/interaction analysis, for norbornadiene, the distortion energy plays the main role in determining the exoselectivity.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Chemistry , Jinan University , Huangpu Road West 601 , Guangzhou , Guangdong 510632 , P. R. China
| | - Ting Li
- Department of Chemistry , Jinan University , Huangpu Road West 601 , Guangzhou , Guangdong 510632 , P. R. China
| | - Xiajun Wu
- Department of Chemistry , Jinan University , Huangpu Road West 601 , Guangzhou , Guangdong 510632 , P. R. China
| | - Juan Li
- Department of Chemistry , Jinan University , Huangpu Road West 601 , Guangzhou , Guangdong 510632 , P. R. China
| |
Collapse
|
117
|
Luo G, Xiang M, Krische MJ. Successive Nucleophilic and Electrophilic Allylation for the Catalytic Enantioselective Synthesis of 2,4-Disubstituted Pyrrolidines. Org Lett 2019; 21:2493-2497. [PMID: 30816719 DOI: 10.1021/acs.orglett.9b00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Successive nucleophilic and electrophilic allylation mediated by the bis-Boc-carbonate derived from 2-methylene-1,3-propane diol enables formation of enantiomerically enriched 2,4-disubstituted pyrrolidines. An initial enantioselective iridium-catalyzed transfer hydrogenative carbonyl C-allylation is followed by Tsuji-Trost N-allylation using 2-nitrobenzenesulfonamide. Subsequent Mitsunobu cyclization provides the N-protected 2,4-disubstituted pyrrolidines.
Collapse
Affiliation(s)
- Guoshun Luo
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ming Xiang
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
118
|
Thiyagarajan S, Gunanathan C. Catalytic Cross-Coupling of Secondary Alcohols. J Am Chem Soc 2019; 141:3822-3827. [DOI: 10.1021/jacs.9b00025] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Subramanian Thiyagarajan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar-752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar-752050, India
| |
Collapse
|
119
|
Xu G, Fu B, Zhao H, Li Y, Zhang G, Wang Y, Xiong T, Zhang Q. Enantioselective and site-specific copper-catalyzed reductive allyl-allyl cross-coupling of allenes. Chem Sci 2019; 10:1802-1806. [PMID: 30842848 PMCID: PMC6369434 DOI: 10.1039/c8sc04505d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
A copper-catalyzed asymmetric reductive allyl-allyl cross-coupling reaction of allenes with allylic phosphates wherein allenes were used as allylmetal surrogates has been achieved for the first time. This protocol provides an efficient and straightforward route to optically active 1,5-dienes in a highly enantioselective and site-specific fashion. Furthermore, all-carbon quaternary stereogenic centers could also be constructed with this protocol. The versatility of the products is demonstrated through a diverse array of further transformations of the enantioenriched 1,5-dienes.
Collapse
Affiliation(s)
- Guoxing Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Haiyan Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| |
Collapse
|
120
|
Swyka RA, Zhang W, Richardson J, Ruble JC, Krische MJ. Rhodium-Catalyzed Aldehyde Arylation via Formate-Mediated Transfer Hydrogenation: Beyond Metallic Reductants in Grignard/Nozaki-Hiyami-Kishi-Type Addition. J Am Chem Soc 2019; 141:1828-1832. [PMID: 30693768 PMCID: PMC6376962 DOI: 10.1021/jacs.8b13652] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The first intermolecular carbonyl arylations via transfer hydrogenative reductive coupling are described. Using rhodium catalysts modified by tBu2PMe, sodium formate-mediated reductive coupling of aryl iodides with aldehydes occurs in a chemoselective fashion in the presence of protic functional groups and lower halides. This work expands the emerging paradigm of transfer hydrogenative coupling as an alternative to pre-formed carbanions or metallic reductants in C═X addition.
Collapse
Affiliation(s)
- Robert A Swyka
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Wandi Zhang
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jeffery Richardson
- Discovery Chemistry Research and Technologies , Eli Lilly and Company Limited , Erl Wood Manor , Windlesham , Surrey GU20 6PH , United Kingdom
| | - J Craig Ruble
- Discovery Chemistry Research and Technologies , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
121
|
Schwartz LA, Holmes M, Brito GA, Gonçalves TP, Richardson J, Ruble JC, Huang KW, Krische MJ. Cyclometalated Iridium-PhanePhos Complexes Are Active Catalysts in Enantioselective Allene-Fluoral Reductive Coupling and Related Alcohol-Mediated Carbonyl Additions That Form Acyclic Quaternary Carbon Stereocenters. J Am Chem Soc 2019; 141:2087-2096. [PMID: 30681850 PMCID: PMC6423978 DOI: 10.1021/jacs.8b11868] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iridium complexes modified by the chiral phosphine ligand PhanePhos catalyze the 2-propanol-mediated reductive coupling of diverse 1,1-disubstituted allenes 1a-1u with fluoral hydrate 2a to form CF3-substituted secondary alcohols 3a-3u that incorporate acyclic quaternary carbon-containing stereodiads. By exploiting concentration-dependent stereoselectivity effects related to the interconversion of kinetic ( Z)- and thermodynamic ( E)-σ-allyliridium isomers, adducts 3a-3u are formed with complete levels of branched regioselectivity and high levels of anti-diastereo- and enantioselectivity. The utility of this method for construction of CF3-oxetanes and CF3-azetidines is illustrated by the formation of 4a and 6a, respectively. Studies of the reaction mechanism aimed at illuminating the singular effectiveness of PhanePhos as a supporting ligand in this and related transformations have led to the identification of a chromatographically stable cyclometalated iridium-( R)-PhanePhos complex, Ir-PP-I, that is catalytically competent for allene-fluoral reductive coupling and previously reported transfer hydrogenative C-C couplings of dienes or CF3-allenes with methanol. Deuterium labeling studies, reaction progress kinetic analysis (RPKA) and computational studies corroborate a catalytic mechanism involving rapid allene hydrometalation followed by turnover-limiting carbonyl addition. A computationally determined stereochemical model shows that the ortho-CH2 group of the cyclometalated iridium-PhanePhos complex plays a key role in directing diastereo- and enantioselectivity. The collective data provide key insights into the structural-interactional features of allyliridium complexes required to enforce nucleophilic character, which should inform the design of related cyclometalated catalysts for umpoled allylation.
Collapse
Affiliation(s)
- Leyah A Schwartz
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Michael Holmes
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Gilmar A Brito
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Théo P Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jeffery Richardson
- Discovery Chemistry Research and Technologies , Eli Lilly and Company Limited , Erl Wood Manor , Windlesham , Surrey GU20 6PH , United Kingdom
| | - J Craig Ruble
- Discovery Chemistry Research and Technologies , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
122
|
Xiang M, Luo G, Wang Y, Krische MJ. Enantioselective iridium-catalyzed carbonyl isoprenylation via alcohol-mediated hydrogen transfer. Chem Commun (Camb) 2019; 55:981-984. [PMID: 30608076 DOI: 10.1039/c8cc09706b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Highly enantioselective iridium catalyzed carbonyl (2-vinyl)allylation or "isoprenylation" is achieved via hydrogen auto-transfer or 2-propanol-mediated reductive coupling from primary alcohol or aldehyde reactants, respectively. Using this method, asymmetric total syntheses of the terpenoid natural products (+)-ipsenol and (+)-ipsdienol were achieved.
Collapse
Affiliation(s)
- Ming Xiang
- University of Texas at Austin, Department of Chemistry, 105 E 24th St (A5300), Austin, TX 78712-1167, USA.
| | | | | | | |
Collapse
|
123
|
Mastalir M, Glatz M, Pittenauer E, Allmaier G, Kirchner K. Rhenium-Catalyzed Dehydrogenative Coupling of Alcohols and Amines to Afford Nitrogen-Containing Aromatics and More. Org Lett 2019; 21:1116-1120. [DOI: 10.1021/acs.orglett.9b00034] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
124
|
Abstract
In the presence of a chiral iridium complex, commercially available 3-chloro-2-chloromethyl-1-propene (1) was selectively activated for various reductive couplings. Depending on the reaction conditions it allows a selective mono- or bidirectional condensation with one or two external aldehydes with excellent enantiocontrol (>90% ee). This approach occurring simply under mild conditions and avoiding premetalated reagents constructs rapidly chiral homoallylic alcohols, key precursors of important molecular fragments such as furans, pyrans, ketodiols, or 1,3,5-polyols.
Collapse
Affiliation(s)
- Adrien Quintard
- Aix Marseille Univ , CNRS, Centrale Marseille, iSm2 , Marseille 13397 , France
| | - Jean Rodriguez
- Aix Marseille Univ , CNRS, Centrale Marseille, iSm2 , Marseille 13397 , France
| |
Collapse
|
125
|
Li J, Preinfalk A, Maulide N. Enantioselective Redox-Neutral Coupling of Aldehydes and Alkenes by an Iron-Catalyzed "Catch-Release" Tethering Approach. J Am Chem Soc 2019; 141:143-147. [PMID: 30576130 PMCID: PMC6342409 DOI: 10.1021/jacs.8b12242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 12/19/2022]
Abstract
The reductive coupling of aldehydes and alkenes is an emerging technology that holds the potential to reinvent carbonyl addition chemistry. However, existing enantioselective methods are limited to form "branched" products. Herein, we present a directed enantio- and diastereoselective alkylation of aldehydes with simple olefins to selectively yield linear coupling products. This is achieved by redox-neutral remote functionalization, whereby a tethering "catch-release" strategy decisively solves the key problems of reactivity and selectivity.
Collapse
Affiliation(s)
| | | | - Nuno Maulide
- Institute of Organic Chemistry, University
of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
126
|
Ambler BR, Woo SK, Krische MJ. Catalytic Enantioselective Carbonyl Propargylation Beyond Preformed Carbanions: Reductive Coupling and Hydrogen Auto-Transfer. ChemCatChem 2019; 11:324-332. [PMID: 31588251 PMCID: PMC6777576 DOI: 10.1002/cctc.201801121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 12/25/2022]
Abstract
Chiral metal complexes catalyze enantioselective carbonyl propargylation via reductive coupling or as hydrogen auto-transfer processes, in which reactant alcohols serve dually as reductant and carbonyl proelectrophile. Unlike classical propargylation protocols, which rely on allenylmetal reagents or metallic reductants (e.g. NHK reactions), reductive protocols for carbonyl propargylation can occur in the absence of stoichiometric metals, precluding generation of metallic byproducts. Propargylations of this type exploit both enyne and propargyl halide pronucleophiles.
Collapse
Affiliation(s)
- Brett R. Ambler
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Sang Kook Woo
- University of Ulsan, Department of Chemistry, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
127
|
Alig L, Fritz M, Schneider S. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chem Rev 2018; 119:2681-2751. [PMID: 30596420 DOI: 10.1021/acs.chemrev.8b00555] [Citation(s) in RCA: 523] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of 3d metals in de/hydrogenation catalysis has emerged as a competitive field with respect to "traditional" precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal-ligand cooperativity and ligand redox-activity strongly stimulated this development as a conceptual starting point for rational catalyst design. This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios.
Collapse
Affiliation(s)
- Lukas Alig
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Maximilian Fritz
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Sven Schneider
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| |
Collapse
|
128
|
Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem Rev 2018; 119:1855-1969. [PMID: 30582688 DOI: 10.1021/acs.chemrev.8b00506] [Citation(s) in RCA: 483] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the origin and advancements of iridium-catalyzed asymmetric allylic substitution reactions during the past two decades. Since the first report in 1997, Ir-catalyzed asymmetric allylic substitution reactions have attracted intense attention due to their exceptionally high regio- and enantioselectivities. Ir-catalyzed asymmetric allylic substitution reactions have been significantly developed in recent years in many respects, including ligand development, mechanistic understanding, substrate scope, and application in the synthesis of complex functional molecules. In this review, an explicit outline of ligands, mechanism, scope of nucleophiles, and applications is presented.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Hang-Fei Tu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Günter Helmchen
- Organisch-Chemisches Institut der Ruprecht-Karls , Universität Heidelberg , Im Neuenheimer Feld 270 , D-69120 Heidelberg , Germany
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
129
|
Kim SW, Schwartz LA, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed Amination of Racemic Branched Alkyl-Substituted Allylic Acetates with Primary and Secondary Aromatic and Heteroaromatic Amines. J Am Chem Soc 2018; 141:671-676. [PMID: 30571092 DOI: 10.1021/jacs.8b12152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The air- and water-stable π-allyliridium C,O-benzoate modified by ( S)-tol-BINAP, ( S)-Ir-II, catalyzes highly regio- and enantioselective Tsuji-Trost-type aminations of racemic branched alkyl-substituted allylic acetates using primary or secondary (hetero)aromatic amines. Specifically, in the presence of ( S)-Ir-II (5 mol%) in DME solvent at 60-70 °C, α-methyl allyl acetate 1a (100 mol%) reacts with primary (hetero)aromatic amines 2a-2l (200 mol%) or secondary (hetero)aromatic amines 3a-3l (200 mol%) to form the branched products of allylic amination 4a-4l and 5a-5l, respectively, as single regioisomers in good to excellent yield with uniformly high levels of enantioselectivity. As illustrated by the conversion of heteroaromatic amine 3m to adducts 6a-6g, excellent levels of regio- and enantioselectivity are retained across diverse branched allylic acetates bearing normal alkyl or secondary alkyl substituents. For reactants 3n-3p, which incorporate both primary and secondary aryl amine moieties, regio- and enantioselective amination occurs with complete site-selectivity to furnish adducts 7a-7c. Mechanistic studies involving amination of the enantiomerically enriched, deuterium-labeled acetate 1h corroborate C-N bond formation via outer-sphere addition.
Collapse
Affiliation(s)
- Seung Wook Kim
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Leyah A Schwartz
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jason R Zbieg
- Discovery Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Craig E Stivala
- Discovery Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
130
|
Cai Y, Zhang JW, Li F, Liu JM, Shi SL. Nickel/N-Heterocyclic Carbene Complex-Catalyzed Enantioselective Redox-Neutral Coupling of Benzyl Alcohols and Alkynes to Allylic Alcohols. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04198] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuan Cai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Jia-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Feng Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Jia-Ming Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
131
|
Singh K, Kabadwal LM, Bera S, Alanthadka A, Banerjee D. Nickel-Catalyzed Synthesis of N-Substituted Pyrroles Using Diols with Aryl- and Alkylamines. J Org Chem 2018; 83:15406-15414. [DOI: 10.1021/acs.joc.8b02666] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khushboo Singh
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anitha Alanthadka
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
132
|
Trost BM, Bai WJ, Stivala CE, Hohn C, Poock C, Heinrich M, Xu S, Rey J. Enantioselective Synthesis of des-Epoxy-Amphidinolide N. J Am Chem Soc 2018; 140:17316-17326. [DOI: 10.1021/jacs.8b11827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Wen-Ju Bai
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Craig E. Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Christoph Hohn
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Caroline Poock
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Marc Heinrich
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Shiyan Xu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jullien Rey
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
133
|
Moon PJ, Wei Z, Lundgren RJ. Direct Catalytic Enantioselective Benzylation from Aryl Acetic Acids. J Am Chem Soc 2018; 140:17418-17422. [DOI: 10.1021/jacs.8b11390] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Patrick J. Moon
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhongyu Wei
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rylan J. Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
134
|
Kasun ZA, Sato H, Nie J, Mori Y, Bender JA, Roberts ST, Krische MJ. Alternating oligo( o, p-phenylenes) via ruthenium catalyzed diol-diene benzannulation: orthogonality to cross-coupling enables de novo nanographene and PAH construction. Chem Sci 2018; 9:7866-7873. [PMID: 30429996 PMCID: PMC6194800 DOI: 10.1039/c8sc03236j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
Ruthenium(0) catalyzed diol-diene benzannulation is applied to the conversion of oligo(p-phenylene vinylenes) 2a-c, 5 and 6 to alternating oligo(o,p-phenylenes) 10a-c, 11-13. Orthogonality with respect to conventional palladium catalyzed biaryl cross-coupling permits construction of p-bromo-terminated alternating oligo(o,p-phenylenes) 10b, 11-13, which can be engaged in Suzuki cross-coupling and Scholl oxidation. In this way, structurally homogeneous nanographenes 16a-f are prepared. Nanographene 16a, which incorporates 14 fused benzene rings, was characterized by single crystal X-ray diffraction. In a similar fashion, p-bromo-terminated oligo(p-phenylene ethane diol) 9, which contains a 1,3,5-trisubstituted benzene core, is converted to the soluble, structurally homogeneous hexa-peri-hexabenzocoronene 18. A benzothiophene-terminated pentamer 10c was prepared and subjected to Scholl oxidation to furnish the helical bis(benzothiophene)-fused picene derivative 14. The steady-state absorption and emission properties of nanographenes 14, 16a,b,d,e,h and 18 were characterized. These studies illustrate how orthogonality of ruthenium(0) catalyzed diol-diene benzannulation with respect to classical biaryl cross-coupling streamlines oligophenylene and nanographene construction.
Collapse
Affiliation(s)
- Zachary A Kasun
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Hiroki Sato
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Jing Nie
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Yasuyuki Mori
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Jon A Bender
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Sean T Roberts
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| | - Michael J Krische
- University of Texas at Austin , Department of Chemistry , Austin , TX 78712 , USA . ;
| |
Collapse
|
135
|
Chun S, Chung YK. Silver/NBS-Catalyzed Synthesis of α-Alkylated Aryl Ketones from Internal Alkynes and Benzyl Alcohols via Ether Intermediates. Org Lett 2018; 20:5583-5586. [PMID: 30178679 DOI: 10.1021/acs.orglett.8b02252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The silver hexafluoroantimonate/ N-bromosuccinimide (NBS)-catalyzed synthesis of α-alkylated aryl ketones with a tertiary carbon center from internal alkynes and benzyl alcohols is reported. This reaction proceeds via the etherification of benzyl alcohols with an in situ generated benzyl bromide, formed by the reaction of benzyl alcohol with a catalytic amount of NBS and AgSbF6. Ag-catalyzed C-O cleavage of the ether leads to a tolyl radical, which undergoes addition to the alkyne, ultimately leading to the α-alkylated aryl ketone products.
Collapse
Affiliation(s)
- Supill Chun
- Department of Chemistry, College of Natural Sciences , Seoul National University , Seoul 08826 , Korea
| | - Young Keun Chung
- Department of Chemistry, College of Natural Sciences , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
136
|
Akhtar WM, Armstrong RJ, Frost JR, Stevenson NG, Donohoe TJ. Stereoselective Synthesis of Cyclohexanes via an Iridium Catalyzed (5 + 1) Annulation Strategy. J Am Chem Soc 2018; 140:11916-11920. [DOI: 10.1021/jacs.8b07776] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wasim M. Akhtar
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Roly J. Armstrong
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - James R. Frost
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Neil G. Stevenson
- GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, United Kingdom
| | - Timothy J. Donohoe
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
137
|
Liu Y, Merten C, Deska J. Enantioconvergent Biocatalytic Redox Isomerization. Angew Chem Int Ed Engl 2018; 57:12151-12156. [PMID: 29984878 PMCID: PMC6468324 DOI: 10.1002/anie.201804911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Indexed: 11/13/2022]
Abstract
Alcohol dehydrogenases can act as powerful catalysts in the preparation of optically pure γ-hydroxy-δ-lactones by means of an enantioconvergent dynamic redox isomerization of readily available Achmatowicz-type pyranones. Imitating the traditionally metal-mediated "borrowing hydrogen" approach to shuffle hydrides across molecular architectures and interconvert functional groups, this chemoinspired and purely biocatalytic interpretation effectively expands the enzymatic toolbox and provides new opportunities in the assembly of multienzyme cascades and tailor-made cellular factories.
Collapse
Affiliation(s)
- Yu‐Chang Liu
- Department of Chemistry & Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| | - Christian Merten
- Organic Chemistry IIRuhr-UniversitätUniversitätsstrasse 15044780BochumGermany
| | - Jan Deska
- Department of Chemistry & Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| |
Collapse
|
138
|
Lim H, Chohan P, Moustafa D, Sweet C, Calalpa B, Kaur P. New Manganese-Terpyridine-Based Catalytic System for the Dehydrogenative Coupling of Alcohols and Amines for the Synthesis of Aldimines. ChemistrySelect 2018. [DOI: 10.1002/slct.201801325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hyun Lim
- Department of Chemistry; College of Science and Health; 300 Pompton Road, Wayne NJ 07470 United States
| | - Prianka Chohan
- Department of Chemistry; College of Science and Health; 300 Pompton Road, Wayne NJ 07470 United States
| | - Dina Moustafa
- Department of Chemistry; College of Science and Health; 300 Pompton Road, Wayne NJ 07470 United States
| | - Chelsea Sweet
- Department of Chemistry; College of Science and Health; 300 Pompton Road, Wayne NJ 07470 United States
| | - Brenda Calalpa
- Department of Chemistry; College of Science and Health; 300 Pompton Road, Wayne NJ 07470 United States
| | - Parminder Kaur
- Department of Chemistry; College of Science and Health; 300 Pompton Road, Wayne NJ 07470 United States
| |
Collapse
|
139
|
Liu YC, Merten C, Deska J. Enantiokonvergente biokatalytische Redoxisomerisierung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yu-Chang Liu
- Department of Chemistry & Materials Science; Aalto-yliopisto; Kemistintie 1 02150 Espoo Finnland
| | - Christian Merten
- Organic Chemistry II, Ruhr-Universität; Universitätsstraße 150 44780 Bochum Deutschland
| | - Jan Deska
- Department of Chemistry & Materials Science; Aalto-yliopisto; Kemistintie 1 02150 Espoo Finnland
| |
Collapse
|
140
|
Ambler BR, Turnbull BWH, Suravarapu SR, Uteuliyev MM, Huynh NO, Krische MJ. Enantioselective Ruthenium-Catalyzed Benzocyclobutenone-Ketol Cycloaddition: Merging C-C Bond Activation and Transfer Hydrogenative Coupling for Type II Polyketide Construction. J Am Chem Soc 2018; 140:9091-9094. [PMID: 29992811 PMCID: PMC6226000 DOI: 10.1021/jacs.8b05724] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first enantioselective intermolecular metal-catalyzed cycloadditions of benzocyclobutenones via C-C bond oxidative addition are described. In the presence of a ruthenium(0) complex modified by ( R)-DM-SEGPHOS, tetralone-derived ketols and benzocyclobutenones combine to form cycloadducts with complete regio- and diastereoselectivity and high enantioselectivity. Using this method, the "bay region" substructure of the angucycline natural product arenimycin was prepared.
Collapse
Affiliation(s)
- Brett R Ambler
- University of Texas at Austin , Department of Chemistry , Austin , Texas 78712 United States
| | - Ben W H Turnbull
- University of Texas at Austin , Department of Chemistry , Austin , Texas 78712 United States
| | - Sankar Rao Suravarapu
- University of Texas at Austin , Department of Chemistry , Austin , Texas 78712 United States
| | - Maulen M Uteuliyev
- University of Texas at Austin , Department of Chemistry , Austin , Texas 78712 United States
| | - Nancy O Huynh
- University of Texas at Austin , Department of Chemistry , Austin , Texas 78712 United States
| | - Michael J Krische
- University of Texas at Austin , Department of Chemistry , Austin , Texas 78712 United States
| |
Collapse
|
141
|
Abstract
Amines such as 1,2,3,4-tetrahydroisoquinoline undergo redox-neutral annulations with 2-(2-oxoethyl)malonates in the presence of catalytic amounts of benzoic acid. These reactions install a fully saturated five-membered ring and provide access to structures closely related to the natural products crispine A and harmicine.
Collapse
Affiliation(s)
- Zhengbo Zhu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Hemant S. Chandak
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
142
|
Brito GA, Della-Felice F, Luo G, Burns AS, Pilli RA, Rychnovsky SD, Krische MJ. Catalytic Enantioselective Allylations of Acetylenic Aldehydes via 2-Propanol-Mediated Reductive Coupling. Org Lett 2018; 20:4144-4147. [PMID: 29938513 PMCID: PMC6205292 DOI: 10.1021/acs.orglett.8b01776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclometalated π-allyliridium C,O-benzoates modified by ( S)-SEGPHOS or ( S)-Cl,OMe-BIPHEP catalyze enantioselective 2-propanol-mediated reductive couplings of diverse nonmetallic allyl pronucleophiles with the acetylenic aldehyde TIPSC≡CCHO. Absolute stereochemistries of the resulting secondary homoallylic-propargylic alcohols were assigned using Rychnovsky's competing enantioselective conversion method.
Collapse
Affiliation(s)
- Gilmar A Brito
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
- Institute of Chemistry, University of Campinas (UNICAMP) , P.O. Box 6154, CEP, 13083-970 Campinas , São Paulo , Brazil
| | - Franco Della-Felice
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
- Institute of Chemistry, University of Campinas (UNICAMP) , P.O. Box 6154, CEP, 13083-970 Campinas , São Paulo , Brazil
| | - Guoshun Luo
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Alexander S Burns
- Department of Chemistry , University of California at Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Ronaldo A Pilli
- Institute of Chemistry, University of Campinas (UNICAMP) , P.O. Box 6154, CEP, 13083-970 Campinas , São Paulo , Brazil
| | - Scott D Rychnovsky
- Department of Chemistry , University of California at Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
143
|
Harned AM. From determination of enantiopurity to the construction of complex molecules: The Horeau principle and its application in synthesis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
144
|
Holmes M, Schwartz LA, Krische MJ. Intermolecular Metal-Catalyzed Reductive Coupling of Dienes, Allenes, and Enynes with Carbonyl Compounds and Imines. Chem Rev 2018; 118:6026-6052. [PMID: 29897740 DOI: 10.1021/acs.chemrev.8b00213] [Citation(s) in RCA: 416] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal-catalyzed reductive coupling has emerged as an alternative to the use of stoichiometric organometallic reagents in an increasingly diverse range of carbonyl and imine additions. In this review, the use of diene, allene, and enyne pronucleophiles in intermolecular carbonyl and imine reductive couplings are surveyed, along with related hydrogen autotransfer processes.
Collapse
Affiliation(s)
- Michael Holmes
- Department of Chemistry , University of Texas at Austin , Welch Hall A5300, 105 East 24th Street , Austin , Texas 78712 , United States
| | - Leyah A Schwartz
- Department of Chemistry , University of Texas at Austin , Welch Hall A5300, 105 East 24th Street , Austin , Texas 78712 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Welch Hall A5300, 105 East 24th Street , Austin , Texas 78712 , United States
| |
Collapse
|
145
|
Zhou X, Xia J, Zheng G, Kong L, Li X. Divergent Coupling of Anilines and Enones by Integration of C−H Activation and Transfer Hydrogenation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xukai Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jintao Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangfan Zheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lingheng Kong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingwei Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
146
|
Zhou X, Xia J, Zheng G, Kong L, Li X. Divergent Coupling of Anilines and Enones by Integration of C-H Activation and Transfer Hydrogenation. Angew Chem Int Ed Engl 2018; 57:6681-6685. [PMID: 29663592 DOI: 10.1002/anie.201803347] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 11/06/2022]
Abstract
Cp*RhIII /IrIII complexes are known to play important roles in both C-H activation and transfer hydrogenation (TH). However, these two areas evolved separately. They have been integrated in redox- and chemodivergent coupling reactions of N-pyridylanilines with enones. The iridium-catalyzed coupling with enones leads to the efficient synthesis of tetrahydroquinolines through TH from i PrOH. Counterintuitively, i PrOH does not serve as the sole hydride source, and the major reaction pathway involves disproportionation of a dihydroquinoline intermediate, followed by the convergent and iterative reduction of quinolinium species.
Collapse
Affiliation(s)
- Xukai Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jintao Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangfan Zheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lingheng Kong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingwei Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
147
|
Sato H, Turnbull BWH, Fukaya K, Krische MJ. Ruthenium(0)-Catalyzed Cycloaddition of 1,2-Diols, Ketols, or Diones via Alcohol-Mediated Hydrogen Transfer. Angew Chem Int Ed Engl 2018; 57:3012-3021. [PMID: 29068505 PMCID: PMC5842109 DOI: 10.1002/anie.201709916] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Indexed: 02/01/2023]
Abstract
Merging the characteristics of transfer hydrogenation and carbonyl addition, a broad new class of ruthenium(0)-catalyzed cycloadditions has been developed. As discussed in this Minireview, fused or bridged bicyclic ring systems are accessible in a redox-independent manner in C-C bond-forming hydrogen transfer reactions of diols, α-ketols, or 1,2-diones with diverse unsaturated reactants.
Collapse
Affiliation(s)
- Hiroki Sato
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24th St., Austin, TX, 78712, USA
| | - Ben W H Turnbull
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24th St., Austin, TX, 78712, USA
| | - Keisuke Fukaya
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24th St., Austin, TX, 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24th St., Austin, TX, 78712, USA
| |
Collapse
|
148
|
Cao J, Wang G, Gao L, Cheng X, Li S. Organocatalytic reductive coupling of aldehydes with 1,1-diarylethylenes using an in situ generated pyridine-boryl radical. Chem Sci 2018; 9:3664-3671. [PMID: 29780496 PMCID: PMC5933217 DOI: 10.1039/c7sc05225a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/27/2018] [Indexed: 01/23/2023] Open
Abstract
A pyridine-boryl radical promoted reductive coupling reaction of aldehydes with 1,1-diarylethylenes has been established.
A pyridine-boryl radical promoted reductive coupling reaction of aldehydes with 1,1-diarylethylenes has been established via a combination of computational and experimental studies. Density functional theory calculations and control experiments suggest that the ketyl radical from the addition of the pyridine-boryl radical to aldehydes is the key intermediate for this C–C bond formation reaction. This metal-free reductive coupling reaction features a broad substrate scope and good functional compatibility.
Collapse
Affiliation(s)
- Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China . .,School of Chemistry and Chemical Engineering , Yan'an University , Yan'an 716000 , P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences , Jiangsu Key Laboratory of Advanced Organic Material , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| |
Collapse
|
149
|
Sato H, Bender JA, Roberts ST, Krische MJ. Helical Rod-like Phenylene Cages via Ruthenium Catalyzed Diol-Diene Benzannulation: A Cord of Three Strands. J Am Chem Soc 2018; 140:2455-2459. [DOI: 10.1021/jacs.8b00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hiroki Sato
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jon A. Bender
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean T. Roberts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J. Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
150
|
Sato H, Turnbull BWH, Fukaya K, Krische MJ. Ruthenium(0)‐katalysierte Cycloaddition von 1,2‐Diolen, Ketolen oder Dionen durch Alkohol‐vermittelte Wasserstoffübertragung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hiroki Sato
- University of Texas at Austin Department of Chemistry Welch Hall (A5300), 105 E 24th St. Austin TX 78712 USA
| | - Ben W. H. Turnbull
- University of Texas at Austin Department of Chemistry Welch Hall (A5300), 105 E 24th St. Austin TX 78712 USA
| | - Keisuke Fukaya
- University of Texas at Austin Department of Chemistry Welch Hall (A5300), 105 E 24th St. Austin TX 78712 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry Welch Hall (A5300), 105 E 24th St. Austin TX 78712 USA
| |
Collapse
|