101
|
Koelman EMR, Yeste-Vázquez A, Grossmann TN. Targeting the interaction of β-catenin and TCF/LEF transcription factors to inhibit oncogenic Wnt signaling. Bioorg Med Chem 2022; 70:116920. [PMID: 35841828 DOI: 10.1016/j.bmc.2022.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
The Wnt/β-catenin signaling pathway is crucially involved in embryonic development, stem cell maintenance and tissue renewal. Hyperactivation of this pathway is associated with the development and progression of various types of cancers. The transcriptional coactivator β-catenin represents a pivotal component of the pathway and its interaction with transcription factors of the TCF/LEF family is central to pathway activation. Inhibition of this crucial protein-protein interaction via direct targeting of β-catenin is considered a promising strategy for the inactivation of oncogenic Wnt signaling. This review summarizes advances in the development of Wnt antagonists that have been shown to directly bind β-catenin.
Collapse
Affiliation(s)
- Emma M R Koelman
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands; Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands; Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands.
| |
Collapse
|
102
|
Magi Meconi G, Sasselli IR, Bianco V, Onuchic JN, Coluzza I. Key aspects of the past 30 years of protein design. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086601. [PMID: 35704983 DOI: 10.1088/1361-6633/ac78ef] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Proteins are the workhorse of life. They are the building infrastructure of living systems; they are the most efficient molecular machines known, and their enzymatic activity is still unmatched in versatility by any artificial system. Perhaps proteins' most remarkable feature is their modularity. The large amount of information required to specify each protein's function is analogically encoded with an alphabet of just ∼20 letters. The protein folding problem is how to encode all such information in a sequence of 20 letters. In this review, we go through the last 30 years of research to summarize the state of the art and highlight some applications related to fundamental problems of protein evolution.
Collapse
Affiliation(s)
- Giulia Magi Meconi
- Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain
| | - Ivan R Sasselli
- Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain
| | | | - Jose N Onuchic
- Center for Theoretical Biological Physics, Department of Physics & Astronomy, Department of Chemistry, Department of Biosciences, Rice University, Houston, TX 77251, United States of America
| | - Ivan Coluzza
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain
- Basque Foundation for Science, Ikerbasque, 48009, Bilbao, Spain
| |
Collapse
|
103
|
Zhang C, Yang F, Wojdyla JA, Qin B, Zhang W, Zheng M, Cao W, Wang M, Gao X, Zheng H, Cui S. An anti-picornaviral strategy based on the crystal structure of foot-and-mouth disease virus 2C protein. Cell Rep 2022; 40:111030. [PMID: 35793627 DOI: 10.1016/j.celrep.2022.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/05/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022] Open
Abstract
The foot-and-mouth disease virus (FMDV) 2C protein shares conserved motifs with enterovirus 2Cs despite low sequence identity. Here, we determine the crystal structure of an FMDV 2C fragment to 1.83 Å resolution, which comprises an ATPase domain, a region equivalent to the enterovirus 2C zinc-finger (ZFER), and a C-terminal domain harboring a loop (PBL) that occupies a hydrophobic cleft (Pocket) in an adjacent 2C molecule. Mutations at ZFER, PBL, and Pocket affect FMDV 2C ATPase activity and are lethal to FMDV infectious clones. Because the PBL-Pocket interaction between FMDV 2C molecules is essential for its functions, we design an anti-FMDV peptide derived from PBL (PBL-peptide). PBL-peptide inhibits FMDV 2C ATPase activity, binds FMDV 2C with nanomolar affinity, and disrupts FMDV 2C oligomerization. FMDV 2C targets lipid droplets (LDs) and induces LD clustering in cells, and PBL-peptide disrupts FMDV 2C-induced LD clustering. Finally, we demonstrate that PBL-peptide exhibits anti-FMDV activity in cells.
Collapse
Affiliation(s)
- Chu Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Min Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
104
|
Bojko M, Węgrzyn K, Sikorska E, Kocikowski M, Parys M, Battin C, Steinberger P, Kogut MM, Winnicki M, Sieradzan AK, Spodzieja M, Rodziewicz-Motowidło S. Design, synthesis and biological evaluation of PD-1 derived peptides as inhibitors of PD-1/PD-L1 complex formation for cancer therapy. Bioorg Chem 2022; 128:106047. [DOI: 10.1016/j.bioorg.2022.106047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 12/11/2022]
|
105
|
Ma S, Ji J, Tong Y, Zhu Y, Dou J, Zhang X, Xu S, Zhu T, Xu X, You Q, Jiang Z. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharm Sin B 2022; 12:2990-3005. [PMID: 35865099 PMCID: PMC9293674 DOI: 10.1016/j.apsb.2022.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
The proteolysis targeting chimeras (PROTACs) technology has been rapidly developed since its birth in 2001, attracting rapidly growing attention of scientific institutes and pharmaceutical companies. At present, a variety of small molecule PROTACs have entered the clinical trial. However, as small molecule PROTACs flourish, non-small molecule PROTACs (NSM-PROTACs) such as peptide PROTACs, nucleic acid PROTACs and antibody PROTACs have also advanced considerably over recent years, exhibiting the unique characters beyond the small molecule PROTACs. Here, we briefly introduce the types of NSM-PROTACs, describe the advantages of NSM-PROTACs, and summarize the development of NSM-PROTACs so far in detail. We hope this article could not only provide useful insights into NSM-PROTACs, but also expand the research interest of NSM-PROTACs.
Collapse
Affiliation(s)
- Sinan Ma
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jianai Ji
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Junwei Dou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Shicheng Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Tianbao Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
106
|
Mayer G, Shpilt Z, Kowalski H, Tshuva EY, Friedler A. Targeting Protein Interaction Hotspots Using Structured and Disordered Chimeric Peptide Inhibitors. ACS Chem Biol 2022; 17:1811-1823. [PMID: 35758642 DOI: 10.1021/acschembio.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The main challenge in inhibiting protein-protein interactions (PPI) for therapeutic purposes is designing molecules that bind specifically to the interaction hotspots. Adding to the complexity, such hotspots can be within both structured and disordered interaction interfaces. To address this, we present a strategy for inhibiting the structured and disordered hotspots of interactions using chimeric peptides that contain both structured and disordered parts. The chimeric peptides we developed are comprised of a cyclic structured part and a disordered part, which target both disordered and structured hotspots. We demonstrate our approach by developing peptide inhibitors for the interactions of the antiapoptotic iASPP protein. First, we developed a structured, α-helical stapled peptide inhibitor, derived from the N-terminal domain of MDM2. The peptide bound two hotspots on iASPP at the low micromolar range and had a cytotoxic effect on A2780 cancer cells with a half-maximal inhibitory concentration (IC50) value of 10 ± 1 μM. We then developed chimeric peptides comprising the structured stapled helical peptide and the disordered p53-derived LinkTer peptide that we previously showed to inhibit iASPP by targeting its disordered RT loop. The chimeric peptide targeted both structured and disordered domains in iASPP with higher affinity compared to the individual structured and disordered peptides and caused cancer cell death. Our strategy overcomes the inherent difficulty in inhibiting the interactions of proteins that possess structured and disordered regions. It does so by using chimeric peptides derived from different interaction partners that together target a much wider interface covering both the structured and disordered domains. This paves the way for developing such inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Zohar Shpilt
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hadar Kowalski
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
107
|
Mehta D, Singh H, Haridas V, Chaudhuri TK. Molecular Insights into the Inhibition of Dialysis-Related β2m Amyloidosis Orchestrated by a Bispidine Peptidomimetic Analogue. Biochemistry 2022; 61:1473-1484. [PMID: 35749234 DOI: 10.1021/acs.biochem.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dialysis-related amyloidosis (DRA) is considered an inescapable consequence of renal failure. Upon prolonged hemodialysis, it involves accumulation of toxic β2-microglobulin (β2m) amyloids in bones and joints. Current treatment methods are plagued with high cost, low specificity, and low capacity. Through our in vitro and in cellulo studies, we introduce a peptidomimetic-based approach to help develop future therapeutics against DRA. Our study reports the ability of a nontoxic, core-modified, bispidine peptidomimetic analogue "B(LVI)2" to inhibit acid-induced amyloid fibrillation of β2m (Hβ2m). Using thioflavin-T, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transmission electron microscopy analysis, we demonstrate that B(LVI)2 delays aggregation lag time of Hβ2m amyloid fibrillation and reduces the yield of Hβ2m amyloid fibrils in a dose-dependent manner. Our findings suggest a B(LVI)2-orchestrated alteration in the route of Hβ2m amyloid fibrillation resulting in the formation of noncytotoxic, morphologically distinct amyloid-like species. Circular dichroism data show gradual sequestration of Hβ2m species in a soluble nonamyloidogenic noncytotoxic conformation in the presence of B(LVI)2. Dynamic light scattering measurements indicate incompetence of Hβ2m species in the presence of B(LVI)2 to undergo amyloid-competent intermolecular associations. Overall, our study reports the antifibrillation property of a novel peptidomimetic with the potential to bring a paradigm shift in therapeutic approaches against DRA.
Collapse
Affiliation(s)
- Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
108
|
Kell SR, Wang Z, Ji H. Fragment hopping protocol for the design of small-molecule protein-protein interaction inhibitors. Bioorg Med Chem 2022; 69:116879. [PMID: 35749838 DOI: 10.1016/j.bmc.2022.116879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Fragment-based ligand discovery (FBLD) is one of the most successful approaches to designing small-molecule protein-protein interaction (PPI) inhibitors. The incorporation of computational tools to FBLD allows the exploration of chemical space in a time- and cost-efficient manner. Herein, a computational protocol for the development of small-molecule PPI inhibitors using fragment hopping, a fragment-based de novo design approach, is described and a case study is presented to illustrate the efficiency of this protocol. Fragment hopping facilitates the design of PPI inhibitors from scratch solely based on key binding features in the PPI complex structure. This approach is an open system that enables the inclusion of different state-of-the-art programs and softwares to improve its performances.
Collapse
Affiliation(s)
- Shelby R Kell
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
109
|
A novel mRNA decay inhibitor abolishes pathophysiological cellular transition. Cell Death Dis 2022; 8:278. [PMID: 35672286 PMCID: PMC9174231 DOI: 10.1038/s41420-022-01076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
In cells, mRNA synthesis and decay are influenced by each other, and their balance is altered by either external or internal cues, resulting in changes in cell dynamics. We previously reported that it is important that an array of mRNAs that shape a phenotype are degraded before cellular transitions, such as cellular reprogramming and differentiation. In adipogenesis, the interaction between DDX6 and 4E-T had a definitive impact on the pathway in the processing body (PB). We screened a library of α-helix analogs with an alkaloid-like backbone to identify compounds that inhibit the binding between DDX6 and 4E-T proteins, which occurs between the α-helix of structured and internally disordered proteins. IAMC-00192 was identified as a lead compound. This compound directly inhibited the interaction between DDX6 and 4E-T. IAMC-00192 inhibited the temporal increase in PB formation that occurs during adipogenesis and epithelial-mesenchymal transition (EMT) and significantly suppressed these cellular transitions. In the EMT model, the half-life of preexisting mRNAs in PBs was extended twofold by the compound. The novel inhibitor of RNA decay not only represents a potentially useful tool to analyze in detail the pathological conditions affected by RNA decay and how it regulates the pathological state. The identification of this inhibitor may lead to the discovery of a first-in-class RNA decay inhibitor drug. ![]()
Collapse
|
110
|
Abstract
Peptides have traditionally been perceived as poor drug candidates due to unfavorable characteristics mainly regarding their pharmacokinetic behavior, including plasma stability, membrane permeability and circulation half-life. Nonetheless, in recent years, general strategies to tackle those shortcomings have been established, and peptides are subsequently gaining increasing interest as drugs due to their unique ability to combine the advantages of antibodies and small molecules. Macrocyclic peptides are a special focus of drug development efforts due to their ability to address so called ‘undruggable’ targets characterized by large and flat protein surfaces lacking binding pockets. Here, the main strategies developed to date for adapting peptides for clinical use are summarized, which may soon help usher in an age highly shaped by peptide-based therapeutics. Nonetheless, limited membrane permeability is still to overcome before peptide therapeutics will be broadly accepted.
Collapse
|
111
|
Li Petri G, Di Martino S, De Rosa M. Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors. J Med Chem 2022; 65:7438-7475. [PMID: 35604326 DOI: 10.1021/acs.jmedchem.2c00123] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of peptides as therapeutics has often been associated with several drawbacks such as poor absorption, low stability to proteolytic digestion, and fast clearance. Peptidomimetics are developed by modifications of native peptides with the aim of obtaining molecules that are more suitable for clinical development and, for this reason, are widely used as tools in medicinal chemistry programs. The effort to disclose innovative peptidomimetic therapies is recurrent and constantly evolving as demonstrated by the new lead compounds in clinical trials. Synthetic strategies for the development of peptidomimetics have also been implemented with time. This perspective highlights some of the most recent efforts for the design and synthesis of peptidomimetic agents together with their biological evaluation toward a panel of targets.
Collapse
Affiliation(s)
| | | | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|
112
|
Pathak DV, Sagar SR, Bhatt HG, Patel PK. A search for potential anti-HIV phytoconstituents from the natural product repository. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
113
|
Abstract
Being able to effectively target RNA with potent ligands will open up a large number of potential therapeutic options. The knowledge on how to achieve this is ever expanding but an important question that remains open is what chemical matter is suitable to achieve this goal. The high flexibility of an RNA as well as its more limited chemical diversity and featureless binding sites can be difficult to target selectively but can be addressed by well-designed cyclic peptides. In this review we will provide an overview of reported cyclic peptide ligands for therapeutically relevant RNA targets and discuss the methods used to discover them. We will also provide critical insights into the properties required for potent and selective interaction and suggestions on how to assess these parameters. The use of cyclic peptides to target RNA is still in its infancy but the lessons learned from past examples can be adopted for the development of novel potent and selective ligands.
Collapse
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
114
|
Trobe M, Schreiner T, Vareka M, Grimm S, Wölfl B, Breinbauer R. A Modular Synthesis of Teraryl-Based α-Helix Mimetics, Part 5: A Complete Set of Pyridine Boronic Acid Pinacol Esters Featuring Side Chains of Proteinogenic Amino Acids. European J Org Chem 2022; 2022:e202101280. [PMID: 35910461 PMCID: PMC9304165 DOI: 10.1002/ejoc.202101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Indexed: 11/30/2022]
Abstract
Teraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics using pyridine containing boronic acid building blocks to increase the water solubility. Following our initial publication in which we have introduced the methodology in combination with sequential Pd-catalyzed cross-coupling for teraryl assembly, we can now report a complete set of pyridine based boronic acid building blocks decorated with side chains of all proteinogenic amino acids relevant for PPI (Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, Val) to complement the core fragment set. For a representative set of teraryls we have studied the influence of the pyridine rings on the solubility of the assembled oligoarenes.
Collapse
Affiliation(s)
- Melanie Trobe
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Till Schreiner
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Martin Vareka
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Sebastian Grimm
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Bernhard Wölfl
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| |
Collapse
|
115
|
Trobe M, Vareka M, Schreiner T, Dobrounig P, Doler C, Holzinger EB, Steinegger A, Breinbauer R. A Modular Synthesis of Teraryl-Based α-Helix Mimetics, Part 3: Iodophenyltriflate Core Fragments Featuring Side Chains of Proteinogenic Amino Acids. European J Org Chem 2022; 2022:e202101278. [PMID: 35910459 PMCID: PMC9306992 DOI: 10.1002/ejoc.202101278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Indexed: 11/18/2022]
Abstract
Teraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics using a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd-catalyzed cross-coupling used for teraryl assembly. In previous publications we have introduced the methodology of 4-iodophenyltriflates decorated with the side chains of some of the proteinogenic amino acids. We herein report the core fragments corresponding to the previously missing amino acids Arg, Asn, Asp, Met, Trp and Tyr. Therefore, our set now encompasses all relevant amino acid analogues with the exception of His. In order to be compatible with the triflate moiety, some of the nucleophilic side chains had to be provided in a protected form to serve as stable building blocks. Additionally, cross-coupling procedures for the assembly of teraryls were investigated.
Collapse
Affiliation(s)
- Melanie Trobe
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Martin Vareka
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Till Schreiner
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Patrick Dobrounig
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Carina Doler
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Ella B. Holzinger
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Andreas Steinegger
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| |
Collapse
|
116
|
Trobe M, Blesl J, Vareka M, Schreiner T, Breinbauer R. A Modular Synthesis of Teraryl-Based α-Helix Mimetics, Part 4: Core Fragments with Two Halide Leaving Groups Featuring Side Chains of Proteinogenic Amino Acids. European J Org Chem 2022; 2022:e202101279. [PMID: 35910460 PMCID: PMC9304293 DOI: 10.1002/ejoc.202101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Indexed: 12/03/2022]
Abstract
Teraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics using a benzene core unit featuring two halide leaving groups of differentiated reactivity in the Pd-catalyzed cross-coupling used for teraryl assembly. The use of para-bromo iodoarene core fragments resolved the issue of hydrolysis during cross-coupling that was observed when using triflate as a leaving group. We report a complete set of para-bromoiodoarene core fragments decorated with side chains of all proteinogenic amino acids relevant for PPI (Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val). In order to be compatible with general cross-coupling conditions, some of the nucleophilic side chains had to be provided in a protected form to serve as stable building blocks.
Collapse
Affiliation(s)
- Melanie Trobe
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Julia Blesl
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Martin Vareka
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Till Schreiner
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| |
Collapse
|
117
|
Sasikumar PG, Ramachandra M. Small Molecule Agents Targeting PD-1 Checkpoint Pathway for Cancer Immunotherapy: Mechanisms of Action and Other Considerations for Their Advanced Development. Front Immunol 2022; 13:752065. [PMID: 35585982 PMCID: PMC9108255 DOI: 10.3389/fimmu.2022.752065] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Pioneering success of antibodies targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has changed the outlook of cancer therapy. Although these antibodies show impressive durable clinical activity, low response rates and immune-related adverse events are becoming increasingly evident in antibody-based approaches. For further strides in cancer immunotherapy, novel treatment strategies including combination therapies and alternate therapeutic modalities are highly warranted. Towards this discovery and development of small molecule, checkpoint inhibitors are actively being pursued, and the efforts have culminated in the ongoing clinical testing of orally bioavailable checkpoint inhibitors. This review focuses on the small molecule agents targeting PD-1 checkpoint pathway for cancer immunotherapy and highlights various chemotypes/scaffolds and their characterization including binding and functionality along with reported mechanism of action. The learnings from the ongoing small molecule clinical trials and crucial points to be considered for their clinical development are also discussed.
Collapse
|
118
|
Lucchesi CA, Zhang J, Vasilatis DM, Yip E, Chen X. Optimization of eIF4E-Binding Peptide Pep8 to Disrupt the RBM38-eIF4E Complex for Induction of p53 and Tumor Suppression. Front Oncol 2022; 12:893062. [PMID: 35574389 PMCID: PMC9095979 DOI: 10.3389/fonc.2022.893062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Interaction of RNA-binding protein RBM38 with eIF4E on p53 mRNA is known to suppress p53 mRNA translation, which can be disrupted by an 8-amino acid peptide (Pep8-YPYAASPA) derived from RBM38, leading to induction of p53 and tumor suppression. Here, we rationally designed multiple Pep8 derivatives and screened for their binding affinities towards eIF4E in silico. We showed that several key residues within Pep8 are necessary for its structure and function. We identified a shortened 7-amino acid peptide (Pep7-PSAASPV) that has the highest affinity towards eIF4E and is the most potent inducer of p53 expression. We found that iRGD is an effective vehicle to deliver Pep7 inside of cells for induction of p53 expression and growth suppression as compared to other cell penetrating peptides (Penetratin and Pep-1). We found that peptide cyclization enhances Pep8 affinity for eIF4E, induction of p53 and tumor cell growth suppression. We also found that the ability of Pep7 to induce p53 expression and growth suppression is conserved in cells derived from canine osteosarcoma, a spontaneous tumor model frequently used for testing the feasibility of a therapeutic agent for human cancer. Moreover, we showed that both human and canine osteosarcoma cells, which are notoriously resistant to radiation therapy, were sensitized by Pep7 to radiation-induced growth suppression and cell death. Together, our data suggest that Pep7 may be explored to sensitize tumors to radiation therapy.
Collapse
|
119
|
Choudhury AR, Maity A, Chakraborty S, Chakrabarti R. Computational design of stapled peptide inhibitor against
SARS‐CoV
‐2 receptor binding domain. Pept Sci (Hoboken) 2022; 114:e24267. [PMID: 35574509 PMCID: PMC9088457 DOI: 10.1002/pep2.24267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022]
Abstract
Since its first detection in 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2) has been the cause of millions of deaths worldwide. Despite the development and administration of different vaccines, the situation is still worrisome as the virus is constantly mutating to produce newer variants some of which are highly infectious. This raises an urgent requirement to understand the infection mechanism and thereby design therapeutic‐based treatment for COVID‐19. The gateway of the virus to the host cell is mediated by the binding of the receptor binding domain (RBD) of the virus spike protein to the angiotensin‐converting enzyme 2 (ACE2) of the human cell. Therefore, the RBD of SARS‐CoV‐2 can be used as a target to design therapeutics. The α1 helix of ACE2, which forms direct contact with the RBD surface, has been used as a template in the current study to design stapled peptide therapeutics. Using computer simulation, the mechanism and thermodynamics of the binding of six stapled peptides with RBD have been estimated. Among these, the one with two lactam stapling agents has shown binding affinity, sufficient to overcome RBD‐ACE2 binding. Analyses of the mechanistic detail reveal that a reorganization of amino acids at the RBD‐ACE2 interface produces favorable enthalpy of binding whereas conformational restriction of the free peptide reduces the loss in entropy to result higher binding affinity. The understanding of the relation of the nature of the stapling agent with their binding affinity opens up the avenue to explore stapled peptides as therapeutic against SARS‐CoV‐2.
Collapse
Affiliation(s)
- Asha Rani Choudhury
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai India
| | - Atanu Maity
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai India
| | | | - Rajarshi Chakrabarti
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai India
| |
Collapse
|
120
|
Promiscuity mapping of the S100 protein family using a high-throughput holdup assay. Sci Rep 2022; 12:5904. [PMID: 35393447 PMCID: PMC8991199 DOI: 10.1038/s41598-022-09574-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
S100 proteins are small, typically homodimeric, vertebrate-specific EF-hand proteins that establish Ca2+-dependent protein-protein interactions in the intra- and extracellular environment and are overexpressed in various pathologies. There are about 20 distinct human S100 proteins with numerous potential partner proteins. Here, we used a quantitative holdup assay to measure affinity profiles of most members of the S100 protein family against a library of chemically synthetized foldamers. The profiles allowed us to quantitatively map the binding promiscuity of each member towards the foldamer library. Since the library was designed to systematically contain most binary natural amino acid side chain combinations, the data also provide insight into the promiscuity of each S100 protein towards all potential naturally occurring S100 partners in the human proteome. Such information will be precious for future drug design to interfere with S100 related pathologies.
Collapse
|
121
|
Wang Z, Ji H. Characterization of Hydrophilic α-Helical Hot Spots on the Protein-Protein Interaction Interfaces for the Design of α-Helix Mimetics. J Chem Inf Model 2022; 62:1873-1890. [PMID: 35385659 DOI: 10.1021/acs.jcim.1c01556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cooperativity index, Kc, was developed to examine the binding synergy between hot spots of the ligand-protein. For the first time, the convergence of the side-chain spatial arrangements of hydrophilic α-helical hot spots Thr, Tyr, Asp, Asn, Ser, Cys, and His in protein-protein interaction (PPI) complex structures was disclosed and quantified by developing novel clustering models. In-depth analyses revealed the driving force for the protein-protein binding conformation convergence of hydrophilic α-helical hot spots. This observation allows deriving pharmacophore models to design new mimetics for hydrophilic α-helical hot spots. A computational protocol was developed to search amino acid analogues and small-molecule mimetics for each hydrophilic α-helical hot spot. As a pilot study, diverse building blocks of commercially available nonstandard L-type α-amino acids and the phenyl ring-containing small-molecule fragments were obtained, which serve as a fragment collection to mimic hydrophilic α-helical hot spots for the improvement of binding affinity, selectivity, physicochemical properties, and synthesis accessibility of α-helix mimetics.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612-9497, United States.,Departments of Chemistry and Oncologic Sciences, University of South Florida, Tampa, Florida 33620-9497, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612-9497, United States.,Departments of Chemistry and Oncologic Sciences, University of South Florida, Tampa, Florida 33620-9497, United States
| |
Collapse
|
122
|
Yan J, Zheng X, You W, He W, Xu G. A Bionic-Homodimerization Strategy for Optimizing Modulators of Protein-Protein Interactions: From Statistical Mechanics Theory to Potential Clinical Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105179. [PMID: 35166067 PMCID: PMC9008432 DOI: 10.1002/advs.202105179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Indexed: 05/09/2023]
Abstract
Emerging protein-protein interaction (PPI) modulators have brought out exciting ability as therapeutics in human diseases, but its clinical translation has been greatly hampered by the limited affinity. Inspired by the homodimerize structure of antibody, the homodimerization contributes hugely to generating the optimized affinity is conjectured. Herein, a statistical-mechanics-theory-guided method is established to quantize the affinity of ligands with different topologies through analyzing the change of enthalpy and the loss of translational and rotational entropies. A peptide modulator for p53-MDM2 termed CPAP is used to homodimerize connecting, and this simple homodimerization can significantly increase the affinity. To realize the cellular internalization and tumor accumulation, Dimer CPAP and Mono CPAP are nanoengineered into gold(I)-CPAP supermolecule by the aurophilic interaction-driven self-assembly. Nano-Dimer CPAP potently suppressed tumor growth in lung cancer allograft model and a patient-derived xenograft model in more action than Nano-Mono CPAP, while keeping a favorable drug safety profile. This work not only presents a physico-mechanical method for calculating the affinity of PPI modulators, but also provides a simple yet robust homodimerization strategy to optimize the affinity of PPI modulators.
Collapse
Affiliation(s)
- Jin Yan
- Department of Tumor and Immunology in Precision Medical Institute and National & Local Joint Engineering Research Center of Biodiagnosis and BiotherapyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004China
| | - Xiaoqiang Zheng
- Institute for Stem Cell & Regenerative MedicineThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004China
| | - Weiming You
- Department of Tumor and Immunology in Precision Medical Institute and National & Local Joint Engineering Research Center of Biodiagnosis and BiotherapyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004China
| | - Wangxiao He
- Institute for Stem Cell & Regenerative MedicineThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004China
- Department of Medical Oncology and Department of Talent HighlandThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710061China
| | - Guang‐Kui Xu
- Laboratory for Multiscale Mechanics and Medical ScienceSVLSchool of Aerospace EngineeringXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
123
|
Johnson C, Harwood JS, Lipton M, Chmielewski J. A refined photo‐switchable cyclic peptide scaffold for use in β‐turn activation. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Corey Johnson
- Department of Chemistry Purdue University West Lafayette Indiana USA
| | - John S. Harwood
- Department of Chemistry Purdue University West Lafayette Indiana USA
| | - Mark Lipton
- Department of Chemistry Purdue University West Lafayette Indiana USA
| | - Jean Chmielewski
- Department of Chemistry Purdue University West Lafayette Indiana USA
| |
Collapse
|
124
|
Pal VK, Roy S. Cooperative Metal Ion Coordination to the Short Self-Assembling Peptide Promotes Hydrogelation and Cellular Proliferation. Macromol Biosci 2022; 22:e2100462. [PMID: 35257490 DOI: 10.1002/mabi.202100462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Indexed: 11/12/2022]
Abstract
Non-covalent interactions among short peptides and proteins led to their molecular self-assembly into supramolecular packaging, which provides the fundamental basis of life. These biomolecular assemblies are highly susceptible to the environmental conditions, including temperature, light, pH, and ionic concentration, thus inspiring the fabrication of a new class of stimuli-responsive biomaterials. Here, we report for the first time the cooperative effect of the divalent metal ions to promote hydrogelation in the short collagen inspired self-assembling peptide for developing advanced biomaterials. Introduction of the biologically relevant metal ions (Ca2+ /Mg2+ ) to the peptide surpasses its limitation to self-assemble into a multi-scale structure at physiological pH. In particular, in presence of metal ions, the negatively charged peptide showed a distinct shift in its equilibrium point of gelation and demonstrated conversion from sol to gel and thus enabling the scope of fabricating an advanced biomaterial for controlling cellular behaviour. Interestingly, tunable mechanical strength and improved cellular response were observed within ion-coordinated peptide hydrogels compared to the peptide gelator. Microscopic analyses, rheological assessment, and biological studies established the importance of utilizing a novel strategy by simply using metal ions to modulate the physical and biological attributes of CIPs to construct next-generation biomaterials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin-140306
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin-140306
| |
Collapse
|
125
|
Teng P, Cai J. Using proteomimetics to switch angiogenic signaling. Acta Pharm Sin B 2022; 12:1534-1535. [PMID: 35530131 PMCID: PMC9069461 DOI: 10.1016/j.apsb.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Peng Teng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
- Corresponding authors.
| |
Collapse
|
126
|
Rathman BM, Del Valle JR. Late-Stage Sidechain-to-Backbone Macrocyclization of N-Amino Peptides. Org Lett 2022; 24:1536-1540. [PMID: 35157469 DOI: 10.1021/acs.orglett.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cysteine-containing N-amino peptides undergo chemoselective reactions with haloaldehydes to afford ethylene-bridged cyclic peptides. This bis-alkylation strategy provides macrocycles harboring a novel covalent H-bond surrogate. Mimicry of a native sidechain-to-backbone (sb) H-bond is demonstrated in the context of a model loop-helix peptide. The described method is amenable to the synthesis of diverse ring sizes from crude unprotected linear substrates under aqueous conditions.
Collapse
Affiliation(s)
- Benjamin M Rathman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Juan R Del Valle
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
127
|
Stapling of Peptides Potentiates: The Antibiotic Treatment of Acinetobacter baumannii In Vivo. Antibiotics (Basel) 2022; 11:antibiotics11020273. [PMID: 35203875 PMCID: PMC8868297 DOI: 10.3390/antibiotics11020273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
The rising incidence of multidrug resistance in Gram-negative bacteria underlines the urgency for novel treatment options. One promising new approach is the synergistic combination of antibiotics with antimicrobial peptides. However, the use of such peptides is not straightforward; they are often sensitive to proteolytic degradation, which greatly limits their clinical potential. One approach to increase stability is to apply a hydrocarbon staple to the antimicrobial peptide, thereby fixing them in an α-helical conformation, which renders them less exposed to proteolytic activity. In this work we applied several different hydrocarbon staples to two previously described peptides shown to act on the outer membrane, L6 and L8, and tested their activity in a zebrafish embryo infection model using a clinical isolate of Acinetobacter baumannii as a pathogen. We show that the introduction of such a hydrocarbon staple to the peptide L8 improves its in vivo potentiating activity on antibiotic treatment, without increasing its in vivo antimicrobial activity, toxicity or hemolytic activity.
Collapse
|
128
|
Stanojlovic V, Müller A, Moazzam A, Hinterholzer A, Ożga K, Berlicki Ł, Schubert M, Cabrele C. A Conformationally Stable Acyclic β-Hairpin Scaffold Tolerating the Incorporation of Poorly β-Sheet-Prone Amino Acids. Chembiochem 2022; 23:e202100604. [PMID: 34856053 PMCID: PMC9299858 DOI: 10.1002/cbic.202100604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Indexed: 11/09/2022]
Abstract
The β-hairpin is a structural element of native proteins, but it is also a useful artificial scaffold for finding lead compounds to convert into peptidomimetics or non-peptide structures for drug discovery. Since linear peptides are synthetically more easily accessible than cyclic ones, but are structurally less well-defined, we propose XWXWXpPXK(/R)X(R) as an acyclic but still rigid β-hairpin scaffold that is robust enough to accommodate different types of side chains, regardless of the secondary-structure propensity of the X residues. The high conformational stability of the scaffold results from tight contacts between cross-strand cationic and aromatic side chains, combined with the strong tendency of the d-Pro-l-Pro dipeptide to induce a type II' β-turn. To demonstrate the robustness of the scaffold, we elucidated the NMR structures and performed molecular dynamics (MD) simulations of a series of peptides displaying mainly non-β-branched, poorly β-sheet-prone residues at the X positions. Both the NMR and MD data confirm that our acyclic β-hairpin scaffold is highly versatile as regards the amino-acid composition of the β-sheet face opposite to the cationic-aromatic one.
Collapse
Affiliation(s)
- Vesna Stanojlovic
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| | - Anna Müller
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| | - Ali Moazzam
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
- School of ChemistryCollege of ScienceUniversity of TehranP.O. Box 14155–6619TehranIran
| | - Arthur Hinterholzer
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| | - Katarzyna Ożga
- Department of Bioorganic ChemistryFaculty of ChemistryWrocław University of Science and TechnologyWybrzeże Wyspiańskiego 2750-370WrocławPoland
| | - Łukasz Berlicki
- Department of Bioorganic ChemistryFaculty of ChemistryWrocław University of Science and TechnologyWybrzeże Wyspiańskiego 2750-370WrocławPoland
| | - Mario Schubert
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| | - Chiara Cabrele
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 345020SalzburgAustria
| |
Collapse
|
129
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 527] [Impact Index Per Article: 263.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
130
|
Singh MK, Lakshman MK. Recent developments in the utility of saturated azaheterocycles in peptidomimetics. Org Biomol Chem 2022; 20:963-979. [PMID: 35018952 DOI: 10.1039/d1ob01329g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To a large extent, the physical and chemical properties of peptidomimetic molecules are dictated by the integrated heterocyclic scaffolds they contain. Heterocyclic moieties are introduced into a majority of peptide-mimicking molecules to modulate conformational flexibility, improve bioavailability, and fine-tune electronics, and in order to achieve potency similar to or better than that of the natural peptide ligand. This mini-review delineates recent developments, limited to the past five years, in the utility of selected saturated 3- to 6-membered heterocyclic moieties in peptidomimetic design. Also discussed is the chemistry involved in the synthesis of the azaheterocyclic scaffolds and the structural implications of the introduction of these azaheterocycles in peptide backbones as well as side chains of the peptide mimics.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Science, Technology, and Mathematics, Lincoln University, 820 Chestnut Street, Jefferson City, Missouri 65101, USA.
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
131
|
Modell AE, Marrone F, Panigrahi NR, Zhang Y, Arora PS. Peptide Tethering: Pocket-Directed Fragment Screening for Peptidomimetic Inhibitor Discovery. J Am Chem Soc 2022; 144:1198-1204. [PMID: 35029987 PMCID: PMC8959088 DOI: 10.1021/jacs.1c09666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Constrained peptides have proven to be a rich source of ligands for protein surfaces, but are often limited in their binding potency. Deployment of nonnatural side chains that access unoccupied crevices on the receptor surface offers a potential avenue to enhance binding affinity. We recently described a computational approach to create topographic maps of protein surfaces to guide the design of nonnatural side chains [J. Am. Chem. Soc. 2017, 139, 15560]. The computational method, AlphaSpace, was used to predict peptide ligands for the KIX domain of the p300/CBP coactivator. KIX has been the subject of numerous ligand discovery strategies, but potent inhibitors of its interaction with transcription factors remain difficult to access. Although the computational approach provided a significant enhancement in the binding affinity of the peptide, fine-tuning of nonnatural side chains required an experimental screening method. Here we implement a peptide-tethering strategy to screen fragments as nonnatural side chains on conformationally defined peptides. The combined computational-experimental approach offers a general framework for optimizing peptidomimetics as inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Ashley E Modell
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Frank Marrone
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Nihar R Panigrahi
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
132
|
Islam MS, Junod SL, Zhang S, Buuh ZY, Guan Y, Zhao M, Kaneria KH, Kafley P, Cohen C, Maloney R, Lyu Z, Voelz VA, Yang W, Wang RE. Unprotected peptide macrocyclization and stapling via a fluorine-thiol displacement reaction. Nat Commun 2022; 13:350. [PMID: 35039490 PMCID: PMC8763920 DOI: 10.1038/s41467-022-27995-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/19/2021] [Indexed: 12/31/2022] Open
Abstract
We report the discovery of a facile peptide macrocyclization and stapling strategy based on a fluorine thiol displacement reaction (FTDR), which renders a class of peptide analogues with enhanced stability, affinity, cellular uptake, and inhibition of cancer cells. This approach enabled selective modification of the orthogonal fluoroacetamide side chains in unprotected peptides in the presence of intrinsic cysteines. The identified benzenedimethanethiol linker greatly promoted the alpha helicity of a variety of peptide substrates, as corroborated by molecular dynamics simulations. The cellular uptake of benzenedimethanethiol stapled peptides appeared to be universally enhanced compared to the classic ring-closing metathesis (RCM) stapled peptides. Pilot mechanism studies suggested that the uptake of FTDR-stapled peptides may involve multiple endocytosis pathways in a distinct pattern in comparison to peptides stapled by RCM. Consistent with the improved cell permeability, the FTDR-stapled lead Axin and p53 peptide analogues demonstrated enhanced inhibition of cancer cells over the RCM-stapled analogues and the unstapled peptides. Strategies capable of stapling unprotected peptides in a straightforward, chemoselective, and clean manner, as well as promoting cellular uptake are of great interest. Here the authors report a peptide macrocyclization and stapling strategy which satisfies those criteria, based on a fluorine thiol displacement reaction.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Samuel L Junod
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Si Zhang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zakey Yusuf Buuh
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Yifu Guan
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Mi Zhao
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Kishan H Kaneria
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Parmila Kafley
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Carson Cohen
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Robert Maloney
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zhigang Lyu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Vincent A Voelz
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Weidong Yang
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
133
|
Chen K, Tang Y, Wu M, Wan XC, Zhang YN, Chen XX, Yu FQ, Cui ZH, Ma JM, Zhou Z, Fang GM. Head-to-Tail Cross-Linking to Generate Bicyclic Helical Peptides with Enhanced Helicity and Proteolytic Stability. Org Lett 2022; 24:53-57. [PMID: 34894695 DOI: 10.1021/acs.orglett.1c03629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new pattern of a bicyclic helical peptide constructed through head-to-tail cross-linking. The described bicyclic helical peptide has a head-to-tail cross-linking arm and a C-terminal i, i + 4 cross-linking arm. This scaffold will provide a promising scaffold for designing a proteolytically resistant helix-constrained peptide.
Collapse
Affiliation(s)
- Kai Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yang Tang
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Meng Wu
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Xiao-Cui Wan
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yan-Ni Zhang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Xiao-Xu Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Fei-Qiang Yu
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhi-Hui Cui
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Jin-Ming Ma
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China
| | - Ge-Min Fang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
134
|
Abdulkadir S, Li C, Jiang W, Zhao X, Sang P, Wei L, Hu Y, Li Q, Cai J. Modulating Angiogenesis by Proteomimetics of Vascular Endothelial Growth Factor. J Am Chem Soc 2022; 144:270-281. [PMID: 34968032 PMCID: PMC8886800 DOI: 10.1021/jacs.1c09571] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis, formation of new blood vessels from the existing vascular network, is a hallmark of cancer cells that leads to tumor vascular proliferation and metastasis. This process is mediated through the binding interaction of VEGF-A with VEGF receptors. However, the balance between pro-angiogenic and anti-angiogenic effect after ligand binding yet remains elusive and is therefore challenging to manipulate. To interrogate this interaction, herein we designed a few sulfono-γ-AA peptide based helical peptidomimetics that could effectively mimic a key binding interface on VEGF (helix-α1) for VEGFR recognition. Intriguingly, although both sulfono-γ-AA peptide sequences V2 and V3 bound to VEGF receptors tightly, in vitro angiogenesis assays demonstrated that V3 potently inhibited angiogenesis, whereas V2 activated angiogenesis effectively instead. Our findings suggested that this distinct modulation of angiogenesis might be due to the result of selective binding of V2 to VEGFR-1 and V3 to VEGFR-2, respectively. These molecules thus provide us a key to switch the angiogenic signaling, a biological process that balances the effects of pro-angiogenic and anti-angiogenic factors, where imbalances lead to several diseases including cancer. In addition, both V2 and V3 exhibited remarkable stability toward proteolytic hydrolysis, suggesting that V2 and V3 are promising therapeutic agents for the intervention of disease conditions arising due to angiogenic imbalances and could also be used as novel molecular switching probes to interrogate the mechanism of VEGFR signaling. The findings also further demonstrated the potential of sulfono-γ-AA peptides to mimic the α-helical domain for protein recognition and modulation of protein-protein interactions.
Collapse
Affiliation(s)
- Sami Abdulkadir
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chunpu Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department of Medical Oncology, Cancer Institute of Medicine, Shuguang Hospital; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Jiang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xue Zhao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lulu Wei
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Qi Li
- Department of Medical Oncology, Cancer Institute of Medicine, Shuguang Hospital; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
135
|
de Araujo AD, Lim J, Wu KC, Hoang HN, Nguyen HT, Fairlie DP. Landscaping macrocyclic peptides: stapling hDM2-binding peptides for helicity, protein affinity, proteolytic stability and cell uptake. RSC Chem Biol 2022; 3:895-904. [PMID: 35866171 PMCID: PMC9257625 DOI: 10.1039/d1cb00231g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
Abstract
Surveying macrocycles for mimicking a helical tumor suppressor protein, resisting breakdown by proteases, and entering cancer cells.
Collapse
Affiliation(s)
- Aline D. de Araujo
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huy N. Hoang
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huy T. Nguyen
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
136
|
Srdanović S, Hegedüs Z, Warriner SL, Wilson AJ. Towards Identification of Protein-Protein Interaction Stabilizers via Inhibitory Peptide-Fragment Hybrids Using Templated Fragment Ligation. RSC Chem Biol 2022; 3:546-550. [PMID: 35656480 PMCID: PMC9092428 DOI: 10.1039/d2cb00025c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Using the hDMX/14-3-3 interaction, acylhydrazone-based ligand-directed fragment ligation was used to identify protein-protein interaction (PPI) inhibitory peptide-fragment hybrids. Separation of the peptide-fragment hybrids into the components yielded fragments that stabilized...
Collapse
Affiliation(s)
- Sonja Srdanović
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Zsofia Hegedüs
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Stuart L Warriner
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
137
|
Dahal A, Sonju JJ, Kousoulas KG, Jois SD. Peptides and peptidomimetics as therapeutic agents for Covid-19. Pept Sci (Hoboken) 2022; 114:e24245. [PMID: 34901700 PMCID: PMC8646791 DOI: 10.1002/pep2.24245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Covid-19 pandemic has caused high morbidity and mortality rates worldwide. Virus entry into cells can be blocked using several strategies, including inhibition of protein-protein interactions (PPIs) between the viral spike glycoprotein and cellular receptors, as well as blocking of spike protein conformational changes that are required for cleavage/activation and fusogenicity. The spike-mediated viral attachment and entry into cells via fusion of the viral envelope with cellular membranes involve PPIs mediated by short peptide fragments exhibiting particular secondary structures. Thus, peptides that can inhibit these PPIs may be used as potential antiviral agents preventing virus entry and spread. This review is focused on peptides and peptidomimetics as PPI modulators and protease inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| |
Collapse
|
138
|
Nagano Y, Arafiles JVV, Kuwata K, Kawaguchi Y, Imanishi M, Hirose H, Futaki S. Grafting Hydrophobic Amino Acids Critical for Inhibition of Protein-Protein Interactions on a Cell-Penetrating Peptide Scaffold. Mol Pharm 2021; 19:558-567. [PMID: 34958576 DOI: 10.1021/acs.molpharmaceut.1c00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stapled peptides are a promising class of conformationally restricted peptides for modulating protein-protein interactions (PPIs). However, the low membrane permeability of these peptides is an obstacle to their therapeutic applications. It is common that only a few hydrophobic amino acid residues are mandatory for stapled peptides to bind to their target proteins. Hoping to create a novel class of membrane-permeable PPI inhibitors, the phenylalanine, tryptophan, and leucine residues that play a critical role in inhibiting the p53-HDM2 interaction were grafted into the framework of CADY2─a cell-penetrating peptide (CPP) having a helical propensity. Two analogues (CADY-3FWL and CADY-10FWL) induced apoptotic cell death but lacked the intended HDM2 interaction. Pull-down experiments followed by proteomic analysis led to the elucidation of nesprin-2 as a candidate binding target. Nesprin-2 is considered to play a role in the nuclear translocation of β-catenin upon activation of the Wnt signaling pathway, which leads to the expression of antiapoptosis proteins and cell survival. Cells treated with the two analogues showed decreased nuclear localization of β-catenin and reduced mRNA expression of related antiapoptotic proteins. These data suggest inhibition of β-catenin nuclear translocation as a possible mode of action of the described cell-penetrating stapled peptides.
Collapse
Affiliation(s)
- Yuki Nagano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
139
|
Dvorak NM, Tapia CM, Singh AK, Baumgartner TJ, Wang P, Chen H, Wadsworth PA, Zhou J, Laezza F. Pharmacologically Targeting the Fibroblast Growth Factor 14 Interaction Site on the Voltage-Gated Na + Channel 1.6 Enables Isoform-Selective Modulation. Int J Mol Sci 2021; 22:ijms222413541. [PMID: 34948337 PMCID: PMC8708424 DOI: 10.3390/ijms222413541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated Na+ (Nav) channels are the primary molecular determinant of the action potential. Among the nine isoforms of the Nav channel α subunit that have been described (Nav1.1-Nav1.9), Nav1.1, Nav1.2, and Nav1.6 are the primary isoforms expressed in the central nervous system (CNS). Crucially, these three CNS Nav channel isoforms display differential expression across neuronal cell types and diverge with respect to their subcellular distributions. Considering these differences in terms of their localization, the CNS Nav channel isoforms could represent promising targets for the development of targeted neuromodulators. However, current therapeutics that target Nav channels lack selectivity, which results in deleterious side effects due to modulation of off-target Nav channel isoforms. Among the structural components of the Nav channel α subunit that could be pharmacologically targeted to achieve isoform selectivity, the C-terminal domains (CTD) of Nav channels represent promising candidates on account of displaying appreciable amino acid sequence divergence that enables functionally unique protein–protein interactions (PPIs) with Nav channel auxiliary proteins. In medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a critical brain region of the mesocorticolimbic circuit, the PPI between the CTD of the Nav1.6 channel and its auxiliary protein fibroblast growth factor 14 (FGF14) is central to the generation of electrical outputs, underscoring its potential value as a site for targeted neuromodulation. Focusing on this PPI, we previously developed a peptidomimetic derived from residues of FGF14 that have an interaction site on the CTD of the Nav1.6 channel. In this work, we show that whereas the compound displays dose-dependent effects on the activity of Nav1.6 channels in heterologous cells, the compound does not affect Nav1.1 or Nav1.2 channels at comparable concentrations. In addition, we show that the compound correspondingly modulates the action potential discharge and the transient Na+ of MSNs of the NAc. Overall, these results demonstrate that pharmacologically targeting the FGF14 interaction site on the CTD of the Nav1.6 channel is a strategy to achieve isoform-selective modulation, and, more broadly, that sites on the CTDs of Nav channels interacted with by auxiliary proteins could represent candidates for the development of targeted therapeutics.
Collapse
|
140
|
Comprehensive exploration of chemical space using trisubstituted carboranes. Sci Rep 2021; 11:24101. [PMID: 34916538 PMCID: PMC8677773 DOI: 10.1038/s41598-021-03459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 42 trisubstituted carboranes categorised into five scaffolds were systematically designed and synthesized by exploiting the different reactivities of the twelve vertices of o-, m-, and p-carboranes to cover all directions in chemical space. Significant inhibitors of hypoxia inducible factor transcriptional activitay were mainly observed among scaffold V compounds (e.g., Vi–m, and Vo), whereas anti-rabies virus activity was observed among scaffold V (Va–h), scaffold II (IIb–g), and scaffold IV (IVb) compounds. The pharmacophore model predicted from compounds with scaffold V, which exhibited significant anti-rabies virus activity, agreed well with compounds IIb–g with scaffold II and compound IVb with scaffold IV. Normalized principal moment of inertia analysis indicated that carboranes with scaffolds I–V cover all regions in the chemical space. Furthermore, the first compounds shown to stimulate the proliferation of the rabies virus were found among scaffold V carboranes.
Collapse
|
141
|
Kuepper A, McLoughlin NM, Neubacher S, Yeste-Vázquez A, Collado Camps E, Nithin C, Mukherjee S, Bethge L, Bujnicki JM, Brock R, Heinrichs S, Grossmann TN. Constrained peptides mimic a viral suppressor of RNA silencing. Nucleic Acids Res 2021; 49:12622-12633. [PMID: 34871435 PMCID: PMC8682738 DOI: 10.1093/nar/gkab1149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
The design of high-affinity, RNA-binding ligands has proven very challenging. This is due to the unique structural properties of RNA, often characterized by polar surfaces and high flexibility. In addition, the frequent lack of well-defined binding pockets complicates the development of small molecule binders. This has triggered the search for alternative scaffolds of intermediate size. Among these, peptide-derived molecules represent appealing entities as they can mimic structural features also present in RNA-binding proteins. However, the application of peptidic RNA-targeting ligands is hampered by a lack of design principles and their inherently low bio-stability. Here, the structure-based design of constrained α-helical peptides derived from the viral suppressor of RNA silencing, TAV2b, is described. We observe that the introduction of two inter-side chain crosslinks provides peptides with increased α-helicity and protease stability. One of these modified peptides (B3) shows high affinity for double-stranded RNA structures including a palindromic siRNA as well as microRNA-21 and its precursor pre-miR-21. Notably, B3 binding to pre-miR-21 inhibits Dicer processing in a biochemical assay. As a further characteristic this peptide also exhibits cellular entry. Our findings show that constrained peptides can efficiently mimic RNA-binding proteins rendering them potentially useful for the design of bioactive RNA-targeting ligands.
Collapse
Affiliation(s)
- Arne Kuepper
- Chemical Genomics Centre of the Max Planck Society, Dortmund 44227, Germany
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Dortmund 44227, Germany
| | - Niall M McLoughlin
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Estel Collado Camps
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Lucas Bethge
- Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, Nijmegen 6525 GA, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 293, Bahrain
| | - Stefan Heinrichs
- University Hospital Essen, Institute for Transfusion Medicine, Essen 45147, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund 44227, Germany
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Dortmund 44227, Germany
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| |
Collapse
|
142
|
Van Holsbeeck K, Martins JC, Ballet S. Downsizing antibodies: Towards complementarity-determining region (CDR)-based peptide mimetics. Bioorg Chem 2021; 119:105563. [PMID: 34942468 DOI: 10.1016/j.bioorg.2021.105563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 12/27/2022]
Abstract
Monoclonal antibodies emerged as an important therapeutic drug class with remarkable specificity and binding affinity. Nonetheless, these heterotetrameric immunoglobulin proteins come with high manufacturing and therapeutic costs which can take extraordinary proportions, besides other limitations such as their limited in cellulo access imposed by their molecular size (ca. 150 kDa). These drawbacks stimulated the development of downsized functional antibody fragments (ca. 15-50 kDa), together with smaller synthetic peptides (ca. 1-3 kDa) derived from the antibodies' crucial complementarity-determining regions (CDR). Despite the general lack of success in the literal translation of CDR loops in peptide mimetics, rational structure-based and computational approaches have shown their potential for obtaining functional CDR-based peptide mimetics. In this review, we describe the efforts made in the development of antibody and nanobody paratope-derived peptide mimetics with particular focus on the used design strategies, in addition to highlighting the challenges associated with their development.
Collapse
Affiliation(s)
- Kevin Van Holsbeeck
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; NMR and Structure Analysis Unit, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
143
|
Lucana MC, Arruga Y, Petrachi E, Roig A, Lucchi R, Oller-Salvia B. Protease-Resistant Peptides for Targeting and Intracellular Delivery of Therapeutics. Pharmaceutics 2021; 13:2065. [PMID: 34959346 PMCID: PMC8708026 DOI: 10.3390/pharmaceutics13122065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation bio- and nano-therapeutics. However, the proteolytic susceptibility of peptides is one of the major limitations of their activity in biological environments. Numerous strategies have been devised to chemically enhance the resistance of peptides to proteolysis, ranging from N- and C-termini protection to cyclization, and including backbone modification, incorporation of amino acids with non-canonical side chains and conjugation. Since conjugation of nanocarriers or other cargoes to peptides for targeting and cell penetration may already provide some degree of shielding, the question arises about the relevance of using protease-resistant sequences for these applications. Aiming to answer this question, here we provide a critical review on protease-resistant targeting peptides and cell-penetrating peptides (CPPs). Two main approaches have been used on these classes of peptides: enantio/retro-enantio isomerization and cyclization. On one hand, enantio/retro-enantio isomerization has been shown to provide a clear enhancement in peptide efficiency with respect to parent L-amino acid peptides, especially when applied to peptides for drug delivery to the brain. On the other hand, cyclization also clearly increases peptide transport capacity, although contribution from enhanced protease resistance or affinity is often not dissected. Overall, we conclude that although conjugation often offers some degree of protection to proteolysis in targeting peptides and CPPs, modification of peptide sequences to further enhance protease resistance can greatly increase homing and transport efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - Benjamí Oller-Salvia
- Grup d’Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull, 08017 Barcelona, Spain; (M.C.L.); (Y.A.); (E.P.); (A.R.); (R.L.)
| |
Collapse
|
144
|
Garcia-Marin J, Griera-Merino M, Matamoros-Recio A, de Frutos S, Rodríguez-Puyol M, Alajarín R, Vaquero JJ, Rodríguez-Puyol D. Tripeptides as Integrin-Linked Kinase Modulating Agents Based on a Protein-Protein Interaction with α-Parvin. ACS Med Chem Lett 2021; 12:1656-1662. [PMID: 34790291 PMCID: PMC8591738 DOI: 10.1021/acsmedchemlett.1c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
![]()
Integrin-linked
kinase (ILK) has emerged as a controversial pseudokinase
protein that plays a crucial role in the signaling process initiated
by integrin-mediated signaling. However, ILK also exhibits a scaffolding
protein function inside cells, controlling cytoskeletal dynamics,
and has been related to non-neoplastic diseases such as chronic kidney
disease (CKD). Although this protein always acts as a heterotrimeric
complex bound to PINCH and parvin adaptor proteins, the role of parvin
proteins is currently not well understood. Using in silico approaches
for the design, we have generated and prepared a set of new tripeptides
mimicking an α-parvin segment. These derivatives exhibit activity
in phenotypic assays in an ILK-dependent manner without altering kinase
activity, thus allowing the generation of new chemical probes and
drug candidates with interesting ILK-modulating activities.
Collapse
Affiliation(s)
- Javier Garcia-Marin
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Mercedes Griera-Merino
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Graphenano Medical Care, S.L, Yecla 30510, Spain
| | - Alejandra Matamoros-Recio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Sergio de Frutos
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| | - Manuel Rodríguez-Puyol
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Diego Rodríguez-Puyol
- Fundación de Investigación Biomédica, Unidad de Nefrología del Hospital Príncipe de Asturias y Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| |
Collapse
|
145
|
Yin H, Zhou X, Huang YH, King GJ, Collins BM, Gao Y, Craik DJ, Wang CK. Rational Design of Potent Peptide Inhibitors of the PD-1:PD-L1 Interaction for Cancer Immunotherapy. J Am Chem Soc 2021; 143:18536-18547. [PMID: 34661406 DOI: 10.1021/jacs.1c08132] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptides have potential to be developed into immune checkpoint inhibitors, but the target interfaces are difficult to inhibit. Here, we explored an approach to mimic the binding surface of PD-1 to design inhibitors. Mimicking native PD-1 resulted in a mimetic with no activity. However, mimicking an affinity-optimized PD-1 resulted in the peptide mimetic MOPD-1 that displayed nanomolar affinity to PD-L1 and could inhibit PD-1:PD-L1 interactions in both protein- and cell-based assays. Mutagenesis and structural characterization using NMR spectroscopy and X-ray crystallography revealed that binding residues from the high affinity PD-1 are crucial for the bioactivity of MOPD-1. Furthermore, MOPD-1 was extremely stable in human serum and inhibited tumor growth in vivo, suggesting it has potential for use in cancer immunotherapy. The successful design of an inhibitor of PD-1:PD-L1 using the mimicry approach described herein illustrates the value of placing greater emphasis on optimizing the target interface before inhibitor design and is an approach that could have broader utility for the design of peptide inhibitors for other complex protein-protein interactions.
Collapse
Affiliation(s)
- Huawu Yin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gordon J King
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
146
|
Gutiérrez-González LH, Rivas-Fuentes S, Guzmán-Beltrán S, Flores-Flores A, Rosas-García J, Santos-Mendoza T. Peptide Targeting of PDZ-Dependent Interactions as Pharmacological Intervention in Immune-Related Diseases. Molecules 2021; 26:molecules26216367. [PMID: 34770776 PMCID: PMC8588348 DOI: 10.3390/molecules26216367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
PDZ (postsynaptic density (PSD95), discs large (Dlg), and zonula occludens (ZO-1)-dependent interactions are widely distributed within different cell types and regulate a variety of cellular processes. To date, some of these interactions have been identified as targets of small molecules or peptides, mainly related to central nervous system disorders and cancer. Recently, the knowledge of PDZ proteins and their interactions has been extended to various cell types of the immune system, suggesting that their targeting by viral pathogens may constitute an immune evasion mechanism that favors viral replication and dissemination. Thus, the pharmacological modulation of these interactions, either with small molecules or peptides, could help in the control of some immune-related diseases. Deeper structural and functional knowledge of this kind of protein–protein interactions, especially in immune cells, will uncover novel pharmacological targets for a diversity of clinical conditions.
Collapse
Affiliation(s)
- Luis H. Gutiérrez-González
- Department of Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Silvia Guzmán-Beltrán
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Angélica Flores-Flores
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.F.-F.); (J.R.-G.)
| | - Jorge Rosas-García
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.F.-F.); (J.R.-G.)
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados, Mexico City 07360, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.F.-F.); (J.R.-G.)
- Correspondence: ; Tel.: +52-55-54871700 (ext. 5243)
| |
Collapse
|
147
|
Chen XX, Tang Y, Wu M, Zhang YN, Chen K, Zhou Z, Fang GM. Helix-Constrained Peptides Constructed by Head-to-Side Chain Cross-Linking Strategies. Org Lett 2021; 23:7792-7796. [PMID: 34551517 DOI: 10.1021/acs.orglett.1c02820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Facile head-to-side chain cross-linking strategies are developed to generate helix-constrained peptides. In our strategies, a covalent cross-linker is incorporated at N, i+7 or N, i+1 positions to lock the peptide into a helical conformation. The described patterns of head-to-side chain cross-linking will provide new frameworks for constrained helical peptide.
Collapse
Affiliation(s)
- Xiao-Xu Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yang Tang
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Meng Wu
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yan-Ni Zhang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Kai Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, P. R. China
| | - Ge-Min Fang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
148
|
Takashima H, Yoshimori A, Honda E, Taguri T, Ozawa J, Kasai M, Shuto S, Takehara D. Visualized and Quantitative Conformational Analysis of Peptidomimetics. ACS OMEGA 2021; 6:26601-26612. [PMID: 34661014 PMCID: PMC8515614 DOI: 10.1021/acsomega.1c03967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Protein-protein interactions (PPIs) are fundamentally important and challenging drug targets. Peptidomimetic molecules of various types have been developed to modulate PPIs. A particularly promising drug discovery strategy, structural peptidomimetics, was designed based on special mimicking of side-chain Cα-Cβ bonds. It is simple and versatile. Nevertheless, no quantitative method has been established to evaluate its similarity to a target peptide motif. We developed two methods that enable visual, comprehensive, and quantitative analysis of peptidomimetics: peptide conformation distribution (PCD) plot and peptidomimetic analysis (PMA) map. These methods specifically examine multiple side-chain Cα-Cβ bonds of a peptide fragment motif and their corresponding bonds (pseudo-Cα-Cβ bonds) in a mimetic molecule instead of φ and ψ angles of a single amino acid in the traditional Ramachandran plot. The PCD plot is an alignment-free method, whereas the PMA map is an alignment-based method providing distinctive and complementary analysis. Results obtained from analysis using these two methods indicate our multifacial α-helix mimetic scaffold 12 as an excellent peptidomimetic that can precisely mimic the spatial positioning of side-chain functional groups of α-helix. These methods are useful for visualized and quantified evaluation of peptidomimetics and for the rational design of new mimetic scaffolds.
Collapse
Affiliation(s)
- Hajime Takashima
- Research
and Development Department, PRISM BioLab
Co., Ltd., C21F-4110, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Atsushi Yoshimori
- Chemoinformatics
& AI Research Group, Institute for Theoretical
Medicine, Inc., BW3M-20B, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Eiji Honda
- Research
and Development Department, PRISM BioLab
Co., Ltd., C21F-4110, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Tomonori Taguri
- Research
and Development Department, PRISM BioLab
Co., Ltd., C21F-4110, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Jun Ozawa
- Research
and Development Department, PRISM BioLab
Co., Ltd., C21F-4110, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Masaji Kasai
- Research
and Development Department, PRISM BioLab
Co., Ltd., C21F-4110, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Satoshi Shuto
- Faculty
of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6,
Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Dai Takehara
- Research
and Development Department, PRISM BioLab
Co., Ltd., C21F-4110, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| |
Collapse
|
149
|
Hetherington K, Dutt S, Ibarra AA, Cawood EE, Hobor F, Woolfson DN, Edwards TA, Nelson A, Sessions RB, Wilson AJ. Towards optimizing peptide-based inhibitors of protein-protein interactions: predictive saturation variation scanning (PreSaVS). RSC Chem Biol 2021; 2:1474-1478. [PMID: 34704051 PMCID: PMC8495968 DOI: 10.1039/d1cb00137j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
A simple-to-implement and experimentally validated computational workflow for sequence modification of peptide inhibitors of protein–protein interactions (PPIs) is described. An experimentally validated approach for in silico modification of peptide based protein–protein interaction inhibitors is described.![]()
Collapse
Affiliation(s)
- Kristina Hetherington
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK .,School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Som Dutt
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK .,School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Amaurys A Ibarra
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Emma E Cawood
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK .,School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Fruzsina Hobor
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK .,School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK .,School of Chemistry, University of Bristol, Cantock's Close Bristol BS8 1TS UK.,BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK .,School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Adam Nelson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK .,School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK .,BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK .,School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
150
|
Richaud AD, Zhao G, Hobloss S, Roche SP. Folding in Place: Design of β-Strap Motifs to Stabilize the Folding of Hairpins with Long Loops. J Org Chem 2021; 86:13535-13547. [PMID: 34499510 PMCID: PMC8576641 DOI: 10.1021/acs.joc.1c01442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite their pivotal role in defining antibody affinity and protein function, β-hairpins harboring long noncanonical loops remain synthetically challenging because of the large entropic penalty associated with their conformational folding. Little is known about the contribution and impact of stabilizing motifs on the folding of β-hairpins with loops of variable length and plasticity. Here, we report a design of minimalist β-straps (strap = strand + cap) that offset the entropic cost of long-loop folding. The judicious positioning of noncovalent interactions (hydrophobic cluster and salt-bridge) within the novel 8-mer β-strap design RW(V/H)W···WVWE stabilizes hairpins with up to 10-residue loops of varying degrees of plasticity (Tm up to 52 °C; 88 ± 1% folded at 18 °C). This "hyper" thermostable β-strap outperforms the previous gold-standard technology of β-strand-β-cap (16-mer) and provides a foundation for producing new classes of long hairpins as a viable and practical alternative to macrocyclic peptides.
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Samir Hobloss
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|