101
|
Lu J, Jiang Z, Ren J, Zhang W, Li P, Chen Z, Zhang W, Wang H, Tang B. One‐Pot Synthesis of Multifunctional Carbon‐Based Nanoparticle‐Supported Dispersed Cu
2+
Disrupts Redox Homeostasis to Enhance CDT. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Jie Ren
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
102
|
Wei Q, Wu Y, Liu F, Cao J, Liu J. Advances in antitumor nanomedicine based on functional metal-organic frameworks beyond drug carriers. J Mater Chem B 2022; 10:676-699. [PMID: 35043825 DOI: 10.1039/d1tb02518j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoscale metal-organic frameworks (MOFs) have attracted widespread interest due to their unique properties including a tunable porous structure, high drug loading capacity, structural diversity, and outstanding biocompatibility. MOFs have been extensively explored as drug nanocarriers in biotherapeutics. However, by harnessing the functionality of ligands and metal ions or clusters in MOFs, the applications of MOFs can be extended beyond drug delivery vehicles. Based on the intrinsic properties of the components of MOFs (e.g. magnetic moments of metal ions and fluorescence of ligands), different imaging modes can be achieved with varied MOFs. With careful design of the composition of MOFs (e.g. modification of organic linkers), they can respond to tumor microenvironments to realize on-demand treatment. By incorporating porphyrin-based ligands (photosensitizers for photodynamic therapy) or high-Z metal ions (radiosensitizers for radiotherapy) into the scaffold of MOFs, MOFs themselves can act as anticancer therapeutic agents. In this review, we highlight the application of MOFs from the above-mentioned aspects and discuss the prospects and challenges for using MOFs in stimuli-responsive imaging-guided antitumor therapy.
Collapse
Affiliation(s)
- Qin Wei
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Fangfang Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong, China.
| | - Jiao Cao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
103
|
Li D, Chen F, Cheng C, Li H, Wei X. Biodegradable Materials with Disulfide-Bridged-Framework Confine Photosensitizers for Enhanced Photo-Immunotherapy. Int J Nanomedicine 2022; 16:8323-8334. [PMID: 34992368 PMCID: PMC8714971 DOI: 10.2147/ijn.s344679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose Photodynamic therapy (PDT) with spatiotemporal controlled and noninvasive advantages has obtained growing attention in cancer treatment. Nevertheless, PDT still suffers from self-aggregation-induced photosensitizer quenching and reactive oxygen species (ROS) scavenging in cancer cells with abundant glutathione (GSH) pools, leading to insufficient performance. Methods In this study, we develop a versatile nanocarrier (SSNs) with a disulfide-bond-bridged silica framework for enhanced photo-immunotherapy. Such SSNs spatially confine photosensitizers Ce6 in the matrix to prevent self-aggregation. Under the high GSH level of cancer cells, the disulfide-bond-bridged framework was degradable and triggered the exposure of photosensitizers to oxygen, accelerating the ROS generation during PDT. In addition, GSH depletion via the break of the disulfide-bond increased the ROS level, together resulting in efficient tumor killing outcomes with a considerable immunogenic cell death effect in vitro. Importantly, the SSNs@Ce6 accumulated in the tumor site and exhibited enhanced PDT efficacy with low systemic toxicity in vivo. Results The GEN-loaded nanoplatform (Ag-MONs@GEN) showed glutathione-responsive matrix degradation, resulting in the simultaneous controlled release of GEN and silver ions. Ag-MONs@GEN exhibited excellent anti-bacterial activities than Ag-MONs and GEN alone, especially enhancing synergetic effects against four antibiotic-resistant bacteria including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis. Moreover, Ag-MONs@GEN showed good biocompatibility on L929 and HUVECS. Conclusion Notably, SSNs@Ce6-mediated PDT completely eradicated 4T1 tumors when combined with the PD-1 checkpoint blockade. Overall, the confinement of photosensitizers in a biodegradable disulfide-bridged-framework provides a promising strategy to unleash the potential of photosensitizers in PDT, especially in combined cancer photo-immunotherapy.
Collapse
Affiliation(s)
- Dongbei Li
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou City, Henan Province, People's Republic of China
| | - Fangman Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Cheng Cheng
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou City, Henan Province, People's Republic of China
| | - Haijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xudong Wei
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou City, Henan Province, People's Republic of China
| |
Collapse
|
104
|
Utilization of Solution Grown Manganese Oxide Nanocrystallite to Microstructure Against Bacteria’s Inhibition. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
105
|
Zhang XP, Xu W, Wang JH, Shu Y. MnO 2/DNAzyme-mediated ratiometric fluorescence assay of acetylcholinesterase. Analyst 2022; 147:4008-4013. [DOI: 10.1039/d2an01180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe (MnO2/DNAzyme) is constructed. In the presence of AChE, the product thiocholine reduces MnO2 to Mn2+. The released H1 strands hybridizes with H2 strands to activate DNAzyme and cause cleavage of DNA-F signal probe.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wang Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
106
|
Lin J, Liu G, Qiu Z, Huang L, Weng S. Etching reaction of carbon quantum dot-functionalized MnO 2 nanosheets with an enzymatic product for photoelectrochemical immunoassay of alpha-fetoprotein. NEW J CHEM 2022. [DOI: 10.1039/d2nj01954j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An etching reaction-based photoelectrochemical (PEC) immunoassay was developed to monitor alpha-fetoprotein (AFP) by coupling with the enzymatic product toward the dissolution of MnO2 nanosheets.
Collapse
Affiliation(s)
- Junshan Lin
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Guozhong Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Zhixin Qiu
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Lihong Huang
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| |
Collapse
|
107
|
Da X, Wang Z, Jian Y, Zhang C, Hou Y, Yao Y, Wang X, Zhou QX. A targeted and efficient CDT system with photocatalytic supplement of H2O2 and hydroxyl radical production at a neutral pH. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bottleneck problems of chemodynamic therapy (CDT) are the dependence on an acidic pH (2.0-4.0), insufficient H2O2 level in tumor tissues and potential systematic toxicity of inorganic nanomaterials-based CDT agents....
Collapse
|
108
|
Liu W, Kang Q, Wang P, Zhou F. Ratiometric fluorescence immunoassay based on MnO2–o-phenylenediamine–fluorescent carbon nanodots for the detection of α-fetoprotein via fluorescence resonance energy transfer. NEW J CHEM 2022. [DOI: 10.1039/d1nj04787f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ratiometric fluorescence immunoassay based on MnO2–o-phenylenediamine–fluorescent carbon nanodots is superior to the traditional single-wavelength-based method.
Collapse
Affiliation(s)
- Wenwen Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
109
|
Qin S, Xu Y, Li H, Chen H, Yuan Z. Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomater Sci 2021; 10:51-84. [PMID: 34882762 DOI: 10.1039/d1bm00317h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is a leading cause of death worldwide, accounting for an estimated 10 million deaths by 2020. Over the decades, various strategies for tumor therapy have been developed and evaluated. Photodynamic therapy (PDT) has attracted increasing attention due to its unique characteristics, including low systemic toxicity and minimally invasive nature. Despite the excellent clinical promise of PDT, hypoxia is still the Achilles' heel associated with its oxygen-dependent nature related to increased tumor proliferation, angiogenesis, and distant metastases. Moreover, PDT-mediated oxygen consumption further exacerbates the hypoxia condition, which will eventually lead to the poor effect of drug treatment and resistance and irreversible tumor metastasis, even limiting its effective application in the treatment of hypoxic tumors. Hypoxia, with increased oxygen consumption, may occur in acute and chronic hypoxia conditions in developing tumors. Tumor cells farther away from the capillaries have much lower oxygen levels than cells in adjacent areas. However, it is difficult to change the tumor's deep hypoxia state through different ways to reduce the tumor tissue's oxygen consumption. Therefore, it will become more difficult to cure malignant tumors completely. In recent years, numerous investigations have focused on improving PDT therapy's efficacy by providing molecular oxygen directly or indirectly to tumor tissues. In this review, different molecular oxygen supplementation methods are summarized to alleviate tumor hypoxia from the innovative perspective of using supplemental oxygen. Besides, the existing problems, future prospects and potential challenges of this strategy are also discussed.
Collapse
Affiliation(s)
- Shuheng Qin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| |
Collapse
|
110
|
Li M, Xiao M, Pan Q, Xiong J. Multifunctional nanoplatform based on g-C 3N 4, loaded with MnO 2 and CuS nanoparticals for oxygen self-generation photodynamic/photothermal synergistic therapy. Photodiagnosis Photodyn Ther 2021; 37:102684. [PMID: 34923155 DOI: 10.1016/j.pdpdt.2021.102684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are both promising therapeutic approaches for cancer. Unfortunately, the anticancer efficiency of PDT is restricted by the hypoxic tumor microenvironment and the performance of the photosensitizer (PS) while the efficiency of PTT is limited by the penetration depth of NIR light, making it difficult to further improve the efficiency of the treatment. In this paper, we strategically proposed a multifunctional nano-platform based on g-C3N4 and loaded with CuS and MnO2 nanoparticals. Interestingly, the obtained F127@CNs-CuS/MnO2 nano-platform with high singlet oxygen quantum yield and excellent photothermal performance were used in synergistic PTT and PDT therapy to cope with the limitation of single mode cancer treatment under irradiation and has greatly improved the treatment effect. Additionally, MnO2 nanoparticles loaded on the CNs surface could not only generate oxygen to ameliorate hypoxia in the tumor environment by reacting with H2O2 in tumor cells, but also react with the over-expressed reduced glutathione (GSH) in cancer cells to further improve the synergistic therapeutic effect. In the in vitro hepatocarcinoma cell inactivation experiment, the maximum cell inactivation efficiency of the PDT, PTT and PDT/PTT synergistic treatment group reached at 65% (F127@CNs-MnO2), 69.2% (CNs-MnO2) and 88.6% (F127@CNs-MnO2) respectively, which means that the F127@CNs-CuS/MnO2-mediated PTT/PDT synergy anticancer treatment was more effective than single mode therapy. In summary, the innovative multifunctional nanoplatform F127@CNs-CuS/MnO2 used for synergistic PTT and PDT treatment has greatly improved the inactivation efficiency of cancer cells and has provided a new scheme for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Mucang Xiao
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Qilin Pan
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
| | - Jianwen Xiong
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
111
|
Nitric oxide nano-prodrug platform with synchronous glutathione depletion and hypoxia relief for enhanced photodynamic cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112616. [DOI: 10.1016/j.msec.2021.112616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 01/10/2023]
|
112
|
Lu J, Jiang Z, Ren J, Zhang W, Li P, Chen Z, Zhang W, Wang H, Tang B. One-Pot Synthesis of Multifunctional Carbon-Based Nanoparticle-Supported Dispersed Cu 2+ Disrupts Redox Homeostasis to Enhance CDT. Angew Chem Int Ed Engl 2021; 61:e202114373. [PMID: 34811855 DOI: 10.1002/anie.202114373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 12/11/2022]
Abstract
In chemodynamic therapy (CDT), the levels of reactive oxygen species (ROS) production plays an important role for evaluating the therapeutic efficacy. However, the high levels of glutathione (GSH) in tumor cells consume the ROS, directly reducing the therapeutic efficiency. Herein, we synthesized carbon-based nanoparticle (Cu-cys CBNPs) using one-pot strategy, which consume GSH via redox reactions to produce Cu+ that catalyze H2 O2 to produce . OH, thus the ROS level was observably increased through this synergistic effect. In vivo experiments further revealed that Cu-cys CBNPs could effectively inhibit tumor growth. Additionally, Cu-cys CBNPs can affect the activity of some protein sulfhydryl groups in cells, which was assessed by rdTOP-ABPP assay. In general, this study not only provides a potential CDT drug, but also provides a strategy for one-pot synthesis of multifunctional nanomaterials.
Collapse
Affiliation(s)
- Jun Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jie Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
113
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
114
|
Ma H, Long S, Cao J, Xu F, Zhou P, Zeng G, Zhou X, Shi C, Sun W, Du J, Han K, Fan J, Peng X. New Cy5 photosensitizers for cancer phototherapy: a low singlet-triplet gap provides high quantum yield of singlet oxygen. Chem Sci 2021; 12:13809-13816. [PMID: 34760166 PMCID: PMC8549779 DOI: 10.1039/d1sc04570a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023] Open
Abstract
Highly efficient triplet photosensitizers (PSs) have attracted increasing attention in cancer photodynamic therapy where photo-induced reactive oxygen species (ROSs, such as singlet oxygen) are produced via singlet–triplet intersystem crossing (ISC) of the excited photosensitizer to kill cancer cells. However, most PSs exhibit the fatal defect of a generally less-than-1% efficiency of ISC and low yield of ROSs, and this defect strongly impedes their clinical application. In the current work, a new strategy to enhance the ISC and high phototherapy efficiency has been developed, based on the molecular design of a thio-pentamethine cyanine dye (TCy5) as a photosensitizer. The introduction of an electron-withdrawing group at the meso-position of TCy5 could dramatically reduce the singlet–triplet energy gap (ΔEst) value (from 0.63 eV to as low as 0.14 eV), speed up the ISC process (τISC = 1.7 ps), prolong the lifetime of the triplet state (τT = 319 μs) and improve singlet oxygen (1O2) quantum yield to as high as 99%, a value much higher than those of most reported triplet PSs. Further in vitro and in vivo experiments have shown that TCy5-CHO, with its efficient 1O2 generation and good biocompatibility, causes an intense tumor ablation in mice. This provides a new strategy for designing ideal PSs for cancer photo-therapy. The electron-withdrawing group at the meso-position of Thio-Cy5 could dramatically reduce the singlet–triplet energy gap, and speed up the intersystem crossing process.![]()
Collapse
Affiliation(s)
- He Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Jianfang Cao
- School of Chemical Engineering, Dalian University of Technology Panjin Campus Panjin 124221 China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical and Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457, Zhongshan Road Dalian 116023 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
115
|
Xu Y, Tan Y, Ma X, Jin X, Tian Y, Li M. Photodynamic Therapy with Tumor Cell Discrimination through RNA-Targeting Ability of Photosensitizer. Molecules 2021; 26:5990. [PMID: 34641533 PMCID: PMC8512109 DOI: 10.3390/molecules26195990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
Photodynamic therapy (PDT) represents an effective treatment to cure cancer. The targeting ability of the photosensitizer is of utmost importance. Photosensitizers that discriminate cancer cells can avoid the killing of normal cells and improve PDT efficacy. However, the design and synthesis of photosensitizers conjugated with a recognition unit of cancer cell markers is complex and may not effectively target cancer. Considering that the total RNA content in cancer cells is commonly higher than in normal cells, this study has developed the photosensitizer QICY with RNA-targeting abilities for the discrimination of cancer cells. QICY was specifically located in cancer cells rather than normal cells due to their stronger electrostatic interactions with RNA, thereby further improving the PDT effects on the cancer cells. After intravenous injection into mice bearing a xenograft tumor, QICY accumulated into the tumor location through the enhanced permeability and retention effect, automatically targeted cancer cells under the control of RNA, and inhibited tumor growth under 630 nm laser irradiation without obvious side effects. This intelligent photosensitizer with RNA-targeting ability not only simplifies the design and synthesis of cancer-cell-targeting photosensitizers but also paves the way for the further development of highly efficient PDTs.
Collapse
Affiliation(s)
- Yuan Xu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yang Tan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116023, China; (Y.T.); (X.M.); (X.J.)
| | - Xiuqin Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116023, China; (Y.T.); (X.M.); (X.J.)
| | - Xiaoyi Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116023, China; (Y.T.); (X.M.); (X.J.)
| | - Ye Tian
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Miao Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116023, China; (Y.T.); (X.M.); (X.J.)
| |
Collapse
|
116
|
Liang Y, Zhang L, Peng C, Zhang S, Chen S, Qian X, Luo W, Dan Q, Ren Y, Li Y, Zhao B. Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy. Acta Pharm Sin B 2021; 11:3231-3243. [PMID: 34729312 PMCID: PMC8546666 DOI: 10.1016/j.apsb.2021.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis, as a newly discovered cell death form, has become an attractive target for precision cancer therapy. Several ferroptosis therapy strategies based on nanotechnology have been reported by either increasing intracellular iron levels or by inhibition of glutathione (GSH)-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4). However, the strategy by simultaneous iron delivery and GPX4 inhibition has rarely been reported. Herein, novel tumor microenvironments (TME)-activated metal-organic frameworks involving Fe & Cu ions bridged by disulfide bonds with PEGylation (FCSP MOFs) were developed, which would be degraded specifically under the redox TME, simultaneously achieving GSH-depletion induced GPX4 inactivation and releasing Fe ions to produce ROS via Fenton reaction, therefore causing ferroptosis. More ROS could be generated by the acceleration of Fenton reaction due to the released Cu ions and the intrinsic photothermal capability of FCSP MOFs. The overexpressed GSH and H2O2 in TME could ensure the specific TME self-activated therapy. Better tumor therapeutic efficiency could be achieved by doxorubicin (DOX) loading since it can not only cause apoptosis, but also indirectly produce H2O2 to amplify Fenton reaction. Remarkable anti-tumor effect of obtained FCSP@DOX MOFs was verified via both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Peng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Cerebrovascular Diseases, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519099, China
| | - Shiyu Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siwen Chen
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Qian
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qing Dan
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yongyan Ren
- Central Laboratory, Southern Medical University, Guangzhou 510515, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Corresponding authors.
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Corresponding authors.
| |
Collapse
|
117
|
Zhong H, Huang P, Yan P, Chen P, Shi Q, Zhao Z, Chen J, Shu X, Wang P, Yang B, Zhou Z, Chen J, Pang J, Tu Y, Liu L, Zhang X. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv Healthc Mater 2021; 10:e2100770. [PMID: 34190424 DOI: 10.1002/adhm.202100770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/19/2021] [Indexed: 11/05/2022]
Abstract
The antioxidant defense system in malignant cells, which involves antioxidant enzymes and antioxidant molecules, is an innate barrier to photodynamic therapy (PDT). Because of the complexity of the endogenous antioxidant mechanisms of these cells, simply inhibiting individual antioxidant pathways has a limited effect on improving the lethality of ROS. To enhance the efficacy of PDT for tumor treatment, a versatile nanoparticle (NP)-based drug is developed, which the authors call PZB NP, containing the glutathione inhibitor l-buthionine sulfoximine (BSO) and the heme oxygenase 1 (HO-1) inhibitor protoporphyrin zinc(II) (ZnPP) to suppress the innate antioxidant defense system of cancer cells in a two-pronged manner. BSO reduces intracellular glutathione levels to minimize ROS elimination and protein protection during PDT, and ZnPP inhibits the ROS-stimulated upregulation of the antioxidant HO-1, thus preventing ROS removal by cells after PDT. Thus, BSO and ZnPP synergistically suppress the antioxidant defense systems of cancer cells both during and after protoporphyrin-IX-mediated PDT in a two-pronged manner, resulting in tumor cell death through excess oxidative pressure. The results demonstrate that the construction of nanodrugs having dual antioxidation defense suppression properties is a promising route for the development of highly efficient ROS-based therapies.
Collapse
Affiliation(s)
- Hao Zhong
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Pei‐Ying Huang
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Ping Yan
- Department of Ultrasonography The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 P. R. China
| | - Pei‐Ling Chen
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Qun‐Yin Shi
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Ze‐An Zhao
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Jing‐Xuan Chen
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Xian Shu
- Department of Ultrasonography The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 P. R. China
| | - Ping Wang
- Department of Ultrasonography The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 P. R. China
| | - Bin Yang
- Department of Biomedical Engineering School of Basic Medical Science Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Zheng‐Zheng Zhou
- School of Public Health Southern Medical University Guangzhou 510515 P. R. China
| | - Jian‐Jun Chen
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Jian‐Xin Pang
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Ying‐Feng Tu
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Li‐Han Liu
- Guangdong Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
118
|
Xu G, Lee LC, Kwok CW, Leung PK, Zhu J, Lo KK. Utilization of Rhenium(I) Polypyridine Complexes Featuring a Dinitrophenylsulfonamide Moiety as Biothiol‐Selective Phosphorogenic Bioimaging Reagents and Photocytotoxic Agents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guang‐Xi Xu
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Lawrence Cho‐Cheung Lee
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Cyrus Wing‐Ching Kwok
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Peter Kam‐Keung Leung
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Jing‐Hui Zhu
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Kenneth Kam‐Wing Lo
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
- Center of Functional Photonics City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| |
Collapse
|
119
|
Xie A, Li H, Hao Y, Zhang Y. Tuning the Toxicity of Reactive Oxygen Species into Advanced Tumor Therapy. NANOSCALE RESEARCH LETTERS 2021; 16:142. [PMID: 34518937 PMCID: PMC8438097 DOI: 10.1186/s11671-021-03599-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The biological functions and toxic effects of reactive oxygen species (ROS) are generally entangled. A large amount of ROS may cause oxidative damage to cell biomolecules, leading to cell death. Tumor treatment can be carried out by using the toxicity of ROS, and various nanosystems related to ROS have been designed. In fact, the level of active oxygen in the biological microenvironment can be regulated in advanced therapeutics via designed nanoscale engineering, which can open up a new direction of treatment with specific simplicity. In this progress report, the authors first introduced how ROS causes cell death. Then, recent studies on converting the inherent toxicity from ROS into advanced treatment tools are highlighted.
Collapse
Affiliation(s)
- An Xie
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230000 Anhui China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230000 Anhui China
| | - He Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yumei Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yujia Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
120
|
Liu S, Zhang W, Chen Q, Hou J, Wang J, Zhong Y, Wang X, Jiang W, Ran H, Guo D. Multifunctional nanozyme for multimodal imaging-guided enhanced sonodynamic therapy by regulating the tumor microenvironment. NANOSCALE 2021; 13:14049-14066. [PMID: 34477686 DOI: 10.1039/d1nr01449h] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sonodynamic therapy (SDT) is a highly promising approach for cancer therapy, but its efficacy is severely hampered by the low specificity of sonosensitizers and the unfavorable characteristics of the tumor microenvironment (TME), such as hypoxia and glutathione (GSH) overexpression. To solve these problems, in this work, we encapsulated IR780 and MnO2 in PLGA and linked Angiopep-2 (Ang) to synthesize a multifunctional nanozyme (Ang-IR780-MnO2-PLGA, AIMP) to enhance SDT. With Ang functionalization to facilitate blood-brain barrier (BBB) penetration and glioma targeting, and through the function of IR780, these nanoparticles (NPs) showed improved targeting of cancer cells, especially mitochondria, and spread deep into tumor centers. Upon low-intensity focused ultrasound (LIFU) irradiation, reactive oxygen species (ROS) were produced and induced tumor cell apoptosis. Combined with the specific mitochondria-targeting ability of IR780, the sonodynamic effects were amplified because mitochondria are sensitive to ROS. In addition, MnO2 exhibited enzyme-like activity, reacting with the high levels of hydrogen protons (H+), H2O2 and GSH in the TME to continuously produce oxygen and consume GSH, which further enhanced the effect of SDT. Moreover, Mn2+ can be released in response to TME stimulation and used as a magnetic resonance (MR) contrast agent. In addition, IR780 has photoacoustic (PA)/fluorescence (FL) imaging capabilities. Our results demonstrated that AIMP NPs subjected to LIFU triggering maximally enhanced the therapeutic effect of SDT by multiple mechanisms, including multiple targeting, deep penetration, oxygen supply in situ and GSH depletion, thereby significantly inhibiting tumor growth and distal metastasis without systemic toxicity. In summary, this multifunctional nanozyme provides a promising strategy for cancer diagnosis and treatment under the intelligent guidance of multimodal imaging (PA/FL/MR) and may be a safe clinical translational method.
Collapse
Affiliation(s)
- Shuling Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, Wu C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021; 277:121110. [PMID: 34482088 DOI: 10.1016/j.biomaterials.2021.121110] [Citation(s) in RCA: 402] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.
Collapse
Affiliation(s)
- Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaixin Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
122
|
Yu L, Zhang X, Li X, Zhang Z, Niu X, Wang X, Wang W, Yuan Z. A pH-responsive Pt-based nanoradiosensitizer for enhanced radiotherapy via oxidative stress amplification. NANOSCALE 2021; 13:13735-13745. [PMID: 34477648 DOI: 10.1039/d1nr02043a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor radioresistance is a major issue in radiotherapy. To address it, a pH-responsive nanoradiosensitizer was synthesized employing a simple method. Initially, chloroplatinic acid was reduced by human serum albumin (HSA) to form HSA-wrapped Pt@HSA nanoparticles (NPs). Subsequently, cinnamicaldehyde (CA) was grafted on Pt@HSA via aldimine condensation to obtain nanoradiosensitizer Pt@HSA/CA NPs. CA would be released in tumor cells (pH = 5.5) to induce the production of reactive oxygen species, including H2O2, ˙OH, etc. The increased decomposition of H2O2 catalyzed by the NPs resulted in enhanced production of oxygen, leading to hypoxia relief of the tumor cells, which is beneficial for radiotherapy. Due to the high X-ray attenuation coefficient of Pt, Pt@HSA/CA NPs enhance the energy deposition of radiation. Cytotoxicity assay revealed that Pt@HSA/CA NPs resulted in a cell death rate of 77%, which was 24.4% higher than that of Pt@HSA NPs even under low-dose X-ray irradiation of 4 Gy. Colony formation assay demonstrated that the sensitization enhancement ratio was 1.37, indicating that Pt@HSA/CA NPs displayed remarkable radiosensitizing ability. Notably, in vivo results indicated that the NPs could increase the tumor inhibition rate to 91.2% with negligible side effects to normal tissues. These results demonstrate that Pt@HSA/CA NPs had outstanding tumor curative efficacy and hypotoxicity.
Collapse
Affiliation(s)
- Licheng Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Zhu D, Zhu XH, Ren SZ, Lu YD, Zhu HL. Manganese dioxide (MnO2) based nanomaterials for cancer therapies and theranostics. J Drug Target 2021; 29:911-924. [DOI: 10.1080/1061186x.2020.1815209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Dong Lu
- Childrens Hospital, Neonatal Medical Center, Nanjing Medical University, Nanjing, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
124
|
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021; 50:6013-6041. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Citation(s) in RCA: 292] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH), the main redox buffer, has long been recognized as a pivotal modulator of tumor initiation, progression and metastasis. It is also implicated in the resistance of platinum-based chemotherapy and radiation therapy. Therefore, depleting intracellular GSH was considered a potent solution to combating cancer. However, reducing GSH within cancer cells alone always failed to yield desirable therapeutic effects. In this regard, the convergence of GSH-scavenging agents with therapeutic drugs has thus been pursued in clinical practice. Unfortunately, the therapeutic outcomes are still unsatisfactory due to untargeted drug delivery. Advanced nanomedicine of synergistic GSH depletion and cancer treatment has attracted tremendous interest because they promise to deliver superior therapeutic benefits while alleviating life-threatening side effects. In the past five years, the authors and others have demonstrated that numerous nanomedicines, by simultaneously delivering GSH-depleting agents and therapeutic components, boost not only traditional chemotherapy and radiotherapy but also multifarious emerging treatment modalities, including photodynamic therapy, sonodynamic therapy, chemodynamic therapy, ferroptosis, and immunotherapy, to name a few, and achieved decent treatment outcomes in a large number of rodent tumor models. In this review, we summarize the most recent progress in engineering nanomedicine for GSH depletion-enhanced cancer therapies. Biosynthesis of GSH and various types of GSH-consuming strategies will be briefly introduced. The challenges and perspectives of leveraging nanomedicine for GSH consumption-augmented cancer therapies will be discussed at the end.
Collapse
Affiliation(s)
- Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| |
Collapse
|
125
|
Liu Y, Wu W, Wang Y, Han S, Yuan Y, Huang J, Shuai X, Peng Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater Sci 2021; 9:6673-6690. [PMID: 34378568 DOI: 10.1039/d1bm00748c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer (PC), characterized by its dense desmoplastic stroma and hypovascularity, is one of the most lethal cancers with a poor prognosis in the world. Traditional treatments such as chemotherapy, radiotherapy, and targeted therapy show little benefit in the survival rate in patients with advanced PC due to the poor penetration and resistance of drugs, low radiosensitivity, or severe side effects. Gene therapy can modify the morbific and drug-resistant genes as well as insert the tumor-suppressing genes, which has been shown to have great potential in PC treatment. The development of safe non-viral vectors for the highly efficient delivery of nucleic acids is essential for effective gene therapy, and has been attracting much attention. In this review, we first summarized the PC-promoting genes and gene therapies using plasmid DNA, mRNA, miRNA/siRNA-based RNA interference technology, and genome editing technology. Second, the commonly used non-viral nanovector and theranostic gene delivery nanosystem, especially the tumor microenvironment-sensitive delivery nanosystem and the cell/tumor-penetrating delivery nanosystem, were introduced. Third, a combination of non-viral nanovector-based gene therapy and other therapies, such as immunotherapy, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT), for PDAC treatment was discussed. Finally, a number of clinical trials have demonstrated the proof-of-principle that gene therapy or the combination of gene therapy and chemotherapy using non-viral vectors can inhibit the progression of PC. Although most of the non-viral vector-based gene therapies and their combination therapy are still under preclinical research, the development of genetics, molecular biology, and novel vectors would promote the clinical transformation of gene therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhao Peng
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
126
|
Wei F, Kuang S, Rees TW, Liao X, Liu J, Luo D, Wang J, Zhang X, Ji L, Chao H. Ruthenium(II) complexes coordinated to graphitic carbon nitride: Oxygen self-sufficient photosensitizers which produce multiple ROS for photodynamic therapy in hypoxia. Biomaterials 2021; 276:121064. [PMID: 34391019 DOI: 10.1016/j.biomaterials.2021.121064] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022]
Abstract
The photodynamic therapy (PDT) of cancer is limited by tumor hypoxia as PDT efficiency depends on O2 concentration. A novel oxygen self-sufficient photosensitizer (Ru-g-C3N4) was therefore designed and synthesized via a facile one-pot method in order to overcome tumor hypoxia-induced PDT resistance. The photosensitizer is based on [Ru(bpy)2]2+ coordinated to g-C3N4 nanosheets by Ru-N bonding. Compared to pure g-C3N4, the resulting nanosheets exhibit increased water solubility, stronger visible light absorption, and enhanced biocompatibility. Once Ru-g-C3N4 is taken up by hypoxic tumor cells and exposed to visible light, the nanosheets not only catalyze the decomposition of H2O2 and H2O to generate O2, but also catalyze H2O2 and O2 concurrently to produce multiple ROS (•OH, •O2-, and 1O2). In addition, Ru-g-C3N4 affords luminescence imaging, while continuously generating O2 to alleviate hypoxia greatly improving PDT efficacy. To the best of our knowledge, this oxygen self-sufficient photosensitizer produced via grafting a metal complex onto g-C3N4 is the first of its type to be reported.
Collapse
Affiliation(s)
- Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Diqing Luo
- Department of Dermatology, The Eastern Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xiting Zhang
- Department of Chemistry, University of Hong Kong, Pokfulam Road, S.A.R., Hong Kong, China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
127
|
Zhu T, Yu Q, Feng Z, Zhao W, Liu S, Huang W, Zhao Q. Photothermal Responsive Singlet Oxygen Nanocarriers for Hypoxic Cancer Cell Ablation. Chembiochem 2021; 22:2546-2552. [PMID: 34101959 DOI: 10.1002/cbic.202100098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Hypoxia in aggressively proliferating tumor cells has been demonstrated to restrict the efficiency of photodynamic therapy owing to its oxygen (O2 )-dependent generation of singlet oxygen (1 O2 ) from photosensitizers under light irradiation. To address this problem, we propose a small-molecule dye-based 1 O2 capturing agent, B1. B1 not only bears a near-infrared absorbing azo-boron dipyrromethene backbone, but also has 1,4-dimethylnaphthalene, which facilitates the capture of 1 O2 to form endoperoxide (B1-SO). B1-SO undergoes a reversible reaction via near-infrared photothermal stimulation, thus allowing 1 O2 release. Based on this mechanism, stable B1-SO containing micelles (B1-SO NPs) were prepared and employed as 1 O2 nanocarriers to ablate cancer cells in vitro. Taking advantage of this O2 -independent 1 O2 releasing ability, B1-SO NPs were demonstrated to have efficient cytotoxicity under near-infrared irradiation, especially in a hypoxic environment. The unique O2 -independent 1 O2 generation process of B1-SO NPs suggests they can be used as novel cancer phototherapy agents.
Collapse
Affiliation(s)
- Ting Zhu
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| | - Qi Yu
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
- School of Food and Biology Engineering, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Zheng Feng
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| | - Weili Zhao
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE) &, Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, P. R. China
| |
Collapse
|
128
|
Ruan J, Liu H, Chen B, Wang F, Wang W, Zha Z, Qian H, Miao Z, Sun J, Tian T, He Y, Wang H. Interfacially Engineered Zn xMn 1-xS@Polydopamine Hollow Nanospheres for Glutathione Depleting Photothermally Enhanced Chemodynamic Therapy. ACS NANO 2021; 15:11428-11440. [PMID: 34152125 DOI: 10.1021/acsnano.1c01077] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fenton-like reactions driven by manganese-based nanostructures have been widely applied in cancer treatment owing to the intrinsic physiochemical properties of these nanostructures and their improved sensitivity to the tumor microenvironment. In this work, ZnxMn1-xS@polydopamine composites incorporating alloyed ZnxMn1-xS and polydopamine (PDA) were constructed, in which the Fenton-like reactions driven by Mn ions can be tuned by a controllable release of Mn ions in vitro and in vivo. As a result, the ZnxMn1-xS@PDA exhibited good biocompatibility with normal cells but was specifically toxic to cancer cells. In addition, the shell thickness of PDA was carefully investigated to obtain excellent specific toxicity to cancer cells and promote synergistic chemodynamic and photothermal therapies. Overall, this work highlights an alternative strategy for fabricating high-performance, multifunctional composite nanostructures for a combined cancer treatment.
Collapse
Affiliation(s)
- Juan Ruan
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hang Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Benjin Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Fei Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jianan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Tian Tian
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230036, P. R. China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230036, P. R. China
| |
Collapse
|
129
|
Liu J, Zhang M, Wu Y. In situ synthesis of fluorescent polydopamine on biogenic MnO 2 nanoparticles as stimuli responsive multifunctional theranostics. Biomater Sci 2021; 9:5897-5906. [PMID: 34286709 DOI: 10.1039/d1bm00720c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multifunctional nanocomposites have drawn great attention in clinical applications because of their ability to integrate diagnostic and therapeutic functions. Manganese dioxide (MnO2), owing to its biocompatibility and magnetic resonance imaging (MRI) properties, has been widely applied in biomedical research. Our previous work on biogenic MnO2 nanoparticles (Bio-MnO2 NPs) revealed that intrinsic photothermal properties and stimuli-responsive MRI imaging are particularly promising for the development of theranostic systems. However, further improvement in the photothermal therapy (PTT) performance of Bio-MnO2 NPs is still required. Herein, we have improved the PTT efficiency of Bio-MnO2 NPs by in situ synthesis of fluorescent polydopamine (PDA) while generating additional stimuli responsive fluorescence properties in this system, thus further broadening the scope of their theranostic functions. These synthesis conditions are mild and green. The fluorescence of PDA was quenched by capping Bio-MnO2 NPs and could be recovered upon degradation of Bio-MnO2 NPs inside tumour cells. Additionally, Mn2+ released from the nanoparticles can support T1-weighted MR imaging. Compared to the Bio-MnO2 NPs alone, the integration of Bio-MnO2 NPs and PDA significantly enhances the photothermal performance in vitro and in vivo. With their high biocompatibility, these multifunctional composite nanodevices hold great potential for fluorescence imaging and MRI-guided photothermal therapy.
Collapse
Affiliation(s)
- Jin Liu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | |
Collapse
|
130
|
Ding B, Yue J, Zheng P, Ma P, Lin J. Manganese oxide nanomaterials boost cancer immunotherapy. J Mater Chem B 2021; 9:7117-7131. [PMID: 34279012 DOI: 10.1039/d1tb01001h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy, a strategy that leverages the host immune function to fight against cancer, plays an increasingly important role in clinical tumor therapy. In spite of the great success achieved in not only clinical treatment but also basic research, cancer immunotherapy still faces many huge challenges. Manganese oxide nanomaterials (MONs), as ideal tumor microenvironment (TME)-responsive biomaterials, are able to dramatically elicit anti-tumor immune responses in multiple ways, indicating great prospects for immunotherapy. In this review, on the basis of different mechanisms to boost immunotherapy, major highlighted topics are presented, covering adjusting an immunosuppressive TME by generating O2 (like O2-sensitized photodynamic therapy (PDT), programmed cell death ligand-1 (PD-L1) expression downregulation, reprogramming tumor-associated macrophages (TAMs), and restraining tumor angiogenesis and lactic acid exhaustion), inducing immunogenic cell death (ICD), photothermal therapy (PTT) induction, activating the stimulator of interferon gene (STING) pathway and immunoadjuvants for nanovaccines. We hope that this review will provide holistic understanding about MONs and their application in cancer immunotherapy, and thus pave the way to the translation from bench to bedside in the future.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and Institute of Frontier and Interdisciplinarity Science and Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
131
|
Broadwater D, Medeiros HCD, Lunt RR, Lunt SY. Current Advances in Photoactive Agents for Cancer Imaging and Therapy. Annu Rev Biomed Eng 2021; 23:29-60. [PMID: 34255992 DOI: 10.1146/annurev-bioeng-122019-115833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Richard R Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; , .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; ,
| |
Collapse
|
132
|
Amplified antitumor efficacy by a targeted drug retention and chemosensitization strategy-based "combo" nanoagent together with PD-L1 blockade in reversing multidrug resistance. J Nanobiotechnology 2021; 19:200. [PMID: 34225744 PMCID: PMC8256488 DOI: 10.1186/s12951-021-00947-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that multidrug resistance (MDR) is a critical factor in the low efficacy of cancer chemotherapy. The main mechanism of MDR arises from the overexpression of P-glycoprotein (P-gp), which actively enhances drug efflux and limits the effectiveness of chemotherapeutic agents. RESULTS In this study, we fabricated a "combo" nanoagent equipping with triple synergistic strategies for enhancing antitumor efficacy against MDR cells. Tumor homing-penetrating peptide endows the nanosystem with targeting and penetrating capabilities in the first stage of tumor internalization. The abundant amine groups of polyethylenimine (PEI)-modified nanoparticles then trigger a proton sponge effect to promote endo/lysosomal escape, which enhances the intracellular accumulation and retention of anticancer drugs. Furthermore, copper tetrakis(4-carboxyphenyl)porphyrin (CuTCPP) encapsulated in the nanosystem, effectively scavenges endogenous glutathione (GSH) to reduce the detoxification mediated by GSH and sensitize the cancer cells to drugs, while simultaneously serving as a photoacoustic imaging (PAI) contrast agent for image visualization. Moreover, we also verify that these versatile nanoparticles in combination with PD-1/PD-L1 blockade therapy can not only activate immunological responses but also inhibit P-gp expression to obliterate primary and metastatic tumors. CONCLUSION This work shows a significant enhancement in therapeutic efficacy against MDR cells and syngeneic tumors by using multiple MDR reversing strategies compared to an equivalent dose of free paclitaxel.
Collapse
|
133
|
Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021; 50:9152-9201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) has been extensively investigated for decades for tumor treatment because of its non-invasiveness, spatiotemporal selectivity, lower side-effects, and immune activation ability. It can be a promising treatment modality in several medical fields, including oncology, immunology, urology, dermatology, ophthalmology, cardiology, pneumology, and dentistry. Nevertheless, the clinical application of PDT is largely restricted by the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death, tumor resistance to the therapy, and the severe pain induced by the therapy. Recently, various photosensitizer formulations and therapy strategies have been developed to overcome these barriers. Significantly, the introduction of nanomaterials in PDT, as carriers or photosensitizers, may overcome the drawbacks of traditional photosensitizers. Based on this, nanocomposites excited by various light sources are applied in the PDT of deep-seated tumors. Modulation of cell death pathways with co-delivered reagents promotes PDT induced tumor cell death. Relief of tumor resistance to PDT with combined therapy strategies further promotes tumor inhibition. Also, the optimization of photosensitizer formulations and therapy procedures reduces pain in PDT. Here, a systematic summary of recent advances in the fabrication of photosensitizers and the design of therapy strategies to overcome barriers in PDT is presented. Several aspects important for the clinical application of PDT in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jianlei Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
135
|
Zheng N, Luo X, Zhang Z, Wang A, Song W. Cationic Polyporphyrins as siRNA Delivery Vectors for Photodynamic and Gene Synergistic Anticancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27513-27521. [PMID: 34086446 DOI: 10.1021/acsami.1c07662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Successful gene therapy is highly dependent on the efficiency of gene delivery, which is mostly achieved by the carrier. Current gene carriers are generally nontherapeutic and take over most of the proportion in the delivery systems. Therefore, a library of polymerized and cationic photosensitive drugs (polyphotosensitizers, pPSs) with HIF-1α siRNA delivery capability is constructed to realize using "drug" to deliver "gene". The pPS component acts as both a therapeutic carrier for intracellular HIF-1α siRNA delivery and a photosensitive drug with photodynamic therapy (PDT). A reactive oxygen species (ROS)-cleavable linker is used to polymerize PS, allowing the successful segregation of PS monomers in space, avoiding the undesired aggregation-caused quenching (ACQ) effect and enhancing the in vitro and in vivo PDT effect. The complexes formed by pPSs and HIF-1α siRNA exhibited desired siRNA condensation and serum stability at the optimal conditions (pPSs with guanidines/siRNA weight ratio of 15), efficient intracellular internalization, and gene-silencing efficiency (60%) compared with commercial available transfection reagents (40%), as well as synergistic in vitro and in vivo phototoxicity for the combination PDT-gene therapy toward cancer treatment. This study provides a promising paradigm for the design of both the gene delivery carrier and the photosensitizer, as well as for broad utilities in the combination therapy toward cancer treatment.
Collapse
Affiliation(s)
- Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian 116044, Liaoning, P. R. China
| | - Zhiyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian 116044, Liaoning, P. R. China
| | - Wangze Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
136
|
Fan C, Zhai S, Hu W, Chi S, Song D, Liu Z. Gold nanoclusters as a GSH activated mitochondrial targeting photosensitizer for efficient treatment of malignant tumors. RSC Adv 2021; 11:21384-21389. [PMID: 35478781 PMCID: PMC9034094 DOI: 10.1039/d1ra03469c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
Gold nanoclusters (Au NCs), which have the characteristics of small size, near infrared (NIR) absorption and long triplet excited lifetime, have been used as a new type of photosensitizer for deep tissue photodynamic therapy (PDT). However, the therapeutic efficiency of the nano-system based on Au NCs still needs to be improved. Herein, we proposed a strategy using Mito-Au25@MnO2 nanocomposites to achieve enhanced PDT. Au25(Capt)18− nanoclusters were applied as photosensitizers and further modified with peptides to target mitochondrial and MnO2 nanosheets to consume glutathione (GSH). In the presence of GSH, Mito-Au25@MnO2 dis-integrated and Mito-Au25 nanoparticles realized accurate mitochondrial targeting. Under the irradiation of 808 nm light, the nanocomposite ensured highly efficient PDT both in vitro and in vivo via oxidation pressure elevation and mitochondrial targeting in cancer cells. This is the first example of mitochondrial targeting Au NCs capable of improving the efficiency of photodynamic therapy. Mito-Au25@MnO2 can be activated by consuming GSH and elevating oxidation pressure in cancer cells.![]()
Collapse
Affiliation(s)
- Chen Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Shuyang Zhai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Siyu Chi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Dan Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
137
|
Luan X, Pan Y, Gao Y, Song Y. Recent near-infrared light-activated nanomedicine toward precision cancer therapy. J Mater Chem B 2021; 9:7076-7099. [PMID: 34124735 DOI: 10.1039/d1tb00671a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Light has been present throughout the history of mankind and even the universe. It is of great significance to human life, contributing to energy, agriculture, communication, and much more. In the biomedical field, light has been developed as a switch to control medical processes with minimal invasion and high spatiotemporal selectivity. During the past three years, near-infrared (NIR) light as long-wavelength light has been applied to more than 3000 achievements in biological applications due to its deep penetration depth and low phototoxicity. Remotely controlled cancer therapy usually involves the conversion of biologically inert NIR light. Thus, various materials, especially nanomaterials that can generate reactive oxygen species (ROS), ultraviolet (UV)/visual light, or thermal energy and so on under NIR illumination achieve great potential for the research of nanomedicine. Here, we offered an overview of recent advances in NIR light-activated nanomedicine for cancer therapeutic applications. NIR-light-conversion nanotechnologies for both directly triggering nanodrugs and smart drug delivery toward tumor therapy were discussed emphatically. The challenges and future trends of the use of NIR light in biomedical applications were also provided as a conclusion. We expect that this review will spark inspiration for biologists, materials scientists, pharmacologists, and chemists to fight against diseases and boost the future clinical-translational applications of NIR technology-based precision nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
138
|
Min JS, Hong JY, Lim YG, Ahn JW, Park K. Oxygen-generating glycol chitosan-manganese dioxide nanoparticles enhance the photodynamic effects of chlorin e6 on activated macrophages in hypoxic conditions. Int J Biol Macromol 2021; 184:20-28. [PMID: 34118287 DOI: 10.1016/j.ijbiomac.2021.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023]
Abstract
This study aimed to investigate the use of glycol chitosan (GC) for the synthesis of MnO2 nanoparticles (NPs) and to evaluate whether the prepared GC-MnO2 NPs enhance the light-triggered photodynamic effects of chlorin e6 (Ce6) via the generation of oxygen and alleviation of hypoxia in lipopolysaccharide (LPS)-activated macrophages (RAW 264.7), which produce excessive amounts of reactive oxygen species (ROS). GC-MnO2 NPs were synthesized by a simple reaction between GC and KMnO4 in water. The prepared GC-MnO2 NPs were spherical in shape, with a mean diameter of approximately 60 nm. The particles effectively generated oxygen via H2O2-induced degradation under hypoxic conditions, which led to an increase in the singlet oxygen levels upon laser irradiation. Furthermore, GC-MnO2 NPs significantly enhanced the light-triggered photodynamic effects of Ce6 on activated macrophages under hypoxic conditions, as shown by the increased levels of cell death and cell membrane damage in activated macrophages. Therefore, these results suggest that GC can be used as an alternative natural polymer for the synthesis of MnO2 NPs and that oxygen-generating GC-MnO2 NPs enhance the light-triggered photodynamic effects of Ce6 on activated macrophages by alleviating hypoxia.
Collapse
Affiliation(s)
- Ji Seon Min
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Ji Yeon Hong
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Yong Geun Lim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jae Won Ahn
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
139
|
Li B, Wang X, Hong S, Wang Q, Li L, Eltayeb O, Dong C, Shuang S. MnO 2 nanosheets anchored with polypyrrole nanoparticles as a multifunctional platform for combined photothermal/photodynamic therapy of tumors. Food Funct 2021; 12:6334-6347. [PMID: 34100053 DOI: 10.1039/d1fo00032b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, PPy@MnO2 nanocomposites were first harvested by anchoring MnO2 nanosheets on polypyrrole (PPy) nanoparticles via an in situ redox reaction, then polyethylene glycol (PEG) modifier and methylene blue (MB) photosensitizer were linked through electrostatic interactions to obtain PPy@MnO2-PEG-MB nanoarchitectures. PPy nanoparticles ensure photothermal therapy (PTT) ability and MnO2 nanosheets ameliorate tumor hypoxia for enhanced photodynamic therapy (PDT). Therefore, a multifunctional nanotherapeutic system was constructed for the combined PTT/PDT of tumors. For extracellular photothermal properties, the optimal temperature elevation was 52.6 °C with 54.4% photothermal conversion efficiency. The extracellular PDT ability was measured by detecting 1O2 generation; more 1O2 was produced under acidic conditions in the presence of H2O2 (a simulated tumor microenvironment). The effective cellular uptake of the nanotherapeutic system in HeLa cells was observed by confocal laser scanning microscopy (CLSM). CLSM also indicated that more 1O2 was generated by the nanotherapeutic system as compared to free MB in HeLa cells, confirming the amelioration of tumor hypoxia by MnO2 nanosheets. MTT assays demonstrated that the nanotherapeutic system possessed superior biocompatibility without laser irradiation, and the lowest cell viabilities for single PTT and PDT groups were 13.78%, 38.82% respectively, while there was only 1.29% cell viability in the combined PTT and PDT group. These results suggest that the strategy of assembling PPy with MnO2 for a multifunctional PTT and enhanced PDT nanoplatform was realized, and opens up an unimpeded approach for integrating photothermal reduction materials with MnO2 for use in synergistic PTT and PDT.
Collapse
Affiliation(s)
- Bei Li
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
141
|
Liu Z, Xie Z, Li W, Wu X, Jiang X, Li G, Cao L, Zhang D, Wang Q, Xue P, Zhang H. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. J Nanobiotechnology 2021; 19:160. [PMID: 34051801 PMCID: PMC8164771 DOI: 10.1186/s12951-021-00903-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive or minimally-invasive treatment which applies photosensitizers (PSs) to create reactive oxygen species (ROS) exposed to light trigger to destroy cancer cells. PDT can activate host anti-tumor immune responses but not powerful enough to kill metastatic tumors. Because of its carrier advantage, imaging, and therapeutic function together with enhanced permeability and retention (EPR) effect, nano-materials have already been used in photo-immunotherapy. Herein, photodynamic immunotherapy (PDIT) based on nanotechnology seems to be a hopeful new form of cancer therapy. In this article, we firstly summarize the recent development in photodynamic immunotherapy based on nanotechnology. ![]()
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongjian Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China
| | - Wenting Li
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xinqiang Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiwen Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China. .,Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
142
|
Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS NANO 2021; 15:8039-8068. [PMID: 33974797 DOI: 10.1021/acsnano.1c00498] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer cells frequently exhibit resistance to various molecular and nanoscale drugs, which inevitably affects the drugs' therapeutic outcomes. Overexpression of glutathione (GSH) has been observed in many cancer cells, and solid evidence has corroborated the resulting tumor resistance to a variety of anticancer therapies, suggesting that this biochemical characteristic of cancer cells can be developed as a potential target for cancer treatments. The single treatment of GSH-depleting agents can potentiate the responses of the cancer cells to different cell death stimuli; therefore, as an adjunctive strategy, GSH depletion is usually combined with mainstream cancer therapies for enhancing the therapeutic outcomes. Propelled by the rapid development of nanotechnology, GSH-depleting agents can be readily constructed into anticancer nanomedicines, which have shown a steep rise over the past decade. Here, we review the common GSH-depleting nanomedicines which have been widely applied in synergistic cancer treatments in recent years. Some current challenges and future perspectives for GSH depletion-based cancer therapies are also presented. With the understanding of the structure-property relationship and action mechanisms of these biomaterials, we hope that the GSH-depleting nanotechnology will be further developed to realize more effective disease treatments and even achieve successful clinical translations.
Collapse
Affiliation(s)
- Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Hai-Dong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| |
Collapse
|
143
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark‐Hypoxia by Catalytic Microenvironment‐Tailored Nanoreactors for NIR‐II Fluorescence‐Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 117597 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
144
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark-Hypoxia by Catalytic Microenvironment-Tailored Nanoreactors for NIR-II Fluorescence-Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021; 60:15006-15012. [PMID: 33871140 DOI: 10.1002/anie.202102097] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Singlet oxygen (1 O2 ) has a potent anticancer effect, but photosensitized generation of 1 O2 is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of 1 O2 -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO4 2- catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO4 2- -catalyzed generation of 1 O2 from H2 O2 and protects MoO4 2- from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH. H2 O2 and 1 O2 can freely cross the liposomal membrane, allowing CMTN with a built-in NIR-II ratiometric fluorescent 1 O2 sensor to achieve monitored tumor CDT.
Collapse
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
145
|
Li J, Wang T, Jiang F, Hong Z, Su X, Li S, Han S. Activatable Dual ROS-Producing Probe for Dual Organelle-Engaged Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:4618-4628. [PMID: 35006799 DOI: 10.1021/acsabm.1c00354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photodynamic therapy (PDT) necessitates approaches capable of increasing antitumor effects while decreasing nonspecific photodamage. We herein report an activatable probe (Glu-PyEB) comprising two distinct photosensitizers with mutually suppressed photodynamics. Activation by tumor-associated γ-glutamyltranspeptidase gives rise to a generator of superoxide radical (O2-•) accumulated in lysosomes and a producer of singlet oxygen (1O2) enriched in mitochondria. This enables light-irradiation-triggered damage of lysosomes and mitochondria, robust cell death, and tumor retardation in vivo, showing the use of paired photosensitizers subjected to reciprocally suppressed photodynamics for activatable PDT.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Feng Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Shuang Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China
| |
Collapse
|
146
|
Ke L, Wei F, Liao X, Rees TW, Kuang S, Liu Z, Chen Y, Ji L, Chao H. Nano-assembly of ruthenium(II) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. NANOSCALE 2021; 13:7590-7599. [PMID: 33884385 DOI: 10.1039/d1nr00773d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) is a promising noninvasive cancer treatment. PDT in the clinic faces several hurdles due to the unique tumor environment, a feature of which is high levels of glutathione (GSH). An excess amount of GSH consumes reactive oxygen species (ROS) generated by photosensitizers (PSs), reducing PDT efficiency. Herein, nano-photosensitizers (RuS1 NPs and RuS2 NPs) are reported. These consist of ruthenium complexes joined by disulfide bonds forming GSH sensitive polymer nanoparticles. The NPs achieve enhanced uptake compared to their constituent monomers. Inside cancer cells, high levels of GSH break the S-S bonds releasing PS molecules in the cell. The level of GSH is also then reduced leading to excellent PDT activity. Furthermore, RuS2 NPs functionalized with tumor targeting hyaluronic acid (HA@RuS2 NPs) assessed in vivo were highly effective with minimal side effects. To the best of our knowledge, RuS NPs are the first metal complex-based nano-assembled photosensitizers which exhibit enhanced specificity and consume endogenous GSH simultaneously, thus achieving excellent two-photon PDT efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhou Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
147
|
Zhou D, Liu S, Hu Y, Yang S, Zhao B, Zheng K, Zhang Y, He P, Mo G, Li Y. Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy. J Mater Chem B 2021; 8:3801-3813. [PMID: 32227025 DOI: 10.1039/d0tb00143k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lack of sufficient tumor penetration of the current nanomedicines is a major reason limiting their clinical success in cancer therapy. In this work, we aimed at the development of a novel biodegradable nanoplatform for the selective and controlled delivery of anticancer agents, with improved tumor permeability and the ability to release ultrasmall nanovesicles in the tumor microenvironment. To this end, positively charged nanogels were obtained through the double-crosslinking of chitosan with an ionic physical gelator and a disulfide-containing chemical crosslinker. After conjugation to an anionic oligomer, the cationic nanogels were transformed into negatively charged nanocarriers (CTCP), enabling effective encapsulation of the cationic anticancer agent doxorubicin (DOX) to generate a biodegradable nanomedicine (DOX@CTCP). DOX@CTCP could maintain sustained DOX release and decreased DOX toxicity. Upon arrival at the tumor tissue, the reductive and lysozyme-high microenvironment drives the cleavage of the nanomedicine to release DOX-carrying nanoblocks of smaller size, which together with their acidic-protonable feature achieves an effective therapeutic delivery into cancer cells. The nanomedicine described here showed excellent biocompatibility/biosafety and enhanced in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Dong Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Sainan Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yongjun Hu
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Shiwei Yang
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Bing Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Kaikai Zheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Guoyan Mo
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China. and The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
148
|
Chen Q, Shan X, Shi S, Jiang C, Li T, Wei S, Zhang X, Sun G, Liu J. Tumor microenvironment-responsive polydopamine-based core/shell nanoplatform for synergetic theranostics. J Mater Chem B 2021; 8:4056-4066. [PMID: 32270145 DOI: 10.1039/d0tb00248h] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Theranostic agents that integrate diagnostic and therapeutic modalities have drawn extensive attention due to their ability to deliver real-time imaging-guided tumor treatment. Herein, a novel core-shell polydopamine (PDA)-based theranostic agent (PDA@TA-Fe) was fabricated via a two-step strategy. Upon 808 nm and 1064 nm laser irradiation, this agent exhibited high photothermal conversion efficiencies of 29% and 41%, respectively. After endocytosis into tumor cells, the TA-Fe shell of PDA@TA-Fe gradually disintegrated in the weakly acidic tumor microenvironment (TME), and released the TA as an acidity-activated reductant that could reduce Fe3+ to Fe2+. Subsequently, the generated Fe2+ reacted with H2O2 to generate toxic hydroxyl radicals (˙OH) via the Fenton reaction, which induced the apoptosis of tumor cells and achieved the chemodynamic therapy (CDT). The heat produced by photothermal therapy (PTT) accelerated the ˙OH generation to achieve a synergetic effect of CDT/PTT. In vivo tumor-xenograft imaging and therapeutic assays demonstrated obvious contrast enhancement at the tumor site in the T1/T2-weighted MR imaging and efficient tumor suppression achieved after the intravenous injection of this agent because of the enhanced permeation and retention (EPR) effect. This study offered a new strategy to design an "all-in-one" nanoplatform for T1/T2 MR imaging-guided synergistic cancer treatment of CDT/PTT.
Collapse
Affiliation(s)
- Qian Chen
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Xueru Shan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Suqing Shi
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Chunzhu Jiang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Tinghua Li
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Shanshan Wei
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Xinyu Zhang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Guoying Sun
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China. and Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Jianhua Liu
- Department of Radiology, Second Hospital of Jilin University, Changchun, 130041, P. R. China.
| |
Collapse
|
149
|
Kozani PS, Kozani PS, Malik MT. AS1411-functionalized delivery nanosystems for targeted cancer therapy. EXPLORATION OF MEDICINE 2021; 2:146-166. [PMID: 34723284 PMCID: PMC8555908 DOI: 10.37349/emed.2021.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL) is a multifunctional nucleolar phosphoprotein harboring critical roles in cells such as cell proliferation, survival, and growth. The dysregulation and overexpression of NCL are related to various pathologic and oncological indications. These characteristics of NCL make it an ideal target for the treatment of various cancers. AS1411 is a synthetic quadruplex-forming nuclease-resistant DNA oligonucleotide aptamer which shows a considerably high affinity for NCL, therefore, being capable of inducing growth inhibition in a variety of tumor cells. The high affinity and specificity of AS1411 towards NCL make it a suitable targeting tool, which can be used for the functionalization of therapeutic payloaddelivery nanosystems to selectively target tumor cells. This review explores the advances in NCL-targeting cancer therapy through AS1411-functionalized delivery nanosystems for the selective delivery of a broad spectrum of therapeutic agents.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Carlos Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
| | - Mohammad Tariq Malik
- Departments of Microbiology and Immunology, Regenerative Medicine, and Stem Cell Biology, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
150
|
Sobańska Z, Roszak J, Kowalczyk K, Stępnik M. Applications and Biological Activity of Nanoparticles of Manganese and Manganese Oxides in In Vitro and In Vivo Models. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1084. [PMID: 33922170 PMCID: PMC8145730 DOI: 10.3390/nano11051084] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
The expanding applications of nanotechnology seem to be a response to many technological, environmental, and medical challenges. The unique properties of nanoparticles allow for developing new technologies and therapies. Among many investigated compounds is manganese and its oxides, which in the form of nanoparticles, could be a promising alternative for gadolinium-based contrast agents used in diagnostic imaging. Manganese, which is essential for living organisms as an enzyme cofactor, under excessive exposure-for example, due to water contamination or as an occupational hazard for welders-can lead to neurological disorders, including manganism-a condition similar to Parkinson's disease. This review attempts to summarise the available literature data on the potential applications of manganese and manganese oxide nanoparticles and their biological activity. Some of the published studies, both in vitro and in vivo, show negative effects of exposure to manganese, mainly on the nervous system, whereas other data suggest that it is possible to develop functionalised nanoparticles with negligible toxicity and novel promising properties.
Collapse
Affiliation(s)
- Zuzanna Sobańska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Kornelia Kowalczyk
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Maciej Stępnik
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
- QSAR Lab Ltd., Trzy Lipy 3 St., 80-172 Gdańsk, Poland
| |
Collapse
|