101
|
Facile synthesis of polyoxometalate supported on magnetic graphene oxide as a hybrid catalyst for efficient oxidation of aldehydes. Sci Rep 2022; 12:18491. [PMID: 36323774 PMCID: PMC9630420 DOI: 10.1038/s41598-022-21991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, Anderson-type polyoxometalate [N(C4H9)4] [FeMo6O18(OH)6] (FeMo6) was immobilized on amino-modified magnetic graphene oxide and employed as a new hybrid catalyst in oxidation of aldehydes to carboxylic acids. The synthesized hybrid catalyst Fe3O4/GO/[FeMo6] was characterized using thermogravimetric analysis (TGA), scanning electron microscopies (SEM), Fourier transform infrared (FT-IR), vibrating sample magnetometry (VSM), energy-dispersive X-ray analysis (EDX), Raman spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-OES). The results indicated that our catalyst was quite active in oxidizing the aldehydes to their corresponding carboxylic acids in the presence of hydrogen peroxide. The synthesized catalyst can be easily separated from the reaction medium and reused for six consecutive runs without a significant reduction in reaction efficiency.
Collapse
|
102
|
Chen Z, Zou M, Li G, Liu X, Zhou Y, Wang J. Enhancing efficiency of solvent-free oxidation of aromatic alcohols with atmospheric oxygen by POSS-based cationic polymer backbone paired heteropolyanions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
103
|
Zhu JJ, Gomez-Romero P. Polyoxometalate intercalated MXene with enhanced electrochemical stability. NANOSCALE 2022; 14:14921-14934. [PMID: 36018283 DOI: 10.1039/d2nr01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MXene/polyoxometalate (POM) hybrids are useful target materials for a variety of applications. Yet, the goal of preparing simple binary hybrids by intercalation of POMs into MXene has not been achieved. We propose and demonstrate here a method to intercalate POMs (phosphotungstate, PW12) into Ti3C2Tx MXene through the interaction between POM anions and pre-intercalated surfactant cations. A variety of quaternary ammonium cations have been used to expand Ti3C2Tx interlayer spacing. Cetyltrimethylammonium cations (CTA+) lead to an expansion of 2 nm while allowing intercalation of a considerable load (10 wt%) thanks to their tadpole-like shape and size. CTAPW12 has a layered structure compatible with Ti3C2Tx. The CTA+-delaminated Ti3C2Tx keeps the large interlayer spacing after being coupled with PW12. The PW12 clusters are dispersed and kept isolated thanks to CTA surfactant and the confinement into Ti3C2Tx layers. The redox reactions in CTA+-delaminated Ti3C2Tx/PW12 are diffusion-controlled, which proves the well-dispersed PW12 clusters are not adsorbed on the surface of Ti3C2Tx particles but within Ti3C2Tx layers. The CTA+- delaminated Ti3C2Tx/PW12 shows superior electrochemical stability (remaining redox active after 5000 cycles) over the other MXene/POM hybrids prepared in this work (inactive after 500 cycles). We associate this improved stability to the effective intercalation of PW12 within Ti3C2Tx layers helped by the CTA cations, as opposed to the external aggregation of PW12 clusters into micro or nanocrystals taking place for the other cations. The results provide a solid guide to help develop high-performance MXene/POM hybrid materials for a variety of applications.
Collapse
Affiliation(s)
- Jun-Jie Zhu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Pedro Gomez-Romero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Spain
| |
Collapse
|
104
|
Lai RD, Zhang J, Li XX, Zheng ST, Yang GY. Assemblies of Increasingly Large Ln-Containing Polyoxoniobates and Intermolecular Aggregation-Disaggregation Interconversions. J Am Chem Soc 2022; 144:19603-19610. [PMID: 36239996 DOI: 10.1021/jacs.2c09546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An oxalate-assisted lanthanide (Ln) incorporation strategy is first demonstrated for creating rare high-nuclearity Ln-containing polyoxoniobates (PONbs). With the strategy, a series of high-nuclearity Ln-containing PONbs of 50-nuclearity Dy2Nb48, 103-nuclearity Dy7Nb96, 200-nuclearity Dy10Nb190, and 206-nuclearity Dy14Nb192 have been made, showing an increasingly large structure evolution from Dy2Nb48 monomer to Dy7Nb96 dimer and to distinct Dy10Nb190 and Dy14Nb192 tetramers. Among them, Dy14Nb192 presents the largest heterometallic PONb and also the PONb with the greatest number of Ln ions reported thus far. Interestingly, both giant Dy14Nb192 and Dy10Nb190 molecules can further undergo single-crystal to single-crystal intermolecular aggregations, forming infinite {Dy14Nb192}∞ and {Dy10Nb190}∞ chains, respectively. The former structural transformation shows a reversible humidity-dependent aggregation-disaggregation process accompanied by a proton conductivity response, while the latter structural transformation is irreversible. These new species largely enrich the very limited members of Ln-containing PONb family and offer rare examples for studying structural transformations between giant molecular aggregates and infinitely extended structures at the atomic level.
Collapse
Affiliation(s)
- Rong-Da Lai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jing Zhang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
105
|
Chang D, Li Y, Chen Y, Wang X, Zang D, Liu T. Polyoxometalate-based nanocomposites for antitumor and antibacterial applications. NANOSCALE ADVANCES 2022; 4:3689-3706. [PMID: 36133327 PMCID: PMC9470027 DOI: 10.1039/d2na00391k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 06/07/2023]
Abstract
Polyoxometalates (POMs), as emerging inorganic metal oxides, have been shown to have significant biological activity and great medicinal value. Nowadays, biologically active POM-based organic-inorganic hybrid materials have become the next generation of antibacterial and anticancer drugs because of their customizable molecular structures related to their highly enhanced antitumor activity and reduced toxicity to healthy cells. In this review, the current developed strategies with POM-based materials for the purpose of antibacterial and anticancer activities from different action principles inducing cell death and hyperpolarization, cell plasma membrane destruction, interference with bacterial respiratory chain and inhibiting bacterial growth are overviewed. Moreover, specific interactions between POM-based materials and biomolecules are highlighted for a better understanding of their antibacterial and anticancer mechanisms. POMs have great promise as next-generation antibacterial and anticancer drugs, and this review will provide a valuable systematic reference for the further development of POM-based nanomaterials.
Collapse
Affiliation(s)
- Dening Chang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yanda Li
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yuxuan Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Dejin Zang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Teng Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| |
Collapse
|
106
|
Li J, Zhao Y, Huang B, Wang Y, Xiong Z, Xiao B, Zhao Y, Xiao Z, Wu P. Derived from Diaryl-λ3-Iodane-Containing Polyoxometalate: Iodine-Doped Molybdenum Carbide for Efficient Electrocatalytic Hydrogen Evolution. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
107
|
Fertig AA, Matson EM. Connecting Thermodynamics and Kinetics of Proton Coupled Electron Transfer at Polyoxovanadate Surfaces Using the Marcus Cross Relation. Inorg Chem 2022; 62:1958-1967. [PMID: 36049052 PMCID: PMC9906739 DOI: 10.1021/acs.inorgchem.2c02541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we evaluate the efficacy of multiple methods for elucidating the average bond dissociation free energy (BDFE) of two surface hydroxide moieties in a reduced polyoxovanadate cluster, [V6O11(OH)2(TRIOLNO2)2]-2. Through cyclic voltammetry, individual thermochemical parameters describing proton coupled electron transfer (PCET) are obtained, without the need for synthetic isolation of intermediates. Further, we demonstrate that a method involving a series of open circuit potential measurements with varying ratios of reduced to oxidized clusters is most attractive for the direct measurement of BDFE(O-H) for polyoxovanadate clusters as this approach also determines the stoichiometry of PCET. We subsequently connect the driving force of PCET to the rate constant for the transfer of hydrogen atoms to a series of organic substrates through the Marcus cross relation. We show that this method is applicable for the prediction of reaction rates for multielectron/multiproton transfer reactions, extending the findings from previous work focused on single electron/proton reactions.
Collapse
|
108
|
Petrus E, Segado-Centellas M, Bo C. Computational Prediction of Speciation Diagrams and Nucleation Mechanisms: Molecular Vanadium, Niobium, and Tantalum Oxide Nanoclusters in Solution. Inorg Chem 2022; 61:13708-13718. [PMID: 35998382 DOI: 10.1021/acs.inorgchem.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the aqueous speciation of molecular metal-oxo-clusters plays a key role in different fields such as catalysis, electrochemistry, nuclear waste recycling, and biochemistry. To describe the speciation accurately, it is essential to elucidate the underlying self-assembly processes. Herein, we apply a computational method to predict the speciation and formation mechanisms of polyoxovanadates, -niobates, and -tantalates. While polyoxovanadates have been widely studied, polyoxoniobates and -tantalates lack the same level of understanding. First, we propose a pentavanadate cluster ([V5O14]3-) as a key intermediate for the formation of the decavanadate. Our computed phase speciation diagram is in particularly good agreement with the experiments. Second, we report the formation constants of the heptaniobate, [Nb7O22]9-, decaniobate, [Nb10O28]6-, and tetracosaniobate [H9Nb24O72]15-. Additionally, we compute the speciation and phase diagram of niobium, which so far was restricted to Lindqvist derivates. Finally, we predict the formation constant of the decatantalate ([Ta10O26]6-) in water, even though it had only been synthesized in toluene. Furthermore, we also calculate the corresponding speciation and phase diagrams for polyoxotantalates. Overall, we show that our method can be successfully applied to different families of molecular metal oxides without any need for readjustments; therefore, it can be regarded as a trustworthy tool for exploring polyoxometalates' chemistry.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | - Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
109
|
Vitoria P, Wéry ASJ, San Felices L, Bravo-García L, Ruiz-Bilbao E, Laza JM, Vilas JL, Gutiérrez-Zorrilla JM. Reversible First-Order Single Crystal to Single Crystal Thermal Phase Transition in [(CH 3) 3CNH 3] 4[V 4O 12]. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5663. [PMID: 36013800 PMCID: PMC9416169 DOI: 10.3390/ma15165663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The well-known compound tetrakis(tert-butylammonium)-cyclo-tetrametavanadate (V), [(CH3)3CNH3]4[V4O12] (1h_RT), which crystallizes in the tetragonal I4/m space group, undergoes an irreversible solid state transformation upon heating, constituting one of the few examples in which the initial and the final stages are structurally characterized by sc-XRD. Now, we observed the ability of the same compound to undergo an additional single-crystal-to-single-crystal (SCSC) transformation upon thermal stimuli, but this time at low temperatures (153 K). Compound 1h_RT contains a discrete unprotonated [V4O12]4- tetrahedral anion in which V and O bridging atoms are coplanar. In both phases, these tetrameric anions are linked through tert-butylammonium cations in an extensive network of hydrogen bonds, but at low temperatures, this phase loses its characteristic O-V-O coplanarity, with the resulting rearrangement of the crystal packing and hydrogen-bond network which provide its reversibility at low temperatures. Again, the initial and final stages have been characterized structurally by sc-XRD.
Collapse
Affiliation(s)
- Pablo Vitoria
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Ana San José Wéry
- Facultad de Ciencias y Artes, Universidad Católica de Ávila, c/Canteros s/n, 05005 Ávila, Spain
| | - Leire San Felices
- Servicios Generales de Investigación SGIker, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Laura Bravo-García
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Estibaliz Ruiz-Bilbao
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - José Manuel Laza
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - José Luis Vilas
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
- BCMaterials, Parque Tecnológico de Bizkaia, Edificio 500, 48160 Derio, Spain
| | - Juan M. Gutiérrez-Zorrilla
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
- BCMaterials, Parque Tecnológico de Bizkaia, Edificio 500, 48160 Derio, Spain
| |
Collapse
|
110
|
Maru K, Kalla S, Jangir R. MOF/POM hybrids as catalysts for organic transformations. Dalton Trans 2022; 51:11952-11986. [PMID: 35916617 DOI: 10.1039/d2dt01895k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insertion of molecular metal oxides, e.g. polyoxometalates (POMs), into metal-organic frameworks (MOFs) opens up new research opportunities in various fields, particularly in catalysis. POM/MOF composites have strong acidity, oxygen-rich surface, and redox capacity due to typical characteristics of POMs and the large surface area, highly organized structures, tunable pore size, and shape are due to MOFs. Such hybrid materials have gained a lot of attention due to astonishing structural features, and hence have potential applications in organic catalysis, sorption and separation, proton conduction, magnetism, lithium-ion batteries, supercapacitors, electrochemistry, medicine, bio-fuel, and so on. The exceptional chemical and physical characteristics of POMOFs make them useful as catalysts in simple organic transformations with high capacity and selectivity. Here, the thorough catalytic study starts with a brief introduction related to POMs and MOFs, and is followed by the synthetic strategies and applications of these materials in several catalytic organic transformations. Furthermore, catalytic conversions like oxidation, condensation, esterification, and some other types of catalytic reactions including photocatalytic reactions are discussed in length with their plausible catalytic mechanisms. The disadvantages of the POMOFs and difficulties faced in the field have also been explored briefly from our perspectives.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
111
|
Schmid P, Hohenschutz M, Graß X, Witzmann M, Touraud D, Diat O, Pfitzner A, Bauduin P. Counterion effect on α-Keggin polyoxometalates in water: The peculiar role of H+ on their salting-in effect and co-assembly with organics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
112
|
Wang J, Li D, Yang H, Yao S, Zhu Q, Sadakane M, Li Y, Ueda W, Zhang Z. Assembly of ϵ-Keggin Polyoxometalate from Molecular Crystal to Zeolitic Octahedral Metal Oxide. Chemistry 2022; 28:e202200618. [PMID: 35581526 DOI: 10.1002/chem.202200618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Zeolitic octahedral metal oxides are inorganic crystalline microporous materials with adsorption and redox properties. New ϵ-Keggin nickel molybdate-based zeolitic octahedral metal oxides have been synthesized. 31 P NMR spectroscopy shows that reduction of MoVI -based molybdates forms an ϵ-Keggin polyoxometalate that immediately transfers to the solid phase. Investigation of the formation process indicates that a low Ni concentration, insoluble reducing agent, and long synthesis time are the critical factors for obtaining the zeolite octahedral metal oxides rather than the ϵ-Keggin polyoxometalate molecule. The synthesized zeolitic nickel molybdate with Na+ is used as the adsorbent, which effectively separates C2 hydrocarbon mixtures.
Collapse
Affiliation(s)
- Jie Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua road 818, Ningbo, Zhejiang, 315211, P. R. China
| | - Denan Li
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua road 818, Ningbo, Zhejiang, 315211, P. R. China
| | - Honggui Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua road 818, Ningbo, Zhejiang, 315211, P. R. China
| | - Shufan Yao
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua road 818, Ningbo, Zhejiang, 315211, P. R. China
| | - Qianqian Zhu
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua road 818, Ningbo, Zhejiang, 315211, P. R. China
| | - Masahiro Sadakane
- Department of Applied Chemistry Hiroshima, Hiroshima University, Higashi, Hiroshima, 739-8527, Japan
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua road 818, Ningbo, Zhejiang, 315211, P. R. China
| | - Wataru Ueda
- Faculty of Engineering, Kanagawa University Rokkakubashi, Kanagawa-ku, Yokohama, 2218686, Japan
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Fenghua road 818, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
113
|
Di YM, Liu JY, Li MH, Zhang SQ, You MH, Lin MJ. Donor-Acceptor Hybrid Heterostructures: An Emerging Class of Photoactive Materials with Inorganic and Organic Semiconductive Components. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201159. [PMID: 35589558 DOI: 10.1002/smll.202201159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Just as the heterojunctions in physics, donor-acceptor (D-A) heterostructures are an emerging class of photoactive materials fabricated from two semiconductive components at the molecular level. Among them, D-A hybrid heterostructures from organic and inorganic semiconductive components have attracted extensive attention in the past decades due to their combined advantages of high stability for the inorganic semiconductors and modifiability for the organic semiconductors, which are particularly beneficial to efficiently achieve photoinduced charge separation and transfer upon irradiations. In this review, by analogy with the heterojunctions in physics, a definition of the D-A heterostructures and their general design and synthetic strategies are given. Meanwhile, the D-A hybrid heterostructures are focused on and their recent advances in potential applications of photochromism, photomodulated luminescence, and photocatalysis summarized.
Collapse
Affiliation(s)
- Yi-Ming Di
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jing-Yan Liu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Meng-Hua Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou, 350002, China
| | - Ming-Hua You
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, China
| | - Mei-Jin Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
114
|
Ogiwara N, Iwano T, Ito T, Uchida S. Proton conduction in ionic crystals based on polyoxometalates. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
115
|
Polyoxometalate‐Surfactant Assemblies: Responsiveness to Orthogonal Stimuli. Angew Chem Int Ed Engl 2022; 61:e202203741. [DOI: 10.1002/anie.202203741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/07/2022]
|
116
|
Watanabe Y, Hyeon-Deuk K, Yamamoto T, Yabuuchi M, Karakulina OM, Noda Y, Kurihara T, Chang IY, Higashi M, Tomita O, Tassel C, Kato D, Xia J, Goto T, Brown CM, Shimoyama Y, Ogiwara N, Hadermann J, Abakumov AM, Uchida S, Abe R, Kageyama H. Polyoxocationic antimony oxide cluster with acidic protons. SCIENCE ADVANCES 2022; 8:eabm5379. [PMID: 35714182 PMCID: PMC9205590 DOI: 10.1126/sciadv.abm5379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H10.7Sb32.1O44][H2.1Sb2.1I8O6][Sb0.76I6]2·25H2O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.
Collapse
Affiliation(s)
- Yuki Watanabe
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kim Hyeon-Deuk
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takafumi Yamamoto
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayoshi Yabuuchi
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | - Yasuto Noda
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takuya Kurihara
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - I-Ya Chang
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masanobu Higashi
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Osamu Tomita
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Cédric Tassel
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daichi Kato
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jingxin Xia
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tatsuhiko Goto
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Craig M. Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Yuto Shimoyama
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | | | - Artem M. Abakumov
- CEST, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Ryu Abe
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
117
|
Controlled synthesis of efficient NiWS active phases derived from lacunary polyoxometalate and the application in hydrodesulfurization†. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
118
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
119
|
Cao D, Sha Q, Wang J, Li J, Ren J, Shen T, Bai S, He L, Song YF. Advanced Anode Materials for Sodium-Ion Batteries: Confining Polyoxometalates in Flexible Metal-Organic Frameworks by the "Breathing Effect". ACS APPLIED MATERIALS & INTERFACES 2022; 14:22186-22196. [PMID: 35510903 DOI: 10.1021/acsami.2c04077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyoxometalates (POMs) have shown great potential in sodium-ion batteries (SIBs) due to their reversible multielectron redox property and high ionic conductivity. Currently, POM-based SIBs suffer from the irreversible trapping and sluggish transmission kinetics of Na+. Herein, a series of POMs/metal-organic frameworks (MOFs)/graphene oxide (GO) (MOFs = MIL-101, MIL-53, and MIL-88B; POM = [PMo12O40]3-, denoted as PMo12) composites are developed as SIB anode materials for the first time. Unlike MIL-101 with large pore structures, the pores in flexible MIL-53 and MIL-88B swell spontaneously upon the accommodation of PMo12. Particularly, the PMo12/MIL-88B/GO composites deliver an excellent specific capacity of 214.2 mAh g-1 for 600 cycles at 2.0 A g-1, with a high initial Coulombic efficiency (ICE) of 51.0%. The so-called "breathing effect" of flexible MOFs leads to the relatively tight confinement space for PMo12, which greatly modulates its electronic structure, affects the adsorption energy of Na+, and eventually reduces the trapping of sodium ions. Additionally, the straight and multidimensional channels in MIL-88B significantly accelerate ion diffusion, inducing favored energetic kinetics and thus generating high-rate performance.
Collapse
Affiliation(s)
- Dongwei Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Quan Sha
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiaxin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
120
|
Chen JJ, Vilà-Nadal L, Solé-Daura A, Chisholm G, Minato T, Busche C, Zhao T, Kandasamy B, Ganin AY, Smith RM, Colliard I, Carbó JJ, Poblet JM, Nyman M, Cronin L. Effective Storage of Electrons in Water by the Formation of Highly Reduced Polyoxometalate Clusters. J Am Chem Soc 2022; 144:8951-8960. [PMID: 35536652 PMCID: PMC9171825 DOI: 10.1021/jacs.1c10584] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Aqueous
solutions of polyoxometalates (POMs) have been shown to
have potential as high-capacity energy storage materials due to their
potential for multi-electron redox processes, yet the mechanism of
reduction and practical limits are currently unknown. Herein, we explore
the mechanism of multi-electron redox processes that allow the highly
reduced POM clusters of the form {MO3}y to absorb y electrons in aqueous solution,
focusing mechanistically on the Wells–Dawson structure X6[P2W18O62], which comprises
18 metal centers and can uptake up to 18 electrons reversibly (y = 18) per cluster in aqueous solution when the countercations
are lithium. This unconventional redox activity is
rationalized by density functional theory, molecular dynamics simulations,
UV–vis, electron paramagnetic resonance spectroscopy, and small-angle
X-ray scattering spectra. These data point to a new phenomenon showing
that cluster protonation and aggregation allow the formation of highly
electron-rich meta-stable systems in aqueous solution, which produce
H2 when the solution is diluted. Finally, we show that
this understanding is transferrable to other salts of [P5W30O110]15– and [P8W48O184]40– anions, which
can be charged to 23 and 27 electrons per cluster, respectively.
Collapse
Affiliation(s)
- Jia-Jia Chen
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Laia Vilà-Nadal
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Albert Solé-Daura
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Greig Chisholm
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Takuo Minato
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Christoph Busche
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Tingting Zhao
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Balamurugan Kandasamy
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Alexey Y Ganin
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Rachelle M Smith
- Department of Chemistry, Oregon State University, Corvallis, Oregon 07331, United States
| | - Ian Colliard
- Department of Chemistry, Oregon State University, Corvallis, Oregon 07331, United States
| | - Jorge J Carbó
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Josep M Poblet
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 07331, United States
| | - Leroy Cronin
- School of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
121
|
Wang Y, Duan F, Liu X, Li B. Cations Modulated Assembly of Triol-Ligand Modified Cu-Centered Anderson-Evans Polyanions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092933. [PMID: 35566286 PMCID: PMC9101508 DOI: 10.3390/molecules27092933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
Abstract
Counter-cations are essential components of polyoxometalates (POMs), which have a distinct influence on the solubility, stabilization, self-assembly, and functionality of POMs. To investigate the roles of cations in the packing of POMs, as a systematic investigation, herein, a series of triol-ligand covalently modified Cu-centered Anderson-Evans POMs with different counter ions were prepared in an aqueous solution and characterized by various techniques including single-crystal X-ray diffraction. Using the strategy of controlling Mo sources, in the presence of triol ligand, NH4+, Cu2+ and Na+ were introduced successfully into POMs. When (NH4)6Mo7O24 was selected, the counter cations of the produced POMs were ammonium ions, which resulted in the existence of clusters in the discrete state. Additionally, with the modulation of the pH of the solutions, the modified sites of triol ligands on the cluster can be controlled to form δ- or χ-isomers. By applying MoO3 in the same reaction, Cu2+ ions served as linkers to connect triol-ligand modified polyanions into chains. When Na4Mo8O26 was employed as the Mo source to react with triol ligands in the presence of CuCl2, two 2-D networks were obtained with {Na4(H2O)14} or {{Na2(H2O)4} sub-clusters as linkers, where the building blocks were δ/δ- and χ/χ-isomers, respectively. The present investigation reveals that the charges, sizes and coordination manners of the counter cations have an obvious influence on the assembled structure of polyanions.
Collapse
|
122
|
Rahman T, Petrus E, Segado M, Martin NP, Palys LN, Rambaran MA, Ohlin CA, Bo C, Nyman M. Predicting the Solubility of Inorganic Ion Pairs in Water. Angew Chem Int Ed Engl 2022; 61:e202117839. [DOI: 10.1002/anie.202117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Tasnim Rahman
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Mireia Segado
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Nicolas P. Martin
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Lauren N. Palys
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - Mark A. Rambaran
- Department of Chemistry Faculty of Science and Technology Umeå University 901 87 Umeå Sweden
| | - C. Andre Ohlin
- Department of Chemistry Faculty of Science and Technology Umeå University 901 87 Umeå Sweden
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili (URV) Marcel lí Domingo s/n 43007 Tarragona Spain
| | - May Nyman
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
123
|
Abdurrashid H, Merican ZMA, Musa SG. Recent advances in catalytic oxidative desulfurization of fuel oil – A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
124
|
Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol. Catalysts 2022. [DOI: 10.3390/catal12050507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of tetrabutyl ammonium (TBA) salts of V-included Keggin-type polyoxoanions with W (TBA4PW11V1O40 and TBA5PW10V2O40) and Mo (TBA4PMo11V1O40 and TBA5PMo10V2O40) as addenda atoms were prepared using a hydrothermal method. These synthesized materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance (DRS UV-Vis), thermogravimetric analysis (TGA), CHN elemental analysis (EA), inductively coupled plasma spectrometry (ICP-MS), and N2 physisorption techniques to assess their physicochemical/textural properties and correlate them with their catalytic performances. According to FT-IR and DRS UV-Vis, (PVXW(Mo)12−XO40)(3+X)− anions are the main species present in the TBA salts. Additionally, CHN-EA and ICP-MS revealed that the desired stoichiometry was obtained. Their catalytic activities in the liquid-phase aerobic oxidation of benzyl alcohol to benzaldehyde were studied at 5 bar of O2 at 170 °C. Independently of the addenda atom nature, the catalytic activity increased with the number of V in the Keggin anion structure. For both series of catalysts, TBA salts of polyoxometalates with the highest V-substitution degree (TBA5PMo10V2O40 and TBA5PW10V2O40) showed higher activity. The maximum benzyl alcohol conversions obtained were 93% and 97% using (TBA)5PMo10V2O40 and (TBA)5PW10V2O40 as catalysts, respectively. In all the cases, the selectivity toward benzaldehyde was higher than 99%.
Collapse
|
125
|
Xia Z, Lin C, Yang Y, Wang Y, Wu Z, Song Y, Russell TP, Shi S. Polyoxometalate‐Surfactant Assemblies: Responsiveness to Orthogonal Stimuli. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiqin Xia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Chang‐Gen Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yongkang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhanpeng Wu
- State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Yu‐Fei Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering University of Massachusetts Amherst MA 01003 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
126
|
Guo KK, Yang YL, Dong SM, Li FY, Jiang XY, Xu L. Decomposition-Reassembly Synthesis of a Silverton-Type Polyoxometalate 3D Framework: Semiconducting Properties and Photocatalytic Applications. Inorg Chem 2022; 61:6411-6420. [PMID: 35442652 DOI: 10.1021/acs.inorgchem.1c03928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyoxometalate-based all-inorganic three-dimensional (3D) frameworks have recently attracted attention as a unique class of materials due to their unique physicochemical properties and a wide field of application with excellent prospects. We herein synthesized a novel all-inorganic 3D framework material based on cobalt-substituted Silverton-type polyoxometalate, H6{Co6W10O42[Co(H2O)4]3}·2H2O (Co9W10), which was successfully constructed using Na12[WCo3II(H2O)2(CoIIW9O34)2]·46-48H2O (Co5W19) and Co(NO3)2·6H2O as starting materials in a hydrothermal reaction via a decomposition-reassembly route together with the rational adjustment of pH values. Co9W10 has been structurally characterized using single-crystal X-ray diffraction. Photocurrent response, band-gap (Eg) value, and the VB-XPS spectrum have been measured to reveal the semiconducting property of Co9W10. Furthermore, we synthesized x% PTh/Co9W10 composites (PTh = polythiophene, x = 0.5, 1, 2, 5) for photodegradation of tetracycline hydrochloride (TH) to evaluate the photocatalytic activities of title composites. Due to the optimal molar ratio of hybrids and matching energy levels, 2% PTh/Co9W10 composites show the best photocatalytic activities among these composites.
Collapse
Affiliation(s)
- Ke-Ke Guo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yan-Li Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Si-Meng Dong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Feng-Yan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xin-Ye Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Lin Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
127
|
Rehan K, Asma M, Misawa T, Ito T, Sokolov A, Sher M, Tirmizi SA, Sohail M. Synthesis, characterization, and magnetic / electrochemical properties of Wells-Dawson polyoxometalate containing Ni (II) counter-ion. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
128
|
Kobayashi J, Shimura K, Mikurube K, Otobe S, Matsumoto T, Ishikawa E, Naruke H, Ito T. Polyoxomolybdate Layered Crystals Constructed from a Heterocyclic Surfactant: Syntheses, Pseudopolymorphism and Introduction of Metal Cations. MATERIALS 2022; 15:ma15072429. [PMID: 35407761 PMCID: PMC8999574 DOI: 10.3390/ma15072429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Crystals with layered structures are crucial for the construction of functional materials exhibiting intercalation, ionic conductivity, or emission properties. Polyoxometalate crystals hybridized with surfactant cations have distinct layered packings due to the surfactants which can form lamellar structures. Introducing metal cations into such polyoxometalate-surfactant hybrid crystals is significant for the addition of specific functions. Here, polyoxomolybdate–surfactant hybrid crystals were synthesized as single crystals, and unambiguously characterized by X-ray structure analyses. Octamolybdate ([Mo8O26]4–, Mo8) and heterocyclic surfactant of 1-dodecylpyridinium (C12py) were employed. The hybrid crystals were composed of α-type and β-type Mo8 isomers. Two crystalline phases containing α-type Mo8 were obtained as pseudopolymorphs depending on the crystallization conditions. Crystallization with the presence of rubidium and cesium cations caused the formation of metal cation-introduced hybrid crystals comprising β-Mo8 (C12py-Rb-Mo8 and C12py-Cs-Mo8). The yield of the C12py-Rb-Mo8 hybrid crystal was almost constant within crystallization temperatures of 279–303 K, while that of C12py-Cs-Mo8 decreased over 288 K. This means that the C12py-Mo8 hybrid crystal can capture Rb+ and Cs+ from the solution phase into the solids as the C12py-Rb-Mo8 and C12py-Cs-Mo8 hybrid crystals. The C12py-Mo8 hybrid crystals could be applied to ion-capturing materials for heavy metal cation removal.
Collapse
Affiliation(s)
- Jun Kobayashi
- Department of Chemistry, School of Science, Tokai University, Kanagawa 259-1292, Japan; (J.K.); (K.S.); (K.M.); (S.O.)
| | - Keisuke Shimura
- Department of Chemistry, School of Science, Tokai University, Kanagawa 259-1292, Japan; (J.K.); (K.S.); (K.M.); (S.O.)
| | - Keisuke Mikurube
- Department of Chemistry, School of Science, Tokai University, Kanagawa 259-1292, Japan; (J.K.); (K.S.); (K.M.); (S.O.)
| | - Saki Otobe
- Department of Chemistry, School of Science, Tokai University, Kanagawa 259-1292, Japan; (J.K.); (K.S.); (K.M.); (S.O.)
| | - Takashi Matsumoto
- Application Laboratories, Rigaku Corporation, Tokyo 196-8666, Japan;
| | - Eri Ishikawa
- Department of Applied Chemistry, College of Engineering, Chubu University, Aichi 487-8501, Japan;
| | - Haruo Naruke
- Chemical Resources Laboratory, Tokyo Institute of Technology, Kanagawa 226-8503, Japan;
| | - Takeru Ito
- Department of Chemistry, School of Science, Tokai University, Kanagawa 259-1292, Japan; (J.K.); (K.S.); (K.M.); (S.O.)
- Correspondence:
| |
Collapse
|
129
|
Mao Y, Chen GH, Yi X, Kang Y, Zhang J, Zhang L. Preparation and Visible-Light Response of Salicylate-Stabilized Heterobimetallic Pb-Ti-Oxo Clusters Initiated via Auxiliary Quaternary Ammonium Salts and a Solvent Effect. Inorg Chem 2022; 61:5017-5024. [PMID: 35286073 DOI: 10.1021/acs.inorgchem.1c03915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, with the assistance of quaternary ammonium salts we have successfully prepared a new family of salicylate-stabilized heterobimetallic Pb-Ti-oxo clusters, including H(TEA)[Pb2Ti6(μ2-O)2(μ3-O)2(OiPr)4(PA)2(Sal)6(NO3)2] (PTC-321; TEA = tetraethylammonium; HOiPr = isopropanol; H2PA = phenylphosphonic acid; H2Sal = salicylic acid), {PbTi3(μ2-O)(μ3-O)(OiPr)2(PA)(Sal)3(DMF)·CH3CN}n (PTC-322; DMF = dimethylformamide), {PbTi5(μ3-O)6(Sal)3(CH3COO)2(DMF)(OiPr)2}n (PTC-323), [Pb2Ti4(Sal)6(EtO)2(OiPr)6(HOiPr)2]·CH3NH2 (PTC-324; EtOH = CH3CH2OH), H[Pb4Ti9(μ2-O)2(μ3-O)(μ4-O)6(Sal)7(OiPr)13] (PTC-325), and Pb2Ti12(μ2-O)3(μ3-O)3(μ4-O)4(Sal)4(OEt)24 (PTC-326). Single-crystal X-ray diffraction studies demonstrate that the {Ti3Pb(Sal)3} unit acts as the building block to constitute the diverse assembly of PTC-321-PTC-323. Thereinto, the clusters in PTC-322 and PTC-323 are connected into infinite one-dimensional chains. Furthermore, the solvent effects have facilitated the heterobimetallic Pb-Ti-oxo clusters into various configurations in PTC-323-PTC-326. Solid-state ultraviolet-visible spectroscopy analysis indicates that the optical absorption bands of these compounds shift effectively toward the visible-light region, and they were also employed as electrode precursors to investigate their visible-light-driven photocurrent response.
Collapse
Affiliation(s)
- Yue Mao
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xiaofeng Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yao Kang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
130
|
Gao Y, Choudhari M, Such GK, Ritchie C. Polyoxometalates as chemically and structurally versatile components in self-assembled materials. Chem Sci 2022; 13:2510-2527. [PMID: 35356680 PMCID: PMC8890132 DOI: 10.1039/d1sc05879g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/21/2021] [Indexed: 01/16/2023] Open
Abstract
Polyoxometalates (POMs) are anionic molecular metal oxides with expansive diversity in terms of their composition, structure, nuclearity and charge. Within this vast collection of compounds are dominant structural motifs (POM platforms), that are amenable to significant chemical tuning with minimal perturbation of the inorganic oxide molecular structure. Consequently, this enables the systematic investigation of these compounds as inorganic additives within materials whereby structure and charge can be tuned independently i.e. [PW12O40]3- vs. [SiW12O40]4- while also investigating the impact of varying the charge balancing cations on self-assembly. The rich surface chemistry of POMs also supports their functionalisation by organic components to yield so-called inorganic-organic hybrids which will be the key focus of this perspective. We will introduce the modifications possible for each POM platform, as well as discussing the range of nanoparticles, microparticles and surfaces that have been developed using both surfactant and polymer building blocks. We will also illustrate important examples of POM-hybrids alongside their potential utility in applications such as imaging, therapeutic delivery and energy storage.
Collapse
Affiliation(s)
- Yanting Gao
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Manjiri Choudhari
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Georgina K Such
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
| | - Chris Ritchie
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
131
|
Polymeric Surfactant P84/Polyoxometalate α-PW12O403−—A Model System to Investigate the Interplay between Chaotropic and Hydrophobic Effects. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low charge density nanometric ions were recently shown to bind strongly to neutral hydrated matter in aqueous solution. This phenomenon, called the (super-)chaotropic effect, arises from the partial dehydration of both the nano-ion and the solute, leading to a significant gain in enthalpy. Here, we investigate the chaotropic effect of the polyoxometalate α-PW12O403− on the triblock copolymer P84: (EO)19(PO)43(EO)19 with (EO)19 the polyethoxylated and (PO)43 the polypropoxylated chains. The combination of phase diagrams, spectroscopic (nuclear magnetic resonance) and scattering (small angle neutron/X-ray scattering) techniques revealed that: (i) below the micellization temperature of P84, PW12O403− exclusively binds to the propylene oxide moiety of P84 unimers; and (ii) above the micellization temperature, PW12O403− mostly adsorbs on the ethylene oxide micellar corona. The preferential binding of the PW12O403− to the PPO chain over the PEO chains suggests that the binding is driven by the chaotropic effect and is reinforced by the hydrophobic effect. At higher temperatures, copolymer micellization leads to the displacement of PW12O403− from the PPO chain to the PEO chains. This study deepens our understanding of the subtle interplay between the chaotropic and hydrophobic effects in complex salt-organic matter solutions.
Collapse
|
132
|
Covalently tethering disulfonic acid moieties onto polyoxometalate boosts acid strength and catalytic performance for hydroxyalkylation/alkylation reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
133
|
Jordan JW, Cameron JM, Lowe GA, Rance GA, Fung KLY, Johnson LR, Walsh DA, Khlobystov AN, Newton GN. Stabilization of Polyoxometalate Charge Carriers via Redox-Driven Nanoconfinement in Single-Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202115619. [PMID: 34919306 PMCID: PMC9304274 DOI: 10.1002/anie.202115619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/07/2022]
Abstract
We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-transfer interactions with SWNTs to provide detailed mechanistic insights into the redox-driven encapsulation of these and similar nanoclusters. We are able to correlate the relative redox potentials of the encapsulated clusters with the level of SWNT oxidation in the resultant hybrid materials and use this to show that precise redox tuning is a necessary requirement for successful encapsulation. The host-guest redox materials described here exhibit exceptional electrochemical stability, retaining up to 86 % of their charge capacity over 1000 oxidation/reduction cycles, despite the typical lability and solution-phase electrochemical instability of the polyoxomolybdates we have explored. Our findings illustrate the broad applicability of the redox-driven encapsulation approach to the design and fabrication of tunable, highly conductive, ultra-stable nanoconfined energy materials.
Collapse
Affiliation(s)
- Jack W. Jordan
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Jamie M. Cameron
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Grace A. Lowe
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Graham A. Rance
- Nanoscale and Microscale Research CentreUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Lee R. Johnson
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Darren A. Walsh
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | | | - Graham N. Newton
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| |
Collapse
|
134
|
Rahman T, Petrus E, Segado M, Martin N, Palys L, Rambaran MA, Ohlin CA, Bo C, Nyman M. Predicting solubility of ion pairs in aqueous inorganic chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tasnim Rahman
- Oregon State University Department of Chemistry UNITED STATES
| | - Enric Petrus
- ICIQ: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Mireia Segado
- ICIQ: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Nicolas Martin
- Oregon State University Department of Chemistry chemistry UNITED STATES
| | - Lauren Palys
- Oregon State University Department of Chemistry Chemistry UNITED STATES
| | | | | | - Carles Bo
- ICIQ: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - May Nyman
- Oregon State University Department of Chemistry 153 Gilbert Hall 97331-4003 Corvallis UNITED STATES
| |
Collapse
|
135
|
Li B, Xuan L, Wu L. Polyoxometalate-Containing Supramolecular Gels. Macromol Rapid Commun 2022; 43:e2200019. [PMID: 35102624 DOI: 10.1002/marc.202200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Indexed: 11/08/2022]
Abstract
Supramolecular gels are important soft materials with various applications, which are fabricated through hydrogen bonding, π-π stacking, electrostatic or host-guest interactions. Introducing functional groups, especially inorganic components, is an efficient strategy to obtain gels with robust architecture and high performance. Polyoxometalates (POMs), as a class of negatively-charged clusters, have defined structures and multiple interaction sites, resulting in their potential as building blocks for constructing POM-containing supramolecular gels. The introduction of POMs into gels not only provides strong driving forces for the formation of gels due to the characteristics of charged cluster and oxygen-rich surface, but also brings new properties sourcing from unique electronic structures of POMs. Though many POM-containing gels have been reported, a comprehensive review is still absent. Herein, the concept of POM-containing gels is discussed, following with the design strategies and driving forces. To better understand the results in the literature, detailed examples, which are classified into several categories based on the types of organic components, are presented to illustrate the gelation process and gel structures. Moreover, applications of POM-containing gels in energy chemistry, sustainable chemistry and other aspects are also reviewed, as well as the future developments of this field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Luyun Xuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
136
|
Wilke M, Casati N. A new route to polyoxometalates via mechanochemistry. Chem Sci 2022; 13:1146-1151. [PMID: 35211281 PMCID: PMC8790782 DOI: 10.1039/d1sc05111c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/11/2021] [Indexed: 11/21/2022] Open
Abstract
Mechanochemistry offers a new route to polyoxometalates (POMs) under mild conditions. The molybdenum isoPOM heptamolybdate and the molybdenum heteroPOMs of the Strandberg- and Keggin-type could be achieved from grinding together molybdenum oxide, potassium or ammonium carbonate and phosphate. The reactions were controlled by the stoichiometric ratio of the starting materials and the liquid used, with reaction times between 30 min and 3 h. In situ investigations of the syntheses reveal the formation of intermediates during the reactions. Their identification helps explaining the mechanism of formation of the intermediates as well as the final POMs. Under mild conditions, molybdenum POMs could be achieved mechanochemically from simple building blocks, within short reaction times. In situ investigations reveal the formation of intermediates and help explaining the mechanism behind the reaction.![]()
Collapse
Affiliation(s)
- Manuel Wilke
- Laboratory for Synchrotron Radiation - Condensed Matter, Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Nicola Casati
- Laboratory for Synchrotron Radiation - Condensed Matter, Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| |
Collapse
|
137
|
Jordan JW, Cameron JM, Lowe GA, Rance GA, Fung KLY, Johnson LR, Walsh DA, Khlobystov AN, Newton GN. Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jack W. Jordan
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Jamie M. Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Grace A. Lowe
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Graham A. Rance
- Nanoscale and Microscale Research Centre University of Nottingham Nottingham NG7 2RD UK
| | | | - Lee R. Johnson
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Darren A. Walsh
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | | | - Graham N. Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| |
Collapse
|
138
|
Kikukawa Y, Sakamoto Y, Hirasawa H, Kurimoto Y, Iwai H, Hayashi Y. Synthesis and oxidation catalysis of a difluoride-incorporated polyoxovanadate and isolation of active vanadium alkylperoxo species. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02103f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Haloperoxidase-mimetic peroxo-vanadium species on an inorganic support showed catalytic reactivity for the epoxidation and bromination of alkenes. The structures of both native and peroxo forms were determined via single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Yuji Kikukawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yui Sakamoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Hikari Hirasawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yushi Kurimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Hiroya Iwai
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yoshihito Hayashi
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
139
|
Yue C, Zhou Y, Liu Y, Feng C, Bao W, Sun F, Tuo Y, Pan Y, Liu Y, Lu Y. Achieving ultra-dispersed 1T-Co-MoS 2@HMCS via space-confined engineering for highly efficient hydrogen evolution in the universal pH range. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00269h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-level spatial confinement strategy is proposed for the fabrication of ultra-dispersed 1T-Co-MoS2 nanoclusters, which exhibit remarkable electrocatalytic activity and durability for HER.
Collapse
Affiliation(s)
- Changle Yue
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Wenjing Bao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fengyue Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yongxiao Tuo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yukun Lu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| |
Collapse
|
140
|
Borzenko MI, Zagrebin PA, Spector EA, Nazmutdinov RR, Tsirlina GA. Inhibition and self-inhibition phenomena in mixed solutions of Anderson type polyoxometalates. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
141
|
Chai S, Xu F, Zhang R, Wang X, Zhai L, Li X, Qian HJ, Wu L, Li H. Hybrid Liquid-Crystalline Electrolytes with High-Temperature-Stable Channels for Anhydrous Proton Conduction. J Am Chem Soc 2021; 143:21433-21442. [PMID: 34886669 DOI: 10.1021/jacs.1c11884] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modern electrochemical and electronic devices require advanced electrolytes. Liquid crystals have emerged as promising electrolyte candidates due to their good fluidity and long-range order. However, the mesophase of liquid crystals is variable upon heating, which limits their applications as high-temperature electrolytes, e.g., implementing anhydrous proton conduction above 100 °C. Here, we report a highly stable thermotropic liquid-crystalline electrolyte based on the electrostatic self-assembly of polyoxometalate (POM) clusters and zwitterionic polymer ligands. These electrolytes can form a well-ordered mesophase with sub-10 nm POM-based columnar domains, attributed to the dynamic rearrangement of polymer ligands on POM surfaces. Notably, POMs can serve as both electrostatic cross-linkers and high proton conductors, which enable the columnar domains to be high-temperature-stable channels for anhydrous proton conduction. These nanochannels can maintain constant columnar structures in a wide temperature range from 90 to 160 °C. This work demonstrates the unique role of POMs in developing high-performance liquid-crystalline electrolytes, which can provide a new route to design advanced ion transport systems for energy and electronic applications.
Collapse
Affiliation(s)
- Shengchao Chai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Fengrui Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
142
|
Vilona D, Lelli M, Dumont E, Lacôte E. Organo-Polyoxometalate-Based Hydrogen-Bond Catalysis. Chemistry 2021; 27:17761-17764. [PMID: 34643968 DOI: 10.1002/chem.202102807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Several urea-inserted organo-polyoxometalates (POMs) derived from polyoxotungstovanadate [P2 V3 W15 O61 ]9- were prepared. The insertion of the carbonyl into the polyoxometallic framework activates the urea toward Hydrogen-bond catalysis. This was shown on the Friedel-Crafts arylation of trans-β-nitrostyrene. Modelling shows that the most stable form of the organo-POMs features a cis-trans arrangement of the two N-H bonds, but that the likely catalytically active trans-trans form is accessible at room temperature. Finally, it is possible that the oxo substituents next to the vanadium atoms may help the approach of the nucleophile via H-bonding.
Collapse
Affiliation(s)
- Debora Vilona
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, CNES, ArianeGroup, LHCEP, Bât. Raulin, 2 rue Victor Grignard, 69622, Villeurbanne, France.,Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, CNRS, CRMN, 5 rue de la Doua, 69100, Villeurbanne, France.,Univ Lyon, ENS Lyon, Univ Claude Bernard Lyon 1, CNRS, LCENS, UMR 5182, ENS de Lyon, 46 allée d'Italie, 69364, Lyon cedex 07, France
| | - Moreno Lelli
- Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, CNRS, CRMN, 5 rue de la Doua, 69100, Villeurbanne, France.,Magnetic Resonance Center and Department of Chemistry, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Elise Dumont
- Univ Lyon, ENS Lyon, Univ Claude Bernard Lyon 1, CNRS, LCENS, UMR 5182, ENS de Lyon, 46 allée d'Italie, 69364, Lyon cedex 07, France
| | - Emmanuel Lacôte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, CNES, ArianeGroup, LHCEP, Bât. Raulin, 2 rue Victor Grignard, 69622, Villeurbanne, France
| |
Collapse
|
143
|
Cameron JM, Guillemot G, Galambos T, Amin SS, Hampson E, Mall Haidaraly K, Newton GN, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: from functional building blocks to hierarchical nanomaterials. Chem Soc Rev 2021; 51:293-328. [PMID: 34889926 DOI: 10.1039/d1cs00832c] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.
Collapse
Affiliation(s)
- Jamie M Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Geoffroy Guillemot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Theodor Galambos
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Sharad S Amin
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Elizabeth Hampson
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Kevin Mall Haidaraly
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Graham N Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
144
|
Yang L, Lei J, Fan JM, Yuan RM, Zheng MS, Chen JJ, Dong QF. The Intrinsic Charge Carrier Behaviors and Applications of Polyoxometalate Clusters Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005019. [PMID: 33834550 DOI: 10.1002/adma.202005019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Polyoxometalates (POMs) are a series of molecular metal oxide clusters, which span the two domains of solutes and solid metal oxides. The unique characters of POMs in structure, geometry, and adjustable redox properties have attracted widespread attention in functional material synthesis, catalysis, electronic devices, and electrochemical energy storage and conversion. This review is focused on the links between the intrinsic charge carrier behaviors of POMs from a chemistry-oriented view and their recent ground-breaking developments in related areas. First, the advantageous charge transfer behaviors of POMs in molecular-level electronic devices are summarized. Solar-driven, thermal-driven, and electrochemical-driven charge carrier behaviors of POMs in energy generation, conversion and storage systems are also discussed. Finally, present challenges and fundamental insights are discussed as to the advanced design of functional systems based upon POM building blocks for their possible emerging application areas.
Collapse
Affiliation(s)
- Le Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jie Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jing-Min Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ru-Ming Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ming-Sen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jia-Jia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Quan-Feng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
145
|
Weng Z, Ogiwara N, Kitao T, Kikukawa Y, Gao Y, Yan L, Uchida S. Incorporating highly basic polyoxometalate anions comprising Nb or Ta into nanoscale reaction fields of porous ionic crystals. NANOSCALE 2021; 13:18451-18457. [PMID: 34693417 DOI: 10.1039/d1nr04762k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyoxometalates (POMs) are oxide cluster anions composed of high-valence early transition metals and are widely used as catalysts. Yet base catalysis of POMs remains an ongoing challenge; group V (V, Nb, and Ta) elements form more negatively charged POMs than group VI (Mo and W) elements, and in particular, polyoxoniobates and polyoxotantalates are known to show strong basicity in solution due to the highly negative surface oxygen atoms. Herein, we report for the first time porous ionic crystals (PICs) comprising Nb or Ta. The PICs are composed of Dawson-type Nb/W or Ta/W mixed-addenda POMs with oxo-centered trinuclear CrIII carboxylates and potassium ions as counter cations to control the crystal structure. Among the PICs, those with Nb or Ta tri-substituted POMs exhibit the highest yield (78-82%) and selectivity (99%) towards the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate (353 K, 6 h), which is a typical base-catalyzed reaction, as reusable solid catalysts, and they can also catalyze the reaction of other active methylene compounds. A detailed investigation into the crystal structures together with DFT calculations and in situ IR spectroscopy with methanol as a basic probe molecule shows that the exposure of [Nb3O13] or [Ta3O13] units with highly negative surface oxygen atoms to the pore surface of PICs is crucial to the catalytic performance. These findings based on the composition-structure-function relationships show that Nb- and Ta-containing PICs can serve as platforms for rational designing of heterogeneous base catalysts.
Collapse
Affiliation(s)
- Zhewei Weng
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yuji Kikukawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yu Gao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Likai Yan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
146
|
Tian H, Luo J, Zhang K, Ma C, Qi Y, Zhan S, Liu X, Li M, Liu H. Synergistic Photocatalytic-Adsorption Removal of Basic Magenta Effect of AgZnO/Polyoxometalates Nanocomposites. NANOSCALE RESEARCH LETTERS 2021; 16:163. [PMID: 34757523 PMCID: PMC8581081 DOI: 10.1186/s11671-021-03620-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/27/2021] [Indexed: 05/26/2023]
Abstract
The bifunctional photocatalytic-adsorbent AgZnO/polyoxometalates (AgZnO/POMs) nanocomposites were synthesized by combining AgZnO hybrid nanoparticles and polyoxometalates [Cu(L)2(H2O)]H2[Cu(L)2(P2Mo5O23)]⋅4H2O (HL = C6H6N2O) into nanostructures via a sonochemical method. Transmission electron microscopy (TEM) indicated that AgZnO/POMs nanocomposites were uniform with narrow particle size distribution and without agglomeration. X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the nanostructure and composition of AgZnO/POMs nanocomposites. The ultraviolet-visible spectra (UV-Vis) and photoluminescence spectra (PL) confirmed excellent optical properties of the AgZnO/POMs nanocomposites. 94.13% ± 0.61 of basic magenta (BM) in aqueous solution could be removed using the AgZnO/POMs nanocomposites through adsorption and photocatalysis. The kinetic analysis showed that both the adsorption and photocatalysis process conform to pseudo-second-order kinetics. In addition, the removal rate of AgZnO/POMs nanocomposites was found to be almost unchanged after 5 cycles of use. The bifunctional photocatalytic-adsorbent AgZnO/POMs nanocomposites with high stability and cycling performance have broad application prospects in the treatment of refractory organic dye wastewater containing triphenylmethane.
Collapse
Affiliation(s)
- Heyun Tian
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Jie Luo
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Ke Zhang
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Chenguang Ma
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Yiyi Qi
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Shixia Zhan
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Xiao Liu
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China.
| | - Mingxue Li
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China.
| | - Hongling Liu
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China.
| |
Collapse
|
147
|
Mubeena S, Annapareddy G, N M, Sarma M. Crystallographic and spectroscopic analysis of 9,10-bis-alkyl imidazolium anthracene hexatungstate supramolecular complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
148
|
Stern RD, Kingsbury RS, Persson KA. Aqueous Stability of Zirconium Clusters, Including the Zr(IV) Hexanuclear Hydrolysis Complex [Zr 6O 4(OH) 4(H 2O) 24] 12+, from Density Functional Theory. Inorg Chem 2021; 60:15456-15466. [PMID: 34619971 DOI: 10.1021/acs.inorgchem.1c02078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Framework materials constitute a broad family of solids that range from zeolites and metal-organic frameworks (MOFs) to coordination polymers. The synthesis of such network structures typically rely on precursor molecular building blocks. As an example, the UiO-66 MOF series is constructed of hexanuclear [Zr6O4(OH)4(CO2)12] cluster nodes and linear carboxylate linkers. Unfortunately, these Zr MOF cluster nodes cannot currently be manufactured in a sustainable way, motivating a search for "green" alternative synthesis methods. Stabilizing the hexanuclear Zr(IV) cluster (i.e., the hexamer, {Zr612+}) without the use of organic ligation would enable the use of environmentally friendly solvents such as water. The Zr(IV) tetranuclear cluster (i.e., the tetramer, {Zr48+}) can be stabilized in solution with or without organic ligands, yet the hexamer has yet to be synthesized without supporting ligands. The reasons why certain zirconium clusters are favored in aqueous solution over others are not well understood. This study reports the relative thermodynamic instability of the hypothetical hexamer {Zr612+} compared to the ubiquitous {Zr48+} tetramer. Density functional theory calculations were performed to obtain the hydrolysis Gibbs free energy of these species and used to construct Zr Pourbaix diagrams that illustrate the effects of electrochemical potential, pH, and Zr(IV) concentration. It was found that the aqueous {Zr612+} hexamer is ∼17.8 kcal/mol less stable than the aqueous {Zr48+} tetramer at pH = 0, V = 0, and [Zr(IV)] = 1 M, which is an energy difference on the order of counterion interactions. Electronic structure analyses were used to explore trends in the highest occupied molecular orbital-lowest unoccupied molecular orbital gap, frontier molecular orbitals, and electrostatic potential distribution of these clusters. The evidence suggests that the aqueous {Zr612+} hexamer may be promoted with more strategic syntheses incorporating minimal ligands and counterions.
Collapse
Affiliation(s)
- Rebecca D Stern
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Ryan S Kingsbury
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States.,Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
149
|
Kondinski A, Ghorbani-Asl M. Polyoxoplatinates as covalently dynamic electron sponges and molecular electronics materials. NANOSCALE ADVANCES 2021; 3:5663-5675. [PMID: 36133270 PMCID: PMC9417413 DOI: 10.1039/d1na00387a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/13/2021] [Indexed: 06/16/2023]
Abstract
In organic systems, dynamic covalent chemistry provides an adaptive approach (i.e., "covalent dynamics") where thermodynamic equilibria are used to tailor structural and electronic changes in molecular assemblies. The covalent dynamics finds utility in the design of novel self-healing materials, sensors, and actuators. Herein, using density functional theory (DFT) we explore the structural, electronic and transport properties of the Pt-based polyoxometalate (POM) [PtIII 12O8(SO4)12]4- and its derivatives. The latter POM has six redox responsive {O-Pt-Pt-O} moieties and prospects for storage of up to twelve electrons, thus exemplifying how dynamic covalent chemistry may manifest itself in fully inorganic systems. Simulations of the Au/POM/Au junction show that the electron conduction strongly depends on the redox of the POM but more weakly on its rotations with respect to the Au surface. Moreover, the POM shows promising spin-polarized current behaviour, which can be modulated using bias and gate voltages.
Collapse
Affiliation(s)
- Aleksandar Kondinski
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Dr Cambridge CB3 0AS UK
| | - Mahdi Ghorbani-Asl
- Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| |
Collapse
|
150
|
Exploration of the Cs Trapping Phenomenon by Combining Graphene Oxide with α-K 6P 2W 18O 62 as Nanocomposite. MATERIALS 2021; 14:ma14195577. [PMID: 34639973 PMCID: PMC8509777 DOI: 10.3390/ma14195577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/20/2022]
Abstract
A graphene oxide-based α-K6P2W18O62 (Dawson-type polyoxometalate) nanocomposite was formed by using two types of graphene oxide (GO) samples with different C/O compositions. Herein, based on the interaction of GO, polyoxometalates (POMs), and their nanocomposites with the Cs cation, quantitative data have been provided to explicate the morphology and Cs adsorption character. The morphology of the GO-POM nanocomposites was characterized by using TEM and SEM imaging. These results show that the POM particle successfully interacted above the surface of GO. The imaging also captured many small black spots on the surface of the nanocomposite after Cs adsorption. Furthermore, ICP-AES, the PXRD pattern, IR spectra, and Raman spectra all emphasized that the Cs adsorption occurred. The adsorption occurred by an aggregation process. Furthermore, the difference in the C/O ratio in each GO sample indicated that the ratio has significantly influenced the character of the GO-POM nanocomposite for the Cs adsorption. It was shown that the oxidized zone (sp2/sp3 hybrid carbon) of each nanocomposite sample was enlarged by forming the nanocomposite compared to the corresponding original GO sample. The Cs adsorption performance was also influenced after forming a composite. The present study also exhibited the fact that the sharp and intense diffractions in the PXRD were significantly reduced after the Cs adsorption. The result highlights that the interlayer distance was changed after Cs adsorption in all nanocomposite samples. This has a good correlation with the Raman spectra in which the second-order peaks changed after Cs adsorption.
Collapse
|