101
|
Abstract
While only a small part of the human genome encodes for proteins, biological functions for the so-called junk genome are increasingly being recognized through high-throughput technologies and mechanistic experimental studies. Indeed, novel mechanisms of gene regulation are being discovered that require coordinated interaction between DNA, RNA, and proteins. Therefore, interdisciplinary efforts are still needed to decipher these complex transcriptional networks. In this review, we discuss how non-coding RNAs (ncRNAs) are epigenetically regulated in cancer and metastases and consequently how ncRNAs participate in the sculpting of the epigenetic profile of a cancer cell, thus modulating the expression of other RNA molecules. In the latter case, ncRNAs not only affect the DNA methylation status of certain genomic loci but also interact with histone-modifying complexes, changing the structure of the chromatin itself. We present several examples of epigenetic changes causing aberrant expression of ncRNAs in the context of tumor progression. Interestingly, there are also important epigenetic changes and transcriptional regulatory effects derived from their aberrant expression. As ncRNAs can also be used as biomarkers for diagnosis and prognosis or explored as potential targets, we present insights into the use of ncRNAs for targeted cancer therapy.
Collapse
|
102
|
Basavappa M, Cherry S, Henao-Mejia J. Long noncoding RNAs and the regulation of innate immunity and host-virus interactions. J Leukoc Biol 2019; 106:83-93. [PMID: 30817056 DOI: 10.1002/jlb.3mir0918-354r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Immune responses are both pathogen and cell type-specific. The innate arm of immunity is characterized by rapid intracellular signaling cascades resulting in the production of hundreds of antimicrobial effectors that protect the host organism. Long noncoding RNAs have been shown to operate as potent modulators of both RNA and protein function throughout cell biology. Emerging data suggest that this is also true within innate immunity. LncRNAs have been shown to regulate both innate immune cell identity and the transcription of gene expression programs critical for innate immune responses. Here, we review the diverse roles of lncRNAs within innate defense with a specific emphasis on host-virus interactions.
Collapse
Affiliation(s)
- Megha Basavappa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
103
|
3′-UTRs and the Control of Protein Expression in Space and Time. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:133-148. [DOI: 10.1007/978-3-030-31434-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
104
|
|
105
|
Costa CLN, Lemos-Costa P, Marquitti FMD, Fernandes LD, Ramos MF, Schneider DM, Martins AB, de Aguiar MAM. Signatures of Microevolutionary Processes in Phylogenetic Patterns. Syst Biol 2018; 68:131-144. [PMID: 29939352 DOI: 10.1093/sysbio/syy049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic trees are representations of evolutionary relationships among species and contain signatures of the processes responsible for the speciation events they display. Inferring processes from tree properties, however, is challenging. To address this problem, we analyzed a spatially-explicit model of speciation where genome size and mating range can be controlled. We simulated parapatric and sympatric (narrow and wide mating range, respectively) radiations and constructed their phylogenetic trees, computing structural properties such as tree balance and speed of diversification. We showed that parapatric and sympatric speciation are well separated by these structural tree properties. Balanced trees with constant rates of diversification only originate in sympatry and genome size affected both the balance and the speed of diversification of the simulated trees. Comparison with empirical data showed that most of the evolutionary radiations considered to have developed in parapatry or sympatry are in good agreement with model predictions. Even though additional forces other than spatial restriction of gene flow, genome size, and genetic incompatibilities, do play a role in the evolution of species formation, the microevolutionary processes modeled here capture signatures of the diversification pattern of evolutionary radiations, regarding the symmetry and speed of diversification of lineages.
Collapse
Affiliation(s)
- Carolina L N Costa
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, SP, Brazil.,Instituto de Biologia, Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, SP, Brazil
| | - Paula Lemos-Costa
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, SP, Brazil.,Instituto de Biologia, Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, SP, Brazil
| | - Flavia M D Marquitti
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, SP, Brazil
| | - Lucas D Fernandes
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Marlon F Ramos
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, SP, Brazil
| | - David M Schneider
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, SP, Brazil
| | - Ayana B Martins
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, SP, Brazil.,Department of Fish Ecology & Evolution, Centre of Ecology, Evolution and Biogeochemistry, Eawag Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Marcus A M de Aguiar
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
106
|
Gibeaux R, Miller K, Acker R, Kwon T, Heald R. Xenopus Hybrids Provide Insight Into Cell and Organism Size Control. Front Physiol 2018; 9:1758. [PMID: 30564147 PMCID: PMC6288844 DOI: 10.3389/fphys.2018.01758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023] Open
Abstract
Determining how size is controlled is a fundamental question in biology that is poorly understood at the organismal, cellular, and subcellular levels. The Xenopus species, X. laevis and X. tropicalis differ in size at all three of these levels. Despite these differences, fertilization of X. laevis eggs with X. tropicalis sperm gives rise to viable hybrid animals that are intermediate in size. We observed that although hybrid and X. laevis embryogenesis initiates from the same sized zygote and proceeds synchronously through development, hybrid animals were smaller by the tailbud stage, and a change in the ratio of nuclear size to cell size was observed shortly after zygotic genome activation (ZGA), suggesting that differential gene expression contributes to size differences. Transcriptome analysis at the onset of ZGA identified twelve transcription factors paternally expressed in hybrids. A screen of these X. tropicalis factors by expression in X. laevis embryos revealed that Hes7 and Ventx2 significantly reduced X. laevis body length size by the tailbud stage, although nuclear to cell size scaling relationships were not affected as in the hybrid. Together, these results suggest that transcriptional regulation contributes to biological size control in Xenopus.
Collapse
Affiliation(s)
- Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Kelly Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Rachael Acker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| |
Collapse
|
107
|
|
108
|
Bliim N, Leshchyns'ka I, Keable R, Chen BJ, Curry-Hyde A, Gray L, Sytnyk V, Janitz M. Early transcriptome changes in response to chemical long-term potentiation induced via activation of synaptic NMDA receptors in mouse hippocampal neurons. Genomics 2018; 111:1676-1686. [PMID: 30465913 DOI: 10.1016/j.ygeno.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 01/23/2023]
Abstract
Long term potentiation (LTP) is a form of synaptic plasticity. In the present study LTP was induced via activation of synaptic NMDA receptors in primary hippocampal neuron cultures from neonate mice and RNA was isolated for RNA sequencing at 20 min following LTP induction. RNA sequencing and differential expression testing was performed to determine the identity and abundance of protein-coding and non-coding RNAs in control and LTP induced neuron cultures. We show that expression levels of a small group of transcripts encoding proteins involved in negative regulation of gene expression (Adcyap1, Id3), protein translation (Rpl22L1), extracellular structure organization (Bgn), intracellular signalling (Ppm1H, Ntsr2, Cldn10) and protein citrullination (PAD2) are downregulated in the stimulated neurons. Our results suggest that the early stages of LTP are accompanied by the remodelling of the biosynthetic machinery, interactions with the extracellular matrix and intracellular signalling pathways at the transcriptional level.
Collapse
Affiliation(s)
- Nicola Bliim
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lachlan Gray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
109
|
Hung J, Miscianinov V, Sluimer JC, Newby DE, Baker AH. Targeting Non-coding RNA in Vascular Biology and Disease. Front Physiol 2018; 9:1655. [PMID: 30524312 PMCID: PMC6262071 DOI: 10.3389/fphys.2018.01655] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Only recently have we begun to appreciate the importance and complexity of the non-coding genome, owing in some part to truly significant advances in genomic technology such as RNA sequencing and genome-wide profiling studies. Previously thought to be non-functional transcriptional “noise,” non-coding RNAs (ncRNAs) are now known to play important roles in many diverse biological pathways, not least in vascular disease. While microRNAs (miRNA) are known to regulate protein-coding gene expression principally through mRNA degradation, long non-coding RNAs (lncRNAs) can activate and repress genes by a variety of mechanisms at both transcriptional and translational levels. These versatile molecules, with complex secondary structures, may interact with chromatin, proteins, and other RNA to form complexes with an array of functional consequences. A body of emerging evidence indicates that both classes of ncRNAs regulate multiple physiological and pathological processes in vascular physiology and disease. While dozens of miRNAs are now implicated and described in relative mechanistic depth, relatively fewer lncRNAs are well described. However, notable examples include ANRIL, SMILR, and SENCR in vascular smooth muscle cells; MALAT1 and GATA-6S in endothelial cells; and mitochondrial lncRNA LIPCAR as a powerful biomarker. Due to such ubiquitous involvement in pathology and well-known biogenesis and functional genetics, novel miRNA-based therapies and delivery methods are now in development, including some early stage clinical trials. Although lncRNAs may hold similar potential, much more needs to be understood about their relatively complex molecular behaviours before realistic translation into novel therapies. Here, we review the current understanding of the mechanism and function of ncRNA, focusing on miRNAs and lncRNAs in vascular disease and atherosclerosis. We discuss existing therapies and current delivery methods, emphasising the importance of miRNAs and lncRNAs as effectors and biomarkers in vascular pathology.
Collapse
Affiliation(s)
- John Hung
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.,Deanery of Clinical Sciences, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Vladislav Miscianinov
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David E Newby
- Deanery of Clinical Sciences, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
110
|
Yang D, Xu A, Shen P, Gao C, Zang J, Qiu C, Ouyang H, Jiang Y, He F. A two-level model for the role of complex and young genes in the formation of organism complexity and new insights into the relationship between evolution and development. EvoDevo 2018; 9:22. [PMID: 30455862 PMCID: PMC6231269 DOI: 10.1186/s13227-018-0111-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/25/2018] [Indexed: 11/14/2022] Open
Abstract
Background How genome complexity affects organismal phenotypic complexity is a fundamental question in evolutionary developmental biology. Previous studies proposed various contributing factors of genome complexity and tried to find the connection between genomic complexity and organism complexity. However, a general model to answer this question is lacking. Here, we introduce a ‘two-level’ model for the realization of genome complexity at phenotypic level. Results Five representative species across Protostomia and Deuterostomia were involved in this study. The intrinsic gene properties contributing to genome complexity were classified into two generalized groups: the complexity and age degree of both protein-coding and noncoding genes. We found that young genes tend to be simpler; however, the mid-age genes, rather than the oldest genes, show the highest proportion of high complexity. Complex genes tend to be utilized preferentially in each stage of embryonic development, with maximum representation during the late stage of organogenesis. This trend is mainly attributed to mid-age complex genes. In contrast, young genes tend to be expressed in specific spatiotemporal states. An obvious correlation between the time point of the change in over- and under-representation and the order of gene age was observed, which supports the funnel-like model of the conservation pattern of development. In addition, we found some probable causes for the seemingly contradictory ‘funnel-like’ or ‘hourglass’ model. Conclusions These results indicate that complex and young genes contribute to organismal complexity at two different levels: Complex genes contribute to the complexity of individual proteomes in certain states, whereas young genes contribute to the diversity of proteomes in different spatiotemporal states. This conclusion is valid across the five species investigated, indicating it is a conserved model across Protostomia and Deuterostomia. The results in this study also support ‘funnel-like model’ from a new viewpoint and explain why there are different evo–devo relation models. Electronic supplementary material The online version of this article (10.1186/s13227-018-0111-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Aishi Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Pan Shen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Chao Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Jiayin Zang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Chen Qiu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Hongsheng Ouyang
- 2Animal Sciences College of Jilin University, Changchun, 130062 The People's Republic of China
| | - Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| |
Collapse
|
111
|
Préat N, De Troch M, van Leeuwen S, Taelman SE, De Meester S, Allais F, Dewulf J. Development of potential yield loss indicators to assess the effect of seaweed farming on fish landings. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
112
|
Li W, Ren Y, Si Y, Wang F, Yu J. Long non-coding RNAs in hematopoietic regulation. CELL REGENERATION 2018; 7:27-32. [PMID: 30671227 PMCID: PMC6326246 DOI: 10.1016/j.cr.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 02/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have crucial roles via tethering with DNA, RNA or protein in diverse biological processes. These lncRNA-mediated interactions enhance gene regulatory networks and modulate a wide range of downstream genes. It has been demonstrated that several lncRNAs act as key regulators in hematopoiesis. This review highlights the roles of lncRNAs in normal hematopoietic development and discusses how lncRNA dysregulation correlates with disease prognoses and phenotypes.
Collapse
Affiliation(s)
- Weiqian Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
113
|
Abstract
SIGNIFICANCE The emerging connections between an increasing number of long noncoding RNAs (lncRNAs) and oncogenic hallmarks provide a new twist to tumor complexity. Recent Advances: In the present review, we highlight specific lncRNAs that have been studied in relation to tumorigenesis, either as participants in the neoplastic process or as markers of pathway activity or drug response. These transcripts are typically deregulated by oncogenic or tumor-suppressing signals or respond to microenvironmental conditions such as hypoxia. CRITICAL ISSUES Among these transcripts are lncRNAs sufficiently divergent between mouse and human genomes that may contribute to biological differences between species. FUTURE DIRECTIONS From a translational standpoint, knowledge about primate-specific lncRNAs may help explain the reason behind the failure to reproduce the results from mouse cancer models in human cell-based systems. Antioxid. Redox Signal. 29, 922-935.
Collapse
Affiliation(s)
- Xue Wu
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Oana M Tudoran
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I. Chiricuta," Cluj-Napoca, Romania
| | - George A Calin
- 4 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, Texas.,5 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Mircea Ivan
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
114
|
Catabolic repression in early-diverging anaerobic fungi is partially mediated by natural antisense transcripts. Fungal Genet Biol 2018; 121:1-9. [PMID: 30223087 DOI: 10.1016/j.fgb.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
Abstract
Early-diverging anaerobic fungi (order: Neocallimastigomycota), lignocelluolytic chytrid-like fungi central to fiber degradation in the digestive tracts of large herbivores, are attractive sources of cellulases and hemicellulases for biotechnology. Enzyme expression is tightly regulated and coordinated through mechanisms that remain unelucidated to optimize hydrolytic efficiency. Our analysis of anaerobic fungal transcriptomes reveals hundreds of cis-natural antisense transcripts (cis-NATs), which we hypothesize play an integral role in this regulation. Through integrated genomic and transcriptomic sequencing on a range of catabolic substrates, we validate these NATs in three species (Anaeromyces robustus, Neocallimasix californiae, and Piromyces finnis), and analyze their expression patterns and prevalence to gain insight into their function. NAT function was diverse and conserved across the three fungal genomes studied, with 10% of all metabolic process NATs associated with lignocellulose hydrolysis. Despite these similarities, however, only eleven gene targets were conserved orthologs. Several NATs were dynamically regulated by lignocellulosic substrates while their gene targets were unregulated. This observation is consistent with a hypothesized, but untested, regulatory mechanism where selected genes are exclusively regulated at the transcriptional/post-transcriptional level by NATs. However, only genes with high NAT relative expression levels displayed this phenomenon, suggesting a selection mechanism that favors larger dynamic ranges for more precise control of gene expression. In addition to this mode, we observed two other possible regulatory fates: canonical transcriptional regulation with no NAT response, and positive co-regulation of target mRNA and cognate NAT, which we hypothesize is a fine-tuning strategy to locally negate control outputs from global regulators. Our work reveals the complex contributions of antisense RNA to the catabolic response in anaerobic fungi, highlighting its importance in understanding lignocellulolytic activity for bioenergy applications. More importantly, the relative expression of NAT to target may form a critical determinant of transcriptional vs post-transcriptional (NAT) control of gene expression in primitive anaerobic fungi.
Collapse
|
115
|
Li W, Zhang T, Guo L, Huang L. Regulation of PTEN expression by noncoding RNAs. J Exp Clin Cancer Res 2018; 37:223. [PMID: 30217221 PMCID: PMC6138891 DOI: 10.1186/s13046-018-0898-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) triggers a battery of intracellular signaling pathways, especially PI3K/Akt, playing important roles in the pathogenesis of multiple diseases, such as cancer, neurodevelopmental disorders, cardiovascular dysfunction and so on. Therefore PTEN might be a biomarker for various diseases, and targeting the abnormal expression level of PTEN is anticipated to offer novel therapeutic avenues. Recently, noncoding RNAs (ncRNAs) have been reported to regulate protein expression, and it is definite that PTEN expression is controlled by ncRNAs epigenetically or posttranscriptionally as well. Herein, we provide a review on current understandings of the regulation of PTEN by ncRNAs, which could contribute to the development of novel approaches to the diseases with abnormal expression of PTEN.
Collapse
Affiliation(s)
- Wang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Lianying Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| |
Collapse
|
116
|
The State of Long Non-Coding RNA Biology. Noncoding RNA 2018; 4:ncrna4030017. [PMID: 30103474 PMCID: PMC6162524 DOI: 10.3390/ncrna4030017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptomic studies have demonstrated that the vast majority of the genomes of mammals and other complex organisms is expressed in highly dynamic and cell-specific patterns to produce large numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Despite well characterized examples, their scaling with developmental complexity, and many demonstrations of their association with cellular processes, development and diseases, lncRNAs are still to be widely accepted as major players in gene regulation. This may reflect an underappreciation of the extent and precision of the epigenetic control of differentiation and development, where lncRNAs appear to have a central role, likely as organizational and guide molecules: most lncRNAs are nuclear-localized and chromatin-associated, with some involved in the formation of specialized subcellular domains. I suggest that a reassessment of the conceptual framework of genetic information and gene expression in the 4-dimensional ontogeny of spatially organized multicellular organisms is required. Together with this and further studies on their biology, the key challenges now are to determine the structure–function relationships of lncRNAs, which may be aided by emerging evidence of their modular structure, the role of RNA editing and modification in enabling epigenetic plasticity, and the role of RNA signaling in transgenerational inheritance of experience.
Collapse
|
117
|
Blokhin I, Khorkova O, Hsiao J, Wahlestedt C. Developments in lncRNA drug discovery: where are we heading? Expert Opin Drug Discov 2018; 13:837-849. [PMID: 30078338 DOI: 10.1080/17460441.2018.1501024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The central dogma of molecular biology, which states that the only role of long RNA transcripts is to convey information from gene to protein, was brought into question in recent years due to discovery of the extensive presence and complex roles of long noncoding RNAs (lncRNAs). Furthermore, lncRNAs were found to be involved in pathogenesis of multiple diseases and thus represent a new class of therapeutic targets. Translational efforts in the lncRNA field have been augmented by progress in optimizing the chemistry and delivery platforms of lncRNA-targeting modalities, including oligonucleotide-based drugs and CRISPR-Cas9. Areas covered: This review covers the current advances in characterizing diversity and biological functions of lncRNA focusing on their therapeutic potential in selected therapeutic areas. Expert opinion: Due to accelerating parallel progress in lncRNA biology and lncRNA-compatible therapeutic modalities, it is likely that lncRNA-dependent mechanisms of pathogenesis will soon be targeted in various disorders, including neurological, psychiatric, cardiovascular, infectious diseases, and cancer. Significant efforts, however, are still required to better understand the biology of both lncRNAs and lncRNA-targeting drugs. Further work is needed in the areas of lncRNA nomenclature, database representation, intra/interfield communication, and education of the community at large.
Collapse
Affiliation(s)
- Ilya Blokhin
- a Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences , University of Miami Miller School of Medicine , Miami , FL , USA
| | | | | | - Claes Wahlestedt
- a Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences , University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
118
|
Lekka E, Hall J. Noncoding RNAs in disease. FEBS Lett 2018; 592:2884-2900. [PMID: 29972883 PMCID: PMC6174949 DOI: 10.1002/1873-3468.13182] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs are emerging as potent and multifunctional regulators in all biological processes. In parallel, a rapidly growing number of studies has unravelled associations between aberrant noncoding RNA expression and human diseases. These associations have been extensively reviewed, often with the focus on a particular microRNA (miRNA) (family) or a selected disease/pathology. In this Mini‐Review, we highlight a selection of studies in order to demonstrate the wide‐scale involvement of miRNAs and long noncoding RNAs in the pathophysiology of three types of diseases: cancer, cardiovascular and neurological disorders. This research is opening new avenues to novel therapeutic approaches.
Collapse
Affiliation(s)
- Evangelia Lekka
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Switzerland
| |
Collapse
|
119
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
120
|
Zhou Z, Chen Q, Wan L, Zheng D, Li Z, Wu Z. Dexmedetomidine protects hepatic cells against oxygen-glucose deprivation/reperfusion injury via lncRNA CCAT1. Cell Biol Int 2018; 42:1250-1258. [PMID: 29851220 DOI: 10.1002/cbin.10996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/27/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Zhuang Zhou
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Qingsong Chen
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Lei Wan
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Daofeng Zheng
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Zhongtang Li
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Zhongjun Wu
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| |
Collapse
|
121
|
Mitaku S, Sawada R. Biological meaning of "habitable zone" in nucleotide composition space. Biophys Physicobiol 2018; 15:75-85. [PMID: 29892513 PMCID: PMC5992858 DOI: 10.2142/biophysico.15.0_75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/17/2018] [Indexed: 12/01/2022] Open
Abstract
Organisms generally display two contrasting properties: large biodiversity and a uniform state of "life". In this study, we focused on the question of how genome sequences describe "life" where a large number of biomolecules are harmonized. We analyzed the whole genome sequence of 2664 organisms, paying attention to the nucleotide composition which is an intensive parameter from the genome sequence. The results showed that all organisms were plotted in narrow regions of the nucleotide composition space of the first and second letters of the codon. Since all genome sequences overlap irrespective of the living environment, it can be called a "habitable zone". The habitable zone deviates by 500 times the standard deviation from the nucleotide composition expected from the random sequence, indicating that unexpectedly rare sequences are realized. Furthermore, we found that the habitable zones at the first and second letters of the codon serve as the background mechanisms for the functional network of biological systems. The habitable zone at the second letter of the codon controls the formation of transmembrane regions and the habitable zone at the first letter controls the formation of molecular recognition unit. These analyses showed that the habitable zone of the nucleotide composition space and the exquisite arrangement of amino acids in the codon table are conjugated to form biological systems. Finally, we discussed the evolution of the higher order of genome sequences.
Collapse
Affiliation(s)
- Shigeki Mitaku
- Emeritus Professor of Nagoya University, Kokubunji, Tokyo 185-0021, Japan
| | - Ryusuke Sawada
- Division of System Cohort, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
122
|
Elison GL, Acar M. Scarless genome editing: progress towards understanding genotype-phenotype relationships. Curr Genet 2018; 64:1229-1238. [PMID: 29872908 DOI: 10.1007/s00294-018-0850-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 01/31/2023]
Abstract
The ability to predict phenotype from genotype has been an elusive goal for the biological sciences for several decades. Progress decoding genotype-phenotype relationships has been hampered by the challenge of introducing precise genetic changes to specific genomic locations. Here we provide a comparative review of the major techniques that have been historically used to make genetic changes in cells as well as the development of the CRISPR technology which enabled the ability to make marker-free disruptions in endogenous genomic locations. We also discuss how the achievement of truly scarless genome editing has required further adjustments of the original CRISPR method. We conclude by examining recently developed genome editing methods which are not reliant on the induction of a DNA double strand break and discuss the future of both genome engineering and the study of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Gregory L Elison
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA. .,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA. .,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA. .,Department of Physics, Yale University, Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
123
|
Schaefke B, Sun W, Li YS, Fang L, Chen W. The evolution of posttranscriptional regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1485. [PMID: 29851258 DOI: 10.1002/wrna.1485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
"DNA makes RNA makes protein." After transcription, mRNAs undergo a series of intertwining processes to be finally translated into functional proteins. The "posttranscriptional" regulation (PTR) provides cells an extended option to fine-tune their proteomes. To meet the demands of complex organism development and the appropriate response to environmental stimuli, every step in these processes needs to be finely regulated. Moreover, changes in these regulatory processes are important driving forces underlying the evolution of phenotypic differences across different species. The major PTR mechanisms discussed in this review include the regulation of splicing, polyadenylation, decay, and translation. For alternative splicing and polyadenylation, we mainly discuss their evolutionary dynamics and the genetic changes underlying the regulatory differences in cis-elements versus trans-factors. For mRNA decay and translation, which, together with transcription, determine the cellular RNA or protein abundance, we focus our discussion on how their divergence coordinates with transcriptional changes to shape the evolution of gene expression. Then to highlight the importance of PTR in the evolution of higher complexity, we focus on their roles in two major phenomena during eukaryotic evolution: the evolution of multicellularity and the division of labor between different cell types and tissues; and the emergence of diverse, often highly specialized individual phenotypes, especially those concerning behavior in eusocial insects. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution Translation > Translation Regulation RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Bernhard Schaefke
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California San Francisco, San Francisco
| | - Yi-Sheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
124
|
Noncoding RNAs: Stress, Glucocorticoids, and Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:849-865. [PMID: 29559087 DOI: 10.1016/j.biopsych.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a pathologic response to trauma that impacts ∼8% of the population and is highly comorbid with other disorders, such as traumatic brain injury. PTSD affects multiple biological systems throughout the body, including the hypothalamic-pituitary-adrenal axis, cortical function, and the immune system, and while the study of the biological underpinnings of PTSD and related disorders are numerous, the roles of noncoding RNAs (ncRNAs) are just emerging. Moreover, deep sequencing has revealed that ncRNAs represent most of the transcribed mammalian genome. Here, we present developing evidence that ncRNAs are involved in critical aspects of PTSD pathophysiology. In that regard, we summarize the roles of three classes of ncRNAs in PTSD and related disorders: microRNAs, long-noncoding RNAs, and retrotransposons. This review evaluates findings from both animal and human studies with a special focus on the role of ncRNAs in hypothalamic-pituitary-adrenal axis abnormalities and glucocorticoid dysfunction in PTSD and traumatic brain injury. We conclude that ncRNAs may prove to be useful biomarkers to facilitate personalized medicines for trauma-related brain disorders.
Collapse
|
125
|
Zhou J, Shi YY. A Bipartite Network and Resource Transfer-Based Approach to Infer lncRNA-Environmental Factor Associations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:753-759. [PMID: 28436883 DOI: 10.1109/tcbb.2017.2695187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phenotypes and diseases are often determined by the complex interactions between genetic factors and environmental factors (EFs). However, compared with protein-coding genes and microRNAs, there is a paucity of computational methods for understanding the associations between long non-coding RNAs (lncRNAs) and EFs. In this study, we focused on the associations between lncRNA and EFs. By using the common miRNA partners of any pair of lncRNA and EF, based on the competing endogenous RNA (ceRNA) hypothesis and the technique of resources transfer within the experimentally-supported lncRNA-miRNA and miRNA-EF association bipartite networks, we propose an algorithm for predicting new lncRNA-EF associations. Results show that, compared with another recently-proposed method, our approach is capable of predicting more credible lncRNA-EF associations. These results support the validity of our approach to predict biologically significant associations, which could lead to a better understanding of the molecular processes.
Collapse
|
126
|
Qiu GH, Huang C, Zheng X, Yang X. The protective function of noncoding DNA in genome defense of eukaryotic male germ cells. Epigenomics 2018; 10:499-517. [PMID: 29616594 DOI: 10.2217/epi-2017-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peripheral and abundant noncoding DNA has been hypothesized to protect the genome and the central protein-coding sequences against DNA damage in somatic genome. In the cytosol, invading exogenous nucleic acids may first be deactivated by small RNAs encoded by noncoding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. In the nucleus, the radicals generated by radiation in the cytosol, radiation energy and invading exogenous nucleic acids are absorbed, blocked and/or reduced by peripheral heterochromatin, and damaged DNA in heterochromatin is removed and excluded from the nucleus to the cytoplasm through nuclear pore complexes. To further strengthen the hypothesis, this review summarizes the experimental evidence supporting the protective function of noncoding DNA in the genome of male germ cells. Based on these data, this review provides evidence supporting the protective role of noncoding DNA in the genome defense of sperm genome through similar mechanisms to those of the somatic genome.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| |
Collapse
|
127
|
Pang Y, Mao C, Liu S. Encoding activities of non-coding RNAs. Am J Cancer Res 2018; 8:2496-2507. [PMID: 29721095 PMCID: PMC5928905 DOI: 10.7150/thno.24677] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
The universal expression of various non-coding RNAs (ncRNAs) is now considered the main feature of organisms' genomes. Many regions in the genome are transcribed but not annotated to encode proteins, yet contain small open reading frames (smORFs). A widely accepted opinion is that a vast majority of ncRNAs are not further translated. However, increasing evidence underlines a series of intriguing translational events from the ncRNAs, which were previously considered to lack coding potential. Recent studies also suggest that products derived from such novel translational events display important regulatory functions in many fundamental biological and pathological processes. Here we give a critical review on the potential coding capacity of ncRNAs, in particular, about what is known and unknown in this emerging area. We also discuss the possible underlying coding mechanisms of these extraordinary ncRNAs and possible roles of peptides or proteins derived from the ncRNAs in disease development and theranostics. Our review offers an extensive resource for studying the biology of ncRNAs and sheds light into the use of ncRNAs and their corresponding peptides or proteins for disease diagnosis and therapy.
Collapse
|
128
|
Xiao W, Hu Y, Tong Y, Cai M, He H, Liu B, Shi Y, Wang J, Qin Y, Lai S. Landscape of long non-coding RNAs in Trichophyton mentagrophytes-induced rabbit dermatophytosis lesional skin and normal skin. Funct Integr Genomics 2018; 18:401-410. [PMID: 29560532 DOI: 10.1007/s10142-018-0601-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 11/30/2022]
Abstract
Emerging evidences suggest that long non-coding RNAs (lncRNAs) play important role in disease development. However, the role of rabbit lncRNAs in the pathogenesis of dermatophytosis remains elusive. The present study aimed to study and characterize lncRNA transcriptome in 8 T. mentagrophytes-induced female rabbit dermatophytosis lesional (TM) and 4 normal saline-infected (NS) skin biopsies using RNAseq. We identified 5883 lncRNAs in 12 strand-specific RNA-seq libraries and found 64 differentially expressed lncRNAs (q < 0.05) in TM relative to NS. As in other mammalian counterparts, rabbit lncRNAs were distributed in all chromosomes except the Y chromosome and were generally smaller in size and fewer in exon numbers compared to protein coding genes. Next, co-expression analysis revealed that 107 pairs between 32 DE lncRNAs and 96 protein coding genes showed a highly correlated expression (|r| > 0.8). Moreover, miRPara analysis of the lncRNAs revealed 173 lncRNAs with precursor sequences for 9561 probable novel miRNAs. Finally, q-PCR results validated the RNA-seq results with eight randomly selected lncRNAs. To the best of our knowledge, this is the first report on rabbit lncRNAs, and our results highlighted the potential role of lncRNAs in the pathogenesis of dermatophytosis.
Collapse
Affiliation(s)
- Wudian Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongsong Hu
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Yan Tong
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingcheng Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongbing He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Buwei Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
129
|
Karlik E, Gözükırmızı N. Evaluation of Barley lncRNAs Expression Analysis in Salinity Stress. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418020096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
130
|
Yi HC, You ZH, Huang DS, Li X, Jiang TH, Li LP. A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:337-344. [PMID: 29858068 PMCID: PMC5992449 DOI: 10.1016/j.omtn.2018.03.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/02/2018] [Accepted: 03/04/2018] [Indexed: 01/01/2023]
Abstract
The interactions between non-coding RNAs (ncRNAs) and proteins play an important role in many biological processes, and their biological functions are primarily achieved by binding with a variety of proteins. High-throughput biological techniques are used to identify protein molecules bound with specific ncRNA, but they are usually expensive and time consuming. Deep learning provides a powerful solution to computationally predict RNA-protein interactions. In this work, we propose the RPI-SAN model by using the deep-learning stacked auto-encoder network to mine the hidden high-level features from RNA and protein sequences and feed them into a random forest (RF) model to predict ncRNA binding proteins. Stacked assembling is further used to improve the accuracy of the proposed method. Four benchmark datasets, including RPI2241, RPI488, RPI1807, and NPInter v2.0, were employed for the unbiased evaluation of five established prediction tools: RPI-Pred, IPMiner, RPISeq-RF, lncPro, and RPI-SAN. The experimental results show that our RPI-SAN model achieves much better performance than other methods, with accuracies of 90.77%, 89.7%, 96.1%, and 99.33%, respectively. It is anticipated that RPI-SAN can be used as an effective computational tool for future biomedical researches and can accurately predict the potential ncRNA-protein interacted pairs, which provides reliable guidance for biological research.
Collapse
Affiliation(s)
- Hai-Cheng Yi
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu-Hong You
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China.
| | - De-Shuang Huang
- Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China.
| | - Xiao Li
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
| | - Tong-Hai Jiang
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
| | - Li-Ping Li
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
| |
Collapse
|
131
|
Goyal RK, Tulpan D, Chomistek N, González-Peña Fundora D, West C, Ellis BE, Frick M, Laroche A, Foroud NA. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics 2018; 19:178. [PMID: 29506469 PMCID: PMC5838963 DOI: 10.1186/s12864-018-4545-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background The mitogen-activated protein kinase (MAPK) family is involved in signal transduction networks that underpin many different biological processes in plants, ranging from development to biotic and abiotic stress responses. To date this class of enzymes has received little attention in Triticeae species, which include important cereal crops (wheat, barley, rye and triticale) that represent over 20% of the total protein food-source worldwide. Results The work presented here focuses on two subfamilies of Triticeae MAPKs, the MAP kinases (MPKs), and the MAPK kinases (MKKs) whose members phosphorylate the MPKs. In silico analysis of multiple Triticeae sequence databases led to the identification of 152 MAPKs belonging to these two sub-families. Some previously identified MAPKs were renamed to reflect the literature consensus on MAPK nomenclature. Two novel MPKs, MPK24 and MPK25, have been identified, including the first example of a plant MPK carrying the TGY activation loop sequence common to mammalian p38 MPKs. An EF-hand calcium-binding domain was found in members of the Triticeae MPK17 clade, a feature that appears to be specific to Triticeae species. New insights into the novel MEY activation loop identified in MPK11s are offered. When the exon-intron patterns for some MPKs and MKKs of wheat, barley and ancestors of wheat were assembled based on transcript data in GenBank, they showed deviations from the same sequence predicted in Ensembl. The functional relevance of MAPKs as derived from patterns of gene expression, MPK activation and MKK-MPK interaction is discussed. Conclusions A comprehensive resource of accurately annotated and curated Triticeae MPK and MKK sequences has been created for wheat, barley, rye, triticale, and two ancestral wheat species, goat grass and red wild einkorn. The work we present here offers a central information resource that will resolve existing confusion in the literature and sustain expansion of MAPK research in the crucial Triticeae grains. Electronic supplementary material The online version of this article (10.1186/s12864-018-4545-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Dan Tulpan
- Information and Communication Technologies, National Research Council of Canada, 100 des Aboiteaux Street, Moncton, New Brunswick, E1A 7R1, Canada
| | - Nora Chomistek
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Dianevys González-Peña Fundora
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Connor West
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Brian E Ellis
- Michael Smith Laboratories, University of British Columbia, #301 - 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Michele Frick
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada.
| |
Collapse
|
132
|
Chen X, You ZH, Yan GY, Gong DW. IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget 2018; 7:57919-57931. [PMID: 27517318 PMCID: PMC5295400 DOI: 10.18632/oncotarget.11141] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
Abstract
In recent years, accumulating evidences have shown that the dysregulations of lncRNAs are associated with a wide range of human diseases. It is necessary and feasible to analyze known lncRNA-disease associations, predict potential lncRNA-disease associations, and provide the most possible lncRNA-disease pairs for experimental validation. Considering the limitations of traditional Random Walk with Restart (RWR), the model of Improved Random Walk with Restart for LncRNA-Disease Association prediction (IRWRLDA) was developed to predict novel lncRNA-disease associations by integrating known lncRNA-disease associations, disease semantic similarity, and various lncRNA similarity measures. The novelty of IRWRLDA lies in the incorporation of lncRNA expression similarity and disease semantic similarity to set the initial probability vector of the RWR. Therefore, IRWRLDA could be applied to diseases without any known related lncRNAs. IRWRLDA significantly improved previous classical models with reliable AUCs of 0.7242 and 0.7872 in two known lncRNA-disease association datasets downloaded from the lncRNADisease database, respectively. Further case studies of colon cancer and leukemia were implemented for IRWRLDA and 60% of lncRNAs in the top 10 prediction lists have been confirmed by recent experimental reports.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.,National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dun-Wei Gong
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
133
|
1700108J01Rik and 1700101O22Rik are mouse testis-specific long non-coding RNAs. Histochem Cell Biol 2018; 149:517-527. [PMID: 29411102 DOI: 10.1007/s00418-018-1642-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 01/29/2023]
Abstract
Long non-coding RNAs (lncRNAs; > 200 nucleotides in length) have attracted attention as fine-tuners of gene expression. However, little is known about the cell- and stage-specific expression pattern and function of lncRNAs in spermatogenesis. The purpose of this study was to identify mouse testis-associated lncRNAs using a combination of computational and experimental approaches. We first used the FANTOM5 database to survey lncRNA expression in the mouse testis and performed reverse transcription quantitative polymerase chain reaction (real-time PCR) and in situ hybridization (ISH) analyses. In silico analysis showed that most of the highly expressed lncRNAs in the adult mouse testis were testis-specific lncRNAs and were expressed at and following the initiation of spermatogenesis. We selected the antisense lncRNA 1700108J01Rik and long intergenic non-coding RNA 1700101O22Rik from the most highly expressed lncRNAs in the adult testis for further analysis. Real-time PCR analysis confirmed that 1700108J01Rik and 1700101O22Rik were specifically expressed in the testis. ISH analysis revealed that the two mouse-testis-specific lncRNAs were expressed exclusively in testicular germ cells in meiotic prophase and the round spermatid stage, which coincide with the period of transcriptional reactivation during spermatogenesis. The cytoplasmic distribution of these lncRNAs revealed by ISH suggests their involvement in post-transcriptional gene regulation rather than in epigenetic or transcriptional regulation. Our data provide new insight into testis-associated lncRNAs that will be useful in expression and functional studies of spermatogenesis.
Collapse
|
134
|
Sattari A, Siddiqui H, Moshiri F, Ngankeu A, Nakamura T, Kipps TJ, Croce CM. Upregulation of long noncoding RNA MIAT in aggressive form of chronic lymphocytic leukemias. Oncotarget 2018; 7:54174-54182. [PMID: 27527866 PMCID: PMC5338916 DOI: 10.18632/oncotarget.11099] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are non-proten-coding transcripts of more than 200 nucleotides generated by RNA polymerase II and their expressions are tightly regulated in cell type specific- and/or cellular differential stage specific- manner. MIAT, originally isolated as a candidate gene for myocardial infarction, encodes lncRNA (termed MIAT). Here, we determined the expression level of MIAT in established leukemia/lymphoma cell lines and found its upregulation in lymphoid but not in myeloid cell lineage with mature B cell phenotype. MIAT expression level was further determined in chronic lymphocytic leukemias (CLL), characterized by expansion of leukemic cells with mature B phenotype, to demonstrate relatively high occurrence of MIAT upregulation in aggressive form of CLL carrying either 17p-deletion, 11q-deletion, or Trisomy 12 over indolent form carrying 13p-deletion. Furthermore, we show that MIAT constitutes a regulatory loop with OCT4 in malignant mature B cell, as was previously reported in mouse pulripotent stem cell, and that both molecules are essential for cell survival.
Collapse
Affiliation(s)
- Arash Sattari
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,School of Medicine and Surgery, Department of Public Health and Community Medicine, University of Verona, Verona, Italy.,Department of Medicine, Faculty of Medical sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Hasan Siddiqui
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer & Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Farzaneh Moshiri
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Morphology, Experimental Medicine and Surgery, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Apollinaire Ngankeu
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Tatsuya Nakamura
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Thomas J Kipps
- Department of Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA.,Chronic Lymphocytic Leukemia Research Consortium, San Diego, CA, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
135
|
Murugan AK, Munirajan AK, Alzahrani AS. Long noncoding RNAs: emerging players in thyroid cancer pathogenesis. Endocr Relat Cancer 2018; 25:R59-R82. [PMID: 29146581 DOI: 10.1530/erc-17-0188] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
Abstract
Thyroid cancer continues to be the most common malignancy of endocrine glands. The incidence of thyroid cancer has risen significantly over the past 4 decades and has emerged as a major health issue. In recent years, significant progress has been achieved in our understanding of the molecular mechanisms of thyroid carcinogenesis, resulting in significant diagnostic, prognostic and therapeutic implications; yet, it has not reached a satisfactory level. Identifying novel molecular therapeutic targets and molecules for diagnosis and prognosis is expected to advance the overall management of this common malignancy. Long noncoding RNAs (lncRNAs) are implicated in the regulation of various key cellular genes involved in cell differentiation, proliferation, cell cycle, apoptosis, migration and invasion mainly through modulation of gene expression. Recent studies have established that lncRNAs are deregulated in thyroid cancer. In this review, we discuss extensively the tumor-suppressive (for example, LINC00271, MEG3, NAMA, PTCSC1/2/3, etc.) and oncogenic (for example, ANRIL, FAL1, H19, PVT1, etc.) roles of various lncRNAs and their possible disease associations implicated in thyroid carcinogenesis. We briefly summarize the strategies and mechanisms of lncRNA-targeting agents. We also describe the potential role of lncRNAs as prospective novel therapeutic targets, and diagnostic and prognostic markers in thyroid cancer.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Division of Molecular EndocrinologyDepartment of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arasambattu Kannan Munirajan
- Department of GeneticsDr ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India
| | - Ali S Alzahrani
- Division of Molecular EndocrinologyDepartment of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
136
|
Abstract
The majority of our genome is transcribed to produce RNA molecules that are mostly noncoding. Among them, long noncoding RNAs (lncRNAs) are the most numerous and functionally versatile class.LncRNAs have emerged as key regulators of gene expression at multiple levels.This section describes bioinformatics aspects important for lncRNA discovery and molecular approaches to perform structure-function characterization of this exciting class of regulatory molecules.
Collapse
|
137
|
Abstract
Brite/brown adipose tissue (BAT) is a thermogenic tissue able to dissipate energy via non-shivering thermogenesis. It is naturally activated by cold and has been demonstrated to increase thermogenic capacity, elevate energy expenditure, and to ultimately contribute to fat mass reduction. Thus, it emerges as novel therapeutic concept for pharmacological intervention in obesity and other metabolic disorders. Therefore, the comprehensive understanding of the regulatory network in thermogenic adipocytes is in demand.The surprising findings that (1) all human protein-coding genes make up not more than 2% of our genome, (2) organismal complexity goes well along with the percentage of nonprotein-coding sequences, and that (3) three quarters of our genome are pervasively transcribed, provide evidence that noncoding RNAs (ncRNAs) are not junk, but a significant and even predominant part of our transcriptome representing a treasure chest worth retrieving regulatory determinants in biological processes and diseases.In this chapter, the impact of regulatory small and long ncRNAs (lncRNAs) in particular microRNAs and lncRNAs on BAT formation and metabolic function and their involvement in physiological and pathological conditions has been reviewed.
Collapse
|
138
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
139
|
Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol 2017; 8:2483. [PMID: 29312192 PMCID: PMC5744636 DOI: 10.3389/fmicb.2017.02483] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs) and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
140
|
Abstract
The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.
Collapse
Affiliation(s)
- Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
141
|
Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2017; 18:558-576. [PMID: 27345524 PMCID: PMC5862301 DOI: 10.1093/bib/bbw060] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 02/07/2023] Open
Abstract
LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of lncRNAs would contribute to the development of various human complex diseases. In this review, we first made a brief introduction about the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important publicly available lncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of lncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available lncRNA–disease associations and predicting potential human lncRNA–disease associations have become important tasks of bioinformatics, which would benefit human complex diseases mechanism understanding at lncRNA level, disease biomarker detection and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art computational models, which could be effectively used to identify disease-related lncRNAs on a large scale and select the most promising disease-related lncRNAs for experimental validation. We also analyzed the limitations of these models and discussed the future directions of developing computational models for lncRNA research.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | | | - Xu Zhang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
142
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
143
|
Long Non-Coding RNAs in Metabolic Organs and Energy Homeostasis. Int J Mol Sci 2017; 18:ijms18122578. [PMID: 29189723 PMCID: PMC5751181 DOI: 10.3390/ijms18122578] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/15/2022] Open
Abstract
Single cell organisms can surprisingly exceed the number of human protein-coding genes, which are thus not at the origin of the complexity of an organism. In contrast, the relative amount of non-protein-coding sequences increases consistently with organismal complexity. Moreover, the mammalian transcriptome predominantly comprises non-(protein)-coding RNAs (ncRNA), of which the long ncRNAs (lncRNAs) constitute the most abundant part. lncRNAs are highly species- and tissue-specific with very versatile modes of action in accordance with their binding to a large spectrum of molecules and their diverse localization. lncRNAs are transcriptional regulators adding an additional regulatory layer in biological processes and pathophysiological conditions. Here, we review lncRNAs affecting metabolic organs with a focus on the liver, pancreas, skeletal muscle, cardiac muscle, brain, and adipose organ. In addition, we will discuss the impact of lncRNAs on metabolic diseases such as obesity and diabetes. In contrast to the substantial number of lncRNA loci in the human genome, the functionally characterized lncRNAs are just the tip of the iceberg. So far, our knowledge concerning lncRNAs in energy homeostasis is still in its infancy, meaning that the rest of the iceberg is a treasure chest yet to be discovered.
Collapse
|
144
|
Miller WB. Biological information systems: Evolution as cognition-based information management. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 134:1-26. [PMID: 29175233 DOI: 10.1016/j.pbiomolbio.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
An alternative biological synthesis is presented that conceptualizes evolutionary biology as an epiphenomenon of integrated self-referential information management. Since all biological information has inherent ambiguity, the systematic assessment of information is required by living organisms to maintain self-identity and homeostatic equipoise in confrontation with environmental challenges. Through their self-referential attachment to information space, cells are the cornerstone of biological action. That individualized assessment of information space permits self-referential, self-organizing niche construction. That deployment of information and its subsequent selection enacted the dominant stable unicellular informational architectures whose biological expressions are the prokaryotic, archaeal, and eukaryotic unicellular forms. Multicellularity represents the collective appraisal of equivocal environmental information through a shared information space. This concerted action can be viewed as systematized information management to improve information quality for the maintenance of preferred homeostatic boundaries among the varied participants. When reiterated in successive scales, this same collaborative exchange of information yields macroscopic organisms as obligatory multicellular holobionts. Cognition-Based Evolution (CBE) upholds that assessment of information precedes biological action, and the deployment of information through integrative self-referential niche construction and natural cellular engineering antecedes selection. Therefore, evolutionary biology can be framed as a complex reciprocating interactome that consists of the assessment, communication, deployment and management of information by self-referential organisms at multiple scales in continuous confrontation with environmental stresses.
Collapse
|
145
|
Schmitz U, Pinello N, Jia F, Alasmari S, Ritchie W, Keightley MC, Shini S, Lieschke GJ, Wong JJL, Rasko JEJ. Intron retention enhances gene regulatory complexity in vertebrates. Genome Biol 2017; 18:216. [PMID: 29141666 PMCID: PMC5688624 DOI: 10.1186/s13059-017-1339-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background While intron retention (IR) is now widely accepted as an important mechanism of mammalian gene expression control, it remains the least studied form of alternative splicing. To delineate conserved features of IR, we performed an exhaustive phylogenetic analysis in a highly purified and functionally defined cell type comprising neutrophilic granulocytes from five vertebrate species spanning 430 million years of evolution. Results Our RNA-sequencing-based analysis suggests that IR increases gene regulatory complexity, which is indicated by a strong anti-correlation between the number of genes affected by IR and the number of protein-coding genes in the genome of individual species. Our results confirm that IR affects many orthologous or functionally related genes in granulocytes. Further analysis uncovers new and unanticipated conserved characteristics of intron-retaining transcripts. We find that intron-retaining genes are transcriptionally co-regulated from bidirectional promoters. Intron-retaining genes have significantly longer 3′ UTR sequences, with a corresponding increase in microRNA binding sites, some of which include highly conserved sequence motifs. This suggests that intron-retaining genes are highly regulated post-transcriptionally. Conclusions Our study provides unique insights concerning the role of IR as a robust and evolutionarily conserved mechanism of gene expression regulation. Our findings enhance our understanding of gene regulatory complexity by adding another contributor to evolutionary adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1339-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Natalia Pinello
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Fangzhi Jia
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
| | | | | | - Shaniko Shini
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia. .,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia. .,, Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
146
|
Qiu GH, Yang X, Zheng X, Huang C. The eukaryotic genome is structurally and functionally more like a social insect colony than a book. Epigenomics 2017; 9:1469-1483. [PMID: 28972397 DOI: 10.2217/epi-2017-0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Traditionally, the genome has been described as the 'book of life'. However, the metaphor of a book may not reflect the dynamic nature of the structure and function of the genome. In the eukaryotic genome, the number of centrally located protein-coding sequences is relatively constant across species, but the amount of noncoding DNA increases considerably with the increase of organismal evolutional complexity. Therefore, it has been hypothesized that the abundant peripheral noncoding DNA protects the genome and the central protein-coding sequences in the eukaryotic genome. Upon comparison with the habitation, sociality and defense mechanisms of a social insect colony, it is found that the genome is similar to a social insect colony in various aspects. A social insect colony may thus be a better metaphor than a book to describe the spatial organization and physical functions of the genome. The potential implications of the metaphor are also discussed.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| |
Collapse
|
147
|
Mowel WK, Kotzin JJ, McCright SJ, Neal VD, Henao-Mejia J. Control of Immune Cell Homeostasis and Function by lncRNAs. Trends Immunol 2017; 39:55-69. [PMID: 28919048 DOI: 10.1016/j.it.2017.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022]
Abstract
The immune system is composed of diverse cell types that coordinate responses to infection and maintain tissue homeostasis. In each of these cells, extracellular cues determine highly specific epigenetic landscapes and transcriptional profiles to promote immunity while maintaining homeostasis. New evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in epigenetic and transcriptional regulation in mammals. Thus, lncRNAs have emerged as key regulatory molecules of immune cell gene expression programs in response to microbial and tissue-derived cues. We review here how lncRNAs control the function and homeostasis of cell populations during immune responses, emphasizing the diverse molecular mechanisms by which lncRNAs tune highly contextualized transcriptional programs. In addition, we discuss the new challenges faced in interrogating lncRNA mechanisms and function in the immune system.
Collapse
Affiliation(s)
- Walter K Mowel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; These authors contributed equally to this work
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; These authors contributed equally to this work
| | - Sam J McCright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vanessa D Neal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
148
|
Arendt T, Ueberham U, Janitz M. Non-coding transcriptome in brain aging. Aging (Albany NY) 2017; 9:1943-1944. [PMID: 28898200 PMCID: PMC5636661 DOI: 10.18632/aging.101290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022]
Affiliation(s)
- Thomas Arendt
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Uwe Ueberham
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Michael Janitz
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
149
|
Martínez C, Rodiño-Janeiro BK, Lobo B, Stanifer ML, Klaus B, Granzow M, González-Castro AM, Salvo-Romero E, Alonso-Cotoner C, Pigrau M, Roeth R, Rappold G, Huber W, González-Silos R, Lorenzo J, de Torres I, Azpiroz F, Boulant S, Vicario M, Niesler B, Santos J. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut 2017; 66:1537-1538. [PMID: 28082316 PMCID: PMC5561373 DOI: 10.1136/gutjnl-2016-311477] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Micro-RNAs (miRNAs) play a crucial role in controlling intestinal epithelial barrier function partly by modulating the expression of tight junction (TJ) proteins. We have previously shown differential messenger RNA (mRNA) expression correlated with ultrastructural abnormalities of the epithelial barrier in patients with diarrhoea-predominant IBS (IBS-D). However, the participation of miRNAs in these differential mRNA-associated findings remains to be established. Our aims were (1) to identify miRNAs differentially expressed in the small bowel mucosa of patients with IBS-D and (2) to explore putative target genes specifically involved in epithelial barrier function that are controlled by specific dysregulated IBS-D miRNAs. DESIGN Healthy controls and patients meeting Rome III IBS-D criteria were studied. Intestinal tissue samples were analysed to identify potential candidates by: (a) miRNA-mRNA profiling; (b) miRNA-mRNA pairing analysis to assess the co-expression profile of miRNA-mRNA pairs; (c) pathway analysis and upstream regulator identification; (d) miRNA and target mRNA validation. Candidate miRNA-mRNA pairs were functionally assessed in intestinal epithelial cells. RESULTS IBS-D samples showed distinct miRNA and mRNA profiles compared with healthy controls. TJ signalling was associated with the IBS-D transcriptional profile. Further validation of selected genes showed consistent upregulation in 75% of genes involved in epithelial barrier function. Bioinformatic analysis of putative miRNA binding sites identified hsa-miR-125b-5p and hsa-miR-16 as regulating expression of the TJ genes CGN (cingulin) and CLDN2 (claudin-2), respectively. Consistently, protein expression of CGN and CLDN2 was upregulated in IBS-D, while the respective targeting miRNAs were downregulated. In addition, bowel dysfunction, perceived stress and depression and number of mast cells correlated with the expression of hsa-miR-125b-5p and hsa-miR-16 and their respective target proteins. CONCLUSIONS Modulation of the intestinal epithelial barrier function in IBS-D involves both transcriptional and post-transcriptional mechanisms. These molecular mechanisms include miRNAs as master regulators in controlling the expression of TJ proteins and are associated with major clinical symptoms.
Collapse
Affiliation(s)
- Cristina Martínez
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bruno K Rodiño-Janeiro
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Lobo
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Bernd Klaus
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - Eloisa Salvo-Romero
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Marc Pigrau
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Gudrun Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rosa González-Silos
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Justo Lorenzo
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Inés de Torres
- Department of Pathology, Facultat de Medicina, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany,Research Group ‘Cellular Polarity and Viral Infection’ (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María Vicario
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Javier Santos
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| |
Collapse
|
150
|
Yan P, Luo S, Lu JY, Shen X. Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Curr Opin Genet Dev 2017; 46:170-178. [PMID: 28843809 DOI: 10.1016/j.gde.2017.07.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Pervasive transcription in mammalian genomes produces thousands of long noncoding RNA (lncRNA) transcripts. Although they have been implicated in diverse biological processes, the functional relevance of most lncRNAs remains unknown. Recent studies reveal the prevalence of lncRNA-mediated cis regulation on nearby transcription. In this review, we summarize cis- and trans-acting lncRNAs involved in stem cell pluripotency and reprogramming, highlighting the role of regulatory lncRNAs in providing an additional layer of complexity to the regulation of genes that govern cell fate during development.
Collapse
Affiliation(s)
- Pixi Yan
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sai Luo
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - J Yuyang Lu
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|