101
|
|
102
|
Liu Y, Liao W, Chen S. Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model. Biotechnol Bioeng 2008; 99:117-28. [PMID: 17570715 DOI: 10.1002/bit.21531] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fungal pellet formation is an important topic of fermentation research. It has been reported that many factors such as agitation, medium nutrients, pH, polymer additives, and inoculum size influence the formation of fungal pellets. However, a few studies on the effects of all of these factors on fungal pellet formation have been reported. This paper conducted a comprehensive investigation using a completely randomized design (CRD) on a filamentous fungus, Rhizopus oryzae NRRL 395, in order to discover the effects of the above factors on fungal pellet formation. In addition, other factors, such as addition of biodegradable polymers and spore storage time that have not been reportedly studied were examined and their effects on pellet formation were investigated. A multiple logistic regression model was established to predict the probability of pellet formation using the above factors and their interactions as predictor variables. Model building and diagnostics were obtained using the Statistical Analysis System (SAS 9.0) program. The model developed in this study can be used to predict the pellet formation of other R. oryzae strains as well.
Collapse
Affiliation(s)
- Yan Liu
- Department of Biological Systems Engineering and Center for Bioenergy and Bioproducts, Washington State University, L.J. Smith 213, Pullman, Washington 99163, USA
| | | | | |
Collapse
|
103
|
Lin PJ, Grimm LH, Wulkow M, Hempel DC, Krull R. Population balance modeling of the conidial aggregation of Aspergillus niger. Biotechnol Bioeng 2008; 99:341-50. [PMID: 17625790 DOI: 10.1002/bit.21569] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous biotechnological production processes are based on the submerse cultivation of filamentous fungi. Process design, however, is often hampered by the complex growth pattern of these organisms. In the morphologic development of coagulating filamentous fungi, like Aspergillus niger, conidial aggregation is the first step of filamentous morphogenesis. For a proper description of this phenomenon it is necessary to characterize conidial populations. Kinetic studies performed with an in-line particle size analyzer suggested that two distinct aggregation steps have to be considered. The first step of conidial aggregation starts immediately after inoculation. Both the rate constants of formation and disintegration of aggregates have been determined by measuring the concentration of conidia at the beginning of the cultivation and the concentration of particles at steady state during the first hours of cultivation. In contrast to the first aggregation step, where the collision of conidia is presumed to be responsible for the process, the second aggregation step is thought to be initiated by germination of conidia. Growing hyphae provide additional surface for the attachment of non- germinated conidia, which leads to a strong decrease in particle concentration. The specific hyphal length growth rate and the ratio of particle concentration to the growing adhesion hyphal surface are decisive matters of the second aggregation step. Both aggregation steps can be described by population dynamics and simulated using the program package PARSIVAL (PARticle SIze eVALution) for the treatment of general particle population balances.
Collapse
Affiliation(s)
- P-J Lin
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaussstrasse 17, 38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
104
|
|
105
|
Oncu S, Tari C, Unluturk S. Effect of Various Process Parameters on Morphology, Rheology, and Polygalacturonase Production byAspergillus sojaein a Batch Bioreactor. Biotechnol Prog 2007. [DOI: 10.1002/bp070079c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
106
|
Tralau T, Lanthaler K, Robson GD, Crosthwaite SK. Circadian rhythmicity during prolonged chemostat cultivation of Neurospora crassa. Fungal Genet Biol 2006; 44:754-63. [PMID: 17196855 DOI: 10.1016/j.fgb.2006.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/06/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Following exposure to light and attainment of steady-state in the chemostat, Neurospora was grown in constant conditions of darkness at 25 degrees C for 6 days. Biomass samples were taken every 4h for the extraction of RNA and protein, and the state of the circadian clock was assessed by assaying the levels of three rhythmically expressed mRNAs; frequency (frq), antisense frq (qrf) and clock-controlled gene-14 (ccg-14), and by monitoring the clock-controlled rhythm of sporulation. Our results indicate that the Neurospora clock continued to run in the chemostat. This is the longest reported time that Neurospora has been grown in a chemostat in filamentous form and opens up the possibility of studying the response of Neurospora to a range of stimuli in the absence of confounding effects due to; alterations in growth rate, aging, and changing conditions of the growth medium.
Collapse
Affiliation(s)
- Tewes Tralau
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
107
|
Proces models for production of β-lactam antibiotics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006. [DOI: 10.1007/bfb0102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
108
|
Cho EJ, Oh JY, Chang HY, Yun JW. Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol 2006; 127:129-40. [PMID: 16872706 DOI: 10.1016/j.jbiotec.2006.06.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 05/19/2006] [Accepted: 06/22/2006] [Indexed: 11/30/2022]
Abstract
The optimization of submerged culture conditions for mycelial growth and exopolysaccharide (EPS) production in an edible mushroom Tremella fuciformis was studied in shake flasks and bioreactors. The temperature of 28 degrees C and pH 8 in the beginning of fermentation in agitated flasks was the most efficient condition to obtain maximum mycelial biomass and EPS. The optimal medium constituents were as follows (gL(-1)): glucose 20, tryptone 2, KH(2)PO(4) 0.46, K(2)HPO(4) 1 and MgSO(4).7H(2)O 0.5. The fungus was cultivated under various agitation and aeration conditions in a 5L stirred-tank bioreactor. The maximum cell mass and EPS production were obtained at a relatively high agitation speed of 200 rpm and at an aeration rate of 2 vvm. The flow behavior of the fermentation broth was Newtonian and the maximum apparent viscosity (35 cP) was observed at a highly aerated condition (2 vvm). The EPS productivity in an airlift reactor was higher than that in the stirred-tank reactor. The morphological study revealed that the fungus grows in mainly three different yeast-like forms: ovoid, elongated, and double yeast forms. The high population of the elongated yeast has a very close relationship to high EPS production. The EPS were protein-bound polysaccharides consisted of mainly mannose, xylose, and fucose. The molecular weights of EPS were determined to be (1.3-1.5)x10(6).
Collapse
Affiliation(s)
- Eun Jae Cho
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea
| | | | | | | |
Collapse
|
109
|
Relationship between morphology, rheology and polygalacturonase production by Aspergillus sojae ATCC 20235 in submerged cultures. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
110
|
Rodríguez Porcel EM, Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, García Sánchez JL, Chisti Y. Aspergillus terreus Broth Rheology, Oxygen Transfer, and Lovastatin Production in a Gas-Agitated Slurry Reactor. Ind Eng Chem Res 2006. [DOI: 10.1021/ie0600801] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. M. Rodríguez Porcel
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain, and Institute of Technology and Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - J. L. Casas López
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain, and Institute of Technology and Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - J. A. Sánchez Pérez
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain, and Institute of Technology and Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - J. M. Fernández Sevilla
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain, and Institute of Technology and Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - J. L. García Sánchez
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain, and Institute of Technology and Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Y. Chisti
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain, and Institute of Technology and Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
111
|
Hille A, Neu T, Hempel D, Horn H. Einfluss der Morphologie auf Stofftransport und -umsatz inAspergillus niger-Pellets. CHEM-ING-TECH 2006. [DOI: 10.1002/cite.200600018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
112
|
Saraswathy A, Hallberg R. Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiol Res 2005; 160:375-83. [PMID: 16255142 DOI: 10.1016/j.micres.2005.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Five indigenous fungal strains with characteristics of the genus Penicillium capable of degrading and utilizing pyrene, as sole carbon source were isolated from soil of a former gas work site. Two strains were identified as Penicillium ochrochloron. One of the strains was able to degrade a maximum of 75% of 50 mg l(-1) pyrene at 22 degrees C during 28 days of incubation. The presence of pyrene in the medium resulted in an aggregation of hyphae into pellets by the two Penicillium ochrochloron strains. Formation of pellets was observed after 48 h of incubation with difference in size and texture between the two strains. This indicated the individual variation within the same genus of fungi. However, remaining strains did not show this behavior even though they were capable of utilizing pyrene as sole carbon source. The macro- and microscopic morphology of fungal pellets was studied using scanning electron microscopy. It was found that the addition of varying concentration of pyrene ranging from 10 to 50 mg l(-1) in the medium influenced shape and structure of the mycelial pellets. A two-fold increase in hyphal branching (with concomitant decrease in the average hyphal growth unit) was observed at a concentration of 10mg l(-1). The relevance of fungal growth and morphology for bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated sites are discussed.
Collapse
Affiliation(s)
- Ambujom Saraswathy
- Department of Biology, West Virginia State University Institute, WV 25112, USA.
| | | |
Collapse
|
113
|
Grimm LH, Kelly S, Krull R, Hempel DC. Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 2005; 69:375-84. [PMID: 16317480 DOI: 10.1007/s00253-005-0213-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 10/06/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
Cultivation processes involving filamentous fungi have been optimised for decades to obtain high product yields. Several bulk chemicals like citric acid and penicillin are produced this way. A simple adaptation of cultivation parameters for new production processes is not possible though. Models explaining the correlation between process-dependent growth behaviour and productivity are therefore necessary to prevent long-lasting empiric test series. Yet, filamentous growth consists of a complex microscopic differentiation process from conidia to hyphae resulting in various macroscopically visible appearances. Early approaches to model this morphologic development are recapitulated in this review to explain current trends in this area of research. Tailoring morphology by adjusting process parameters is one side of the coin, but an ideal morphology has not even been found. This article reviews several reasons for this fact starting with nutrient supply in a fungal culture and presents recent advances in the investigation of fungal metabolism. It illustrates the challenge to unfold the relationship between morphology and productivity.
Collapse
Affiliation(s)
- L H Grimm
- Institute of Biochemical Engineering, Technical University of Braunschweig, Gaussstrasse 17, 38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
114
|
Rodríguez Porcel E, Casas López J, Sánchez Pérez J, Fernández Sevilla J, Chisti Y. Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochem Eng J 2005. [DOI: 10.1016/j.bej.2005.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
115
|
Nielsen J. Modelling the growth of filamentous fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 46:187-223. [PMID: 1636480 DOI: 10.1007/bfb0000711] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite the considerable industrial importance of filamentous fungi there have been very few attempts to model the complex growth process of these microorganisms. With a new generation of high performance, computerized bioreactors and new analytical techniques it is possible to obtain the necessary experimental data for setting up reliable structured models describing the growth process of filamentous fungi. It is therefore interesting to review the mathematical models described previously in the literature and the experimental data on which these models are built. Only structured models are considered due to the complex metabolism of filamentous fungi and to the natural cellular structuring of the biomass, i.e. the biomass can be divided into different cell types. In order to set up good structured models it is strictly necessary to have a detailed knowledge of the mechanisms underlying the growth process. This involves both biochemical insight and understanding of the interactions between different macromolecules and cytological organelles.
Collapse
Affiliation(s)
- J Nielsen
- Department of Biotechnology, Technical University of Denmark, Lyngby
| |
Collapse
|
116
|
The rheology of mould suspensions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005. [DOI: 10.1007/3-540-08990-x_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
117
|
Grimm LH, Kelly S, Hengstler J, Göbel A, Krull R, Hempel DC. Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 2005; 87:213-8. [PMID: 15236250 DOI: 10.1002/bit.20130] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Morphology has a crucial effect on productivity and the supply of substrate for cultures of filamentous fungi. However, cultivation parameters leading to the desired morphology are often chosen empirically as the mechanisms governing the processes involved are usually unknown. For coagulating microorganisms like Aspergillus niger the morphological development is considered to start with the aggregation of conidia right after inoculation. To elucidate the mechanism of this process, kinetic studies were carried out using an in-line particle size analyzer. Based on the data obtained from these experiments a model for conidial aggregation is proposed in this article. It consists of two separate aggregation steps. The first one takes place immediately after inoculation, but only leads to a small decrease of total particle concentration. Most suspended conidia aggregate after a second aggregation step triggered by germination and hyphal growth. Aggregation velocity of this second phase is linearly dependent on the particle growth rate.
Collapse
Affiliation(s)
- L H Grimm
- Institute of Biochemical Engineering, Technical University of Braunschweig, Gaussstrasse 17, 38106 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
118
|
Emelyanova EV. Effects of cultivation conditions on the growth of the basidiomycete Coriolus hirsutus in a medium with pentose wood hydrolyzate. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
119
|
Ali S, Haq IU. Role of different additives and metallic micro minerals on the enhanced citric acid production byAspergillus niger MNNG-115 using different carbohydrate materials. J Basic Microbiol 2005; 45:3-11. [PMID: 15678560 DOI: 10.1002/jobm.200410460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present investigation deals with the promotry effect of different additives and metallic micro minerals on citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials. For this, sugar cane bagasse was fortified with sucrose salt medium. Ethanol and coconut oil at 3.0% (v/w) level increased citric acid productivity. Fluoroacetate at a concentration of 1.0 mg/ml bagasse enhanced the yield of citric acid significantly. However, the addition of ethanol and fluoroacetate after 6 h of growth gave the maximum conversion of available sugar to citric acid. In another study, influence of some metallic micro-minerals viz. copper sulphate, molybdenum sulphate, zinc sulphate and cobalt sulphate on microbial synthesis of citric acid using molasses medium was also carried out. It was found that copper sulphate and molybdenum sulphate remarkably enhanced the production of citric acid while zinc sulphate was not so effective. However, cobalt sulphate was the least effective for microbial biosynthesis of citric acid under the same experimental conditions. In case of CuSO(4), the strain of Aspergillus niger MNNG-115 showed enhanced citric productivity with experimental (9.80%) over the control (7.54%). In addition, the specific productivity of the culture at 30 ppm CuSO(4) (Q(p) = 0.012a g/g cells/h) was several folds higher than other all other concentrations. All kinetic parameters including yield coefficients and volumetric rates revealed the hyper productivity of citric acid by CuSO(4) using blackstrap molasses as the basal carbon source.
Collapse
Affiliation(s)
- Sikander Ali
- Biotechnology Research Centre, Department of Botany, Government College University Lahore, Lahore, Pakistan.
| | | |
Collapse
|
120
|
Grimm LH, Kelly S, Völkerding II, Krull R, Hempel DC. Influence of mechanical stress and surface interaction on the aggregation ofAspergillus niger conidia. Biotechnol Bioeng 2005; 92:879-88. [PMID: 16255057 DOI: 10.1002/bit.20666] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Productivity of fungal cultures is closely linked with their morphologic development. Morphogenesis of coagulating filamentous fungi, like Aspergillus niger, starts with aggregation of conidia, also denominated as spores. Several parameters are presumed to control this event, but little is known about their mode of action. Rational process optimization requires models that mirror the underlying reaction mechanisms. An approach in this regard is suggested and supported by experimental data. Aggregation kinetics was examined for the first 15 h of cultivation under different cultivation conditions. Mechanical stress was considered as well as pH-dependent surface interaction. Deliberations were based on a two-step aggregation mechanism. The first aggregation step is only affected by the pH-value, not by the fluid dynamic conditions in the bioreactor. The second aggregation step, in contrast, depends on the pH-value as well as on agitation and aeration induced power input. For the given experimental set-up, agitation had much more influence than aeration. In addition, hyphal growth rate was determined to be the driving force for the second aggregation step.
Collapse
Affiliation(s)
- L H Grimm
- Institute of Biochemical Engineering, Technical University of Braunschweig
| | | | | | | | | |
Collapse
|
121
|
Hille A, Neu TR, Hempel DC, Horn H. Oxygen profiles and biomass distribution in biopellets ofAspergillus niger. Biotechnol Bioeng 2005; 92:614-23. [PMID: 16136592 DOI: 10.1002/bit.20628] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Morphology of fungal pellets has a significant influence on mass transfer and turnover processes in submerged cultures. There are many reports in literature that biomass is not distributed homogeneously over the pellet radius, yet quantitative data is rare. This study presents a method for the quantification of fungal pellet structure (Aspergillus niger). Confocal laser scanning microscopy (CLSM) is used in combination with image analysis freeware (Image J). Hyphal distribution is resolved spatially in radial direction. Quantitative morphological parameters are derived from digital images especially from the peripheral regions of the pellet that are not oxygen limited. This morphological information is combined with data of microelectrode measurements in the same pellets. Results show that the morphological parameters obtained can describe the impact of pellet structure on oxygen gradients much better than average biomass density. It is concluded that CLSM and image analysis are powerful tools not only to generate valuable data for quantitative description of pellet morphology. In addition, this data may be used in mathematical models to improve predictions of mass transfer and substrate conversion in mycelial aggregates.
Collapse
Affiliation(s)
- A Hille
- Institute of Biochemical Engineering, Technical University of Braunschweig, Germany
| | | | | | | |
Collapse
|
122
|
Wang L, Ridgway D, Gu T, Moo-Young M. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv 2004; 23:115-29. [PMID: 15694123 DOI: 10.1016/j.biotechadv.2004.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 11/15/2004] [Accepted: 11/17/2004] [Indexed: 11/24/2022]
Abstract
Filamentous fungi have long been used for the production of metabolites and enzymes. With developments in genetic engineering and molecular biology, filamentous fungi have also achieved increased attention as hosts for recombinant DNA. However, the production levels of non-fungal proteins are usually low. Despite the achievements obtained using molecular tools, the heterologous protein loss caused by extracellular fungal protease degradation persists. This review provides an overview of the potential bioprocessing strategies that can be applied to inhibit protease activity thereby enhancing heterologous protein production.
Collapse
Affiliation(s)
- Liping Wang
- Department of Chemical Engineering, Ohio University, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
123
|
Junker BH, Hesse M, Burgess B, Masurekar P, Connors N, Seeley A. Early phase process scale-up challenges for fungal and filamentous bacterial cultures. Appl Biochem Biotechnol 2004; 119:241-78. [PMID: 15591617 DOI: 10.1007/s12010-004-0005-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 07/20/2004] [Accepted: 07/20/2004] [Indexed: 11/28/2022]
Abstract
Culture pelleting and morphology has a strong influence on process productivity and success for fungal and filamentous bacterial cultures. This impact is particularly evident with early phase secondary metabolite processes with limited process definition. A compilation of factors affecting filamentous or pelleting morphology described in the literature indicates potential leads for developing process-specific control methodologies. An evaluation of the factors mediating citric acid production is one example of an industrially important application of these techniques. For five model fungal and filamentous bacterial processes in an industrial fermentation pilot plant, process development strategies were developed and effectively implemented with the goal of achieving reasonable fermentation titers early in the process development cycle. Examples of approaches included the use of additives to minimize pelleting in inoculum shake flasks, the use of large-volume frozen bagged inoculum obtained from agitated seed fermentors, and variations in production medium composition and fermentor operating conditions. Results were evaluated with respect to productivity of desired secondary metabolites as well as process scalability. On-line measurements were utilized to indirectly evaluate the cultivation impact of changes in medium and process development. Key laboratory to pilot plant scale-up issues also were identified and often addressed in subsequent cultivations.
Collapse
Affiliation(s)
- B H Junker
- Fermentation Development and Operations, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Rodríguez Porcel EM, Chisti Y. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J Biotechnol 2004; 116:61-77. [PMID: 15652430 DOI: 10.1016/j.jbiotec.2004.10.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 10/07/2004] [Accepted: 10/13/2004] [Indexed: 12/16/2022]
Abstract
Pellet growth of Aspergillus terreus ATCC 20542 in submerged batch fermentations in stirred bioreactors was used to examine the effects of agitation (impeller tip speed u(t) of 1.01-2.71 ms(-1)) and aeration regimens (air or an oxygen-enriched mixture containing 80% oxygen and 20% nitrogen by volume) on the fungal pellet morphology, broth rheology and lovastatin production. The agitation speed and aeration methods used did not affect the biomass production profiles, but significantly influenced pellet morphology, broth rheology and the lovastatin titers. Pellets of approximately 1200 microm initial diameter were reduced to a final stable size of approximately 900 microm when the agitation intensity was >/=600 rpm (u(t)>/=2.03 ms(-1)). A stable pellet diameter of approximately 2500 microm could be attained in less intensely agitated cultures. These large fluffy pellets produced high lovastatin titers when aerated with oxygen-enriched gas but not with air. Much smaller pellets obtained under highly agitated conditions did not attain high lovastatin productivity even in an oxygen-enriched atmosphere. This suggests that both an upper limit on agitation intensity and a high level of dissolved oxygen are essential for attaining high titers of lovastatin. Pellet size in the bioreactor correlated equally well with the specific energy dissipation rate and the energy dissipation circulation function. The latter took into account the frequency of passage of the pellets through the high shear regions of the impellers. Pellets that gave high lovastatin titers produced highly shear thinning cultivation broths.
Collapse
Affiliation(s)
- J L Casas López
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain.
| | | | | | | | | |
Collapse
|
125
|
Dai Z, Mao X, Magnuson JK, Lasure LL. Identification of genes associated with morphology in Aspergillus niger by using suppression subtractive hybridization. Appl Environ Microbiol 2004; 70:2474-85. [PMID: 15066846 PMCID: PMC383145 DOI: 10.1128/aem.70.4.2474-2485.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The morphology of citric acid production strains of Aspergillus niger is sensitive to a variety of factors, including the concentration of manganese (Mn(2+)). Upon increasing the Mn(2+) concentration in A. niger (ATCC 11414) cultures to 14 ppb or higher, the morphology switches from pelleted to filamentous, accompanied by a rapid decline in citric acid production. The molecular mechanisms through which Mn(2+) exerts effects on morphology and citric acid production in A. niger cultures have not been well defined, but our use of suppression subtractive hybridization has identified 22 genes responsive to Mn(2+). Fifteen genes were differentially expressed when A. niger was grown in media containing 1,000 ppb of Mn(2+) (filamentous form), and seven genes were expressed in 10 ppb of Mn(2+) (pelleted form). Of the 15 filament-associated genes, seven are novel and eight share 47 to 100% identity with genes from other organisms. Five of the pellet-associated genes are novel, and the other two genes encode a pepsin-type protease and polyubiquitin. All 10 genes with deduced functions are either involved in amino acid metabolism-protein catabolism or cell regulatory processes. Northern blot analysis showed that the transcripts of all 22 genes were rapidly enhanced or suppressed by Mn(2+). Steady-state mRNA levels of six selected filament-associated genes remained high during 5 days of culture in a filamentous state and remained low under pelleted growth conditions. The opposite behavior was observed for four selected pellet-associated genes. The full-length cDNA of the filament-associated clone, Brsa-25, was isolated. Antisense expression of Brsa-25 permitted pelleted growth and increased citrate production at concentrations of Mn(2+) that were higher than the parent strain could tolerate. These results suggest the involvement of the newly isolated genes in the regulation of A. niger morphology.
Collapse
Affiliation(s)
- Ziyu Dai
- Chemical and Biological Processes Development Group, Process Science & Engineering Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
126
|
Kelly S, Grimm LH, Hengstler J, Schultheis E, Krull R, Hempel DC. Agitation effects on submerged growth and product formation of Aspergillus niger. Bioprocess Biosyst Eng 2004; 26:315-23. [PMID: 15309605 DOI: 10.1007/s00449-004-0368-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
Product formation of mycelial organisms, like Aspergillus niger, is intimately connected with their morphology. Pellet morphology is often requested for product formation. Therefore, it is important to reveal the influence of the hydrodynamic conditions on the morphological development. In the present study, pellet morphology and glucoamylase formation were studied under different agitation intensities of A. niger AB1.13. For pellet formation inside the bioreactor, without the use of precultures, it is necessary to work at low energy dissipation rates. Biomass growth and glucoamylase activity were correlated with energy dissipation. Furthermore, product yield was analysed in dependence of pellet size and concentration. The present work shows that simple equations based on Monod-kinetics can describe growth and product formation, in general, also in mycelian organisms. All measured morphological data, like pellet concentration, as well as glucoamylase formation, strongly depend on the hydrodynamic conditions.
Collapse
Affiliation(s)
- Sven Kelly
- Institute of Biochemical Engineering, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
127
|
Impeller types and feeding modes influence the morphology and protein expression in the submerged culture ofAspergillus oryzae. BIOTECHNOL BIOPROC E 2004. [DOI: 10.1007/bf02942290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
128
|
Sims AH, Robson GD, Hoyle DC, Oliver SG, Turner G, Prade RA, Russell HH, Dunn-Coleman NS, Gent ME. Use of expressed sequence tag analysis and cDNA microarrays of the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 2004; 41:199-212. [PMID: 14732266 DOI: 10.1016/j.fgb.2003.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The use of microarrays in the analysis of gene expression is becoming widespread for many organisms, including yeast. However, although the genomes of a number of filamentous fungi have been fully or partially sequenced, microarray analysis is still in its infancy in these organisms. Here, we describe the construction and validation of microarrays for the fungus Aspergillus nidulans using PCR products from a 4092 EST conidial germination library. An experiment was designed to validate these arrays by monitoring the expression profiles of known genes following the addition of 1% (w/v) glucose to wild-type A. nidulans cultures grown to mid-exponential phase in Vogel's minimal medium with ethanol as the sole carbon source. The profiles of genes showing statistically significant differential expression following the glucose up-shift are presented and an assessment of the quality and reproducibility of the A. nidulans arrays discussed.
Collapse
Affiliation(s)
- Andrew H Sims
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
König B, Schügerl K, Seewald C. Strategies for penicillin fermentation in tower-loop reactors. Biotechnol Bioeng 2004; 24:259-80. [DOI: 10.1002/bit.260240202] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
130
|
Truong QT, Miyata N, Iwahori K. Growth of Aspergillus oryzae during treatment of cassava starch processing wastewater with high content of suspended solids. J Biosci Bioeng 2004; 97:329-35. [PMID: 16233638 DOI: 10.1016/s1389-1723(04)70214-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 03/05/2004] [Indexed: 11/21/2022]
Abstract
Aspergillus oryzae IFO 30113 was used for the treatment of the cassava starch processing (CSP) wastewater. The observations on the fungal morphology showed that, in the shake flasks containing the CSP wastewater with the high concentration of suspended solids, the formation of pellets originated from the adherence of germinated spores to solid particles in medium. The attached solid particles were also digested during the fungal fermentation and resulted in the formation of the smooth and hollow pellets. The changes of the culture conditions such as inoculum size, initial pH of wastewater, inoculum type and nutrient elements affected on the fungal morphology, biomass accumulation and treatment efficiencies of A. oryzae IFO 30113. In the typical pH range (pH 4-5) of the CSP wastewater, the formation of smooth pellets was predominant and A. oryzae IFO 30113 was satisfiable for the production of fungal biomass and treatment efficiencies. The supplementation of nitrogen sources has shown an improvement in the fungal biomass accumulation and the treatment efficiency of A. oryzae IFO 30113 growing in the CSP wastewater. Especially, high biomass yields (up to 0.8 g/g-COD) were achieved in flasks supplied with peptone. With ammonium sulfate as nitrogen source, 87% total organic carbon (TOC), 91% COD and 94% starch were removed after 96-h incubation. The possibility of the pellet formation despite the presence of the high content of suspended solids would be of great advantage to perform the treatment process and the fungal biomass production on the airlift-type bioreactors by lowering medium viscosity and better mass exchange of oxygen and nutrients.
Collapse
Affiliation(s)
- Quy Tung Truong
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
131
|
Chen T, Small DA, McDermott MK, Bentley WE, Payne GF. Enzymatic Methods for in Situ Cell Entrapment and Cell Release. Biomacromolecules 2003; 4:1558-63. [PMID: 14606880 DOI: 10.1021/bm034145k] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an enzyme-based method for the in situ entrapment of cells within a biopolymeric hydrogel matrix. Specifically, we used a calcium-independent microbial transglutaminase that is known to cross-link proteins and observed that it catalyzes the formation of gels from a pre-gel solution containing 10% gelatin and E. coli cells. Hydrogel formation occurs 2-3 h after adding transglutaminase, and no additional external intervention is required to initiate gel formation. The in situ entrapped cells grow rapidly and to high cell densities within the gelatin hydrogel. Additionally, the entrapped cells respond to isopropylthiogalactoside induction. The cross-linked gelatin network can be rapidly hydrolyzed (within 1 h) by the protease, proteinase K. Treatment of the network by this protease releases the entrapped E. coli cells. These cells appear unharmed by proteinase K; they can grow and be induced after protease treatment. The ability to in situ entrap, grow, and release cells under mild conditions provides unique opportunities for a range of applications and should be especially useful for microfluidic biosensor systems.
Collapse
Affiliation(s)
- Tianhong Chen
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, Maryland 20742-4450, USA
| | | | | | | | | |
Collapse
|
132
|
Jiménez-Tobon G, Kurzatkowski W, Rozbicka B, Solecka J, Pocsi I, Penninckx MJ. In situ localization of manganese peroxidase production in mycelial pellets of Phanerochaete chrysosporium. Microbiology (Reading) 2003; 149:3121-3127. [PMID: 14600224 DOI: 10.1099/mic.0.26451-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ultrastructure of Phanerochaete chrysosporium hyphae from pellets in submerged liquid cultures was investigated in order to learn more about the interrelation between fungal architecture and manganese peroxidase (MnP) production. At day 2 of cultivation, some subapical regions of hyphae in the outer and middle zones of the pellet initiated differentiation into intercalary thick-walled chlamydospore-like cells of about 10 μm diameter. At the periphery of the cytoplasm of these cells, a large number of mitochondria and Golgi-like vesicles were observed. The sites of MnP production were localized at different stages of cultivation by an immunolabelling procedure. The immunomarker of MnP was mainly concentrated in the chlamydospore-like cells and principally distributed in Golgi-like vesicles located at the periphery of the cytoplasm. The apices of hyphae in the outer layer of the pellets were apparently minor sites of MnP production. Maximal MnP release into the culture supernatant coincided with apparent autolysis of the chlamydospore-like cells. Production of extracellular autolytic chitinase and protease coincided with the disappearance of these structures from the pellets. The chlamydospore-like cells observed in the mycelial pellets of P. chrysosporium could be metabolically active entities operating as an enzyme reservoir, delivering their content into the surrounding medium possibly by an enzyme-mediated autolytic process.
Collapse
Affiliation(s)
- G Jiménez-Tobon
- Laboratoire de Physiologie et Ecologie Microbienne, Faculté des Sciences, Université Libre de Bruxelles, c/o Institut Pasteur, 642 Rue Engeland, B-1180 Brussels, Belgium
| | - W Kurzatkowski
- Laboratory of Actinomycetes and Fungi imperfecti, National Institute of Hygiene, Warsaw, Poland
| | - B Rozbicka
- Laboratory of Actinomycetes and Fungi imperfecti, National Institute of Hygiene, Warsaw, Poland
| | - J Solecka
- Laboratory of Actinomycetes and Fungi imperfecti, National Institute of Hygiene, Warsaw, Poland
| | - I Pocsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, Debrecen, Hungary
| | - M J Penninckx
- Laboratoire de Physiologie et Ecologie Microbienne, Faculté des Sciences, Université Libre de Bruxelles, c/o Institut Pasteur, 642 Rue Engeland, B-1180 Brussels, Belgium
| |
Collapse
|
133
|
Stress-induced morphological and physiological changes in γ-linolenic acid production by Mucor fragilis in batch and continuous cultures. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00061-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
134
|
Alam MZ, Fakhru'l-Razi A. Enhanced settleability and dewaterability of fungal treated domestic wastewater sludge by liquid state bioconversion process. WATER RESEARCH 2003; 37:1118-1124. [PMID: 12553987 DOI: 10.1016/s0043-1354(02)00452-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A study was conducted to evaluate the settleability and dewaterability of fungal treated and untreated sludge using liquid state bioconversion process. The fungal mixed culture of Aspergillus niger and Penicillium corylophilum was used for fungal pretreatment of wastewater sludge. The fungal strains immobilized/entrapped on sludge particles with the formation of pellets and enhanced the separation process. The results presented in this study showed that the sludge particles (pellets) size of 2-5mm of diameter were formed with the microbial treatment of sludge after 2 days of fermentation that contained maximum 33.7% of total particles with 3-3.5mm of diameter. The settling rate (measured as total suspended solids (TSS) concentration, 130 mg/l) was faster in treated sludge than untreated sludge (TSS concentration, 440 mg/l) after 1 min of settling time. In 1 min of settling operation, 86.45% of TSS was settled in treated sludge while 4.35% of TSS settled in raw sludge. Lower turbidity was observed in treated sludge as compared to untreated sludge. The results to specific resistance to filtration (SRF) revealed that the fungal inoculum had significant potentiality to reduce SRF by 99.8% and 98.7% for 1% w/w and 4% w/w of TSS sludge, respectively. The optimum fermentation period recorded was 3 days for 1% w/w sludge and 6 days for 4% w/w sludge, respectively, for dewaterability test.
Collapse
Affiliation(s)
- Md Zahangir Alam
- Biochemical Engineering Lab, Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia.
| | | |
Collapse
|
135
|
|
136
|
|
137
|
Park JP, Kim YM, Kim SW, Hwang HJ, Cho YJ, Lee YS, Song CH, Yun JW. Effect of agitation intensity on the exo-biopolymer production and mycelial morphology in Cordyceps militaris. Lett Appl Microbiol 2002; 34:433-8. [PMID: 12028425 DOI: 10.1046/j.1472-765x.2002.01126.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The influence of agitation intensity on Cordyceps militaris morphology and exo-biopolymer production was investigated in a 5 litre stirred vessel using a six-blade Rushton turbine impeller. METHODS AND RESULTS The mycelial morphology of C. militaris was characterized by means of image analysis, which included mean diameter, circularity, roughness and compactness of the pellets. The morphological parameters of the pellets grown under different stirring conditions were significantly different, which correspondingly altered exo-biopolymer production yields. CONCLUSIONS The compactness of the pellets was found to be the most critical parameter affecting exo-biopolymer biosynthesis; more compact pellets were formed at 150 rev min(-1) with maximum exo-biopolymer production (15 g l(-1)). SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study suggest that morphological change of pellets is a good indicator for identifying the cell activity for exo-biopolymer production.
Collapse
Affiliation(s)
- J P Park
- Department of Biotechnology, Taegu University, Kyungsan, Kyungbuk, Korea
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Rahardjo YSP, Weber FJ, le Comte EP, Tramper J, Rinzema A. Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system. Biotechnol Bioeng 2002; 78:539-44. [PMID: 12115123 DOI: 10.1002/bit.10222] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oxygen transfer is for two reasons a major concern in scale-up and process control in industrial application of aerobic fungal solid-state fermentation (SSF): 1) heat production is proportional to oxygen uptake and it is well known that heat removal is one of the main problems in scaled-up fermenters, and 2) oxygen supply to the mycelium on the surface of or inside the substrate particles may be hampered by diffusion limitation. This article gives the first experimental evidence that aerial hyphae are important for fungal respiration in SSF. In cultures of A. oryzae on a wheat-flour model substrate, aerial hyphae contributed up to 75% of the oxygen uptake rate by the fungus. This is due to the fact that A. oryzae forms very abundant aerial mycelium and diffusion of oxygen in the gas-filled pores of the aerial hyphae layer is rapid. It means that diffusion limitation in the densely packed mycelium layer that is formed closer to the substrate surface and that has liquid-filled pores is much less important for A. oryzae than was previously reported for R. oligosporus and C. minitans. It also means that the overall oxygen uptake rate for A. oryzae is much higher than the oxygen uptake rate that can be predicted in the densely packed mycelium layer for R. oligosporus and C. minitans. This would imply that cooling problems become more pronounced. Therefore, it is very important to clarify the physiological role of aerial hyphae in SSF.
Collapse
Affiliation(s)
- Yovita S P Rahardjo
- Wageningen Centre for Food Sciences, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
139
|
Haq IU, Ali S, Qadeer M, Iqbal J. Effect of copper ions on mould morphology and citric acid productivity by Aspergillus niger using molasses based media. Process Biochem 2002. [DOI: 10.1016/s0032-9592(01)00322-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
140
|
Cho YJ, Hwang HJ, Kim SW, Song CH, Yun JW. Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J Biotechnol 2002; 95:13-23. [PMID: 11879708 DOI: 10.1016/s0168-1656(01)00445-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The influence of carbon source and aeration rate on fermentation broth rheology, mycelial morphology and red pigment production of Paecilomyces sinclairii was investigated in a 5-l stirred-tank bioreactor. The characteristics of P. sinclairii grown on starch and on sucrose medium were comparatively studied: the specific growth rate in sucrose medium (0.04 h(-1)) was higher than that in starch medium, whereas the specific production rate of red pigments (0.04 gg(-1)d(-1)) was favorable in starch medium. P. sinclairii grown in sucrose medium were highly branched and showed longer hyphal lengths than that in starch medium. The consistency index (K) in sucrose medium was markedly higher than that in starch medium due to higher cell mass, while the higher values of flow behavior index (n) were indicated at the late stationary phase in starch medium. The aeration rate was varied within the ranges from 0.5 to 3.5 vvm while running the fermentation at mild agitation of 150 rpm using sucrose as the carbon source. The maximum biomass concentration of P. sinclairii was about 33 gl(-1) with an aeration rate of 1.5 vvm, whereas the maximum yield of red pigment production (4.73 gl(-1)) was achieved with 3.5 vvm. The highly branched cell morphology appeared at 1.5 vvm and the highly vacuolated cell morphology was observed in a high aeration rate (3.5 vvm). There was no significant variance in rheological parameters (K and n) between culture broths from different aeration conditions.
Collapse
Affiliation(s)
- Youn Jeung Cho
- Department of Biotechnology, Taegu University, Kyungsan, Kyungbuk 712-714, South Korea
| | | | | | | | | |
Collapse
|
141
|
Amanullah A, Christensen LH, Hansen K, Nienow AW, Thomas CR. Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnol Bioeng 2002; 77:815-26. [PMID: 11835142 DOI: 10.1002/bit.10181] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We previously reported that, although agitation conditions strongly affected mycelial morphology, such changes did not lead to different levels of recombinant protein production in chemostat cultures of Aspergillus oryzae (Amanullah et al., 1999). To extend this finding to another set of operating conditions, fed-batch fermentations of A. oryzae were conducted at biomass concentrations up to 34 g dry cell weight/L and three agitation speeds (525, 675, and 825 rpm) to give specific power inputs between 1 and 5 kWm(-3). Gas blending was used to control the dissolved oxygen level at 50% of air saturation except at the lowest speed where it fell below 40% after 60-65 h. The effects of agitation intensity on growth, mycelial morphology, hyphal tip activity, and recombinant protein (amyloglucosidase) production in fed-batch cultures were investigated. In the batch phase of the fermentations, biomass concentration, and AMG secretion increased with increasing agitation intensity. If in a run, dissolved oxygen fell below approximately 40% because of inadequate oxygen transfer associated with enhanced viscosity, AMG production ceased. As with the chemostat cultures, even though mycelial morphology was significantly affected by changes in agitation intensity, enzyme titers (AGU/L) under conditions of substrate limited growth and controlled dissolved oxygen of >50% did not follow these changes. Although the measurement of active tips within mycelial clumps was not considered, a dependency of the specific AMG productivity (AGU/g biomass/h) on the percentage of extending tips was found, suggesting that protein secretion may be a bottle-neck in this strain during fed-batch fermentations.
Collapse
Affiliation(s)
- A Amanullah
- Centre for Bioprocess Engineering, School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B 15 2TT, UK.
| | | | | | | | | |
Collapse
|
142
|
McIntyre M, Müller C, Dynesen J, Nielsen J. Metabolic engineering of the morphology of Aspergillus. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 73:103-28. [PMID: 11816809 DOI: 10.1007/3-540-45300-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The morphology of filamentous organisms in submerged cultivation is a subject of considerable interest, notably due to the influence of morphology on process productivity. The relationship between process parameters and morphology is complex: the interactions between process variables, productivity, rheology, and macro- and micro-morphology create difficulties in defining and separating cause and effect. Additionally, organism physiology contributes a further level of complexity which means that the desired morphology (for optimum process performance and productivity) is likely to be process specific. However, a number of studies with increasingly powerful image analysis systems have yielded valuable information on what these desirable morphologies are likely to be. In parallel, studies on a variety of morphological mutants means that information on the genes involved in morphology is beginning to emerge. Indeed, we are now beginning to understand how morphology may be controlled at the molecular level. Coupling this knowledge with the tools of molecular biology means that it is now possible to design and engineer the morphology of organisms for specific bioprocesses. Tailor making strains with defined morphologies represents a clear advantage in optimization of submerged bioprocesses with filamentous organisms.
Collapse
Affiliation(s)
- M McIntyre
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
143
|
TOTANI N, YAMAGUCHI A, YAWATA M, UEDA T. The Role of Morphology during Growth of Mortierella alpina in Arachidonic Acid Production. J Oleo Sci 2002. [DOI: 10.5650/jos.51.531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nagao TOTANI
- Department of Nutritional Physiology, Kobe-Gakuin University
| | - Ayako YAMAGUCHI
- Department of Nutritional Physiology, Kobe-Gakuin University
| | - Miho YAWATA
- Department of Nutritional Physiology, Kobe-Gakuin University
| | - Takashi UEDA
- Department of Nutritional Physiology, Kobe-Gakuin University
| |
Collapse
|
144
|
Basu S, Gaur R, Gomes J, Sreekrishnan T, Bisaria VS. Effect of seed culture on solid-state bioconversion of wheat straw by Phanerochaete chrysosporium for animal feed production. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80049-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
145
|
|
146
|
O’Donnell D, Wang L, Xu J, Ridgway D, Gu T, Moo-Young M. Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity. Biochem Eng J 2001. [DOI: 10.1016/s1369-703x(01)00102-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
147
|
Park JP, Kim SW, Hwang HJ, Yun JW. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol 2001; 33:76-81. [PMID: 11442820 DOI: 10.1046/j.1472-765x.2001.00950.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The objective of the present study was to determine the optimal culture conditions for exo-biopolymer production by Cordyceps militaris in shake flask culture. METHODS AND RESULTS The optimal temperature and initial pH for both mycelial growth and exo-biopolymer production by Cordyceps militaris in shake flask culture were found to be 20 degrees C and 6.0, respectively. Sucrose (40 g x l(-1)) and corn steep powder (10 g x l(-1)) were the most suitable carbon and nitrogen source for both mycelial growth and exo-biopolymer production. CONCLUSION Under optimal culture conditions, the maximum exo-biopolymer concentration in a 5-l jar fermenter indicated 10.3 g x l(-1), which was approximately three times higher than that in shake flask culture. SIGNIFICANCE AND IMPACT OF THE STUDY This process can have a significant impact on the industrial scale when sucrose and corn steep powder were used as carbon and nitrogen source.
Collapse
Affiliation(s)
- J P Park
- Department of Biotechnology, Taegu University, Kyungsan, Kyungbuk, Korea
| | | | | | | |
Collapse
|
148
|
Citric acid production by Aspergillus niger immobilized on cellulose microfibrils: influence of morphology and fermenter conditions on productivity. Process Biochem 2001. [DOI: 10.1016/s0032-9592(01)00155-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
149
|
Optimization of culture conditions and continuous production of chitosan by the fungi,Absidia coerulea. BIOTECHNOL BIOPROC E 2001. [DOI: 10.1007/bf02942243] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
150
|
Gibbs PA, Seviour RJ, Schmid F. Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 2000; 20:17-48. [PMID: 10770226 DOI: 10.1080/07388550091144177] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Filamentous fungi are important organisms industrially and continue to attract research interest as microbiologists attempt to overcome the problems associated with their behavior in submerged culture. This review critically examines the literature describing these problems and where available suggests possible solutions to them. The influence of the chemical and physical environment on culture morphology, the process engineering challenges presented by different fungal morphologies, and the relationship between fungal morphology and metabolite production are all discussed.
Collapse
Affiliation(s)
- P A Gibbs
- Biotechnology Research Center, La Trobe University, Bendigo, Victoria, Australia
| | | | | |
Collapse
|