101
|
Wierzba-Bobrowicz T, Kosno-Kruszewska E, Lewandowska E, Lechowicz W, Schmidt-Sidor B. Major histocompatibility complex class II (MHC II) expression during development of human fetal brain and haemopoietic organs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 495:93-101. [PMID: 11774614 DOI: 10.1007/978-1-4615-0685-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- T Wierzba-Bobrowicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Al. Sobieskiego 1/9, Warsaw, Poland
| | | | | | | | | |
Collapse
|
102
|
Abstract
Phagocytosis in embryos was studied by Elie Metchnikoff more than a century ago and is a pillar of the Phagocytic Theory. Throughout the last three decades phagocytosis in embryos has been studied from different perspectives, which this review describes and analyzes. The following branches were identified: 1) the search for the origin and first identification of well-known adult phagocytes in embryos, including their role after induced injuries; 2) the search for the occurrence of phagocytosis in embryos and its role during their physiological development; and 3) the search for phagocytosis in embryos, as a tool to study identity and self-recognition. It is possible to verify that different cell types are able to undertake phagocytosis, under a variety of different stimuli, and that the nature of what is phagocytosed also varies widely. Although the overwhelming majority of species described among metazoarians are invertebrates, most published articles in this field relate to mammals (particularly mice and humans) and birds (particularly chicks). In order to enrich this field of knowledge, research using a wider variety of vertebrate and invertebrate species should be undertaken. Furthermore, the present knowledge of phagocytosis in embryos needs a revised paradigm capable of embracing all the above-mentioned research trends under a single, more general, biological theory. In this sense, Metchnikoff's Phagocytic Theory, which is based on a broad biological paradigm and is thus capable of dealing with all research trends mentioned herein, should be revisited in order to contribute to this edification.
Collapse
Affiliation(s)
- José Roberto Machado Cunha Da Silva
- Laboratory of Evolutive Histophysiology, Department of Histology and Embryology of the Biomedical Sciences Institute of the University of São Paulo, São Paulo-SP-Brazil.
| |
Collapse
|
103
|
Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 2001; 238:274-88. [PMID: 11784010 DOI: 10.1006/dbio.2001.0393] [Citation(s) in RCA: 424] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin of resident (noninflammatory) macrophages in vertebrate tissues is still poorly understood. In the zebrafish embryo, we recently described a specific lineage of early macrophages that differentiate in the yolk sac before the onset of blood circulation. We now show that these early macrophages spread in the whole cephalic mesenchyme, and from there invade epithelial tissues: epidermis, retina, and brain--especially the optic tectum. In the panther mutant, which lacks a functional fms (M-CSF receptor) gene, early macrophages differentiate and behave apparently normally in the yolk sac, but then fail to invade embryonic tissues. Our video recordings then document for the first time the behavior of macrophages in the invaded tissues, revealing the striking propensity of early macrophages in epidermis and brain to wander restlessly among epithelial cells. This unexpected behavior suggests that tissue macrophages may be constantly "patrolling" for immune and possibly also developmental and trophic surveillance. At 60 h post-fertilization, all macrophages in the brain and retina undergo a specific phenotypic transformation, into "early (amoeboid) microglia": they become more highly endocytic, they down-regulate the L-plastin gene, and abruptly start expressing high levels of apolipoprotein E, a well-known neurotrophic lipid carrier.
Collapse
Affiliation(s)
- P Herbomel
- Unité de Génétique des Déficits Sensoriels, URA 1968 du CNRS, Département des Biotechnologies, Institut Pasteur, 25 rue du Dr Roux, Paris Cedex 15, 75724, France.
| | | | | |
Collapse
|
104
|
Cuadros MA, Navascués J. Early origin and colonization of the developing central nervous system by microglial precursors. PROGRESS IN BRAIN RESEARCH 2001; 132:51-9. [PMID: 11545016 DOI: 10.1016/s0079-6123(01)32065-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M A Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | | |
Collapse
|
105
|
Abstract
This paper reviews the various proposed hypotheses on the origin of microglia. The seminal study of del Rio-Hortega first stated that the cells were derived from the mesodermal pial cells that invaded the brain during embryonic development. Along with this was the description of precursor cells in the yolk sac in early development. Our results in the embryonic mouse brain have shown the occurrence of lectin-labelled precursor cells at the yolk sac that later appeared in the mesenchymal tissue associated with the neuroepithelium where they penetrated the nervous tissue to become the microglia. A second major view has held that microglia are of neuroectodermal origin; the cells either originate from glioblasts or the germinal matrix. Another school of thought is that microglia are derived from blood monocytes. In this connection, circulating monocytes enter the developing brain to assume the form as amoeboid microglia that subsequently evolve to become the ramified microglia. In traumatic brain lesions following an intravenous injection of colloidal carbon as a cytoplasmic marker for monocytes, it was found that carbon-labelled monocytes were the main source of brain macrophages, some of which transformed into microglia during the healing process. In conclusion, our results derived from the normal and altered brain development as well as from experimental lesions tend to favour the view of the monocytic nature of microglia. Recent studies by us also point to the possibility that some microglial cells may arise from the pial mesenchymal macrophages that appear to originate from the yolk sac precursors.
Collapse
Affiliation(s)
- C Kaur
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
106
|
Embryonic central nervous system angiogenesis does not involve blood-borne endothelial progenitors. J Comp Neurol 2001. [DOI: 10.1002/cne.1066] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
107
|
Wood W, Turmaine M, Weber R, Camp V, Maki RA, McKercher SR, Martin P. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 2000; 127:5245-52. [PMID: 11076747 DOI: 10.1242/dev.127.24.5245] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apoptosis is one of the key tools used by an embryo to regulate cell numbers and sculpt body shape. Although massive numbers of cells die during development, they are so rapidly phagocytosed that very few corpses are ever seen in most embryonic tissues. In this paper, we focus on the catastrophic cell death that occurs as the developing footplate is remodelled to transform webbed regions into free interdigital spaces. In the wild-type embryo, these dead cells are rapidly engulfed and cleared by macrophages. We show that in a macrophageless mouse embryo, null for the haemopoetic-lineage-specific transcription factor, PU.1, the task of phagocytosis is taken over by ‘stand-in’ mesenchymal neighbours in a clear example of cell redundancy. However, it takes three times as many of these mesenchymal phagocytes to complete the task and, at each stage of the clearance process - in the recognition of apoptotic debris, its engulfment and finally its digestion - they appear to be less efficient than macrophages. A molecular explanation for this may be that several of the engulfment genes expressed by macrophages, including the ABC1 transporter (believed to be part of the phagocytic machinery conserved from Caenorhabditis elegans to mouse), are not upregulated by these ‘stand-in’ phagocytes.
Collapse
Affiliation(s)
- W Wood
- Department of Anatomy and Developmental Biology, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
To review the data on the origins, phenotype, and function of embryonic phagocytes that has accumulated over past decade. Most of the relevant articles were selected based on the PubMed database entries. In additional, the Interactive Fly database (http://sdb.bio. purdue.edu/fly/aimain/1aahome.htm), FlyBase (http://flybase.bio. indiana.edu:82/), and TBase (http://tbase.jax.org/) were used to search for relevant information and articles. Phagocytes in a vertebrate embryo develop in two sites (yolk sac and liver) and contribute to organogenesis in part through their ability to recognize and clear apoptotic cells. Yolk sac-derived phagocytes differ in differentiation pathway and marker gene expression from macrophages produced via classic hematopoietic progenitors in the liver. We argue that yolk sac-derived phagocytes constitute a separate cell lineage. This conclusion raises the question of whether primitive phagocytes persist into the adulthood.
Collapse
Affiliation(s)
- A M Lichanska
- Departments of Medical Genetics and Ophthalmology, Queen's University of Belfast, Belfast, United Kingdom
| | | |
Collapse
|
109
|
Abstract
The macrophage cell lineage continually arises from hematopoietic stem cells during embryonic, fetal, and adult life. Previous theories proposed that macrophages are the recent progeny of bone marrow-derived monocytes and that they function primarily in phagocytosis. More recently, however, observations have shown that the ontogeny of macrophages in early mouse and human embryos is different from that occurring during adult development, and that the embryonic macrophages do not follow the monocyte pathway. Fetal macrophages are thought to differentiate from yolk sac-derived primitive macrophages before the development of adult monocytes. Further support for a separate lineage of fetal macrophages has come from studies of several species, including chicken, zebrafish, Xenopus, Drosophila, and C. elegans. The presence of fetal macrophages in PU.1-null mice indicates their independence from monocyte precursors and their existence as an alternative macrophage lineage.
Collapse
Affiliation(s)
- J L Shepard
- Children's Hospital, Department of Medicine, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
110
|
Barresi V, Condorelli DF, Giuffrida Stella AM. GFAP gene methylation in different neural cell types from rat brain. Int J Dev Neurosci 1999; 17:821-8. [PMID: 10593618 DOI: 10.1016/s0736-5748(99)00059-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is generally believed that specific demethylation processes take place in the promoter of tissue-specific genes during development. It has been suggested that hypomethylation of the -1500/-1100 domain of the 5' flanking regulatory region of the rat glial fibrillary acidic protein gene may be specific for neuroectodermal derivatives such as neurons and astrocytes. In the present work the methylation status of one of those seven CG sites (the -1176) of the 'neuroectoderm-specific domain' was analyzed. In agreement with the neuroectoderm hypothesis, the -1176 site is highly demethylated in astroglial, oligodendroglial and neuronal cells, but heavily methylated in microglial and fibroblast cells. The three different glial population are derived from the same tissue (cerebral hemispheres of newborn rats) but have a different embryological origin: oligodendrocytes and astrocytes originate from neuroectoderm, while microglia is of mesodermal origin. It is not clear if GFAP-negative neuronal cells maintain such demethylation in the advanced stage of maturation or if they undergo a second phase of de novo methylation. In order to clarify this point we used a subcellular fractionation method which allowed us to separate two different nuclear populations from adult rat cerebral hemispheres: one enriched in neuronal nuclei (called N1) and the other enriched in glial nuclei (N2). A higher methylation level of the -1176 site was detected in the N1 fraction, suggesting the GFAP gene undergo a de novo methylation process during neuronal maturation. This observation is in agreement with recent results showing a de novo methylation of the -1176 site during postnatal brain development. We hypothesize that a DNA demethylation process takes place in neuroectodermal precursor cells and that the -1176 site persists demethylated at the earlier stages of neuronal differentiation (immature neurons) and becomes fully methylated at more advanced stages of differentiation.
Collapse
Affiliation(s)
- V Barresi
- Dipartimento di Scienze Chimiche, Facoltà di Medicina, Università di Catania, Italy
| | | | | |
Collapse
|
111
|
Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 117:145-52. [PMID: 10567732 DOI: 10.1016/s0165-3806(99)00113-3] [Citation(s) in RCA: 586] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microglia, the resident CNS macrophages, represent about 10% of the adult brain cell population. Although described a long time ago, their origin and developmental lineage is still debated. While del Rio-Hortega suggested that microglia originate from meningeal macrophages penetrating the brain during embryonic development, many authors claim that brain parenchymal microglia derive from circulating blood monocytes originating from bone marrow. We have previously reported that the late embryonic and adult mouse brain parenchyma contains potential microglial progenitors [F. Alliot, E. Lecain, B. Grima, B. Pessac, Microglial progenitors with a high proliferative capacity in the embryonic and the adult mouse brain, Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 1541-1545]. We now report that they can be detected in the brain rudiment from embryonic day 8, after their appearance in the yolk sac and that their number increases until late gestation. We also show that microglia appear during embryonic development and that their number increases steadily during the first two postnatal weeks, when about 95% of microglia are born. Finally, the main finding of this study is that microglia is the result of in situ proliferation, as shown by the high proportion of parenchymal microglial cells that express PCNA, a marker of cell multiplication, in embryonic and postnatal brain. Taken together, our data support the hypothesis that terminally differentiated brain parenchymal microglia are derived from cells originating from the yolk sac whose progeny actively proliferates in situ during development.
Collapse
Affiliation(s)
- F Alliot
- UPR CNRS 9035 "Développement et Immunité du Système Nerveux Central" 15 rue de l'Ecole de Médecine, 75270, Paris, France
| | | | | |
Collapse
|
112
|
Abstract
We have used a combination of quail-chick fate-mapping techniques and dye labelling to investigate the development of the avian cerebellum. Using Hoxa2 as a guide for the microsurgical construction of quail-chick chimaeras, we show that the caudal boundary of the presumptive cerebellum at E6 maps to the caudal boundary of rhombomere 1. By fate mapping the dorsoventral axis of rhombomere 1, we demonstrate that granule cell precursors are generated at the rhombic lip together with neurons of the lateral pontine nucleus. DiI-labelling of cerebellum explants reveals that external germinal layer precursors have a characteristic unipolar morphology and undergo an orientated, active migration away from the rhombic lip, which is apparently independent of either glial or axon guidance or ‘chain’ formation.
Collapse
Affiliation(s)
- R J Wingate
- Laboratory of Developmental Neurobiology, Rockefeller University, New York, NY 10021-10034, USA.
| | | |
Collapse
|
113
|
Ono K, Takii T, Onozaki K, Ikawa M, Okabe M, Sawada M. Migration of exogenous immature hematopoietic cells into adult mouse brain parenchyma under GFP-expressing bone marrow chimera. Biochem Biophys Res Commun 1999; 262:610-4. [PMID: 10471372 DOI: 10.1006/bbrc.1999.1223] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone marrow transplantation with GFP-expressing cells from GFP-transgenic mice resulted in migration of GFP-positive cells into peripheral tissues and brain parenchyma. Most of these cells were observed as colony-like clusters. GFP-positive clusters in the brain were stained by antibody for ER-MP12, but those in the peripheral tissues were not. Since ER-MP12 antigen has been reported as a marker for murine early-stage myeloid precursor, this might suggest that some parts of phagocytic cells in the brain parenchyma such as microglia are derived from undifferentiated pluripotent hematopoietic cells.
Collapse
Affiliation(s)
- K Ono
- Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Aichi, 467-8603, Japan
| | | | | | | | | | | |
Collapse
|
114
|
Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999; 126:3735-45. [PMID: 10433904 DOI: 10.1242/dev.126.17.3735] [Citation(s) in RCA: 551] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the zebrafish embryo, the only known site of hemopoieisis is an intra-embryonic blood island at the junction between trunk and tail that gives rise to erythroid cells. Using video-enhanced differential interference contrast microscopy, as well as in-situ hybridization for the expression of two new hemopoietic marker genes, draculin and leucocyte-specific plastin, we show that macrophages appear in the embryo at least as early as erythroid cells, but originate from ventro-lateral mesoderm situated at the other end of the embryo, just anterior to the cardiac field. These macrophage precursors migrate to the yolksac, and differentiate. From the yolksac, many invade the mesenchyme of the head, while others join the blood circulation. Apart from phagocytosing apoptotic corpses, these macrophages were observed to engulf and destroy large amounts of bacteria injected intravenously; the macrophages also sensed the presence of bacteria injected into body cavities that are isolated from the blood, migrated into these cavities and eradicated the microorganisms. Moreover, we observed that although only a fraction of the macrophage population goes to the site of infection, the entire population acquires an activated behaviour, similar to that of activated macrophages in mammals. Our results support the notion that in vertebrate embryos, macrophages endowed with proliferative capacity arise early from the hemopoietic lineage through a non-classical, rapid differentiation pathway, which bypasses the monocytic series that is well-documented in adult hemopoietic organs.
Collapse
Affiliation(s)
- P Herbomel
- Unité de Biologie Moléculaire du Développement, URA1947 du CNRS, Département de Biologie Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
115
|
Andjelkovic AV, Nikolic B, Pachter JS, Zecevic N. Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Res 1998; 814:13-25. [PMID: 9838024 DOI: 10.1016/s0006-8993(98)00830-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of microglia and macrophages was studied in 14 human embryos and fetuses ranging in age from 4.5-13.5 gestational weeks (g.w.), using lectins, Ricinus communis agglutinin-1 [RCA-1], and Lycopersicon esculentum, tomato lectin (TL), which recognize macrophages and microglia, and antibodies for the macrophage antigen CD68. Lectin-positive (+) cells were observed at 4.5 g.w., the youngest age examined. They were detected in the leptomeninges around the neural tube, and only rarely were observed in the CNS parenchyma. At 5.5 g.w., lectin+ cells were present throughout the CNS parenchyma, and a portion of these cells could also be labeled with antibody to CD68. In subsequent weeks, both types of cells, lectin+ and CD68+/lectin+ cells co-existed and progressively developed typical microglial morphology. In addition, in double label experiments, an antibody that labels CD14 antigen present on monocytes, hematogenous precursors of tissue macrophages, did not label either lectin+ or CD68+/lectin+ cells in CNS parenchyma. Additional immunocytochemical studies with appropriate markers excluded the possibility that any of the cells described here were either astrocytes, oligodendrocytes, endothelial cells or neurons. Our finding that one class of cells can be labeled early only with lectins, while another can be labeled with both lectins and CD68 macrophage antibody, may reflect a different origin of microglia in the early embryonic CNS compared to the fetal stages. This subdivision appears to be maintained in the adult brains as well.
Collapse
Affiliation(s)
- A V Andjelkovic
- Department of Pharmacology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1840, USA
| | | | | | | |
Collapse
|
116
|
Cuadros MA, Rodríguez-Ruiz J, Calvente R, Almendros A, Marín-Teva JL, Navascués J. Microglia development in the quail cerebellum. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19971222)389:3<390::aid-cne3>3.0.co;2-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
117
|
Abstract
During the prenatal development of the hippocampus, microglial cell precursors progressively occur in all subfields in accordance with known ontogenetic gradients of the region (Dalmau et al., J. Comp. Neurol. 1997a;377:70-84). The present study follows the regional distribution of these microglial cell precursors and their morphological differentiation in the rat hippocampus from birth to postnatal (P) day 18. The results demonstrate that the cellular differentiation and the subregional distribution of microglia follow the specific developmental gradients of the different parts of Ammon's horn and the dentate gyrus. Microglial cell distribution in the dentate gyrus is thus delayed compared with that in Ammon's horn. The appearance of microglia in the hippocampal subregions and differentiation of cell precursors into adult microglia occur earlier at temporal levels than at septal levels. Distribution of microglial cells follows an outside-to-inside pattern from the hippocampal fissure to the main cell layers in either Ammon's horn or the dentate gyrus. Meanwhile, the resident microglial cells located in the stratum oriens and dentate hilus at birth also increase in number and gradually disperse throughout the whole tissue of the two layers with age. In Ammon's horn, microglial differentiation occurs earlier in CA3 than in CA1. In the dentate gyrus, microglia appear earlier in relation to the external limb than to the internal limb, largely following a lateral-to-medial gradient. The differentiation and appearance of microglia in the various hippocampal and dentate subregions often correspond to the developmental stage of intrinsic and extrinsic afferent nerve fiber projections. Finally, in both Ammon's horn and the dentate gyrus, cells resembling reactive microglia are also observed and, in particular, in the perforant path projections from P9 to P18, suggesting their participation not only in phagocytosis of dead cells but also in axonal elimination and/or fiber reorganization.
Collapse
Affiliation(s)
- I Dalmau
- Department of Cell Biology and Physiology, Universitat Autònoma de Barcelona, Spain.
| | | | | | | | | |
Collapse
|
118
|
Dobrenis K. Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods 1998; 16:320-44. [PMID: 10071070 DOI: 10.1006/meth.1998.0688] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is host to a significant population of macrophage-like cells known as microglia. In addition to these cells which reside within the parenchyma, a diverse array of macrophages are present in meningeal, perivascular, and other peripheral locations. The role that microglia and other CNS macrophages play in disease and injury is under intensive investigation, and functions in development and in the normal adult are just beginning to be explored. At present the biology of these cells represents one of the most fertile areas of CNS research. This article describes methodology for the isolation and maintenance of microglia in cell cultures prepared from murine and feline animals. Various approaches to identify microglia are provided, using antibody, lectin, or scavenger receptor ligand. Assays to confirm macrophage-like functional activity, including phagocytosis, lysosomal enzyme activity, and motility, are described. Findings regarding the origin and development of microglia and results of transplantation studies are reviewed. Based on these data, a strategy is presented that proposes to use the microglial cell lineage to effectively deliver therapeutic compounds to the CNS from the peripheral circulation.
Collapse
Affiliation(s)
- K Dobrenis
- Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
119
|
Khan MZ, Hashimoto Y, Iwanaga T. Macrophages in the chicken oviduct: morphometrical studies by light and transmission electron microscopy and the possible influence of sex hormones. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE B. JOURNAL OF VETERINARY MEDICINE. SERIES B 1998; 45:427-33. [PMID: 9780830 DOI: 10.1111/j.1439-0450.1998.tb00812.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Light and electron microscopic techniques were used to study the morphometry and dynamic changes of macrophages in the postnatal and sex hormone-treated chicken oviduct, respectively. Abundant typical macrophages, containing clear vacuoles, well-developed mitochondria, Golgi complexes and lysosomal bodies in their cytoplasms, were observed in the lamina propria of all segments of the postnatal chicken oviduct, occurring more frequently in the vaginal part. When 7-day-old chickens were injected with diethylstilbestrol (DES), and DES plus progesterone, infiltration of a significant number of macrophages in both groups, but not in controls could be seen. The light and electron microscopic structures of the macrophages in both postnatal and sex hormone-treated chicken oviduct were similar. These results show that typical macrophages are present in the chicken oviduct; their frequency of occurrence varies with different oviductal segments, and they are influenced by sex hormones.
Collapse
Affiliation(s)
- M Z Khan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | | |
Collapse
|
120
|
Dalmau I, Vela JM, González B, Castellano B. Expression of purine metabolism-related enzymes by microglial cells in the developing rat brain. J Comp Neurol 1998; 398:333-46. [PMID: 9714147 DOI: 10.1002/(sici)1096-9861(19980831)398:3<333::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The nucleoside triphosphatase (NTPase), nucleoside diphosphatase (NDPase), 5'-nucleotidase (5'-Nase), and purine nucleoside phosphorylase (PNPase) activity has been examined in the cerebral cortex, subcortical white matter, and hippocampus from embryonic day (E)16 to postnatal day (P)18. Microglia display all four purine-related enzymatic activities, but the expression of these enzymatic activities differed depending on the distinct microglial typologies observed during brain development. We have identified three main morphologic typologies during the process of microglial differentiation: ameboid microglia (parenchymatic precursors), primitive ramified microglia (intermediate forms), and resting microglia (differentiated cells). Ameboid microglia, which were encountered from E16 to P12, displayed the four enzymatic activities. However, some ameboid microglial cells lacked 5'-Nase activity in gray matter, and some were PNPase-negative in both gray and white matter. Primitive ramified microglia were already observed in the embryonic period but mostly distributed during the first 2 postnatal weeks. These cells expressed NTPase, NDPase, 5'-Nase, and PNPase. Similar to ameboid microglia, we found primitive ramified microglia lacking the 5'-Nase and PNPase activities. Resting microglia, which were mostly distinguishable from the third postnatal week, expressed NTPase and NDPase, but they lacked or displayed very low levels of 5'-Nase activity, and only a subpopulation of resting microglia was PNPase-positive. Apart from cells of the microglial lineage, GFAP-positive astrocytes and radial glia cells were also labeled by the PNPase histochemistry. As shown by our results, the differentiation process from cell precursors into mature microglia is accompanied by changes in the expression of purine-related enzymes. We suggest that the enzymatic profile and levels of the different purine-related enzymes may depend not only on the differentiation stage but also on the nature of the cells. The use of purine-related histoenzymatic techniques as a microglial markers and the possible involvement of microglia in the control of extracellular purine levels during development are also discussed.
Collapse
Affiliation(s)
- I Dalmau
- Unit of Histology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | | | | | | |
Collapse
|
121
|
Barradas PC, Cavalcante LA. Proliferation of differentiated glial cells in the brain stem. Braz J Med Biol Res 1998; 31:257-70. [PMID: 9686148 DOI: 10.1590/s0100-879x1998000200009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions.
Collapse
Affiliation(s)
- P C Barradas
- Departamento de Farmacologia e Psicobiologia, Universidade do Estado do Rio de Janeiro, Brasil.
| | | |
Collapse
|
122
|
|
123
|
Mallat M, Calvo CF, Dobbertin A. Migration and proliferation of mononuclear phagocytes in the central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:99-108. [PMID: 9413568 DOI: 10.1007/978-1-4757-9551-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M Mallat
- INSERM U.114, Chaire de Neuropharmacologie, Collège de France, Paris, France
| | | | | |
Collapse
|
124
|
Macrophage activity in organ cultures of the avian cochlea: Demonstration of a resident population and recruitment to sites of hair cell lesions. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4695(19971120)33:6<724::aid-neu2>3.0.co;2-b] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
125
|
|
126
|
Abstract
We examined the massive early cell death that occurs in the ventral horn of the cervical spinal cord of the chick embryo between embryonic days 4 and 5 (E4 and E5). Studies with immunohistochemical, in situ hybridization, and retrograde-tracing methods revealed that many dying cells express Islet proteins and Lim-3 mRNA (motoneuron markers) and send their axons to the somatic region of the embryo before cell death. Together, these data strongly suggest that the dying cells are somatic motoneurons. Cervical motoneurons die by apoptosis and can be rescued by treatment with cycloheximide and actinomycin D. Counts by motoneuron numbers between E3.5 and E10 revealed that, in addition to cell death between E4 and E5, motoneuron death also occur between E6 and E10 in the cervical cord. Studies with [3H]thymidine autoradiography and morphological techniques revealed that in the early cell-death phase (E4-E5), genesis of motoneurons, axonal elongation, and innervation of muscles is still ongoing. However, studies with [3H]thymidine autoradiography also revealed that the cells dying between E4 and E5 become postmitotic before E3.5. Increased size of peripheral targets, treatment with neuromuscular blockade, and treatment with partially purified muscle or brain extracts and defined neurotropic agents, such as NGF, BDNF, neurotrophin-3, CNTF, bFGF, PDGF, S100-beta, activin, cholinergic differentiation factor/leukemia inhibitory factor, bone morphogenetic protein-2, IGF-I, interleukin-6, and TGF-beta 1, were all ineffective in rescuing motoneurons dying between E4 and E5. By contrast, motoneurons that undergo programmed cell death at later stages (E6-E10) in the cervical cord are target-dependent and respond to activity blockade and trophic factors. Experimental approaches revealed that early cell death also occurs in a notochord-induced ectopic supernumerary motoneuron column in the cervical cord. Transplantation of the cervical neural tube to other segmental regions failed to alter the early death of motoneurons, whereas transplantation of other segments to the cervical region failed to induce early motoneuron death. These results suggest that the mechanisms that regulate motoneuron death in the cervical spinal cord between E4 and E5 are independent of interactions with targets. Rather, this novel type of cell death seems to be determined by signals that either are cell-autonomous or are derived from other cells within the cervical neural tube.
Collapse
|
127
|
Tumosa N, Baker JR. Microglia in the nerve fiber layer of the cat retina: detection of postnatal changes by a new monoclonal antibody. Vis Neurosci 1996; 13:671-82. [PMID: 8870224 DOI: 10.1017/s0952523800008567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper describes changes in the appearance and distribution of microglia in postnatal cat retina as demonstrated by a new antibody, H386F. This fractionated IgM antibody was created via an intrasplenic immunization of a single BALB/C mouse with about 2-3 x 10(5) large, whole cells isolated from 46 minced cat retinae. To confirm that the labeled cells are microglia, the staining properties of H386F were compared with those of four commercially available antibodies, OX-33, OX-41, OX-42, and ED-1, that have been used by others to distinguish between microglia and other cells in rat brain. These experiments show that H386F is the only antibody of the five to label only microglia in both the cat retina and hippocampus.
Collapse
Affiliation(s)
- N Tumosa
- School of Optometry, University of Missouri, St. Louis 63121, USA
| | | |
Collapse
|
128
|
Affiliation(s)
- G M Jonakait
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
129
|
Diaz-Araya CM, Provis JM, Penfold PL, Billson FA. Development of microglial topography in human retina. J Comp Neurol 1995; 363:53-68. [PMID: 8682937 DOI: 10.1002/cne.903630106] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of microglial topography in wholemounts of human retina has been examined in the age range 10-25 weeks gestation (WG) using histochemistry and immunohistochemistry for CD45 and major histocompatibility complex class II antigens. Microglia were present in three planes corresponding to the developing nerve fibre layer/ganglion cell layer, the inner plexiform layer and the outer plexiform layer. Distribution patterns of cells through the retinal thickness and across the retinal surface area varied with gestational age. Microglia were elongated in superficial retina, large and ramified in the middle plane, and small, rounded and less ramified in deep retina. Intensely labeled, rounded profiles seen at the pars caeca of the ciliary processes, the retinal margin and at the optic disc may represent precursors of some retinal microglia. At 10 WG, the highest densities of microglia were present in middle and deep retina in the far periphery and at the retinal margin, with few superficial microglia evident centrally at the optic disc. At 14 WG, high densities of microglia were apparent superficially at the optic disc; microglia of middle and deep retina were distributed at more central locations although continuing to concentrate in the retinal periphery. Microglia appear to migrate into the developing human retina from two mains sources, the retinal margin and the optic disc, most likely originating from the blood vessels of the ciliary body and iris, and the retinal vasculature, respectively. The data suggest that the development of microglial topography occurs in two phases, an early phase occurring prior to vascularization, and a late phase associated with the development of the retinal vasculature.
Collapse
Affiliation(s)
- C M Diaz-Araya
- Save Sight and Eye Health Institute, Department of Clinical Ophthalmology, University of Sydney, N.S.W., Australia
| | | | | | | |
Collapse
|
130
|
Diaz-Araya CM, Provis JM, Penfold PL. Ontogeny and cellular expression of MHC and leucocyte antigens in human retina. Glia 1995; 15:458-70. [PMID: 8926039 DOI: 10.1002/glia.440150409] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the ontogeny of MHC class I, class II, CD45, and macrophage antigens in whole mounts of normal human fetal retina at 10-25 weeks gestation (WG) using monoclonal antibodies and immunogold histochemistry. MHC class I antigens were expressed on retinal vascular endothelial cells and provided a useful marker of vessel organization from 14-25 WG. Microglial cells expressed immunoreactivity to MHC class I, class II, and CD45 antigens from 10 WG (pre-vascularization) and macrophage S22 (Mac S22) antigen from 14 WG (post-vascularization), although none of the antigens tested were detected on neuronal or macroglial elements. Microglia expressing MHC, CD45, and macrophage antigens occurred in both ramified and rounded forms with no close correlation being observed between morphology and antigenicity. The numbers of immunoreactive cells labeled with each of the four markers increased steadily throughout gestation in all specimens studied. Equivalent numbers of microglia expressed MHC class I, class II, and CD45 antigens in retinae at similar gestational ages; however, our data indicate that microglia expressing Mac S22 antigen comprise approximately 40% or less of the population of MHC and CD45-immunoreactive cells during development. Topographical analyses suggest that MHC class I, class II, and CD45-positive microglia enter the retina from both the peripheral retinal margin and the optic disc from at least 10 WG; Mac S22-positive cells appear in association with the development of the retinal vasculature and enter the retina via the optic disc after 14 WG.
Collapse
Affiliation(s)
- C M Diaz-Araya
- Department of Clinical Ophthalmology, University of Sydney, N.S.W., Australia
| | | | | |
Collapse
|
131
|
Chamak B, Dobbertin A, Mallat M. Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 1995; 69:177-87. [PMID: 8637616 DOI: 10.1016/0306-4522(95)00236-c] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of microglia involves the expression of a phenotype displaying phagocytic behaviour termed brain macrophage or amoeboid microglial cell. We have previously shown that rat brain macrophages purified in vitro secrete thrombospondin, an extracellular matrix protein, which acts on cultured neuronal cells by promoting neurite growth. In the present study, the expression of thrombospondin was investigated in tissue sections of the developing rat forebrain in relation to the distribution of microglia. These cells were identified using anti-macrophage antibodies and the isolectin B4 from Bandeiraea simplicifolia. Immunocytochemical detection of thrombospondin clearly outlined a cell population displaying the morphologies and distribution of brain macrophages, from the 17th day of embryonic life up to the end of the second postnatal week. These cells were most numerous in cortical and subcortical regions of developing fibre tracts such as the corpus callosum or the internal capsule. The localization of thrombospondin in brain macrophages was confirmed by double immunostaining using ED1 monoclonal anti-macrophage antibodies. Ramified microglial cells were also labelled transiently by anti-thrombospondin antibodies during early postnatal life. These results provide in situ evidence supporting the notion that microglial cells could favour axonal growth by producing thrombospondin during development.
Collapse
Affiliation(s)
- B Chamak
- INSERM U114, Collège de France, Paris, France
| | | | | |
Collapse
|
132
|
Navascués J, Moujahid A, Almendros A, Marin-Teva JL, Cuadros MA. Origin of microglia in the quail retina: central-to-peripheral and vitreal-to-scleral migration of microglial precursors during development. J Comp Neurol 1995; 354:209-28. [PMID: 7782499 DOI: 10.1002/cne.903540205] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The origin, migration, and differentiation of microglial precursors in the avascular quail retina during embryonic and posthatching development were examined in this study. Microglial precursors and developing microglia were immunocytochemically labeled with QH1 antibody in retinal whole mounts and sections. The retina was free of QH1+ macrophages at embryonic day 5 (E5). Ameboid QH1+ macrophages from the pecten entered the retina from E7 on. These macrophages spread from central to peripheral areas in the retina by migrating on the endfeet of the Müller cells and reached the periphery of the retina at E12. While earlier macrophages were migrating along the inner limiting membrane, other macrophages continued to enter the retina from the pecten until hatching (E16). From E9 on, macrophages were seen to colonize progressively more scleral retinal layers as development advanced. Macrophages first appeared in the ganglion cell layer at E9, in the inner plexiform layer at E12, and in the outer plexiform layer at E14. Therefore, it seems that macrophages first migrated tangentially along the inner retinal surface and then migrated from vitreal to scleral levels to gain access to the plexiform layers, where they differentiated into ramified microglia. Macrophages appeared to differentiate shortly after arrival in the plexiform layers, as poorly ramified QH1+ cells were seen as early as E12 in the inner plexiform layer and at E14 in the outer plexiform layer. Radial migration of macrophages toward the outer plexiform layer continued until posthatching day 3, after which retinal microglia showed an adult distribution pattern. We also observed numerous vitreal macrophages intimately adhered to the surface of the pecten during embryonic development, when macrophages migrated into the retina. These vitreal macrophages were not seen from hatching onwards, when no further macrophages entered the retina.
Collapse
Affiliation(s)
- J Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | | | |
Collapse
|
133
|
Navascués J, Moujahid A, Quesada A, Cuadros MA. Microglia in the avian retina: immunocytochemical demonstration in the adult quail. J Comp Neurol 1994; 350:171-86. [PMID: 7884036 DOI: 10.1002/cne.903500203] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunocytochemical techniques were used in conjunction with the QH1 antibody to study the morphological characteristics and distribution of microglia in the avascular retina of an avian species (the quail). The majority of microglial cells appeared in the outer and inner plexiform layers throughout the entire retina, whereas a few microglial cells in the nerve fiber layer were seen only in the central zone of the retina, near the optic nerve head. In the outer plexiform layer, microglial cells were star-shaped, with processes that ramified profusely in the horizontal plane. Fine process tips extended outward radially, insinuating themselves among the photoreceptors. A regular mosaic-like arrangement of microglial cells was evident in the outer plexiform layer, with no overlapping between adjacent cell territories. Microglial cells in the inner plexiform layer ramified through the entire width of this layer, showing radial and horizontal processes. Microglia in the inner plexiform layer also tended to be regularly distributed in a mosaic-like fashion, although there was slight overlapping between adjacent cell territories. Microglia density in this layer was approximately twice that in the outer plexiform layer. This pattern of microglial distribution was similar to that described in vascular retinae of several species of mammals, a finding that suggest that blood vessels are not responsible for the final locations of microglia in the adult retina, and that microglial precursors must migrate through long distances before they reach their precise destination.
Collapse
Affiliation(s)
- J Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | |
Collapse
|
134
|
Sorokin SP, McNelly NA, Hoyt RF. Exogenous cytokines enhance survival of macrophages from organ cultured embryonic rat tissues. Anat Rec (Hoboken) 1994; 240:398-406. [PMID: 7825736 DOI: 10.1002/ar.1092400312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Macrophage precursors are present in embryonic rats shortly after the onset of hematopoiesis. During organogenesis they soon establish residency in many parts of the body and become convertible into phagocytes, at first gaining morphological characteristics of macrophages and later a range of surface antigens used to characterize subpopulations in adults. Nonetheless, it is uncertain whether representatives of this fetal lineage continue to exist past birth. We investigated the question indirectly by seeing if such cells can be made to survive in vitro to an age equivalent to adulthood and by examining underlying conditions that favor this outcome. METHODS Fourteen-day embryonic lungs, hearts, and limb buds were organ cultured on a firm serum-containing medium. Fetal macrophages developed within all explants and then migrated out to form a corona of cells surrounding each explant. The lung cultures were selected for subsequent work which mainly used coronal area as the measure of macrophage population size in experimental and control groups. Baseline growth and survival of macrophages were established for cultures grown on standard medium, then effects of the following were examined: indomethacin (10(-6) M) as it influences initial production of macrophages from precursors and later survival of differentiated cells; and macrophage colony-stimulating factor (M-CSF), used alone at moderate dosage (50-100 U), and combined with granulocyte-macrophage CSF (both 200 U), for its importance to long-term survival of the population. Mitogenic influence of M-CSF on differentiated macrophages was demonstrated by uptake of 5-bromo-2'-deoxyuridine. RESULTS Indomethacin inhibited the formation of macrophages from precursors but enhanced the survival of differentiated cells. M-CSF increased BrdU uptake of differentiated macrophages and permitted coronal growth to continue long past the approximately 30 day limit of controls. Beyond this interval, M-CSF was essential for macrophage survival, since coronas quickly shrank after the cytokine was withdrawn. Administration of the M-CSF/GM-CSF mixture to the 2 oldest M-CSF-exposed cultures between 98 and 127 days in vitro resulted in an increase in the number of coronal macrophages (P < 0.001); withdrawal between 129 and 140 days led to a decrease (P < 0.005). Ultimately a few cells were still surviving at 183 days. CONCLUSIONS Intrinsic factors promote early formation of macrophages within the explants, but the availability of factors is lessened by the anti-inflammatory action of indomethacin. Its later promotion of macrophage survival may be based on suppression of autogenous prostaglandin (PGE2) synthesis. M-CSF greatly promotes macrophage survival; in context this is sufficient to show that the fetal macrophage line has a clear potential to survive well into adulthood.
Collapse
Affiliation(s)
- S P Sorokin
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Massachusetts 02118
| | | | | |
Collapse
|
135
|
Cuadros MA, Moujahid A, Quesada A, Navascués J. Development of microglia in the quail optic tectum. J Comp Neurol 1994; 348:207-24. [PMID: 7814688 DOI: 10.1002/cne.903480204] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The development of microglia in the quail optic tectum from embryonic day 6 to adulthood was studied by using the QH1 monoclonal antibody. In youngest tecta, microglial cells were scarcely present, but their number rose in subsequent stages. A clear pattern of microglial cell distribution was observable in embryos of 9-16 days. (1) Round cells appeared close to the ventricular layer. (2) Large numbers of ameboid and round labeled cells were seen in the stratum album centrale during development. A gradient of cell density was observable in this layer, as fewer labeled cells appeared in medial regions of the tectum than in lateral regions. (3) Maturing ramified cells were found in layers external to the stratum album centrale, where they increased in number and in branching complexity during development. In adult tecta, almost all microglial cells were of the mature ramified type and were distributed homogeneously in the different tectal layers, although in some layers they had particular morphological features. The distribution of microglia in the developing tectum and in adjacent regions provided insight into the routes of microglial cell invasion of the tectum during development. Apparently, a proportion of microglial cells reached the tectal parenchyma from the meninges and from the ventricular lumen, but the majority of them migrated along nerve fiber tracts from their entry point at the pial surface of the ventromedial caudal tectum. After they reached the stratum album centrale, microglial cells continued their migration toward more external layers, where they differentiated into ramified microglia.
Collapse
Affiliation(s)
- M A Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | |
Collapse
|
136
|
Chamak B, Morandi V, Mallat M. Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin. J Neurosci Res 1994; 38:221-33. [PMID: 8078107 DOI: 10.1002/jnr.490380213] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The presence of macrophages in the developing or lesioned central nervous system (CNS) led us to study the influence of these cells on neuronal growth. Macrophages were isolated from embryonic rat brain and we observed that factors released in vitro by these cells stimulate neurite growth and regeneration of cultured CNS neurons. This effect was inhibited by antibodies directed against thrombospondin, an extracellular matrix protein that we found to be synthesized and released by brain macrophages. Immunodetection of thrombospondin in the adult rat brain lesioned by kainic acid confirmed the production of this protein by brain macrophages and indicated an early intraparenchymal accumulation of thrombospondin following injury. These results suggest that brain macrophages contribute actively to neurite growth or regeneration during the development or in pathological contexts.
Collapse
Affiliation(s)
- B Chamak
- INSERM U114, Collège de France, Paris
| | | | | |
Collapse
|
137
|
Cuadros MA, Moujahid A, Martin-Partido G, Navascués J. Microglia in the mature and developing quail brain as revealed by a monoclonal antibody recognizing hemopoietic cells. Neurosci Lett 1992; 148:11-4. [PMID: 1300483 DOI: 10.1016/0304-3940(92)90792-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The monoclonal antibody QH1, which recognizes quail endothelial and hemopoietic cells, was found to label microglia in the developing and mature brain of the quail. Forms of microglia similar to those described in mammals were labelled. Ameboid microglia predominated at embryonic stages, became less numerous in late embryonic development, and disappeared completely by day 10 post-hatch (P10). Poorly ramified microglia were present as early as day 5 of incubation (E5), and were progressively replaced by mature ramified microglia from E14 onwards. From P10 onwards, ramified microglia were the only microglial form seen in the quail brain.
Collapse
Affiliation(s)
- M A Cuadros
- Departmento de Biologia Celular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | |
Collapse
|