101
|
Serbent MP, Magario I, Saux C. Immobilizing white-rot fungi laccase: Toward bio-derived supports as a circular economy approach in organochlorine removal. Biotechnol Bioeng 2024; 121:434-455. [PMID: 37990982 DOI: 10.1002/bit.28591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/23/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.
Collapse
Affiliation(s)
- Maria Pilar Serbent
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
- Programa de Pós-Graduação em Ciências Ambientais (PPGCAMB), Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brasil
| | - Ivana Magario
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (CONICET), Córdoba, Argentina
| | - Clara Saux
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
| |
Collapse
|
102
|
Ding Y, Qin S, Huang H, Tang X, Li X, Zhang Y, Chen W, Nguyen LP, Qi S. Selected pesticidal POPs and metabolites in the soil of five Vietnamese cities: Sources, fate, and health risk implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123043. [PMID: 38036093 DOI: 10.1016/j.envpol.2023.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Large quantities of organochlorine pesticides (OCPs) have been used in tropical regions. The fate processes and risks of these legacy contaminants in the tropics are poorly understood. Herein, we investigated the occurrence of three classes of widely used OCPs and their metabolites in surface and core soil from five cities across Vietnam with a prevalent tropical monsoon climate and a long history of OCP application. We aimed to elucidate migration potentials, degradation conditions, and transformation pathways and assess current health risks of these contaminants. Generally, the concentrations of OCPs and metabolites in the soil core were slightly lower than those in surface soil except for hexachlorocyclohexane (HCH) isomers. 2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane (p,p'-DDT), 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), the sum of dicofol and 4,4'-dichlorobenzophenone (p,p'-DBP), and 2,2-bis(4-chlorophenyl)-1,1-dichloroethane (p,p'-DDD) were the most abundant compounds in both surface and core soils. A uniform distribution of HCHs (the sum of α-, β-, γ-, and δ-HCH) at trace levels was found in almost all soils, serving as evidence of the lack of recent use of HCH pesticides. Higher concentrations of DDTs (the sum of DDT, DDD, and DDE) were observed in north-central Vietnamese soil, whereas appreciable concentrations of ENDs (the sum of α- and β-endosulfan and endosulfan sulfate) were only found in southern Vietnamese soils. Empirical diagnostic ratios indicated residuals of DDTs were mainly from technical DDT rather than dicofol, whereas aged HCHs could be explained by the mixture of lindane and technical HCH. Both historical applications and recent input explain DDTs and ENDs in Vietnamese soil. Total organic carbon performs well in preventing vertical migration of more hydrophobic DDTs and ENDs. The dominant transformation pathway of DDT in surface soil followed p,p'-DDE→2,2-bis(4-chlorophenyl)-1-chloroethylene or p,p'-DDMU→1,1-bis(4-chlorophenyl)ethylene or p,p'-DDNU→p,p'-DBP, whereas the amount of p,p'-DDMU converted from p,p'-DDD and p,p'-DDE is similar in soil core. Non-cancer risks of OCPs and metabolites in all soils and cancer risks of those chemicals in core soils were below the safety threshold, whereas a small proportion of surface soil exhibited potential cancer risk after considering the exposure pathway of vegetable intake. This study implied that organic matter in non-rainforest tropical deep soils still could hinder the leaching of hydrophobic organic contaminants as in subtropical and temperate soils. When lands with a history of OCP application are used for agricultural purposes, dietary-related risks need to be carefully assessed.
Collapse
Affiliation(s)
- Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China.
| | - Shibin Qin
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Institute of Eco-Environment Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China
| | - Xiushuang Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Lan-Phuong Nguyen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
103
|
Herrera W, Vera J, Hermosilla E, Diaz M, Tortella GR, Dos Reis RA, Seabra AB, Diez MC, Rubilar O. The Catalytic Role of Superparamagnetic Iron Oxide Nanoparticles as a Support Material for TiO 2 and ZnO on Chlorpyrifos Photodegradation in an Aqueous Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:299. [PMID: 38334570 PMCID: PMC10856829 DOI: 10.3390/nano14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Chlorpyrifos (CP) is a globally used pesticide with acute toxicity. This work studied the photocatalytic degradation of CP using TiO2, ZnO nanoparticles, and nanocomposites of TiO2 and ZnO supported on SPIONs (SPION@SiO2@TiO2 and SPION@SiO2@ZnO). The nanocomposites were synthesized by multi-step incipient wetness impregnation. The effects of the initial pH, catalyst type, and dose were evaluated. The nanocomposites of SPION@SiO2@TiO2 and SPION@SiO2@ZnO showed higher CP photodegradation levels than free nanoparticles, reaching 95.6% and 82.3%, respectively, at pH 7. The findings indicate that iron oxide, as a support material for TiO2 and ZnO, extended absorption edges and delayed the electron-hole recombination of the nanocomposites, improving their photocatalytic efficiency. At the same time, these nanocomposites, especially SPION@SiO2@TiO2, showed efficient degradation of 3,5,6-trichloropyridinol (TCP), one of the final metabolites of CP. The stability and reuse of this nanocomposite were also evaluated, with 74.6% efficiency found after six cycles. Therefore, this nanomaterial represents an eco-friendly, reusable, and effective alternative for the degradation of chlorpyrifos in wastewater treatment.
Collapse
Affiliation(s)
- Wence Herrera
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
| | - Joelis Vera
- Programa de Doctorado en Ciencias de la Ingeniería Mención Bioprocesos, Universidad de la Frontera, Temuco 4780000, Chile;
| | - Edward Hermosilla
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
| | - Marcela Diaz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
| | - Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
| | - Roberta Albino Dos Reis
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil; (R.A.D.R.); (A.B.S.)
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil; (R.A.D.R.); (A.B.S.)
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
104
|
Liu R, Paguirigan JA, Hur JS, Kim W. Cercosporamide, a polyketide-derived fungal metabolite, serves as an antifungal agent against phytopathogenic fungi. MYCOSCIENCE 2024; 65:19-27. [PMID: 39239118 PMCID: PMC11371548 DOI: 10.47371/mycosci.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 09/07/2024]
Abstract
An endophytic fungus, Phoma sp. NG-25, produces a set of structurally related polyketides including cercosporamide, phomodione, and usnic acid, among which, cercosporamide has been reported to have strong antifungal and anticancer activities. In this study, Phoma sp. NG-25 was grown in seven growth media to determine the optimal culture condition conducive for cercosporamide production. Cercosporamide production peaked on the eighteenth day of incubation in beef peptone dextrose (BPD) broth media. The cercosporamide titer reached to an average of 77.5 µg/mL in BPD. Paper disk diffusion assay revealed that culture filtrate containing cercosporamide as a major constituent inhibited the growth of taxonomically diverse plant pathogens, including ascomycetous, basidiomycetous, and oomycete fungi. Cercosporamide exhibited strong antifungal activities against two pepper anthracnose pathogens, Colletotrichum gloeosporioides and C. scovillei with EC50 values of 3.8 and 7.0 µg/mL, respectively. This study suggests the potential application of cercosporamide as an effective antifungal agent in controlling anthracnose in pepper.
Collapse
Affiliation(s)
- Rundong Liu
- a Korean Lichen Research Institute, Sunchon National University
| | - Jaycee Augusto Paguirigan
- a Korean Lichen Research Institute, Sunchon National University
- b Department of Biological Sciences, College of Science, University of Santo Tomas
| | - Jae-Seoun Hur
- a Korean Lichen Research Institute, Sunchon National University
| | - Wonyong Kim
- a Korean Lichen Research Institute, Sunchon National University
- c Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University
| |
Collapse
|
105
|
Song J, Chen Y, Li L, Tan M, Su W. Recent Progress in Photoelectrochemical Sensing of Pesticides in Food and Environmental Samples: Photoactive Materials and Signaling Mechanisms. Molecules 2024; 29:560. [PMID: 38338305 PMCID: PMC10856573 DOI: 10.3390/molecules29030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400, China;
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Yuqi Chen
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Ling Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Wentao Su
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| |
Collapse
|
106
|
Chmelíková L, Schmid H, Anke S, Hülsbergen KJ. Energy-use efficiency of organic and conventional plant production systems in Germany. Sci Rep 2024; 14:1806. [PMID: 38245619 PMCID: PMC10799894 DOI: 10.1038/s41598-024-51768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Sustainable and efficient energy use in agriculture helps tackle climate change by reducing fossil energy use. We evaluated German farming systems by analysing energy input and output. Data from 30 organic and 30 conventional farms (12 arable, 18 dairy farms each) between 2009 and 2011 was used. Energy input, output, and the influence of farm type, farm structure, and management intensity on energy-use efficiency (EUE) were analysed for crop production using the farm management system REPRO. Conventional farms (CF) always had higher energy input. The energy input for organic farms (OF) was 7.2 GJ ha-1 and for CF 14.0 GJ ha-1. The energy output of CF was also higher. Reductions were higher in energy input than in energy output. In 73.3% of the farm pairs, OF were more energy efficient than CF. The EUE was comparable with CF on 10% of OF and for 16.7% of CF the EUE was higher suggesting better fossil energy utilization. EUE can be increased when reducing fossil energy inputs through more efficient machinery, reduction of agrochemicals, precision farming, the use of renewable energy or energy retention, and by increasing yields. A reduction of inputs is urgently required to lower the (political) dependence on fossil energy.
Collapse
Affiliation(s)
- Lucie Chmelíková
- Chair of Organic Agriculture and Agronomy, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354, Freising, Germany.
| | - Harald Schmid
- Chair of Organic Agriculture and Agronomy, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| | - Sandra Anke
- Chair of Organic Agriculture and Agronomy, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| | - Kurt-Jürgen Hülsbergen
- Chair of Organic Agriculture and Agronomy, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| |
Collapse
|
107
|
Lamnoi S, Boonupara T, Sumitsawan S, Vongruang P, Prapamontol T, Udomkun P, Kajitvichyanukul P. Unveiling the Aftermath: Exploring Residue Profiles of Insecticides, Herbicides, and Fungicides in Rice Straw, Soils, and Air Post-Mixed Pesticide-Contaminated Biomass Burning. TOXICS 2024; 12:86. [PMID: 38251041 PMCID: PMC10819870 DOI: 10.3390/toxics12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
This study delved into the impact of open biomass burning on the distribution of pesticide and polycyclic aromatic hydrocarbon (PAH) residues across soil, rice straw, total suspended particulates (TSP), particulate matter with aerodynamic diameter ≤ 10 µm (PM10), and aerosols. A combination of herbicides atrazine (ATZ) and diuron (DIU), fungicide carbendazim (CBD), and insecticide chlorpyriphos (CPF) was applied to biomass before burning. Post-burning, the primary soil pesticide shifted from propyzamide (67.6%) to chlorpyriphos (94.8%). Raw straw biomass retained residues from all pesticide groups, with chlorpyriphos notably dominating (79.7%). Ash residue analysis unveiled significant alterations, with elevated concentrations of chlorpyriphos and terbuthylazine, alongside the emergence of atrazine-desethyl and triadimenol. Pre-burning TSP analysis identified 15 pesticides, with linuron as the primary compound (51.8%). Post-burning, all 21 pesticides were detected, showing significant increases in metobromuron, atrazine-desethyl, and cyanazine concentrations. PM10 composition mirrored TSP but exhibited additional compounds and heightened concentrations, particularly for atrazine, linuron, and cyanazine. Aerosol analysis post-burning indicated a substantial 39.2-fold increase in atrazine concentration, accompanied by the presence of sebuthylazine, formothion, and propyzamide. Carcinogenic PAHs exhibited noteworthy post-burning increases, contributing around 90.1 and 86.9% of all detected PAHs in TSP and PM10, respectively. These insights advance understanding of pesticide dynamics in burning processes, crucial for implementing sustainable agricultural practices and safeguarding environmental and human health.
Collapse
Affiliation(s)
- Suteekan Lamnoi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Sulak Sumitsawan
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Patipat Vongruang
- Environmental Health, School of Public Health, University of Phayao, Phayao 56000, Thailand;
| | - Tippawan Prapamontol
- Environmental and Health Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| |
Collapse
|
108
|
Ren Y, Wang G, Bai X, Su Y, Zhang Z, Han J. Research progress on remediation of organochlorine pesticide contamination in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:25. [PMID: 38225511 DOI: 10.1007/s10653-023-01797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Deteriorated soil pollution has grown into a worldwide environmental concern over the years. Organochlorine pesticide (OCP) residues, featured with ubiquity, persistence and refractoriness, are one of the main pollution sources, causing soil degradation, fertility decline and nutritional imbalance, and severely impacting soil ecology. Furthermore, residual OCPs in soil may enter the human body along with food chain accumulation and pose a serious health threat. To date, many remediation technologies including physicochemical and biological ways for organochlorine pollution have been developed at home and abroad, but none of them is a panacea suitable for all occasions. Rational selection and scientific decision-making are grounded in in-depth knowledge of various restoration techniques. However, soil pollution treatment often encounters the interference of multiple factors (climate, soil properties, cost, restoration efficiency, etc.) in complex environments, and there is still a lack of systematic summary and comparative analysis of different soil OCP removal methods. Thus, to better guide the remediation of contaminated soil, this review summarized the most commonly used strategies for OCP removal, evaluated their merits and limitations and discussed the application scenarios of different methods. It will facilitate the development of efficient, inexpensive and environmentally friendly soil remediation strategies for sustainable agricultural and ecological development.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
109
|
Swathy K, Vivekanandhan P, Yuvaraj A, Sarayut P, Kim JS, Krutmuang P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024; 10:e23406. [PMID: 38187317 PMCID: PMC10770572 DOI: 10.1016/j.heliyon.2023.e23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pesticides play a pivotal role in agriculture for the effective production of various crops. The indiscriminate use of pesticides results in the significant bioaccumulation of pesticide residues in vegetables. This situation is beyond the control of consumers and poses a serious health issue for human beings. Occupational exposure to pesticides may occur for farmers, agricultural workers, and industrial producers of pesticides. This occupational exposure primarily causes food and water contamination that gets into humans and environmental pollution. Depending on the toxicity of pesticides, the causes and effects differ in the environment and in human health. The number of criteria used and the method of implementation employed to assess the effect of pesticides on humans and the environment have been increasing, as they may provide characterization of pesticides that are already on the market as well as those that are on the way. The biological control of pests has been increasing nowadays to combat all these effects caused by synthetic pesticides. Myco-biocontrol has received great attention in research because it has no negative impact on humans, the environment, or non-target species. Entomopathogenic fungi are microbes that have the ability to kill insect pests. Fungi also make enzymes like the lytic enzymes, esterase, oxidoreductase, and cytochrome P450, which react with chemical residues in the field and break them down into nontoxic substances. In this review, the authors looked at how entomopathogenic fungi break down insecticides in the environment and how their enzymes break down insecticides on farms.
Collapse
Affiliation(s)
- Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Perumal Vivekanandhan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of General Pathology at Saveetha Dental College and Hospitals in the Saveetha Institute of Medical & Technical Sciences at Saveetha University in Chennai, Tamil Nadu, 600077, India
| | | | - Pittarate Sarayut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jae Su Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
110
|
Chu BY, Lin C, Nie PC, Xia ZY. Research Status in the Use of Surface-Enhanced Raman Scattering (SERS) to Detect Pesticide Residues in Foods and Plant-Derived Chinese Herbal Medicines. Int J Anal Chem 2024; 2024:5531430. [PMID: 38250173 PMCID: PMC10798841 DOI: 10.1155/2024/5531430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Surface-enhanced Raman scattering (SERS) technology has unique advantages in the rapid detection of pesticides in plant-derived foods, leading to reduced detection limits and increased accuracy. Plant-derived Chinese herbal medicines have similar sources to plant-derived foods; however, due to the rough surfaces and complex compositions of herbal medicines, the detection of pesticide residues in this context continues to rely heavily on traditional methods, which are time consuming and laborious and are unable to meet market demands for portability. The application of flexible nanomaterials and SERS technology in this realm would allow rapid and accurate detection in a portable format. Therefore, in this review, we summarize the underlying principles and characteristics of SERS technology, with particular focus on applications of SERS for the analysis of pesticide residues in agricultural products. This paper summarizes recent research progress in the field from three main directions: sample pretreatment, SERS substrates, and data processing. The prospects and limitations of SERS technology are also discussed, in order to provide theoretical support for rapid detection of pesticide residues in Chinese herbal medicines.
Collapse
Affiliation(s)
- Bing-Yan Chu
- School of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Chi Lin
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Peng-Cheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zheng-Yan Xia
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
111
|
Corrêa-Junior D, Parente CET, Frases S. Hazards Associated with the Combined Application of Fungicides and Poultry Litter in Agricultural Areas. J Xenobiot 2024; 14:110-134. [PMID: 38249104 PMCID: PMC10801622 DOI: 10.3390/jox14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
In recent decades, the poultry farming industry has assumed a pivotal role in meeting the global demand for affordable animal proteins. While poultry farming makes a substantial contribution to food security and nutrition, it also presents environmental and public health challenges. The use of poultry litter as fertilizer for agricultural soils raises concerns about the transfer of pathogens and drug-resistant microorganisms from poultry farms to crop production areas. On the other hand, according to the Food and Agriculture Organization of the United Nations (FAO), fungicides represent the second most used chemical group in agricultural practices. In this context, agricultural soils receive the application of both poultry litter as a fertilizer and fungicides used in agricultural production. This practice can result in fungal contamination of the soil and the development of antifungal resistance. This article explores the necessity of monitoring antifungal resistance, particularly in food production areas with co-application of poultry litter and fungicides. It also highlights the role of fungi in ecosystems, decomposition, and mutualistic plant associations. We call for interdisciplinary research to comprehensively understand fungal resistance to fungicides in the environment. This approach seeks to promote sustainability in the realms of human health, agriculture, and the environment, aligning seamlessly with the One Health concept.
Collapse
Affiliation(s)
- Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro CEP 21941-902, Brazil;
| | - Cláudio Ernesto Taveira Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro CEP 21941-902, Brazil;
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro CEP 21941-902, Brazil;
- Rede Micologia RJ, FAPERJ, Rio de Janeiro CEP 21941-902, Brazil
| |
Collapse
|
112
|
Bellot P, Bichet C, Brischoux F, Fritsch C, Hope SF, Quesnot A, Angelier F. Experimental investigation of the effect of tebuconazole on three biomarkers of innate immunity in the house sparrow (Passer domesticus). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:119-129. [PMID: 38244180 DOI: 10.1007/s10646-024-02732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Triazoles are among the most widely used fungicides in the world due to their efficacy against fungal crop diseases and their broad spectrum of action. Intensive use of triazoles has resulted in residual contamination in different compartments of agroecosystems and exposes non-target species to potential sublethal effects. Triazoles are known to be immunomodulators in medicine and therapeutic treatments, but very little data is available on their potential effect on immune parameters of non-target vertebrate species living in agroecosystems. In this study, we experimentally examined the impact of tebuconazole on three immune biomarkers (haemagglutination titre (HA), haemolysis titre (HL), and haptoglobin concentration (Hp)), as well as on the body condition of house sparrows (Passer domesticus). Our results suggest that tebuconazole had very little, if any, effect on the studied immune parameters. However, further studies are needed to better assess the effect of tebuconazole on bird immunity because (1) experimental individuals were kept under optimal conditions and the impact of tebuconazole on immunity may occur under suboptimal conditions, (2) only one concentration of tebuconazole was tested and its effect could be dose-dependent and (3) other complementary immunological biomarkers should be studied, given the complexity of the vertebrate immune system. Current knowledge on the potential effects of triazoles on the immunity of wild farmland vertebrates is still largely insufficient. Further physiological and immune studies should be conducted to better understand the effect of triazole fungicides on farmland birds.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France.
| | - Coraline Bichet
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, F-25000, Besançon, France
| | - Sydney F Hope
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
- Department of Psychology, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Alice Quesnot
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| |
Collapse
|
113
|
Yang Y, Zhong J, Shen S, Huang J, Hong Y, Qu X, Chen Q, Niu B. Application and Progress of Machine Learning in Pesticide Hazard and Risk Assessment. Med Chem 2024; 20:2-16. [PMID: 37038674 DOI: 10.2174/1573406419666230406091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
Long-term exposure to pesticides is associated with the incidence of cancer. With the exponential increase in the number of new pesticides being synthesized, it becomes more and more important to evaluate the toxicity of pesticides by means of simulated calculations. Based on existing data, machine learning methods can train and model the predictions of the effects of novel pesticides, which have limited available data. Combined with other technologies, this can aid the synthesis of new pesticides with specific active structures, detect pesticide residues, and identify their tolerable exposure levels. This article mainly discusses support vector machines, linear discriminant analysis, decision trees, partial least squares, and algorithms based on feedforward neural networks in machine learning. It is envisaged that this article will provide scientists and users with a better understanding of machine learning and its application prospects in pesticide toxicity assessment.
Collapse
Affiliation(s)
- Yunfeng Yang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Junjie Zhong
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Songyu Shen
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiajun Huang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yihan Hong
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, Goang Xi, China
| | - Qin Chen
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
114
|
Hinojosa MG, Johansson Y, Jos A, Cameán AM, Forsby A. Effects of cylindrospermopsin, chlorpyrifos and their combination in a SH-SY5Y cell model concerning developmental neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115804. [PMID: 38091671 DOI: 10.1016/j.ecoenv.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The cyanotoxin cylindrospermopsin (CYN) has been postulated to cause neurotoxicity, although the studies in this concern are very few. In addition, some studies in vitro indicate its possible effects on development. Furthermore, pesticides can be present in the same environmental samples as cyanotoxins. Therefore, chlorpyrifos (CPF) has been one of the most common pesticides used worldwide. The aim of this report was to study the effects of CYN, isolated and in combination with CPF, in a developmental neurotoxicity in vitro model. The human neuroblastoma SH-SY5Y cell line was exposed during 6 days of differentiation to both toxics to study their effects on cell viability and neurite outgrowth. To further evaluate effects of both toxicants on cholinergic signaling, their agonistic and antagonistic activities on the α7 homomeric nicotinic acetylcholine receptor (nAChR) were studied upon acute exposure. Moreover, a transcriptomic analysis by qPCR was performed after 6 days of CYN-exposure during differentiation. The results showed a concentration-dependent decrease on both cell viability and neurite outgrowth for both toxics isolated, leading to effective concentration 20 (EC20) values of 0.35 µM and 0.097 µM for CYN on cell viability and neurite outgrowth, respectively, and 100 µM and 58 µM for CPF, while the combination demonstrated no significant variations. In addition, 95 µM and 285 µM CPF demonstrated to act as an antagonist to nicotine on the nAChR, although CYN up to 2.4 µM had no effect on the efficacy of these receptors. Additionally, the EC20 for CYN (0.097 µM) on neurite outgrowth downregulated expression of the 5 genes NTNG2 (netrin G2), KCNJ11 (potassium channel), SLC18A3 (vesicular acetylcholine transporter), APOE (apolipoprotein E), and SEMA6B (semaphorin 6B), that are all important for neuronal development. Thus, this study points out the importance of studying the effects of CYN in terms of neurotoxicity and developmental neurotoxicity.
Collapse
Affiliation(s)
- M G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine. Faculty of Pharmacy, University of Seville, C/ Profesor García González 2, 41012 Seville, Spain
| | - Y Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.
| | - A Jos
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine. Faculty of Pharmacy, University of Seville, C/ Profesor García González 2, 41012 Seville, Spain
| | - A M Cameán
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine. Faculty of Pharmacy, University of Seville, C/ Profesor García González 2, 41012 Seville, Spain
| | - A Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
115
|
de Oliveira-Júnior FC, Oliveira ACPD, Pansa CC, Molica LR, Moraes KCM. Drosophila melanogaster as a Biotechnological Tool to Investigate the Close Connection Between Fatty Diseases and Pesticides. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2024; 67. [DOI: 10.1590/1678-4324-2024230091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
116
|
Navarro I, de la Torre A, Sanz P, Baldi I, Harkes P, Huerta-Lwanga E, Nørgaard T, Glavan M, Pasković I, Pasković MP, Abrantes N, Campos I, Alcon F, Contreras J, Alaoui A, Hofman J, Vested A, Bureau M, Aparicio V, Mandrioli D, Sgargi D, Mol H, Geissen V, Silva V, Martínez MÁ. Occurrence of pesticide residues in indoor dust of farmworker households across Europe and Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167797. [PMID: 37838044 DOI: 10.1016/j.scitotenv.2023.167797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Pesticides are widely used as plant protection products (PPPs) in farming systems to preserve crops against pests, weeds, and fungal diseases. Indoor dust can act as a chemical repository revealing occurrence of pesticides in the indoor environment at the time of sampling and the (recent) past. This in turn provides information on the exposure of humans to pesticides in their homes. In the present study, part of the Horizon 2020 funded SPRINT project, the presence of 198 pesticide residues was assessed in 128 indoor dust samples from both conventional and organic farmworker households across Europe, and in Argentina. Mixtures of pesticide residues were found in all dust samples (25-121, min-max; 75, median). Concentrations varied in a wide range (<0.01 ng/g-206 μg/g), with glyphosate and its degradation product AMPA, permethrin, cypermethrin and piperonyl butoxide found in highest levels. Regarding the type of pesticides, insecticides showed significantly higher levels than herbicides and fungicides. Indoor dust samples related to organic farms showed a significantly lower number of residues, total and individual concentrations than those related to conventional farms. Some pesticides found in indoor dust were no longer approved ones (29 %), with acute/chronic hazards to human health (32 %) and with environmental toxicity (21 %).
Collapse
Affiliation(s)
- Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain.
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Isabelle Baldi
- University of Bordeaux, INSERM, BPH, U1219 Bordeaux, France
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Esperanza Huerta-Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Nelson Abrantes
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and Planning and CESAM, University of Aveiro, Aveiro, Portugal
| | - Francisco Alcon
- Department of Business Economics, Universidad Politécnica de Cartagena, Spain
| | - Josefina Contreras
- Department Agricultural Engineering, Universidad Politécnica de Cartagena, Spain
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Anne Vested
- Department of Public Health - Unit for Environment, Occupation, and Health, Danish Ramazzini Centre, Aarhus University, Denmark
| | | | | | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Hans Mol
- Wageningen Food Safety Research - part of Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| |
Collapse
|
117
|
Ocloo XS, Vazquez-Prokopec GM, Civitello DJ. Mapping current and future habitat suitability of Azolla spp., a biofertilizer for small-scale rice farming in Africa. PLoS One 2023; 18:e0291009. [PMID: 38109403 PMCID: PMC10727437 DOI: 10.1371/journal.pone.0291009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/21/2023] [Indexed: 12/20/2023] Open
Abstract
How do we feed the expanding human population without excessive resource depletion or environmental degradation? Recycling and recapturing nutrients could alleviate these challenges, especially if these strategies are robust to climate change. Co-cultivating rice with Azolla spp. in Asia has demonstrated high yields with reduced fertilizer inputs because Azolla fixes atmospheric nitrogen, limits nitrogen volatilization, recaptures and releases other nutrients, and suppresses weeds. While Azolla is distributed in Africa, this approach has not been widely implemented in African rice-farming. Characterizing the suitability of Azolla is critical in evaluating the potential for Azolla-rice in Africa. To do so, we synthesized 189 field and greenhouse studies from around the world that quantified temperature-dependent growth of A. pinnata and A. filiculoides and developed present and future climate suitability maps at the continental scale using mean temperatures under two Representative Concentration Pathways. Currently, most of Africa is suitable for Azolla with slight differences in regional suitability for each species. We project little change in the continent-wide suitability for both species, but anticipate a regional decline, particularly for A. filiculoides in the Sahel. Collaborating with farmers to validate these projections, evaluate the costs and benefits of Azolla-rice, and facilitate adoption of viable strategies can facilitate equitable food systems that also empower African farmers.
Collapse
Affiliation(s)
- Xorla S. Ocloo
- Department of African and Black Diaspora Studies, DePaul University, Chicago, IL, United States of America
- Department of Environmental Science and Studies, DePaul University, Chicago, IL, United States of America
| | | | - David J. Civitello
- Department of Biology, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
118
|
Masmoudi F, Pothuvattil NS, Tounsi S, Saadaoui I, Trigui M. Synthesis of silver nanoparticles using Bacillus velezensis M3-7 lipopeptides: Enhanced antifungal activity and potential use as a biocontrol agent against Fusarium crown rot disease of wheat seedlings. Int J Food Microbiol 2023; 407:110420. [PMID: 37783113 DOI: 10.1016/j.ijfoodmicro.2023.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Bacillus velezensis M3-7 is a hyperactive mutant, 12-fold improved in its antifungal activity, obtained during a previous study from the wild strain BLB371 after a combination of random mutagenesis and medium component optimization. This study explores the use of this mutant in synthesizing silver nanoparticles (Ag-NPs) for the control of Fusarium crown rot disease (FCR) in wheat seedlings. LC-MS/MS analysis proved that both strains co-produced different families of lipopeptides and that mutagenesis caused the hyper-production of iturin A C14 and C15, the liberation of iturin A C10 and C12, and the inhibition of fengycin release. Our aim was a further improvement in the antifungal activity of the wild strain and the mutant M3-7 in order to control Fusarium crown rot disease (FCR) in wheat seedlings. Therefore, a nanotechnology approach was adopted, and different lipopeptide concentrations produced by the wild strain and the mutant M3-7 were used as capping agents to synthesize silver nanoparticles (Ag-NPs) with enhanced antifungal activity. Ag-NPs formed using 3 mg·mL-1 of the mutant lipopeptides were found to exhibit a good distribution, improved antifungal activity, a promising potential to be used as a biofortified agent for seed germination, and an effective compound to control FCR in wheat seedlings.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Biotechnology Program, Center of Sustainable Development, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | | | - Slim Tounsi
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | - Imen Saadaoui
- Biotechnology Program, Center of Sustainable Development, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohamed Trigui
- Laboratory of Environmental Sciences and Sustainable Development (LASED) Sfax Preparatory Engineering Institute, BP 1172-3018, University of Sfax, Tunisia
| |
Collapse
|
119
|
Li Y, Zhang H, Qi Y, You C. Recent Studies and Applications of Hydrogel-Based Biosensors in Food Safety. Foods 2023; 12:4405. [PMID: 38137209 PMCID: PMC10742584 DOI: 10.3390/foods12244405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Food safety has increasingly become a human health issue that concerns all countries in the world. Some substances in food that can pose a significant threat to human health include, but are not limited to, pesticides, biotoxins, antibiotics, pathogenic bacteria, food quality indicators, heavy metals, and illegal additives. The traditional methods of food contaminant detection have practical limitations or analytical defects, restricting their on-site application. Hydrogels with the merits of a large surface area, highly porous structure, good shape-adaptability, excellent biocompatibility, and mechanical stability have been widely studied in the field of food safety sensing. The classification, response mechanism, and recent application of hydrogel-based biosensors in food safety are reviewed in this paper. Furthermore, the challenges and future trends of hydrogel biosensors are also discussed.
Collapse
Affiliation(s)
- Yuzhen Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Hongfa Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| | - Yan Qi
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| |
Collapse
|
120
|
He HW, Xu D, Wu KH, Lu ZY, Liu X, Xu G. Discovery of novel salicylaldehyde derivatives incorporating an α-methylene-γ-butyrolactone moiety as fungicidal agents. PEST MANAGEMENT SCIENCE 2023; 79:5015-5028. [PMID: 37544900 DOI: 10.1002/ps.7703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Plant diseases caused by phytopathogenic fungi and oomycetes pose a serious threat to ensuring crop yield and quality. Finding novel fungicidal candidates based on natural products is one of the critical methods for developing effective and environmentally friendly pesticides. In this study, a series of salicylaldehyde derivatives containing an α-methylene-γ-butyrolactone moiety were designed, synthesized, and their fungicidal activities were evaluated. RESULTS The bioassay studies indicated that compound C3 displayed an excellent in vitro activity against Rhizoctonia solani with a half-maximal effective concentration (EC50 ) value of 0.65 μg/mL, higher than that of pyraclostrobin (EC50 = 1.44 μg/mL) and comparable to that of carbendazim (EC50 = 0.33 μg/mL). For Valsa mali and Phytophthora capsici, compound C3 also showed good fungicidal activities with EC50 values of 0.91 and 1.33 μg/mL, respectively. In addition, compound C3 exhibited promising protective in vivo activity against R. solani (84.1%) at 100 μg/mL, which was better than that of pyraclostrobin (78.4%). The pot experiment displayed that compound C3 had 74.8% protective efficacy against R. solani at 200 μg/mL, which was comparable to that of validamycin (78.2%). The antifungal mode of action research indicated that compound C3 could change the mycelial morphology and ultrastructure, increase cell membrane permeability, affect respiratory metabolism by binding to complex III, and inhibit the germination and formation of sclerotia, thereby effectively controlling the disease. CONCLUSION The present study provides support for the application of these salicylaldehyde derivatives as promising potential pesticides with remarkable and broad-spectrum fungicidal activities against phytopathogenic fungi and oomycetes in crop protection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Wei He
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dan Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| | - Ke-Huan Wu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zheng-Yi Lu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| |
Collapse
|
121
|
Karthick Raja Namasivayam S, Francis AL, Kavisri M, Alharbi NS, Thiruvengadam M, Moovendhan M. Biocompatible nanoscale silica particles fabricated from aminopropyltriethoxysilane functionalized brick ash induced versatile pesticidal activity. ENVIRONMENTAL RESEARCH 2023; 238:117090. [PMID: 37683791 DOI: 10.1016/j.envres.2023.117090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The present study is aimed to evaluate pesticidal activity and biocompatibility including ecotoxicity of functionalized silica nanoparticles that synthesized by simple, in vitro, green technology principles. Sol-gel method was adopted for the synthesis of silica nanoparticles and was functionalized by Aminopropyltriethoxysilane (APS), characterized and confirmed the uniform, monodispersive, highly stable particles with the size range of 10-200 nm. The synthesized Nano silica was screened against the developmental stages of Spodoptera litura. Pesticidal study revealed that the functionalized nanoparticles were effective against all the life stages of the insect by recording high mortality and the drastic reduction in the larval, pupae, adult emergence, and adult longevity stages. The ecotoxic effect of synthesized nano-silica was tested on soil parameters, growth parameters of Arachis hypogaea, and compatibility with Trichoderma viride. This study revealed there was no toxic effect on soil, growth parameters of Arachis hypogaea, and most significantly the growth of Trichoderma viride was not inhibited. A biocompatibility study was done by using Zebrafish and Rabbit model. The study divulges there was no toxic effect on all the developmental stages of the Embryo. Further, the nanoparticles did not exhibit any dermatotoxicological effect which confirmed no signs and symptoms of inflammation. Nano-silica emerges as a promising eco-friendly and non-toxic substitute for conventional insecticides. Its utilization has the potential to augment both environmental preservation and economic prosperity on a national scale. Furthermore, the integration of silica-based nanoparticles with biocidal agents demonstrates notable biocompatibility and the capacity to hinder bacterial adhesion.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS Deemed University, Chennai, 602195, Tamil Nadu, India
| | - A L Francis
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS Deemed University, Chennai, 602195, Tamil Nadu, India
| | - M Kavisri
- Department of Infrastructure Engineering, Saveetha School of Engineering, SIMATS Deemed University, Chennai, 602195, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Meivelu Moovendhan
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
122
|
Piccirillo G, De Sousa RB, Dias LD, Calvete MJF. Degradation of Pesticides Using Semiconducting and Tetrapyrrolic Macrocyclic Photocatalysts-A Concise Review. Molecules 2023; 28:7677. [PMID: 38005399 PMCID: PMC10675728 DOI: 10.3390/molecules28227677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to pesticides is inevitable in modern times, and their environmental presence is strongly associated to the development of various malignancies. This challenge has prompted an increased interest in finding more sustainable ways of degrading pesticides. Advanced oxidation processes in particular appear as highly advantageous, due to their ability of selectively removing chemical entities form wastewaters. This review provides a concise introduction to the mechanisms of photochemical advanced oxidation processes with an objective perspective, followed by a succinct literature review on the photodegradation of pesticides utilizing metal oxide-based semiconductors as photosensitizing catalysts. The selection of reports discussed here is based on relevance and impact, which are recognized globally, ensuring rigorous scrutiny. Finally, this literature review explores the use of tetrapyrrolic macrocyclic photosensitizers in pesticide photodegradation, analyzing their benefits and limitations and providing insights into future directions.
Collapse
Affiliation(s)
- Giusi Piccirillo
- Coimbra Chemistry Centre-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
| | - Rodrigo B. De Sousa
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil;
| | - Lucas D. Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil;
| | - Mário J. F. Calvete
- Coimbra Chemistry Centre-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
| |
Collapse
|
123
|
Mehrian SK, Karimi N, Rahmani F. 24-Epibrassinolide alleviates diazinon oxidative damage by escalating activities of antioxidant defense systems in maize plants. Sci Rep 2023; 13:19631. [PMID: 37949961 PMCID: PMC10638446 DOI: 10.1038/s41598-023-46764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023] Open
Abstract
Excessive use of pesticides against pests has contaminated agricultural crops and raised global concerns about food safety. This research investigates the alleviation effects of 24-epibrassinolide (EBL) seed priming on diazinon (DZ) pesticide toxicity. The experiment was conducted with eight groups including control, DZ, EBL (10 µM), EBL (0.1 µM), EBL (0.01 µM), EBL (10 µM) + DZ, EBL (0.1 µM) + DZ, and EBL (0.01 µM) + DZ. Plants grown with the lowest concentration of EBL (0.01 µM) exhibited an upward increase in the activity of SOD, CAT, POD, APX, GR, and GST enzymes under DZ toxicity stress. In contrast, higher concentrations of EBL showed some inhibitory effects on the activity of antioxidant enzymes. In addition, low concentrations of EBL elevated the free radical scavenging capacity (DPPH), iron-reducing antioxidant power (FRAP), photosynthesis rate (Pn), stomatal conductance (Gs) and proline, and protein contents. EBL also reduced lipid peroxidation (MDA levels) in the DZ-exposed plants, leading to membrane integrity. The favorable effects of EBL were more evident when plants were exposed to pesticides than normal growth conditions. The results indicated that EBL seed priming intensifies the antioxidant enzymes system activity, and helps maize plants against toxic effects of DZ under proper concentration.
Collapse
Affiliation(s)
- Saeed Karami Mehrian
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Nasser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Fatemeh Rahmani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| |
Collapse
|
124
|
Al-Hawadi JS, Al-Sayaydeh RS, Al-Rawashdeh ZB, Ayad JY. Monitoring of imidacloprid residues in fresh fruits and vegetables from the central parts of Jordan. Heliyon 2023; 9:e22136. [PMID: 38027632 PMCID: PMC10679860 DOI: 10.1016/j.heliyon.2023.e22136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
Imidacloprid pesticide is widely utilized in agriculture due to its effectiveness in controlling a broad spectrum of insect pests. However, its usage has raised concerns about potential environmental impacts, and requires careful monitoring and responsible application to ensure sustainable agricultural practices. Thus, Gas chromatography-mass spectrometry (GC-MS) was utilized to analyze imidacloprid in 300 vegetable and fruit samples obtained from 15 major wholesalers in four regions of Amman, Jordan's capital city. Among the examined samples, 39.7 % were found to be contaminated with imidacloprid residues. Imidacloprid levels in different edible fruits and vegetables ranged from less than the Limit of Quantification (LOQ) to 0.40 mg kg-1. Significantly, eggplant and apples exhibited the highest average values (0.40 and 0.25 mg kg-1, respectively). Lower levels were detected in bananas (0.04 mg kg-1), potatoes (0.05 mg kg-1), grapes (0.07 mg kg-1), and cabbage (0.07 mg kg-1). Imidacloprid was below the method detection limit (BD) in samples of okra, peaches, apricots, and carrots. Overall, 25 samples (8.3 %) exceeded the Codex maximum residue limit (MRL) for imidacloprid. Moreover, 8 out of the 300 samples (2.7 %) exceeded the MRL established by the Pest Management Regulatory Agency (PMRA). Notably, the fruits of eggplant and apple contained the highest residual levels (1.30 and 0.83 mg kg-1, respectively), markedly exceeding the CODEX and PMRA MRLs. Additionally, the maximum detected imidacloprid residue concentration in bananas (0.25 mg kg-1) was 500 % higher than the CODEX MRLs. The estimated average daily intake (EDI) of the Amman population varied from 0.00 to 0.144 μg kg-1 body weight day-1 across various products. The hazard index (HI) for imidacloprid ranged from 0.00 to 0.24, all of which were below unity in all samples (<1). In conclusion, this investigation reveals low HI levels of imidacloprid residues in commonly consumed fruits and vegetables. However, the significant presence of imidacloprid residues in some samples highlights the urgent need for comprehensive measures to limit potential health hazards to consumers.
Collapse
Affiliation(s)
- Jehad S. Al-Hawadi
- Department of Basic Sciences, Faculty of Science, Zarqa University, Zarqa 13110, Jordan
| | - Rabea S. Al-Sayaydeh
- Department of Agriculture Sciences, Faculty of Shoubak College, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Ziad B. Al-Rawashdeh
- Department of Agriculture Sciences, Faculty of Shoubak College, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Jamal Y. Ayad
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
125
|
Meng Z, Liu D, Li S, Xu Z, Deng Q, Liu Y. A fast multi-residue analysis of twenty-four classes of pesticide in sesame (Sesamum indicum L.) and their migration into processed products. Food Res Int 2023; 173:113322. [PMID: 37803633 DOI: 10.1016/j.foodres.2023.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
Sesame is widely used as a nutritional supplement or condiment because of its nutritious properties and palatable flavor. However, the extensive use of pesticides in sesame fields has paradoxically decreased the nutritional vantage. The current study used QuEChERS with a low-temperature freezing method to develop a multi-residue analytical approach to detect target analytes (pesticides) in sesame seed, sesame oil, sesame paste, and sesame meal. The migration ability of target pesticides during oil processing was investigated using HPLC-MS/MS and GC-MS: 35% of pesticides decreased, with processing factors (PFs) lower than 0.98, whereas 65% migrated from the seed to the oil during processing. The migration success of methoxyfenozide was the highest, while clothianidin and pymetrozine demonstrated a significantly lower rate of transfer. The results provide insight into the types of pesticides that should be used in farming practices of sesame to decrease the impact on human health.
Collapse
Affiliation(s)
- Ziwei Meng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Shuhui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Zhiyi Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Qianqian Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Yang Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
126
|
Urso M, Ussia M, Peng X, Oral CM, Pumera M. Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification. Nat Commun 2023; 14:6969. [PMID: 37914692 PMCID: PMC10620202 DOI: 10.1038/s41467-023-42674-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO2/α-Fe2O3 microrobots, consisting of peanut-shaped α-Fe2O3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H2O2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots' active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics.
Collapse
Affiliation(s)
- Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Martina Ussia
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Xia Peng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Cagatay M Oral
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic.
- Department of Medical Research, China Medical University Hospital, China Medical University, Hsueh-Shih Road 91, 40402, Taichung, Taiwan.
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
127
|
Lousada ME, Lopez Maldonado EA, Nthunya LN, Mosai A, Antunes MLP, Fraceto LF, Baigorria E. Nanoclays and mineral derivates applied to pesticide water remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104264. [PMID: 37984165 DOI: 10.1016/j.jconhyd.2023.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Although pesticides are vital in agroecosystems to control pests, their indiscriminate use generates innumerable environmental problems daily. Groundwater and surface water networks are the most affected environmental matrices. Since these water basins are mainly used to obtain water for human consumption, it is a challenge to find solutions to pesticide contamination. For these reasons, development of efficient and sustainable remedial technologies is key. Based on their unique properties including high surface area, recyclability, environmental friendliness, tunable surface chemistry and low cost, nanoclays and derived minerals emerged as effective adsorbents towards environmental remediation of pesticides. This study provides a comprehensive review of the use of nanoclays and mineral derivatives as adsorbents for pesticides in water. For this purpose, the characteristics of existing pesticides and general aspects of the relevant clays and minerals are discussed. Furthermore, the study provides insightful discussion on the potential application of nanoclays and their derivatives toward the mitigation of pesticide pollution in the environment. Finally, the outlook and future prospects on nanoclay implications and their environmental implementation are elucidated.
Collapse
Affiliation(s)
- María E Lousada
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Eduardo A Lopez Maldonado
- Faculty of Chemical Sciences and Engineering Autonomous University of Baja California, Parque Internacional Industrial Tijuana, 22424 Tijuana, B.C., Mexico.
| | - Lebea N Nthunya
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Alseno Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa.
| | - María Lucia Pereira Antunes
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Leonardo F Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Estefanía Baigorria
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil; Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET - Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10890, Mar del Plata, Buenos Aires 7600, Argentina.
| |
Collapse
|
128
|
Silva V, Gai L, Harkes P, Tan G, Ritsema CJ, Alcon F, Contreras J, Abrantes N, Campos I, Baldi I, Bureau M, Christ F, Mandrioli D, Sgargi D, Pasković I, Polić Pasković M, Glavan M, Hofman J, Huerta Lwanga E, Norgaard T, Bílková Z, Osman R, Khurshid C, Navarro I, de la Torre A, Sanz P, Ángeles Martínez M, Dias J, Mol H, Gort G, Martins Figueiredo D, Scheepers PTJ, Schlünssen V, Vested A, Alaoui A, Geissen V. Pesticide residues with hazard classifications relevant to non-target species including humans are omnipresent in the environment and farmer residences. ENVIRONMENT INTERNATIONAL 2023; 181:108280. [PMID: 37924602 DOI: 10.1016/j.envint.2023.108280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Intensive and widespread use of pesticides raises serious environmental and human health concerns. The presence and levels of 209 pesticide residues (active substances and transformation products) in 625 environmental samples (201 soil, 193 crop, 20 outdoor air, 115 indoor dust, 58 surface water, and 38 sediment samples) have been studied. The samples were collected during the 2021 growing season, across 10 study sites, covering the main European crops, and conventional and organic farming systems. We profiled the pesticide residues found in the different matrices using existing hazard classifications towards non-target organisms and humans. Combining monitoring data and hazard information, we developed an indicator for the prioritization of pesticides, which can support policy decisions and sustainable pesticide use transitions. Eighty-six percent of the samples had at least one residue above the respective limit of detection. One hundred residues were found in soil, 112 in water, 99 in sediments, 78 in crops, 76 in outdoor air, and 197 in indoor dust. The number, levels, and profile of residues varied between farming systems. Our results show that non-approved compounds still represent a significant part of environmental cocktails and should be accounted for in monitoring programs and risk assessments. The hazard profiles analysis confirms the dominance of compounds of low-moderate hazard and underscores the high hazard of some approved compounds and recurring "no data available" situations. Overall, our results support the idea that risk should be assessed in a mixture context, taking environmentally relevant mixtures into consideration. We have uncovered uncertainties and data gaps that should be addressed, as well as the policy implications at the EU approval status level. Our newly introduced indicator can help identify research priority areas, and act as a reference for targeted scenarios set forth in the Farm to Fork pesticide reduction goals.
Collapse
Affiliation(s)
- Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Netherlands
| | - Lingtong Gai
- Soil Physics and Land Management Group, Wageningen University & Research, Netherlands.
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Netherlands
| | - Gaowei Tan
- Soil Physics and Land Management Group, Wageningen University & Research, Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, Netherlands
| | - Francisco Alcon
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | - Josefa Contreras
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | - Nelson Abrantes
- CESAM and Department of Biology, University of Aveiro, Portugal
| | - Isabel Campos
- CESAM and Department of Biology, University of Aveiro, Portugal
| | - Isabelle Baldi
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Mathilde Bureau
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Florian Christ
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | | | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Italy
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, The Czech Republic
| | | | - Trine Norgaard
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Zuzana Bílková
- RECETOX, Faculty of Science, Masaryk University, Brno, The Czech Republic
| | - Rima Osman
- Soil Physics and Land Management Group, Wageningen University & Research, Netherlands
| | - Chrow Khurshid
- Soil Physics and Land Management Group, Wageningen University & Research, Netherlands
| | - Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Jonatan Dias
- Wageningen Food Safety Research (WFSR), part of Wageningen University & Research, Wageningen, The Netherlands
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), part of Wageningen University & Research, Wageningen, The Netherlands
| | - Gerrit Gort
- Biometris, Wageningen University, The Netherlands
| | | | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Vested
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Netherlands
| |
Collapse
|
129
|
Sınacı C, Çelik A, Yetkin D, Çevik S, Güler G. Sulfoxaflor insecticide exhibits cytotoxic or genotoxic and apoptotic potential via oxidative stress-associated DNA damage in human blood lymphocytes cell cultures. Drug Chem Toxicol 2023; 46:972-983. [PMID: 36036091 DOI: 10.1080/01480545.2022.2114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
The need for foodstuff that emerged with the rapidly increasing world population made fertilizers and pesticides inevitable to obtain maximum efficiency from existing agricultural areas. Sulfoxaflor is currently the only member of the new sulfoximine insecticide subclass of nicotinic acetylcholine receptor agonists. In the study, it was aimed to determine the in vitro genetic, oxidative damage potential, genotoxic and apoptotic effects of three different concentrations (10 µg/mL, 20 µg/mL and 40 µg/mL) of sulfoxaflor insecticide in the cultures of blood lymphocytes. In this study, the single-cell gel electrophoresis (comet), Cytokinesis Block Micronuclues Test (MN test), flow cytometry and measurement of Catalase (CAT) enzyme activity were used to determine genotoxic, apoptotic effects and oxidative damage potential, respectively. It found that there is a decrease in CPBI values and Live cell numbers. It was observed an increase in late apoptotic and necrotic cell numbers, Micronucleus frequency, and Comet analysis parameters (GDI and DCP). There is a significant difference between negative control and all concentration of insecticide for Cytokinesis Block Proliferation Index (CBPI) values and late apoptotic, necrotic and viable cell counts. An increase in CAT enzyme levels was observed at 10 and 20 µg/mL concentrations compared to control., It is found that CAT enzyme activity was inhibited at concentrations of 40 µg/mL. This study is crucial as it is the first study to investigate the impact of Sulfoxaflor insecticide on peripheral blood lymphocyte cells. The genotoxic, oxidative damage, and apoptotic effects of Sulfoxafluor insecticide on the results obtained and its adverse effects on other organisms raise concerns about health and safety.
Collapse
Affiliation(s)
- Cebrail Sınacı
- Department of Biology, Graduate School of Natural and Applied Science, Mersin University, Mersin, Turkey
| | - Ayla Çelik
- Department of Biology, Faculty of Science and Letters, Mersin University, Mersin, Turkey
| | - Derya Yetkin
- Advanced Technology, Education, Research and Application Center, MersinUniversity, Mersin, Turkey
| | - Sertan Çevik
- Department of Molecular Biology and Genetic, Faculty of Science and Letters, Harran University, Şanlıurfa, Turkey
| | - Gizem Güler
- Department of Biology, Graduate School of Natural and Applied Science, Mersin University, Mersin, Turkey
| |
Collapse
|
130
|
Cao J, Pei T, Wang Y, Qin S, Qi Y, Ren P, Li J. Terminal Residue and Dietary Risk Assessment of Atrazine and Isoxaflutole in Corn Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2023; 28:7225. [PMID: 37894703 PMCID: PMC10609211 DOI: 10.3390/molecules28207225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Isoxaflutole and atrazine are representative pesticides for weed control in corn fields. Formulations containing these two pesticides have been registered in China, and their residues may threaten food safety and human health. In this study, a method for simultaneous determination of isoxaflutole, atrazine, and their metabolites in fresh corn, corn kernels, and corn straw was established based on modified QuEChERS pre-treatment and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The linearity of seven compounds was good (R2 ≥ 0.9912), and the matrix effect was 48.5-77.1%. At four spiked levels of 0.01, 0.02, 0.05, and 0.5 mg kg-1, all compounds' average recovery was 76% to 116%, with relative standard deviation (RSD) less than 18.9%. Field experiments were conducted in Liaoning, Heilongjiang, Inner Mongolia, Shanxi, Beijing, and Yunnan provinces to study the terminal residues. The terminal residues of all compounds were below the LOQ (0.01 mg kg-1) in fresh corn and corn kernels, and atrazine residues in corn straw ranged from <0.05 mg kg-1 to 0.17 mg kg-1. Finally, a dietary risk assessment was conducted based on residues from field trials, food consumption, and acceptable daily intake (ADI). For all populations, the chronic dietary risk probability (RQc) of atrazine was between 0.0185% and 0.0739%, while that of isoxaflutole was 0.0074-0.0296%, much lower than 100%. The results may provide scientific guidance for using isoxaflutole and atrazine in corn field ecosystems.
Collapse
Affiliation(s)
- Junli Cao
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (J.C.); (T.P.); (Y.W.); (S.Q.); (Y.Q.); (P.R.)
| | - Tao Pei
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (J.C.); (T.P.); (Y.W.); (S.Q.); (Y.Q.); (P.R.)
- College of Plant Protection, Shanxi Agricultural University, No. 81, Longcheng Street, Taiyuan 030031, China
| | - Yonghui Wang
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (J.C.); (T.P.); (Y.W.); (S.Q.); (Y.Q.); (P.R.)
- College of Plant Protection, Shanxi Agricultural University, No. 81, Longcheng Street, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (J.C.); (T.P.); (Y.W.); (S.Q.); (Y.Q.); (P.R.)
| | - Yanli Qi
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (J.C.); (T.P.); (Y.W.); (S.Q.); (Y.Q.); (P.R.)
| | - Pengcheng Ren
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (J.C.); (T.P.); (Y.W.); (S.Q.); (Y.Q.); (P.R.)
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (J.C.); (T.P.); (Y.W.); (S.Q.); (Y.Q.); (P.R.)
| |
Collapse
|
131
|
Summer M, Tahir HM, Ali S. Sonication and heat-mediated synthesis, characterization and larvicidal activity of sericin-based silver nanoparticles against dengue vector (Aedes aegypti). Microsc Res Tech 2023; 86:1363-1377. [PMID: 37119431 DOI: 10.1002/jemt.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Fabrication, characterization and evaluation of the larvicidal potential of novel silk protein (sericin)-based silver nanoparticles (Se-AgNPs) were the prime motives of the designed study. Furthermore, investigation of the sericin as natural reducing or stabilizing agent was another objective behind this study. Se-AgNPs were synthesized using sonication and heat. Fabricated Se-AgNPs were characterized using particle size analyzer, UV spectrophotometry, FTIR and SEM which confirmed the fabrication of the Se-AgNPs. Size of sonication-mediated Se-AgNPs was smaller (7.49 nm) than heat-assisted Se-AgNPs (53.6 nm). Being smallest in size, sonication-assisted Se-AgNPs revealed the significantly highest (F4,10 = 39.20, p = .00) larvicidal activity against fourth instar lab and field larvae (F4,10 = 1864, p = .00) of dengue vector (Aedes aegypti) followed by heat-assisted Se-AgNPs and positive control (temephos). Non-significant larvicidal activity was showed by silver (without sericin) which made the temperature stability of silver, debatable. Furthermore, findings of biochemical assays (glutathione-S transferase, esterase, and acetylcholinesterase) showed the levels of resistance in field strain larvae. Aforementioned findings of the study suggests the sonication as the best method for synthesis of Se-AgNPs while the larvicidal activity is inversely proportional to the size of Se-AgNPs, i.e., smallest the size, highest the larvicidal activity. Conclusively, status of the sericin as a natural reducing/stabilizing agent has been endorsed by the findings of this study. RESEARCH HIGHLIGHTS: Incorporation of biocompatible and inexpensive sericin as a capping/reducing agent for synthesis of Se-AgNPs. A novel sonication method was used for the fabrication of Se-AgNPs which were thoroughly characterized by particle size analyzer, UV-visible spectrophotometry, SEM and FTIR. Analysis of enzymatic (GSTs, ESTs) levels in field and lab strains of Aedes aegypti larvae for evaluation of insecticides resistance.
Collapse
Affiliation(s)
- Muhammad Summer
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Hafiz Muhammad Tahir
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
132
|
Song D, Lei L, Tian T, Yang X, Wang L, Li Y, Huang H. A novel strategy for identification of pesticides in different categories by concentration-independent model based on a nanozyme with multienzyme-like activities. Biosens Bioelectron 2023; 237:115458. [PMID: 37311405 DOI: 10.1016/j.bios.2023.115458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Conventional rapid detection methods are difficult to identify or distinguish various pesticide residues at the same time. And sensor arrays are also limited by the complexity of preparing multiple receptors and high cost. To address this challenge, a single material with multiple properties is considered. Herein, we first found that different categories of pesticides have diverse regulatory behaviors on the multiple catalytic activities of Asp-Cu nanozyme. Thus, a three-channel sensor array based on the laccase-like, peroxidase-like, and superoxide dismutase-like activities of Asp-Cu nanozyme was constructed and successfully used for the discrimination of eight kinds of pesticides (glyphosate, phosmet, isocarbophos, carbaryl, pentachloronitrobenzene, metsulfuron-methyl, etoxazole, and 2-methyl-4-chlorophenoxyacetic acid). In addition, a concentration-independent model for qualitative identification of pesticides has been established, and 100% correctness was achieved in the recognition of unknown samples. Then, the sensor array also exhibited excellent interference immunity and was reliable for real sample analysis. It provided a reference for pesticide efficient detection and food quality supervision.
Collapse
Affiliation(s)
- Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun, 130025, China
| | - Lulu Lei
- College of Food Science and Engineering, Jilin University, Changchun, 130025, China
| | - Tian Tian
- College of Food Science and Engineering, Jilin University, Changchun, 130025, China
| | - Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, China
| | - Luwei Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, China.
| |
Collapse
|
133
|
Kumar P, Arshad M, Gacem A, Soni S, Singh S, Kumar M, Yadav VK, Tariq M, Kumar R, Shah D, Wanale SG, Al Mesfer MKM, Bhutto JK, Yadav KK. Insight into the environmental fate, hazard, detection, and sustainable degradation technologies of chlorpyrifos-an organophosphorus pesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108347-108369. [PMID: 37755596 DOI: 10.1007/s11356-023-30049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Pesticides play a critical role in terms of agricultural output nowadays. On top of that, pesticides provide economic support to our farmers. However, the usage of pesticides has created a public health issue and environmental hazard. Chlorpyrifos (CPY), an organophosphate pesticide, is extensively applied as an insecticide, acaricide, and termiticide against pests in various applications. Environmental pollution has occurred because of the widespread usage of CPY, harming several ecosystems, including soil, sediment, water, air, and biogeochemical cycles. While residual levels in soil, water, vegetables, foodstuffs, and human fluids have been discovered, CPY has also been found in the sediment, soil, and water. The irrefutable pieces of evidence indicate that CPY exposure inhibits the choline esterase enzyme, which impairs the ability of the body to use choline. As a result, neurological, immunological, and psychological consequences are seen in people and the natural environment. Several research studies have been conducted worldwide to identify and develop CPY remediation approaches and its derivatives from the environment. Currently, many detoxification methods are available for pesticides, such as CPY. However, recent research has shown that the breakdown of CPY using bacteria is the most proficient, cost-effective, and sustainable. This current article aims to outline relevant research events, summarize the possible breakdown of CPY into various compounds, and discuss analytical summaries of current research findings on bacterial degradation of CPY and the potential degradation mechanism.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Snigdha Singh
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Manoj Kumar
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Mohd Tariq
- Department of Life Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Deepankshi Shah
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | | | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, Madhya Pradesh, 462044, India.
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| |
Collapse
|
134
|
Serafín-Fabian JI, Elena Moreno-Godínez M, Flores-Alfaro E, Parra-Rojas I, Rojas-García AE, Campos-Viguri GE, Cahua-Pablo JÁ, Ramírez-Vargas MA. β-glucuronidase as a biomarker for assessing the exposure to anticholinergic pesticides: A meta-analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104279. [PMID: 37741477 DOI: 10.1016/j.etap.2023.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION The human exposure to anticholinergic pesticides has been associated with the development of various diseases. Therefore, several biomarkers have been proposed for biomonitoring human exposure to anticholinergic pesticides. OBJECTIVE This work evaluated the effect of human exposure to anticholinergic pesticides on β-glucuronidase (GUSB) levels. METHODS A systematic review was performed using PubMed, Web of Science, Scopus, and EBSCO databases up to December 2021. The statistical analysis employed standardized mean differences and meta-regression. And the trial sequential analysis was performed. RESULTS Nine studies were included. A monotonic relationship was observed between poisoning severity and GUSB. Furthermore, BuChE levels were correlated with GUSB levels. CONCLUSIONS The results indicated that GUSB levels could be used as a possible diagnosis biomarker in poisoning related to anticholinergic pesticide exposure. However, the use of GUSB to assess the chronic exposure to anticholinergic pesticides could be only performed in recent exposure (≈ 7 days after last exposure).
Collapse
Affiliation(s)
- Jesús Isimar Serafín-Fabian
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica y Molecular, Universidad Autónoma De Guerrero, Guerrero, Mexico
| | - Ma Elena Moreno-Godínez
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología y Salud Ambiental, Universidad Autónoma De Guerrero, Guerrero, Mexico
| | - Eugenia Flores-Alfaro
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica y Molecular, Universidad Autónoma De Guerrero, Guerrero, Mexico
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Investigación en Obesidad y Diabetes, Universidad Autónoma De Guerrero, Guerrero, Mexico
| | - Aurora Elizabeth Rojas-García
- Secretaría de Investigación y Posgrado, Laboratorio de Contaminación y Toxicología Ambiental, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | | | - José Ángel Cahua-Pablo
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica y Molecular, Universidad Autónoma De Guerrero, Guerrero, Mexico
| | - Marco Antonio Ramírez-Vargas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología y Salud Ambiental, Universidad Autónoma De Guerrero, Guerrero, Mexico.
| |
Collapse
|
135
|
de Souza AR, Prato A, Franca W, Santos S, Lima LD, Alves DA, Bernardes RC, Santos EF, do Nascimento FS, Lima MAP. A predatory social wasp does not avoid nestmates contaminated with a fungal biopesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103851-103861. [PMID: 37695481 DOI: 10.1007/s11356-023-29770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Fungus-based biopesticides have been used worldwide for crop pest control as a safer alternative to chemical pesticides such as neonicotinoids. Both agrochemicals can be lethal and may also trigger side effects on the behavioral traits of non-target social insects, which play a crucial role in providing essential biological pest control services in agroecosystems. Here, we evaluated whether a commercial formulation of the entomopathogenic fungus Beauveria bassiana or the neonicotinoid imidacloprid causes mortality in foragers of Mischocyttarus metathoracicus. These social wasps are natural enemies of caterpillars and other herbivorous insects and inhabit both urban and agricultural environments in Brazil. We also tested whether wasps discriminate between biopesticide-exposed and unexposed conspecifics. Through a combination of laboratory (survival assay) and field experiments (lure presentation), along with chemical analyses (cuticular hydrocarbon profiles), we showed that topic exposure to the label rate of each pesticide causes a lethal effect, with the biopesticide exhibiting a slower effect. Moreover, wasps do not discriminate biopesticide-exposed from unexposed conspecifics, likely because of the similarity of their cuticular chemical profiles 24 h after exposure. Overall, the delayed lethal time at the individual level, combined with the indistinctive chemical cues of exposure and the lack of discrimination by conspecifics suggests that the fungal biopesticide may ultimately pose a threat to the colony survival of this predatory wasp.
Collapse
Affiliation(s)
- André Rodrigues de Souza
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil.
| | - Amanda Prato
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Wilson Franca
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Sircio Santos
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Luan Dias Lima
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Denise Araujo Alves
- Department of Entomology and Acarology, University of São Paulo, São Paulo, Brazil
| | | | - Eduardo Fernando Santos
- Department of Zoology E Botany, Sao Paulo State University "Júlio de Mesquita Filho", São Paulo, Brazil
| | - Fábio Santos do Nascimento
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | | |
Collapse
|
136
|
Kawichai S, Prapamontol T, Santijitpakdee T, Bootdee S. Risk Assessment of Heavy Metals in Sediment Samples from the Mae Chaem River, Chiang Mai, Thailand. TOXICS 2023; 11:780. [PMID: 37755790 PMCID: PMC10534551 DOI: 10.3390/toxics11090780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Heavy metals are significant environmental pollutants that are recognized as posing a potential health hazard to human beings. We investigated the concentrations of the heavy metals As, Cd, Cr, Cu, Ni, Pb, and Zn in surface sediments collected from the Mae Chaem River in Chiang Mai, Thailand, during the dry season in 2021. The mean concentrations of heavy metals in sediments were, in decreasing order, Zn > Cr > As > Pb > Ni > Cu > Cd. The mean values of As, Cd, Cr, and Cu were determined to be 32.5 ± 18.3, 0.33 ± 0.07, 45.8 ± 11.9, and 21.9 ± 7.42 mg Kg-1, respectively. These levels are higher than their standard levels in Thailand, namely 10.0, 0.16, 45.5, and 21.5 mg Kg-1, respectively. Principal component analysis (PCA) revealed that the primary origins of heavy metal contamination are predominantly attributed to residential settlements and agricultural areas. The hazard quotient (HQ) was used to estimate the non-carcinogenic risk of exposure to heavy-metal-bound surface sediments for both children and adults. The results showed that the HQ values for both groups were less than 1.0 (HQ < 1.0), indicating no risk. Moreover, assessment of the long-term risk for ingestion of toxic metals indicated no risk (<10-6) based on the lifetime cancer risk (LCR). However, the LCR values of As and Cr were 5.3 × 10-6 and 2.5 × 10-6, respectively, demonstrating the most elevated LCR among the hazardous metals in terms of children's exposure. Therefore, it is possible that children living in agricultural areas and participating in activities around the study area may be exposed to elevated concentrations of As and Cr.
Collapse
Affiliation(s)
- Sawaeng Kawichai
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (T.S.)
| | - Tippawan Prapamontol
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (T.S.)
| | - Teetawat Santijitpakdee
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (T.S.)
| | - Susira Bootdee
- Faculty of Science, Energy, and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong 21120, Thailand;
| |
Collapse
|
137
|
Sruthi SN, Ramasamy EV, Shyleshchandran MN. Bioaccumulation of pesticide residue in earthworms collected from the agricultural soils of Kuttanad-a unique agroecosystem in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94940-94949. [PMID: 37542694 DOI: 10.1007/s11356-023-28944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Earthworms encompass significant soil faunal biomass and have tremendous potential to provide vital ecosystem services. Earthworms are considered bioindicators of chemical contaminants and can provide early warnings of ecosystem deterioration. Studies pertaining to the accumulation of pesticide residues in earthworm in biomass in agrarian ecosystems are scarce. The Kuttanad agroecosystem (KAE), situated on the southwest coast of India, is one of the few regions globally supporting farming on land below the mean sea level. This investigation was conducted to assess the bioaccumulation of pesticide residues in earthworms from the KAE. The earthworms species Glyphidrilus annandalei collected from agricultural soils of the study area were analyzed for the presence of pesticides residues such as α-BHC, γ-BHC, atrazine, heptachlor, α-chlordane, γ-chlordane, 4,4-DDE, 4,4-DDD, 4,4-DDT, β-endosulfan, and endrin ketone in their biomass. Analysis of the earthworm samples using a gas chromatograph revealed the presence of ten pesticide residues with notable concentrations (α-BHC, 0.36 ng/g; γ-BHC, 0.41 ng/g; heptachlor, 0.10 ng/g; atrazine, 0.89 ng/g; α-chlordane, 0.07 ng/g; γ-chlordane, 0.10 ng/g; 4,4-DDE, 0.05 ng/g; 4,4-DDD, 0.11 ng/g; 4,4-DDT, 0.31 ng/g; β-endosulfan, 0.19 ng/g; and endrin ketone, 0.13 ng/g). Six groups of pesticide residues are ΣBHC, ΣDDT, atrazine, Σchlordane, endrin ketone, and β-endosulfan were observed during bioaccumulation factor analysis, and the results show the following trend: atrazine > ΣBHC > ΣDDT > Σchlordane > Σendosulfan > Σendrin. As earthworms are a crucial component of this region's food chains, bioaccumulation of pesticide residues in earthworms can pause adverse consequences. Increasing trends in pesticide application in the KAE and bioaccumulation of pesticide residues in earthworm biomass can affect the entire food web.
Collapse
|
138
|
Toffolatti SL, Davillerd Y, D’Isita I, Facchinelli C, Germinara GS, Ippolito A, Khamis Y, Kowalska J, Maddalena G, Marchand P, Marcianò D, Mihály K, Mincuzzi A, Mori N, Piancatelli S, Sándor E, Romanazzi G. Are Basic Substances a Key to Sustainable Pest and Disease Management in Agriculture? An Open Field Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:3152. [PMID: 37687399 PMCID: PMC10490370 DOI: 10.3390/plants12173152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Pathogens and pests constantly challenge food security and safety worldwide. The use of plant protection products to manage them raises concerns related to human health, the environment, and economic costs. Basic substances are active, non-toxic compounds that are not predominantly used as plant protection products but hold potential in crop protection. Basic substances' attention is rising due to their safety and cost-effectiveness. However, data on their protection levels in crop protection strategies are lacking. In this review, we critically analyzed the literature concerning the field application of known and potential basic substances for managing diseases and pests, investigating their efficacy and potential integration into plant protection programs. Case studies related to grapevine, potato, and fruit protection from pre- and post-harvest diseases and pests were considered. In specific cases, basic substances and chitosan in particular, could complement or even substitute plant protection products, either chemicals or biologicals, but their efficacy varied greatly according to various factors, including the origin of the substance, the crop, the pathogen or pest, and the timing and method of application. Therefore, a careful evaluation of the field application is needed to promote the successful use of basic substances in sustainable pest management strategies in specific contexts.
Collapse
Affiliation(s)
- Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Yann Davillerd
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Ilaria D’Isita
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Chiara Facchinelli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Giacinto Salvatore Germinara
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy;
| | - Youssef Khamis
- Agricultural Research Center, Plant Pathology Research Institute, 9 Gamaa St., Giza 12619, Egypt;
| | - Jolanta Kowalska
- Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection–National Research Institute, Władysława Wêgorka 20, 60-318 Poznañ, Poland;
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Patrice Marchand
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Demetrio Marcianò
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Kata Mihály
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Annamaria Mincuzzi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Nicola Mori
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Simone Piancatelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| | - Erzsébet Sándor
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| |
Collapse
|
139
|
Xue Q, Swevers L, Taning CNT. Plant and insect virus-like particles: emerging nanoparticles for agricultural pest management. PEST MANAGEMENT SCIENCE 2023; 79:2975-2991. [PMID: 37103223 DOI: 10.1002/ps.7514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
140
|
Zhao X, Zhang Y, Chen L, Ma Z, Zhang B. Chitosan-thymol nanoparticle with pH responsiveness as a potential intelligent botanical fungicide against Botrytis cinerea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105571. [PMID: 37666600 DOI: 10.1016/j.pestbp.2023.105571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
The practical application of essential oils (EOs) as an alternative for synthetic pesticides in agricultural production is severely limited because of their instability, high volatility, and water insolubility. Nanoencapsulation of EOs is an important strategy to overcome these limitations. In view of this, this study aimed to develop chitosan-thymol nanoparticle (NCS-Thy) with pH-responsive which can be used as an intelligent botanical fungicide to control Botrytis cinerea. The NCS-Thy nanoparticle was prepared by ionic crosslinking method with the loading capacity and encapsulation efficiency of 29.87% and 41.92%, respectively. The synthesized NCS-Thy nanoparticle was further characterized by Fourier transform infrared spectroscopy analysis, transmission electron microscopy observation, and dynamic lights scattering. The results of release kinetics and antifungal activity of NCS-Thy under different pH conditions were determined. The results showed that the NCS-Thy nanoparticle had excellent pH-responsiveness and can release more thymol under acidic conditions formed by B. cinerea, thereby achieving higher antifungal effects. Therefore, compared with unencapsulated thymol, the NCS-Thy nanoparticle had higher antifungal activity against B. cinerea in vitro. In addition, both the protective and curative efficacies of detached leaf test and pot experiment were significantly higher than those of unencapsulated thymol. Among them, the protective efficacy of NCS-Thy in the pot experiment was 78.73%, which was significantly higher than that of unencapsulated thymol with 61.13%. Therefore, the pH-responsive chitosan-thymol nano-preparation had a promising prospect of application in practical management of gray mold as an intelligent botanical fungicide.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Yunfei Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China; School of Plant Protection, Hainan University, Haikou 570228, China
| | - Li Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| | - Bin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
141
|
Ray S, Shaju ST. Bioaccumulation of pesticides in fish resulting toxicities in humans through food chain and forensic aspects. Environ Anal Health Toxicol 2023; 38:e2023017-0. [PMID: 37853698 PMCID: PMC10613562 DOI: 10.5620/eaht.2023017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/20/2023] [Indexed: 10/20/2023] Open
Abstract
A crucial component for agricultural productivity is pesticide application. Increased usage of pesticides has significantly increased agricultural output, reduced grain losses in storage, and overall enhanced human wellbeing. Globally, every year approximately 3 billion kg of pesticides are used which budgets around 40 billion USD. Pesticide use can leave behind unwanted residues that can contaminate food, the environment, and living tissues. They are known to spread from agricultural regions that have been treated into the wider environment, where they affect non-target creatures. All tiers of biological organisms, directly impacted by this exposure. Pesticides at sub-lethal levels alter every aspect of a fish's physiology, including histology, haematology, defence mechanisms, and behaviour. The same topic of pesticide toxicology is the emphasis of this article, which also addresses some important induced chronic toxicological effects of pesticides in fish and the extent of their bioaccumulation in fish tissues. The data represents the largest bodies of water, such as rivers and lakes, that have been contaminated by pesticides, notably due to pesticide drift. It has been discussed how readily pesticides are absorbed into fish bodies and how this enters the food chain inducing harmful impacts on human health when consumed.
Collapse
Affiliation(s)
- Suryapratap Ray
- Karunya Institute of Technology and Sciences, Tamil Nadu, India
| | | |
Collapse
|
142
|
Trdan S, Laznik Ž, Bohinc T. Native natural enemies of plant pests in Slovenia with an emphasis on species suitable for mass rearing. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 37721494 PMCID: PMC10506447 DOI: 10.1093/jisesa/iead015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 09/19/2023]
Abstract
In Slovenia, only the native natural enemies of plant pests that are on the EPPO Positive List of biological control agents can be used in agricultural production to control plant pests. The List of native species of organisms for biological control, which is an important part of the Regulations on biological control, currently includes a total of 35 species of beneficial insects and mites and entomopathogenic nematodes. Compared to the number of species on the first list that was established in 2006, the number of beneficial species that Slovenian growers of food and ornamental plants can currently use in everyday practice has doubled. This is the result of intensive professional and research work in the investigation of the occurrence and distribution of natural enemy species in Slovenia, which has been systematically supported by the state for many years. Natural enemy species, which are an integral part of the EPPO Positive List of biological control agents, can be included on the list of native biological control species via a special procedure. However, many natural enemy species that are not yet included on the EPPO Positive List have been identified in the period 2007-2022. In this paper, we list 75 such species and we present 5 candidates (Cotesia glomerata [L.], Diadegma semiclausum [Hellen], Anisopteromalus calandrae [Howard], Neochrysocharis formosa [Westwood] and Kampimodromus aberrans [Oudemans]) that, in our opinion, have high potential as biological controls and will be suitable in the future for mass rearing and use in augmentative biological control.
Collapse
Affiliation(s)
- Stanislav Trdan
- University of Ljubljana, Biotechnical Faculty, Dept. of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Žiga Laznik
- University of Ljubljana, Biotechnical Faculty, Dept. of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Tanja Bohinc
- University of Ljubljana, Biotechnical Faculty, Dept. of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
143
|
Dos Santos MSN, Ody LP, Kerber BD, Araujo BA, Oro CED, Wancura JHC, Mazutti MA, Zabot GL, Tres MV. New frontiers of soil fungal microbiome and its application for biotechnology in agriculture. World J Microbiol Biotechnol 2023; 39:287. [PMID: 37632593 DOI: 10.1007/s11274-023-03728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
The fungi-based technology provided encouraging scenarios in the transition from a conventionally based economic system to the potential security of sources closely associated with the agricultural sphere such as the agriculture. In recent years, the intensification of fungi-based processes has generated significant gains, additionally to the production of materials with significant benefits and strong environmental importance. Furthermore, the growing concern for human health, especially in the agriculture scenario, has fostered the investigation of organisms with high biological and beneficial potential for use in agricultural systems. Accordingly, this study offered a comprehensive review of the diversity of the soil fungal microbiome and its main applications in a biotechnological approach aimed at agriculture and food chain-related areas. Moreover, the spectrum of opportunities and the extensive optimization platform for obtaining fungi compounds and metabolites are discussed. Finally, future perspectives regarding the insurgency of innovations and challenges on the broad rise of visionary solutions applied to the biotechnology context are provided.
Collapse
Affiliation(s)
- Maicon S N Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Lissara P Ody
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Bruno D Kerber
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Beatriz A Araujo
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Carolina E D Oro
- Department of Food Engineering, Integrated Regional University of Alto Uruguay and Missions, 1621, Sete de Setembro Av., Fátima, Erechim, RS 99709-910, Brazil
| | - João H C Wancura
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil.
| |
Collapse
|
144
|
Dong F, Chen X, Men X, Li Z, Kong Y, Yuan Y, Ge F. Contact Toxicity, Antifeedant Activity, and Oviposition Preference of Osthole against Agricultural Pests. INSECTS 2023; 14:725. [PMID: 37754693 PMCID: PMC10531909 DOI: 10.3390/insects14090725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Osthole, the dominant bioactive constituent in the Cnidium monnieri, has shown acute pesticidal activities. However, its detailed toxicity, antifeedant, and oviposition preference effects against agricultural pests have not been fully understood, limiting its practical use. This study aimed to investigate the contact toxicity, antifeedant activity, and oviposition preference of osthole against three agricultural pests (Tetranychus urticae, Myzus persicae, and Bactrocera dorsalis). Our results showed that the Cnidium monnieri (L.) Cusson (CMC) has a high osthole content of 11.4 mg/g. Osthole exhibited a higher level of acute toxicity against the T. urticae to four other coumarins found in CMC. It showed significant pesticidal activity against T. urticae and M. persicae first-instar nymphs and adults in a dose-dependent manner but not against B. dorsalis adults. Osthole exposure reduced the fecundity and prolonged the developmental time of the T. urticae and M. persicae. Leaf choice bioassays revealed potent antifeedant activity in the T. urticae and M. persicae. Furthermore, the female B. dorsalis showed a distinct preference for laying eggs in mango juice with 0.02 mg/mL osthole at 48 h, a preference that persisted at 96 h. These results provide valuable insights into the toxicity, repellent activity, and attractant activity of osthole, thereby providing valuable insights into its potential efficacy in pest control.
Collapse
Affiliation(s)
- Fang Dong
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China;
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.M.); (Z.L.)
| | - Xin Chen
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China;
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.M.); (Z.L.)
| | - Zhuo Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.M.); (Z.L.)
| | - Yujun Kong
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China;
| | - Yiyang Yuan
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.M.); (Z.L.)
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.M.); (Z.L.)
| |
Collapse
|
145
|
Gupta I, Singh R, Muthusamy S, Sharma M, Grewal K, Singh HP, Batish DR. Plant Essential Oils as Biopesticides: Applications, Mechanisms, Innovations, and Constraints. PLANTS (BASEL, SWITZERLAND) 2023; 12:2916. [PMID: 37631128 PMCID: PMC10458566 DOI: 10.3390/plants12162916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The advent of the "Green Revolution" was a great success in significantly increasing crop productivity. However, it involved high ecological costs in terms of excessive use of synthetic agrochemicals, raising concerns about agricultural sustainability. Indiscriminate use of synthetic pesticides resulted in environmental degradation, the development of pest resistance, and possible dangers to a variety of nontarget species (including plants, animals, and humans). Thus, a sustainable approach necessitates the exploration of viable ecofriendly alternatives. Plant-based biopesticides are attracting considerable attention in this context due to their target specificity, ecofriendliness, biodegradability, and safety for humans and other life forms. Among all the relevant biopesticides, plant essential oils (PEOs) or their active components are being widely explored against weeds, pests, and microorganisms. This review aims to collate the information related to the expansion and advancement in research and technology on the applications of PEOs as biopesticides. An insight into the mechanism of action of PEO-based bioherbicides, bioinsecticides, and biofungicides is also provided. With the aid of bibliometric analysis, it was found that ~75% of the documents on PEOs having biopesticidal potential were published in the last five years, with an annual growth rate of 20.51% and a citation per document of 20.91. Research on the biopesticidal properties of PEOs is receiving adequate attention from European (Italy and Spain), Asian (China, India, Iran, and Saudi Arabia), and American (Argentina, Brazil, and the United States of America) nations. Despite the increasing biopesticidal applications of PEOs and their widespread acceptance by governments, they face many challenges due to their inherent nature (lipophilicity and high volatility), production costs, and manufacturing constraints. To overcome these limitations, the incorporation of emerging innovations like the nanoencapsulation of PEOs, bioinformatics, and RNA-Seq in biopesticide development has been proposed. With these novel technological interventions, PEO-based biopesticides have the potential to be used for sustainable pest management in the future.
Collapse
Affiliation(s)
- Ipsa Gupta
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Rishikesh Singh
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Suganthi Muthusamy
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai 600117, India;
| | - Mansi Sharma
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Kamaljit Grewal
- Department of Botany, Khalsa College for Women, Civil Lines, Ludhiana 141001, India;
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Daizy R. Batish
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| |
Collapse
|
146
|
Kaur G, Patel A, Dwibedi V, Rath SK. Harnessing the action mechanisms of microbial endophytes for enhancing plant performance and stress tolerance: current understanding and future perspectives. Arch Microbiol 2023; 205:303. [PMID: 37561224 DOI: 10.1007/s00203-023-03643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Microbial endophytes are microorganisms that reside within plant tissues without causing any harm to their hosts. These microorganisms have been found to confer a range of benefits to plants, including increased growth and stress tolerance. In this review, we summarize the recent advances in our understanding of the mechanisms by which microbial endophytes confer abiotic and biotic stress tolerance to their host plants. Specifically, we focus on the roles of endophytes in enhancing nutrient uptake, modulating plant hormones, producing secondary metabolites, and activating plant defence responses. We also discuss the challenges associated with developing microbial endophyte-based products for commercial use, including product refinement, toxicology analysis, and prototype formulation. Despite these challenges, there is growing interest in the potential applications of microbial endophytes in agriculture and environmental remediation. With further research and development, microbial endophyte-based products have the potential to play a significant role in sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Gursharan Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India
| | - Arvind Patel
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India.
- Institute of Soil, Water and Environmental Sciences, Volcani Resaerch Center, Agricultural Research Organization, 7528809, Rishon Lezion, Israel.
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, 248009, Uttarakhand, India.
| |
Collapse
|
147
|
Cruz-Cerino P, Cristóbal-Alejo J, Ruiz-Carrera V, Gamboa-Angulo M. Plant Extracts from the Yucatan Peninsula in the In Vitro Control of Curvularia lunata and Antifungal Effect of Mosannona depressa and Piper neesianum Extracts on Postharvest Fruits of Habanero Pepper. PLANTS (BASEL, SWITZERLAND) 2023; 12:2908. [PMID: 37631120 PMCID: PMC10459550 DOI: 10.3390/plants12162908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Plant extracts are a valuable alternative for the control of phytopathogenic fungi in horticultural crops. In the present work, the in vitro antifungal effect of ethanol and aqueous extracts from different vegetative parts of 40 native plants of the Yucatan Peninsula on Curvularia lunata ITC26, a pathogen of habanero pepper (Capsicum chinense), and effects of the most active extracts on postharvest fruits were investigated. Among these, the ethanol extracts of Mosannona depressa (bark from stems and roots) and Piper neesianum (leaves) inhibited 100% of the mycelial growth of C. lunata. The three extracts were partitioned between acetonitrile and n-hexane. The acetonitrile fraction from M. depressa stem bark showed the lowest mean inhibitory concentration (IC50) of 188 µg/mL against C. lunata. The application of this extract and its active principle α-asarone in the postharvest fruits of C. chinense (500 µg/mL) was shown to inhibit 100% of the severity of the infection caused by C. lunata after 11 days of contact. Both samples caused the distortion and collapse of the conidia of the phytopathogen when observed using electron microscopy at 96 h. The spectrum of M. depressa enriched antifungal action is a potential candidate to be a botanical fungicide in the control of C. lunata in cultivating habanero pepper.
Collapse
Affiliation(s)
- Patricia Cruz-Cerino
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Merida 97205, Mexico;
| | - Jairo Cristóbal-Alejo
- Laboratorio de Fitopatología, Tecnológico Nacional de México, Campus Conkal, Conkal 97345, Mexico
| | - Violeta Ruiz-Carrera
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa 86039, Mexico;
| | - Marcela Gamboa-Angulo
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Merida 97205, Mexico;
| |
Collapse
|
148
|
Wu Y, Chen T, Xia Y, Wang J, Wang A, Wang B, Wang J, Yao W. Developmental toxicity, immunotoxicity and cardiotoxicity induced by methidathion in early life stages of zebrafish. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105526. [PMID: 37532338 DOI: 10.1016/j.pestbp.2023.105526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Methidathion is a highly effective organophosphorus pesticide and is extensively utilized for the control of insects in agricultural production. However, there is little information on the adverse effects and underlying mechanisms of methidathion on aquatic organisms. In this work, embryonic zebrafish were exposed to methidathion at concentrations of 4, 10, and 25 mg/L for 96 h, and morphological changes and activities of antioxidant indicators alterations were detected. In addition, the locomotor behavioral abilities of zebrafish exposed to methidathion were also measured. To further explore the mechanism of the toxic effects of methidathion, gene expression levels associated with cardiac development, cell apoptosis, and the immune system were tested through qPCR assays. The findings revealed that methidathion exposure could induce a decrease in survival rate, hatchability, length of body, and increase in abnormality of zebrafish, as well as cardiac developmental toxicity. The LC50 value of methidathion in zebrafish embryos was determined to be about 30.72 mg/L at 96 hpf. Additionally, methidathion exposure triggered oxidative stress in zebrafish by increasing SOD activity, ROS, and MDA content. Acridine orange (AO) staining indicated that methidathion exposure led to apoptosis, which was mainly distributed in the pericardial region. Furthermore, significant impairments of locomotor activity in zebrafish larvae were induced by methidathion exposure. Lastly, the expression of pro-inflammatory factors including IFN-γ, IL-6, IL-8, CXCL-clc, TLR4, and MYD88 significantly up-regulated in exposed zebrafish. Taken together, the results in this work illustrated that methidathion caused developmental toxicity, cardiotoxicity, and immunotoxicity in embryogenetic zebrafish.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| | - Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Yumei Xia
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiawen Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| |
Collapse
|
149
|
Hamza A, Farooq MO, Razaq M, Shah FM. Organic farming of maize crop enhances species evenness and diversity of hexapod predators. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:565-573. [PMID: 37434448 DOI: 10.1017/s000748532300024x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Arthropod species diversity enhances ecosystem productivity and sustainability by increasing pollination and biological control services. Although, it is declining rapidly due to conventional agricultural intensification, organic agriculture with reduced reliance on agronomic inputs can regenerate ecosystems' resilience and restore them. Here, we report whether hexapod communities differ on both types of farming systems in small-scale field plot experiments, wherein Maize variety AG-589 was grown organically and conventionally in the 2020 and 2021 seasons. Livestock manure was applied in organic fields, whereas nitrogen and phosphorous were used as synthetic fertilizers in conventional fields. Hexapods were sampled three weeks after sowing once a week from the middle rows of subplots from both organically and conventionally grown maize. Twelve species of herbivores and four species of predators were recorded. Hexapod abundance overall and that of herbivores only was higher in conventionally cultivated maize, while predator abundance was higher in organic maize. Herbivores species diversity and evenness were significantly higher in conventional maize. Predator species diversity and evenness were significantly higher in organic maize fields. We noted predator abundance, diversity, and evenness as strong predictors to lower herbivore populations. These findings suggest that organic farming conserves natural enemies' biodiversity and regulates herbivores with increased provision of suitable habitats and prey resources for natural enemies, leading to enhanced relative abundance in their specialized niches. Thus, organic agriculture can potentially mediate better ecosystem services.
Collapse
Affiliation(s)
- Amir Hamza
- Department of Entomology, Faculty of Agricultural Sciences and Technology (FAS&T), Bahauddin Zakariya University, 66000 Multan, Pakistan
| | - Muhammad Omer Farooq
- Department of Entomology, Faculty of Agricultural Sciences and Technology (FAS&T), Bahauddin Zakariya University, 66000 Multan, Pakistan
| | - Muhammad Razaq
- Department of Entomology, Faculty of Agricultural Sciences and Technology (FAS&T), Bahauddin Zakariya University, 66000 Multan, Pakistan
| | - Farhan Mahmood Shah
- Department of Entomology, Faculty of Agricultural Sciences and Technology (FAS&T), Bahauddin Zakariya University, 66000 Multan, Pakistan
| |
Collapse
|
150
|
Gallardo-Valle ED, Carbajal-Nogueda D, Moreno-Godínez ME, Flores-Alfaro E, Parra-Rojas I, Huerta-Beristain G, Domínguez-Reyes T, Ramírez-Vargas MA. Evaluation of the cytotoxicity and genotoxicity of glufosinate-ammonium at technical and commercial grades in HepG2 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:577-582. [PMID: 37516932 DOI: 10.1080/03601234.2023.2241322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Exposure to genotoxic agents is associated with the development of cancer and related diseases. For this reason, assessing the genotoxicity of chemical compounds is necessary. In this line, information about the genotoxic effect of glufosinate-ammonium (GLA) has been reported only for the technical grade. However, humans are frequently exposed to commercial formulations of pesticides. Commercial formulations are characterized by using inner agents that increase toxicity compared to pesticides in technical grade. This study aimed to determine the cytotoxic and genotoxic effects of GLA on HepG2 cells. MTT and comet assays were performed to evaluate cell viability and DNA damage, respectively. HepG2 cells were exposed for 24 h to different concentrations of GLA (at 0.01 µg/mL; 0.04 µg/mL; 0.1 µg/mL; 0.24 µg/mL; 0.52 µg/mL; 1.25 µg/mL; 2.62 µg/mL and 13.12 µg/mL) in commercial- (Finale Ultra®) or technical-grade (GLAT). The results indicated that only Finale Ultra® induced a reduction in cell viability at 13.12 µg/mL. Furthermore, exposure to Finale Ultra® or GLAT was associated with increased DNA damage at concentrations from 0.52-13.12- µg/mL. This study shows the genotoxic effect of GLA on HepG2 cells.
Collapse
Affiliation(s)
- Ezeidy Denisse Gallardo-Valle
- Laboratorio de Toxicología y Salud Ambiental, Facultad De Ciencias Químico-Biológicas, Universidad Autónoma De Guerrero, Guerrero, México
| | - Dayanne Carbajal-Nogueda
- Laboratorio de Toxicología y Salud Ambiental, Facultad De Ciencias Químico-Biológicas, Universidad Autónoma De Guerrero, Guerrero, México
| | - Ma Elena Moreno-Godínez
- Laboratorio de Toxicología y Salud Ambiental, Facultad De Ciencias Químico-Biológicas, Universidad Autónoma De Guerrero, Guerrero, México
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiologia Clínica y Molecular, Facultad De Ciencias Químico-Biológicas, Universidad Autónoma De Guerrero, Guerrero, México
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad De Ciencias Químico-Biológicas, Universidad Autónoma De Guerrero, Guerrero, México
| | - Gerardo Huerta-Beristain
- Laboratorio de Toxicología y Salud Ambiental, Facultad De Ciencias Químico-Biológicas, Universidad Autónoma De Guerrero, Guerrero, México
| | - Teresa Domínguez-Reyes
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad De Ciencias Químico-Biológicas, Universidad Autónoma De Guerrero, Guerrero, México
| | - Marco Antonio Ramírez-Vargas
- Laboratorio de Toxicología y Salud Ambiental, Facultad De Ciencias Químico-Biológicas, Universidad Autónoma De Guerrero, Guerrero, México
| |
Collapse
|