101
|
Lv H, Qi Z, Wang S, Feng H, Deng X, Ci X. Asiatic Acid Exhibits Anti-inflammatory and Antioxidant Activities against Lipopolysaccharide and d-Galactosamine-Induced Fulminant Hepatic Failure. Front Immunol 2017; 8:785. [PMID: 28736552 PMCID: PMC5500632 DOI: 10.3389/fimmu.2017.00785] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 01/17/2023] Open
Abstract
Inflammation and oxidative stress are essential for the pathogenesis of fulminant hepatic failure (FHF). Asiatic acid (AA), which is a pentacyclic triterpene that widely occurs in various vegetables and fruits, has been reported to possess antioxidant and anti-inflammatory properties. In this study, we investigated the protective effects of AA against lipopolysaccharide (LPS) and d-galactosamine (GalN)-induced FHF and the underlying molecular mechanisms. Our findings suggested that AA treatment effectively protected against LPS/d-GalN-induced FHF by lessening the lethality; decreasing the alanine transaminase and aspartate aminotransferase levels, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α production, malondialdehyde formation, myeloperoxidase level and reactive oxygen species generation (i.e., H2O2, NO, and O2−), and increasing the glutathione and superoxide dismutase contents. Moreover, AA treatment significantly inhibited mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathway activation via the partial induction of programmed cell death 4 (PDCD4) protein expressions, which are involved in inflammatory responses. Furthermore, AA treatment dramatically induced the expression of the glutamate-cysteine ligase modifier subunit, the glutamate-cysteine ligase catalytic subunit, heme oxygenase-1, and NAD (P) H: quinoneoxidoreductase 1 (NQO1), which are largely dependent on activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) through the induction of AMP-activated protein kinase (AMPK) and glycogen synthase kinase-3β (GSK3β) phosphorylation. Accordingly, AA exhibited protective roles against LPS/d-GalN-induced FHF by inhibiting oxidative stress and inflammation. The underlying mechanism may be associated with the inhibition of MAPK and NF-κB activation via the partial induction of PDCD4 and upregulation of Nrf2 in an AMPK/GSK3β pathway activation-dependent manner.
Collapse
Affiliation(s)
- Hongming Lv
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhimin Qi
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sisi Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haihua Feng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinxin Ci
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
102
|
Szabo G, Petrasek J. Gut-liver axis and sterile signals in the development of alcoholic liver disease. Alcohol Alcohol 2017; 52:414-424. [PMID: 28482064 PMCID: PMC5860369 DOI: 10.1093/alcalc/agx025] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Innate immunity plays a critical role in the development of alcohol-induced liver inflammation. Understanding the inter-relationship of signals from within and outside of the liver that trigger liver inflammation is pivotal for development of novel therapeutic targets of alcoholic liver disease (ALD). AIM The aim of this paper is to review recent advances in the field of alcohol-induced liver inflammation. METHODS A detailed literature review was performed using the PubMed database published between January 1980 and December 2016. RESULTS We provide an update on the role of intestinal microbiome, metabolome and the gut-liver axis in ALD, discuss the growing body of evidence on the diversity of liver macrophages and their differential contribution to alcohol-induced liver inflammation, and highlight the crucial role of inflammasomes in integration of inflammatory signals in ALD. Studies to date have identified a multitude of new therapeutic targets, some of which are currently being tested in patients with severe alcoholic hepatitis. These treatments aim to strengthen the intestinal barrier, ameliorate liver inflammation and augment hepatocyte regeneration. CONCLUSION Given the complexity of inflammation in ALD, multiple pathobiological mechanisms may need to be targeted at the same time as it seems unlikely that there is a single dominant pathogenic pathway in ALD that would be easily targeted using a single target drug approach. SHORT SUMMARY Here, we focus on recent advances in immunopathogenesis of alcoholic liver disease (ALD), including gut-liver axis, hepatic macrophage activation, sterile inflammation and synergy between bacterial and sterile signals. We propose a multiple parallel hit model of inflammation in ALD and discuss its implications for clinical trials in alcoholic hepatitis.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605,USA
| | - Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605,USA
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
103
|
Aggressive non-alcoholic steatohepatitis following rapid weight loss and/or malnutrition. Mod Pathol 2017; 30:834-842. [PMID: 28256569 PMCID: PMC5935795 DOI: 10.1038/modpathol.2017.13] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
While non-alcoholic steatohepatitis is a slowly progressive disease, patients may rarely present in acute liver failure. We describe six patients who developed severe hepatic dysfunction following rapid weight loss or malnutrition. Rapid weight loss (18 to 91 kg) occurred after Roux-en-Y gastric bypass in four patients and starvation-like dieting or hypoalbuminemia was noted in two patients. Four patients either died or received an urgent liver transplant. Pathologic findings were characterized by advanced alcoholic steatohepatitis-like features, including extensive/circumferential centrizonal pericellular fibrosis, central scar with perivenular sclerosis/veno-occlusion with superimposed hepatocellular dropout, abundant/prominent hepatocellular balloons, and numerous Mallory-Denk bodies, but there was no history of excess alcohol consumption. This study characterizes clinicopathologic features of aggressive non-alcoholic steatohepatitis following rapid weight loss or malnutrition, which should be included in the differential diagnosis with alcohol when a patient is considered for liver transplantation. The mechanism of liver injury in aggressive steatohepatitis is unknown, but rapid fat mobilization in obese patients may potentially cause oxidative stress to the liver and further study is needed to determine if there is a genetic predisposition to this form of injury and if antioxidants may protect the liver during rapid weight loss/malnutrition.
Collapse
|
104
|
Stine JG, Northup PG. Coagulopathy Before and After Liver Transplantation: From the Hepatic to the Systemic Circulatory Systems. Clin Liver Dis 2017; 21:253-274. [PMID: 28364812 DOI: 10.1016/j.cld.2016.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hemostatic environment in patients with cirrhosis is a delicate balance between prohemostatic and antihemostatic factors. There is a lack of effective laboratory measures of the hemostatic system in patients with cirrhosis. Many are predisposed to pulmonary embolus, deep vein thrombosis, and portal vein thrombosis in the pretransplantation setting. This pretransplantation hypercoagulable milieu seems to extend for at least several months post-transplantation. Patients with nonalcoholic fatty liver disease, inherited thrombophilia, portal hypertension in the absence of cirrhosis, and hepatocellular carcinoma often require individualized approach to anticoagulation. Early reports suggest a potential role for low-molecular-weight heparins and direct-acting anticoagulants.
Collapse
Affiliation(s)
- Jonathan G Stine
- Center for the Study of Coagulation Disorders in Liver Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, 1215 JPA and Lee Street, Charlottesville, VA 22908, USA
| | - Patrick G Northup
- Center for the Study of Coagulation Disorders in Liver Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, 1215 JPA and Lee Street, Charlottesville, VA 22908, USA.
| |
Collapse
|
105
|
Yao L, Chen W, Song K, Han C, Gandhi CR, Lim K, Wu T. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) prevents lipopolysaccharide (LPS)-induced acute liver injury. PLoS One 2017; 12:e0176106. [PMID: 28423012 PMCID: PMC5397067 DOI: 10.1371/journal.pone.0176106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
The NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S)-hydroxyl group of prostaglandin E2 (PGE2), converting the pro-inflammatory PGE2 to the anti-inflammatory 15-keto-PGE2 (an endogenous ligand for peroxisome proliferator-activated receptor-gamma [PPAR-γ]). To evaluate the significance of 15-PGDH/15-keto-PGE2 cascade in liver inflammation and tissue injury, we generated transgenic mice with targeted expression of 15-PGDH in the liver (15-PGDH Tg) and the animals were subjected to lipopolysaccharide (LPS)/Galactosamine (GalN)-induced acute liver inflammation and injury. Compared to the wild type mice, the 15-PGDH Tg mice showed lower levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), less liver tissue damage, less hepatic apoptosis/necrosis, less macrophage activation, and lower inflammatory cytokine production. In cultured Kupffer cells, treatment with 15-keto-PGE2 or the conditioned medium (CM) from 15-PGDH Tg hepatocyes inhibited LPS-induced cytokine production, in vitro. Both 15-keto-PGE2 and the CM from15-PGDH Tg hepatocyes also up-regulated the expression of PPAR-γ downstream genes in Kupffer cells. In cultured hepatocytes, 15-keto-PGE2 treatment or 15-PGDH overexpression did not influence TNF-α-induced hepatocyte apoptosis. These findings suggest that 15-PGDH protects against LPS/GalN-induced liver injury and the effect is mediated via 15-keto-PGE2, which activates PPAR-γ in Kupffer cells and thus inhibits their ability to produce inflammatory cytokines. Accordingly, we observed that the PPAR-γ antagonist, GW9662, reversed the effect of 15-keto-PGE2 in Kupffer cell in vitro and restored the susceptibility of 15-PGDH Tg mice to LPS/GalN-induced acute liver injury in vivo. Collectively, our findings suggest that 15-PGDH-derived 15-keto-PGE2 from hepatocytes is able to activate PPAR-γ and inhibit inflammatory cytokine production in Kupffer cells and that this paracrine mechanism negatively regulates LPS-induced necro-inflammatory response in the liver. Therefore, induction of 15-PGDH expression or utilization of 15-keto-PGE2 analogue may have therapeutic benefits for the treatment of endotoxin-associated liver inflammation/injury.
Collapse
Affiliation(s)
- Lu Yao
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Chandrashekhar R. Gandhi
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, United States of America
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Cancer Research Institute and Infection Signaling Network Research Center, Chungnam National University, Daejeon, Korea
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
106
|
Kirpich IA, McClain CJ, Vatsalya V, Schwandt M, Phillips M, Falkner KC, Zhang L, Harwell C, George DT, Umhau JC. Liver Injury and Endotoxemia in Male and Female Alcohol-Dependent Individuals Admitted to an Alcohol Treatment Program. Alcohol Clin Exp Res 2017; 41:747-757. [PMID: 28166367 DOI: 10.1111/acer.13346] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Interactions between the liver, the gut, and the immune system are critical components of alcoholic liver disease (ALD). The aim of this study was to explore the associations between alcohol-induced liver injury, endotoxemia, and inflammation at admission and over time during abstinence, as well as to examine the sex-related differences in these parameters in alcohol-dependent individuals admitted to an alcohol treatment program. METHODS A cohort of 48 otherwise healthy participants with alcohol use disorder, but no clinical signs of alcoholic liver injury (34 males [M]/14 females [F]) admitted to an alcohol detoxification program, was stratified into 2 groups based on baseline plasma alanine aminotransferase (ALT) levels (as a marker of liver injury). Group 1 (ALT < 40 U/l, 7M/8F) and Group 2 (ALT ≥ 40 U/l, 27M/6F) were identified. Plasma biomarkers of liver damage, endotoxemia, and inflammation were examined at baseline, day 8, and day 15 of the admission. The drinking history was also evaluated. RESULTS Sixty-nine percent of patients had elevated ALT and other markers of liver damage, including aspartate aminotransferase and cytokeratin 18 (CK18 M65 and CK M30) at baseline, indicating the presence of mild ALD. Elevated CK18 M65:M30 ratio suggested a greater contribution of necrotic rather than apoptotic hepatocyte cell death in the liver injury observed in these individuals. Females showed greater elevations of liver injury markers compared to males, although they had fewer drinks per day and shorter lifetime duration of heavy drinking. Liver injury was associated with systemic inflammation, specifically, elevated plasma tumor necrosis factor-alpha levels. Compared to patients without liver injury, patients with mild ALD had greater endotoxemia (increased serum lipopolysaccharide levels), which decreased with abstinence and this decrease preceded the drop in CK18 M65 levels. CONCLUSIONS The study documented the association of mild alcohol-induced liver injury and endotoxemia, which improved with 2 weeks of abstinence, in a subset of individuals admitted to an alcohol detoxification program.
Collapse
Affiliation(s)
- Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky.,Robley Rex Veterans Medical Center, Louisville, Kentucky.,University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky.,University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, Kentucky
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky.,Robley Rex Veterans Medical Center, Louisville, Kentucky.,University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky.,University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, Kentucky
| | - Vatsalya Vatsalya
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky.,University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, Kentucky.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Melanie Schwandt
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Monte Phillips
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Keith Cameron Falkner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky.,University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, Kentucky
| | - Lucy Zhang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Catey Harwell
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - David T George
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.,George Washington University Hospital, Washington, District of Columbia
| | - John C Umhau
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.,Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
107
|
Cai Y, Lu D, Zou Y, Zhou C, Liu H, Tu C, Li F, Liu L, Zhang S. Curcumin Protects Against Intestinal Origin Endotoxemia in Rat Liver Cirrhosis by Targeting PCSK9. J Food Sci 2017; 82:772-780. [PMID: 28196290 DOI: 10.1111/1750-3841.13647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Intestinal origin endotoxemia always occurs in severe liver injury. The aim of the current study was to test antiendotoxemia effect of curcumin on tetrachloride (CCl4 )-induced liver cirrhosis rats, and to elucidate the underlying molecular mechanism. Rat cirrhosis models were constructed with CCl4 subcutaneous injections with curcumin (200 mg/kg/d) administered via gavages for 12 wk until the rats were sacrificed. We found that the administration of curcumin improved the physiological condition pertaining to activity index and temperature, and ameliorated the liver injury in CCl4 -induced cirrhosis rats. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (qRT-PCR) showed that curcumin could reduce c-reaction protein levels and inflammatory cytokine (TNF-α, IL-1β, IL-6, and CINC-1/IL-8) concentrations in peripheral serum and liver tissue. Furthermore, curcumin treatment decreased lipopolysaccharide (LPS) levels in peripheral vein, but not in portal vein. As low-density lipoprotein receptor (LDLR) is the important receptor on the surface of hepatocyte during LPS detoxification process, we used qRT-PCR, western blot, and immunohistochemistry (IHC), finding that curcumin significantly increased LDLR protein levels, but not gene levels in the liver tissues. We also tested proprotein convertase subtilisin/kexin type 9 (PCSK9), one negative regulator of LDLR, by qRT-PCR, western blot, and IHC. The results showed that PCSK9 significantly decreased both gene and protein levels in the rat liver tissues of curcumin treatment. Thus, we concluded that curcumin could function to protect against intestinal origin endotoxemia by inhibiting PCSK9 to promote LDLR expression, thereby enhancing LPS detoxification as one pathogen lipid through LDLR in the liver.
Collapse
Affiliation(s)
- Yu Cai
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Di Lu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Yanting Zou
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Chaohui Zhou
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Hongchun Liu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Chuantao Tu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Feng Li
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Lili Liu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Shuncai Zhang
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| |
Collapse
|
108
|
Raparelli V, Basili S, Carnevale R, Napoleone L, Del Ben M, Nocella C, Bartimoccia S, Lucidi C, Talerico G, Riggio O, Violi F. Low-grade endotoxemia and platelet activation in cirrhosis. Hepatology 2017; 65:571-581. [PMID: 27641757 DOI: 10.1002/hep.28853] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/28/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Patients with cirrhosis may display impaired or enhanced platelet activation, but the reasons for these equivocal findings are unclear. We investigated if bacterial lipopolysaccharide (LPS) is implicated in platelet activation. In a cross-sectional study, conducted in an ambulatory care clinic and hospital, comparing 69 cirrhosis patients and 30 controls matched for sex, age, and atherosclerotic risk factors, serum levels of LPS, soluble cluster of differentiation 40 ligand and p-selectin (two markers of platelet activation), and zonulin (a marker of gut permeability) were investigated. Ex vivo and in vitro studies were also performed to explore the effect of LPS on platelet activation. Compared to controls, cirrhosis patients displayed higher serum levels of LPS (6.0 [4.0-17.5] versus 57.4 [43.4-87.2] pg/mL, P < 0.0001), soluble cluster of differentiation 40 ligand (7.0 ± 2.2 versus 24.4 ± 13.3 ng/mL, P < 0.0001), soluble p-selectin (14.2 ± 4.05 versus 33.2 ± 15.2 ng/mL, P < 0.0001), and zonulin (1.87 ± 0.84 versus 2.54 ± 0.94 ng/mL, P < 0.006). LPS significantly correlated with zonulin (r = 0.45, P < 0.001). Ex vivo studies showed that platelets from cirrhosis patients were more responsive to the agonists independently from platelet count; this phenomenon was blunted by incubation with an inhibitor of Toll-like receptor 4. In vitro study by normal platelets showed that LPS alone (50-150 pg/mL) did not stimulate platelets but amplified platelet response to the agonists; Toll-like receptor 4 inhibitor blunted this effect. CONCLUSION LPS may be responsible for platelet activation and potentially contributes to thrombotic complications occurring in cirrhosis. (Hepatology 2017;65:571-581).
Collapse
Affiliation(s)
- Valeria Raparelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Basili
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Laura Napoleone
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Maria Del Ben
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Cristina Nocella
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Simona Bartimoccia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Cristina Lucidi
- Department of Clinical Medicine, Center for the Diagnosis and Treatment of Portal Hypertension, Sapienza University of Rome, Rome, Italy
| | - Giovanni Talerico
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Oliviero Riggio
- Department of Clinical Medicine, Center for the Diagnosis and Treatment of Portal Hypertension, Sapienza University of Rome, Rome, Italy
| | - Francesco Violi
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
109
|
Affiliation(s)
- Francesco Violi
- Department of Internal Medicine and Medical Specialties; Sapienza University, Rome, Italy
| | - Gregory Y H Lip
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Roberto Cangemi
- Department of Internal Medicine and Medical Specialties; Sapienza University, Rome, Italy
| |
Collapse
|
110
|
Patel VC, White H, Støy S, Bajaj JS, Shawcross DL. Clinical science workshop: targeting the gut-liver-brain axis. Metab Brain Dis 2016; 31:1327-1337. [PMID: 26446022 DOI: 10.1007/s11011-015-9743-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/02/2015] [Indexed: 02/08/2023]
Abstract
A clinical science workshop was held at the ISHEN meeting in London on Friday 11th September 2014 with the aim of thrashing out how we might translate what we know about the central role of the gut-liver-brain axis into targets which we can use in the treatment of hepatic encephalopathy (HE). This review summarises the integral role that inter-organ ammonia metabolism plays in the pathogenesis of HE with specific discussion of the roles that the small and large intestine, liver, brain, kidney and muscle assume in ammonia and glutamine metabolism. Most recently, the salivary and gut microbiome have been shown to underpin the pathophysiological changes which culminate in HE and patients with advanced cirrhosis present with enteric dysbiosis with small bowel bacterial overgrowth and translocation of bacteria and their products across a leaky gut epithelial barrier. Resident macrophages within the liver are able to sense bacterial degradation products initiating a pro-inflammatory response within the hepatic parenchyma and release of cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-8 into the systemic circulation. The endotoxemia and systemic inflammatory response that are generated predispose both to the development of infection as well as the manifestation of covert and overt HE. Co-morbidities such as diabetes and insulin resistance, which commonly accompany cirrhosis, may promote slow gut transit, promote bacterial overgrowth and increase glutaminase activity and may need to be acknowledged in HE risk stratification assessments and therapeutic regimens. Therapies are discussed which target ammonia production, utilisation or excretion at an individual organ level, or which reduce systemic inflammation and endotoxemia which are known to exacerbate the cerebral effects of ammonia in HE. The ideal therapeutic strategy would be to use an agent that can reduce hyperammonemia and reduce systemic inflammation or perhaps to adopt a combination of therapies that can address both.
Collapse
Affiliation(s)
- Vishal C Patel
- Institute of Liver Studies, King's College London School of Medicine, King's College Hospital, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Helen White
- Institute of Liver Studies, King's College London School of Medicine, King's College Hospital, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Sidsel Støy
- Institute of Liver Studies, King's College London School of Medicine, King's College Hospital, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Jasmohan S Bajaj
- McGuire VA Medical Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Debbie L Shawcross
- Institute of Liver Studies, King's College London School of Medicine, King's College Hospital, King's College Hospital, Denmark Hill, London, SE5 9RS, UK.
| |
Collapse
|
111
|
Wosiewicz P, Żorniak M, Hartleb M, Barański K, Hartleb M, Onyszczuk M, Pilch-Kowalczyk J, Kyrcz-Krzemień S. Portal vein thrombosis in cirrhosis is not associated with intestinal barrier disruption or increased platelet aggregability. Clin Res Hepatol Gastroenterol 2016; 40:722-729. [PMID: 27160816 DOI: 10.1016/j.clinre.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/28/2016] [Accepted: 03/21/2016] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Portal vein thrombosis (PVT) is a common complication of cirrhosis, but its pathogenesis is unclear. We tested the hypotheses that PVT is the result of platelet hyperactivity or intestinal barrier disruption. METHODS This study included 49 patients with cirrhosis (15 females) of mixed etiology. Based on spiral computed-tomography, the patients were divided into two groups: with PVT (n=16) and without PVT (n=33). Serum biomarkers of intestinal barrier integrity were endotoxins and zonulin, and platelet activity was assessed with multiple electrode aggregometry. RESULTS The levels of endotoxin (43.5±18.3ng/ml vs. 36.9±7.5ng/ml; P=0.19) and zonulin (56.3±31.1ng/ml vs. 69.3±63.1ng/ml; P=0.69) were not different between the patients with and without PVT. Moreover, endotoxin and zonulin did not correlate with the coagulation and platelet parameters. The platelet aggregability measured with the TRAP and the ADP tests was decreased in PVT patients. In the logistic regression analysis the PVT incidence was related to the levels of D-dimer and bilirubin as well as the TRAP test results. Patients with PVT presented with significantly higher levels of D-dimer (4.45±2.59 vs. 3.03±2.97mg/l; P<0.05) and prothrombin levels (175±98.8μg/ml vs. 115±72.9μg/ml; P<0.05) than patients without thrombosis. PVT could be excluded with a 90% negative predictive value when the D-dimer level was below 1.82mg/l. CONCLUSIONS Endotoxemia and platelet activity are not determinants of PVT in patients with cirrhosis. The D-dimer measurement has diagnostic significance for PVT in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Piotr Wosiewicz
- Department of Gastroenterology and Hepatology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Michał Żorniak
- Department of Gastroenterology and Hepatology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Marek Hartleb
- Department of Gastroenterology and Hepatology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland.
| | - Kamil Barański
- Department of Epidemiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Maciej Hartleb
- Department of Gastroenterology and Hepatology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Magdalena Onyszczuk
- Department of Gastroenterology and Hepatology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Joanna Pilch-Kowalczyk
- Department of Radiology and Nuclear Medicine, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Sławomira Kyrcz-Krzemień
- Department of Hematology and Bone Marrow Transplantation, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
112
|
Violi F, Corazza GR, Caldwell SH, Perticone F, Gatta A, Angelico M, Farcomeni A, Masotti M, Napoleone L, Vestri A, Raparelli V, Basili S. Portal vein thrombosis relevance on liver cirrhosis: Italian Venous Thrombotic Events Registry. Intern Emerg Med 2016; 11:1059-1066. [PMID: 27026379 DOI: 10.1007/s11739-016-1416-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/17/2016] [Indexed: 02/07/2023]
Abstract
Portal vein thrombosis may occur in cirrhosis; nevertheless, its prevalence, and predictors are still elusive. To investigate this issue, the Italian Society of Internal Medicine undertook the "Portal vein thrombosis Relevance On Liver cirrhosis: Italian Venous thrombotic Events Registry" (PRO-LIVER). This prospective multicenter study includes consecutive cirrhotic patients undergoing Doppler ultrasound examination of the portal area to evaluate the prevalence and incidence of portal vein thrombosis over a 2-year scheduled follow-up. Seven hundred and fifty-three (68 % men; 64 ± 12 years) patients were included in the present analysis. Fifty percent of the cases were cirrhotic outpatients. Viral (44 %) etiology was predominant. Around half of the patients had a mild-severity disease according to the Child-Pugh score; hepatocellular carcinoma was present in 20 %. The prevalence of ultrasound-detected portal vein thrombosis was 17 % (n = 126); it was asymptomatic in 43 % of the cases. Notably, more than half of the portal vein thrombosis patients (n = 81) were not treated with anticoagulant therapy. Logistic step-forward multivariate analysis demonstrated that previous portal vein thrombosis (p < 0.001), Child-Pugh Class B + C (p < 0.001), hepatocellular carcinoma (p = 0.01), previous upper gastrointestinal bleeding (p = 0.030) and older age (p = 0.012) were independently associated with portal vein thrombosis. Portal vein thrombosis is a frequent complication of cirrhosis, particularly in patients with moderate-severe liver failure. The apparent undertreatment of patients with portal vein thrombosis is a matter of concern and debate, which should be addressed by planning interventional trials especially with newer oral anticoagulants. Clinicaltrials.gov identifier NCT01470547.
Collapse
Affiliation(s)
- Francesco Violi
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza-University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Gino Roberto Corazza
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Stephen Hugh Caldwell
- Division of Gastroenterology and Hepatology, Digestive Health Center, University of Virginia, Charlottesville, VA, USA
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Angelo Gatta
- Department of Medicine, University of Padova, Padua, Italy
| | - Mario Angelico
- Liver Unit, University Hospital Tor Vergata, Rome, Italy
| | - Alessio Farcomeni
- Department of Public Health and Infectious Disease, Sapienza-University of Rome, Rome, Italy
| | - Michela Masotti
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Laura Napoleone
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza-University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Annarita Vestri
- Department of Public Health and Infectious Disease, Sapienza-University of Rome, Rome, Italy
| | - Valeria Raparelli
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza-University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Stefania Basili
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza-University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
113
|
Wright G, Swain M, Annane D, Saliba F, Samuel D, Arroyo V, DeMorrow S, Witt A. Neuroinflammation in liver disease: sessional talks from ISHEN. Metab Brain Dis 2016; 31:1339-1354. [PMID: 27726053 DOI: 10.1007/s11011-016-9918-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
At the recent ISHEN ('International Symposium of Hepatic Encephalopathy & Nitrogen Metabolism') conference in London, a whole session was dedicated to our increasing awareness of the importance of inflammation in the brain - termed 'neuroinflammation', in the development of Hepatic Encephalopathy (HE) - the neurological manifestations of advanced liver disease. In this review our ISHEN speakers further discuss the content of their sessional presentations and more broadly we discuss our understanding of the role of neuroinflammation in HE pathogenesis.
Collapse
Affiliation(s)
- Gavin Wright
- Gastroenterology Department, Basildon & Thurrock University Hospitals, Basildon, UK.
- Hepatology and Hepatobiliary Medicine, The Royal Free Hospital, Pond Street, London, NW3 2QG, UK.
- University College London, Gower Street, London, WC1E 6BT, UK.
| | - Mark Swain
- Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Canada
| | - Djillali Annane
- INSERM CIC IT 805, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, 92380, Garches, France
| | - Faouzi Saliba
- Centre Hépato-Biliaire, Hôpital Paul Brousse, 12, avenue Paul vaillant Couturier, 94800, Villejuif, France
| | - Didier Samuel
- GHU Paris-Sud - Hôpital Paul Brousse, 12 avenue Paul Vaillant-Couturier, 94804, Villejuif Cedex, France
| | - Vicente Arroyo
- Liver Unit, Instiute of Digestive and Metabolic Diseases, Hopsital Clinic, University of Barcelona, Barcelona, Spain
| | - Sharon DeMorrow
- Department of Internal Medicine, Central Texas Veterans Healthcare System, VA Bld 205, 1901 South 1st Street, Temple, TX, 76504, USA
| | - Anne Witt
- Departement of Hepatology, Rigshospitalet, Blegdamsvej 9, 2100 København Ø, Copenhagen, Denmark
| |
Collapse
|
114
|
Upregulation of SIRT1-AMPK by thymoquinone in hepatic stellate cells ameliorates liver injury. Toxicol Lett 2016; 262:80-91. [DOI: 10.1016/j.toxlet.2016.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 12/19/2022]
|
115
|
Diagnosis and Management of Cirrhosis-Related Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1423462. [PMID: 27840821 PMCID: PMC5093239 DOI: 10.1155/2016/1423462] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022]
Abstract
Management of cirrhosis complications has greatly improved, increasing survival and quality of life of the patients. Despite that, some of these complications are still overlooked and scarcely treated, particularly those that are not related to the liver. This is the case of osteoporosis, the only cirrhosis complication that is not solved after liver transplantation, because bone loss often increases after immunosuppressant therapy. In this review, the definitions of bone conditions in cirrhotic patients are analyzed, focusing on the more common ones and on those that have the largest impact on this population. Risk factors, physiopathology, diagnosis, screening strategies, and treatment of osteoporosis in cirrhotic patients are discussed, presenting the more striking data on this issue. Therapies used for particular conditions, such as primary biliary cirrhosis and liver transplantation, are also presented.
Collapse
|
116
|
Mode of renal replacement therapy determines endotoxemia and neutrophil dysfunction in chronic kidney disease. Sci Rep 2016; 6:34534. [PMID: 27698480 PMCID: PMC5048306 DOI: 10.1038/srep34534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial infection and sepsis are common complications of chronic kidney disease (CKD). A vicious cycle of increased gut permeability, endotoxemia, inadequate activation of the innate immune system and resulting innate immune dysfunction is hypothesized. We assessed endotoxemia, neutrophil function and its relation to oxidative stress, inflammation and gut permeability in patients with CKD grade 3–5 without renal replacement therapy (CKD group, n = 57), patients with CKD stage 5 undergoing haemodialysis (HD, n = 32) or peritoneal dialysis (PD, n = 28) and patients after kidney transplantation (KT, n = 67) in a cross-sectional observational study. In HD patients, endotoxin serum levels were elevated and neutrophil phagocytic capacity was decreased compared to all other groups. Patients on HD had a significantly higher mortality, due to infections during follow up, compared to PD (p = 0.022). Oxidative stress, neutrophil energy charge, systemic inflammation and gut permeability could not completely explain these differences. Our findings suggest that dialysis modality and not renal function per se determine the development of neutrophil dysfunction and endotoxemia in CKD-patients. HD patients are particularly prone to neutrophil dysfunction and endotoxemia whereas neutrophil function seems to improve after KT. Multi-target approaches are therefore warranted to improve neutrophil function and potentially reduce the rate of infections with patients undergoing haemodialysis.
Collapse
|
117
|
|
118
|
Liu MW, Liu R, Wu HY, Zhang W, Xia J, Dong MN, Yu W, Wang Q, Xie FM, Wang R, Huang YQ, Qian CY. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression. Int J Mol Med 2016; 38:1419-1432. [PMID: 27666960 PMCID: PMC5065294 DOI: 10.3892/ijmm.2016.2749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/08/2016] [Indexed: 01/26/2023] Open
Abstract
Xuebijing injection (XBJ) has long been used to treat infectious diseases in China. The therapeutic effect of XBJ is probably associated with anti-inflammatory effects. However, the precise mechanisms responsible for the effects of XBJ remain unknown. The present study was conducted in order to evaluate the protective effects of XBJ in a rat model of D-galactosamine (D-Gal)- and lipopolysaccharide (LPS)-induced acute liver injury. In the present study, the rats were injected with D-Gal and LPS intraperitoneally to induce acute liver injury. Two hours prior to D-Gal and LPS administration, the treatment group was administered XBJ by intravenous infusion. The effects of XBJ on D-Gal- and LPS-induced expression of tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2), nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and heme oxygenase-1 (HO-1) as well as mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, as well as by analysing the serum levels of pro-inflammatory cytokines and the transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the rat liver tissues were also measured. For histological analysis, hematoxylin and eosin (H&E)-stained liver samples were evaluated. The results showed that XBJ upregulated TIPE2 and HO-1 expression, reduced the expression of NF-κB65 and MMP-9, inhibited the LPS-induced gene expression of c-jun N-terminal kinase (JNK) and p38 MAPK, decreased the generation of pro-inflammatory cytokines [interleukin (IL)-6, IL-13 and TNF-α], inhibited ALT and AST activity, and ameliorated D-Gal- and LPS-induced liver injury. The histological results also demonstrated that XBJ attenuated D-Gal- and LPS-induced liver inflammation. It was found that XBJ may prevent LPS-induced pro-inflammatory gene expression through inhibiting the NF-κB and MAPK signaling pathways by upregulating TIPE2 expression, thereby attenuating LPS-induced liver injury in rats. The marked protective effects of XBJ suggest that it has the potential to be used in the treatment of LPS-induced liver injury.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rong Liu
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hai-Yin Wu
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wei Zhang
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jing Xia
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Min-Na Dong
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wen Yu
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Feng-Mei Xie
- Department of Gastroenterology, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rui Wang
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yun-Qiao Huang
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chuan-Yun Qian
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
119
|
Balakrishnan A, DasSarma P, Bhattacharjee O, Kim JM, DasSarma S, Chakravortty D. Halobacterial nano vesicles displaying murine bactericidal permeability-increasing protein rescue mice from lethal endotoxic shock. Sci Rep 2016; 6:33679. [PMID: 27646594 PMCID: PMC5028748 DOI: 10.1038/srep33679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/31/2016] [Indexed: 12/29/2022] Open
Abstract
Bactericidal/permeability-increasing protein (BPI) had been shown to possess anti-inflammatory and endotoxin neutralizing activity by interacting with LPS of Gram-negative bacteria. The current study examines the feasibility of using murine BPI (mBPI) expressed on halophilic Archaeal gas vesicle nanoparticles (GVNPs) for the treatment of endotoxemia in high-risk patients, using a murine model of D-galactosamine-induced endotoxic shock. Halobacterium sp. NRC-1was used to express the N-terminal 199 amino acid residues of mBPI fused to the GVNP GvpC protein, and bound to the surface of the haloarchaeal GVNPs. Our results indicate that delivery of mBPIN-GVNPs increase the survival rate of mice challenged with lethal concentrations of lipopolysaccharide (LPS) and D-galactosamine. Additionally, the mBPIN-GVNP-treated mice displayed reduced symptoms of inflammation, including inflammatory anemia, recruitment of neutrophils, liver apoptosis as well as increased pro-inflammatory serum cytokine levels.
Collapse
Affiliation(s)
- Arjun Balakrishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priya DasSarma
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | | | - Jong Myoung Kim
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Center for Biosystem Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
120
|
Ding R, Han J, Zhao D, Hu Z, Ma X. Pretreatment with Rho-kinase inhibitor ameliorates lethal endotoxemia-induced liver injury by improving mitochondrial function. Int Immunopharmacol 2016; 40:125-130. [PMID: 27588912 DOI: 10.1016/j.intimp.2016.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/09/2016] [Accepted: 08/26/2016] [Indexed: 12/26/2022]
Abstract
Rho kinase (ROCK) inhibition has been reported to improve various inflammatory diseases including endotoxemia. Mitochondrial dysfunction might be the key to the pathophysiology of sepsis-induced organ failure. Therefore, this study aimed to explore whether ROCK inhibition protects against the liver injury by regulating mitochondrial function in endotoxemia model mice. The mice were randomly divided into four groups (N=6-8 per group): control, LPS, LPS+Y-27632 (LPS+Y), and LPS+Mito-TEMPO (LPS+M). For induction of endotoxin-induced acute liver injury, the mice were intraperitoneally administered lipopolysaccharide (LPS, 20mg/kg). The ROCK inhibitor Y-27632 (or mitochondrial antioxidant Mito-TEMPO) was intraperitoneally administered at 18 and 1h before injection of LPS. The mice were euthanized 8h after LPS administration. The liver and blood samples were taken and preserved for analysis. Results of this study showed that pretreatment with Y-27632 or Mito-TEMPO significantly attenuated the liver injury as compared to the LPS group. This was confirmed by decreased plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and by reduced hepatocellular apoptosis and histologic damage. Pretreatment with Y-27632 or Mito-TEMPO markedly reduced the LPS-induced inflammatory response and oxidative stress the in liver. Furthermore, it showed similar protective effects on the hepatic mitochondrial function, including an increased activity of complexes I and IV and mitochondrial superoxide dismutase (MnSOD), and an upregulated expression of mtDNA-encoded genes. Taken together, these data demonstrate that Mito-TEMPO can potently inhibit the endotoxin-induced mitochondrial and hepatic abnormalities and indicate that mitochondrial dysfunction might play a key role in the endotoxemia-induced acute liver injury. Moreover, our study shows that ROCK inhibition protects against the endotoxemia-induced liver injury by improving the mitochondrial function.
Collapse
Affiliation(s)
- Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| | - Jiali Han
- Department of Otolaryngology, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Dongmei Zhao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Ziwei Hu
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Xiaochun Ma
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| |
Collapse
|
121
|
Lipopolysaccharide and Tumor Necrosis Factor Alpha Inhibit Interferon Signaling in Hepatocytes by Increasing Ubiquitin-Like Protease 18 (USP18) Expression. J Virol 2016; 90:5549-5560. [PMID: 27009955 PMCID: PMC4886784 DOI: 10.1128/jvi.02557-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
Inflammation may be maladaptive to the control of viral infection when it impairs interferon (IFN) responses, enhancing viral replication and spread. Dysregulated immunity as a result of inappropriate innate inflammatory responses is a hallmark of chronic viral infections such as, hepatitis B virus and hepatitis C virus (HCV). Previous studies from our laboratory have shown that expression of an IFN-stimulated gene (ISG), ubiquitin-like protease (USP)18 is upregulated in chronic HCV infection, leading to impaired hepatocyte responses to IFN-α. We examined the ability of inflammatory stimuli, including tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), interleukin-6 (IL-6) and IL-10 to upregulate hepatocyte USP18 expression and blunt the IFN-α response. Human hepatoma cells and primary murine hepatocytes were treated with TNF-α/LPS/IL-6/IL-10 and USP18, phosphorylated (p)-STAT1 and myxovirus (influenza virus) resistance 1 (Mx1) expression was determined. Treatment of Huh7.5 cells and primary murine hepatocytes with LPS and TNF-α, but not IL-6 or IL-10, led to upregulated USP18 expression and induced an IFN-α refractory state, which was reversed by USP18 knockdown. Liver inflammation was induced in vivo using a murine model of hepatic ischemia/reperfusion injury. Hepatic ischemia/reperfusion injury led to an induction of USP18 expression in liver tissue and promotion of lymphocytic choriomeningitis replication. These data demonstrate that certain inflammatory stimuli (TNF-α and LPS) but not others (IL-6 and IL-10) target USP18 expression and thus inhibit IFN signaling. These findings represent a new paradigm for how inflammation alters hepatic innate immune responses, with USP18 representing a potential target for intervention in various inflammatory states. IMPORTANCE Inflammation may prevent the control of viral infection when it impairs the innate immune response, enhancing viral replication and spread. Blunted immunity as a result of inappropriate innate inflammatory responses is a common characteristic of chronic viral infections. Previous studies have shown that expression of certain interferon-stimulated genes is upregulated in chronic HCV infection, leading to impaired hepatocyte responses. In this study, we show that multiple inflammatory stimuli can modulate interferon stimulated gene expression and thus inhibit hepatocyte interferon signaling via USP18 induction. These findings represent a new paradigm for how inflammation alters hepatic innate immune responses, with the induction of USP18 representing a potential target for intervention in various inflammatory states.
Collapse
|
122
|
Xie J, Wu X, Zhou Q, Yang Y, Tian Y, Huang C, Meng X, Li J. PICK1 confers anti-inflammatory effects in acute liver injury via suppressing M1 macrophage polarization. Biochimie 2016; 127:121-32. [PMID: 27157267 DOI: 10.1016/j.biochi.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
Protein interacting with C kinase 1 (PICK1) is a scaffolding protein mainly implicated in neurological diseases, however, the function of PICK1 in acute liver injury (ALI) remains unknown. Our study found a dramatical decrease in mRNA and protein levels of PICK1 in liver tissues and isolated Kupffer cells (KCs) from the liver in mice with ALI. Furthermore, pretreatment the mice with ALI with FSC-231, a pharmacological inhibitor of PICK1, could significantly augment inflammatory response. Furthermore, in vitro studies showed that both lipopolysaccharide (LPS) and interferon gamma (IFN-γ) significantly reduced the expression of PICK1, while IL-4 elevated its expression in RAW 264.7 cells. Additionally, over-expression of PICK1 inhibited the expression of M1 biomarkers by suppressing NF-κB activity, and enhanced the expression of M2 biomarkers by promoting STAT6 activity. In contrast, knockdown of PICK1 or FSC-231 pretreatment promoted M1 polarization and suppressed M2 polarization. Besides, caveolin-1 was identified as a potential target gene controlled by PICK1 in RAW 264.7 cells. Mechanistic investigation revealed a dual role of PICK1 in regulating macrophage polarization and implied PICK1 as a potential therapeutic target in ALI.
Collapse
Affiliation(s)
- Juan Xie
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Xiaoqin Wu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Qun Zhou
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Yuanyao Tian
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
123
|
Harm S, Gabor F, Hartmann J. Low-dose polymyxin: an option for therapy of Gram-negative sepsis. Innate Immun 2016; 22:274-83. [PMID: 26993088 PMCID: PMC4834512 DOI: 10.1177/1753425916639120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Endotoxins are the major components of the outer membrane of most Gram-negative bacteria and are one of the main targets in inflammatory diseases. The presence of endotoxins in blood can provoke septic shock in case of pronounced immune response. Here we show in vitro inactivation of endotoxins by polymyxin B (PMB). The inflammatory activity of the LPS–PMB complex in blood was examined in vitro in freshly drawn blood samples. Plasma protein binding of PMB was determined by ultracentrifugation using membranes with different molecular cut-offs, and PMB clearance during dialysis was calculated after in vitro experiments using the AV1000S filter. The formed LPS–PMB complex has lower inflammatory activity in blood, which results in highly reduced cytokine secretion. According to in vitro measurements, the appropriate plasma level of PMB for LPS inactivation is between 100 and 200 ng/ml. Furthermore, the combination of cytokine removal by adsorbent treatment with LPS inactivation by PMB dosage leads to strong suppression of inflammatory effects in blood in an in vitro model. Inactivation of endotoxins by low-dose intravenous PMB infusion or infusion into the extracorporeal circuit during blood purification can be applied to overcome the urgent need for endotoxin elimination not only in treatment of sepsis, but also in liver failure.
Collapse
Affiliation(s)
- Stephan Harm
- Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Jens Hartmann
- Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
| |
Collapse
|
124
|
Ligustrazine disrupts lipopolysaccharide-activated NLRP3 inflammasome pathway associated with inhibition of Toll-like receptor 4 in hepatocytes. Biomed Pharmacother 2016; 78:204-209. [DOI: 10.1016/j.biopha.2016.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
|
125
|
Romeiro FG, Augusti L. Nutritional assessment in cirrhotic patients with hepatic encephalopathy. World J Hepatol 2015; 7:2940-2954. [PMID: 26730273 PMCID: PMC4691697 DOI: 10.4254/wjh.v7.i30.2940] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/23/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is one of the worst complications of liver disease and can be greatly influenced by nutritional status. Ammonia metabolism, inflammation and muscle wasting are relevant processes in HE pathophysiology. Malnutrition worsens the prognosis in HE, requiring early assessment of nutritional status of these patients. Body composition changes induced by liver disease and limitations superimposed by HE hamper the proper accomplishment of exams in this population, but evidence is growing that assessment of muscle mass and muscle function is mandatory due to the role of skeletal muscles in ammonia metabolism. In this review, we present the pathophysiological aspects involved in HE to support further discussion about advantages and drawbacks of some methods for evaluating the nutritional status of cirrhotic patients with HE, focusing on body composition.
Collapse
|
126
|
Chen EQ, Zeng F, Zhou LY, Tang H. Early warning and clinical outcome prediction of acute-on-chronic hepatitis B liver failure. World J Gastroenterol 2015; 21:11964-11973. [PMID: 26576085 PMCID: PMC4641118 DOI: 10.3748/wjg.v21.i42.11964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) associated acute-on-chronic liver failure (ACLF) is an increasingly recognized fatal liver disease encompassing a severe acute exacerbation of liver function in patients with chronic hepatitis B (CHB). Despite the introduction of an artificial liver support system and antiviral therapy, the short-term prognosis of HBV-ACLF is still extremely poor unless emergency liver transplantation is performed. In such a situation, stopping or slowing the progression of CHB to ACLF at an early stage is the most effective way of reducing the morbidity and mortality of HBV-ACLF. It is well-known that the occurrence and progression of HBV-ACLF is associated with many factors, and the outcomes of HBV-ACLF patients can be significantly improved if timely and appropriate interventions are provided. In this review, we highlight recent developments in early warning and clinical outcome prediction in patients with HBV-ACLF and provide an outlook for future research in this field.
Collapse
|
127
|
Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J Hepatol 2015; 63:1147-55. [PMID: 26100496 PMCID: PMC4615393 DOI: 10.1016/j.jhep.2015.06.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/06/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The inflammasome is a well-characterized inducer of inflammation in alcoholic steatohepatitis (ASH). Inflammasome activation requires two signals for mature interleukin (IL)-1β production. Here we asked whether metabolic danger signals trigger inflammasome activation in ASH. METHODS Wild-type mice, ATP receptor 2x7 (P2rx7)-KO mice, or mice overexpressing uricase were fed Lieber-DeCarli ethanol or control diet. We also implemented a pharmacological approach in which mice were treated with probenecid or allopurinol. RESULTS The sterile danger signals, ATP and uric acid, were increased in the serum and liver of alcohol-fed mice. Depletion of uric acid or ATP, or lack of ATP signaling attenuated ASH and prevented inflammasome activation and its major downstream cytokine, IL-1β. Pharmacological depletion of uric acid with allopurinol provided significant protection from alcohol-induced inflammatory response, steatosis and liver damage, and additional protection was achieved in mice treated with probenecid, which depletes uric acid and blocks ATP-induced P2rx7 signaling. We found that alcohol-damaged hepatocytes released uric acid and ATP in vivo and in vitro and that these sterile danger signals activated the inflammasome in LPS-exposed liver mononuclear cells. CONCLUSIONS Our data indicate that the second signal in inflammasome activation and IL-1β production in ASH results from the endogenous danger signals, uric acid and ATP. Inhibition of signaling triggered by uric acid and ATP may have therapeutic implications in ASH.
Collapse
|
128
|
Zeng X, Tang XJ, Sheng X, Ni W, Xin HG, Chen WZ, Jiang CF, Lin Y, Shi J, Shi B, Chen YX, Yuan ZL, Xie WF. Does low-dose rifaximin ameliorate endotoxemia in patients with liver cirrhosis: a prospective study. J Dig Dis 2015; 16:665-74. [PMID: 26474237 DOI: 10.1111/1751-2980.12294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/02/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the efficacy, safety and tolerability of different doses of rifaximin in Chinese patients with liver cirrhosis. METHODS This random prospective study included a screening visit, a 2-week treatment period and a subsequent 4-week observation phase. Patients with liver cirrhosis were randomly assigned to a low-dose rifaximin group, a high-dose rifaximin group and the control group in a ratio of 1:1:1. The low-dose and high-dose groups received 400 mg or 600 mg rifaximin per 12 h for 2 weeks, respectively. All other therapeutic strategies remained unchanged in the three groups as long as possible. RESULTS In total, 60 patients with liver cirrhosis were screened and 43 of them met the eligibility criteria. After 2-week treatment serum endotoxin levels in the low-dose (1.1 ± 0.8 EU/mL) and high-dose rifaximin groups (1.0 ± 0.8 EU/mL) were significantly lower than that in the control group (2.5 ± 1.8 EU/mL), while no significant difference was found between the two rifaximin-treated groups. The effect of high-dose rifaximin on endotoxemia lasted for at least 4 weeks after drug withdrawal. A significant reduction in the abundance of the Veillonellaceae taxa and an increase in the abundance of Bacteroidaceae were shown after 2 weeks of rifaximin therapy. The incidence of adverse events and severe adverse events was similar among the three groups. CONCLUSION Low-dose (800 mg/day) rifaximin could be analogous to high-dose (1200 mg/day) rifaximin to reduce the serum endotoxin level after 2 weeks of treatment.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Jiao Tang
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Sheng
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wu Ni
- Department of Infectious Disease, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hai Guang Xin
- Department of Infectious Disease, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Zhong Chen
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cai Feng Jiang
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bin Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yue Xiang Chen
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zong Li Yuan
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Fen Xie
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
129
|
Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology. Biomolecules 2015; 5:2477-503. [PMID: 26437442 PMCID: PMC4693244 DOI: 10.3390/biom5042477] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023] Open
Abstract
Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis.
Collapse
|
130
|
Gao LN, Yan K, Cui YL, Fan GW, Wang YF. Protective effect of Salvia miltiorrhiza and Carthamus tinctorius extract against lipopolysaccharide-induced liver injury. World J Gastroenterol 2015; 21:9079-9092. [PMID: 26290634 PMCID: PMC4533039 DOI: 10.3748/wjg.v21.i30.9079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/09/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the hepatoprotective effects and mechanisms of an extract of Salvia miltiorrhiza and Carthamus tinctorius in vivo.
METHODS: C57BL/6J mice were randomly assigned to five groups and intraperitoneally administered 0.9% saline, Salvia miltiorrhiza and Carthamus tinctorius extract [Danhong injection (DHI), 0.75 and 3 g/kg mixed extract] or reduced glutathione for injection (RGI, 300 mg/kg) for 30 min before exposure to lipopolysaccharide (LPS, 16 mg/kg). After intraperitoneal LPS stimulation for 90 min or 6 h, the mice were sacrificed by ether anaesthesia, and serum and liver samples were collected. Histological analysis (H&E) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining were performed. Alanine transferase (ALT), aspartate transaminase (AST), total bilirubin (TBil), glutathione-S-transferase (GST), malondialdehyde (MDA), tumour necrosis factor (TNF)-α, interleukin (IL)-6, and caspase-3 levels were measured. Bax, Bcl-2, P-IκBα, IκBα, P-NF-κB p65, and NF-κB p65 protein levels were determined by Western blot. TNF-α, IL-6, caspase-3, Bax and Bcl-2 mRNA expression was measured by real-time reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS: Hematoxylin-eosin staining and TUNEL results suggested that DHI (3 g/kg) treatment alleviated inflammatory and apoptotic (P < 0.01) injury in the liver of mice. DHI treatment dose-dependently blunted the abnormal changes in biochemical parameters such as ALT (72.53 ± 2.83 for 3 g/kg, P < 0.01), AST (76.97 ± 5.00 for 3 g/kg, P < 0.01), TBil (1.17 ± 0.10 for 3 g/kg, P < 0.01), MDA (0.81 ± 0.36 for 3 g/kg, P < 0.01), and GST (358.86 ± 12.09 for 3 g/kg, P < 0.01). Moreover, DHI (3 g/kg) remarkably decreased LPS-induced protein expression of TNF-α (340.55 ± 10.18 for 3 g/kg, P < 0.01), IL-6 (261.34 ± 10.18 for 3 g/kg, P < 0.01), and enzyme activity of caspase-3 (0.93 ± 0.029 for 3 g/kg, P < 0.01). The LPS-induced mRNA expression of TNF-α, IL-6 and caspase-3 was also decreased by DHI. Western blot analysis revealed that DHI antagonised LPS-stimulated decrease of Bcl-2 and increase of Bax protein expression. Furthermore, DHI inhibited LPS-induced IκBα and NF-κB p65 phosphorylation.
CONCLUSION: DHI may be a multi-function protectant against acute hepatic injury in mice through its anti-inflammatory, anti-oxidative and anti-apoptotic activities.
Collapse
|
131
|
An HNF1α-regulated feedback circuit modulates hepatic fibrogenesis via the crosstalk between hepatocytes and hepatic stellate cells. Cell Res 2015; 25:930-45. [PMID: 26169608 PMCID: PMC4528057 DOI: 10.1038/cr.2015.84] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 12/29/2022] Open
Abstract
Hepatocytes are critical for the maintenance of liver homeostasis, but its involvement in hepatic fibrogenesis remains elusive. Hepatocyte nuclear factor 1α (HNF1α) is a liver-enriched transcription factor that plays a key role in hepatocyte function. Our previous study revealed a significant inhibitory effect of HNF1α on hepatocellular carcinoma. In this study, we report that the expression of HNF1α is significantly repressed in both human and rat fibrotic liver. Knockdown of HNF1α in the liver significantly aggravates hepatic fibrogenesis in either dimethylnitrosamine (DMN) or bile duct ligation (BDL) model in rats. In contrast, forced expression of HNF1α markedly alleviates hepatic fibrosis. HNF1α regulates the transcriptional expression of SH2 domain-containing phosphatase-1 (SHP-1) via directly binding to SHP-1 promoter in hepatocytes. Inhibition of SHP-1 expression abrogates the anti-fibrotic effect of HNF1α in DMN-treated rats. Moreover, HNF1α repression in primary hepatocytes leads to the activation of NF-κB and JAK/STAT pathways and initiates an inflammatory feedback circuit consisting of HNF1α, SHP-1, STAT3, p65, miR-21 and miR-146a, which sustains the deregulation of HNF1α in hepatocytes. More interestingly, a coordinated crosstalk between hepatocytes and hepatic stellate cells (HSCs) participates in this positive feedback circuit and facilitates the progression of hepatocellular damage. Our findings demonstrate that impaired hepatocytes play an active role in hepatic fibrogenesis. Early intervention of HNF1α-regulated inflammatory feedback loop in hepatocytes may have beneficial effects in the treatment of chronic liver diseases.
Collapse
|
132
|
Abstract
Drug-induced liver injury (DILI) is the most common organ toxicity encountered in regulatory animal toxicology studies required prior to the clinical development of new drug candidates. Very few reports have evaluated the value of these studies for predicting DILI in humans. Indeed, compounds inducing liver toxicity in regulatory toxicology studies are not always correlated with a risk of DILI in humans. Conversely, compounds associated with the occurrence of DILI in phase 3 studies or after market release are often tested negative in regulatory toxicology studies. Idiosyncratic DILI is a rare event that is precipitated in an individual by the simultaneous occurrence of several critical factors. These factors may relate to the host (e.g. human leukocyte antigen polymorphism, inflammation), the drug (e.g. reactive metabolites) or the environment (e.g. diet/microbiota). This type of toxicity therefore cannot be detected in conventional animal toxicology studies. Several animal models have recently been proposed for the identification of drugs with the potential to cause idiosyncratic DILI: rats treated with lipopolysaccharide, Sod2(+/-) mice, panels of inbred mouse strains or chimeric mice with humanized livers. These models are not suitable for use in the prospective screening of new drug candidates. Humans therefore constitute the best model for predicting and assessing idiopathic DILI.
Collapse
|
133
|
Wereszczynka-Siemiatkowska U, Swidnicka-Siergiejko A, Siemiatkowski A, Bondyra Z, Wasielica-Berger J, Mroczko B, Janica J, Dabrowski A. Endothelin 1 and transforming growth factor-β1 correlate with liver function and portal pressure in cirrhotic patients. Cytokine 2015; 76:144-151. [PMID: 26144293 DOI: 10.1016/j.cyto.2015.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The invasive measurement of hepatic venous pressure gradient is the recommended method for the assessment of portal hypertension. We assessed if the mediators that regulate portal hypertension may be used as noninvasive markers of portal hypertension and liver insufficiency. MATERIALS AND METHODS We explored in prospective, observational study the concentration of endothelin-1, nitric oxide, and transforming growth factor-β1/2 in peripheral and hepatic venous blood; their relationship with the values of portal hypertension and liver insufficiency; and their level changes 4-6 months after non-selective beta-blocker therapy in cirrhotic patients with non-bleeding esophageal varices. RESULTS (1) Cirrhotics have significantly increased peripheral endothelin 1 and decreased transforming growth factor-β1 levels; (2) peripheral levels of all factors correlated significantly with their hepatic levels; (3) after therapy, peripheral endothelin-1 levels significantly increased, but transforming growth factor-β2 levels decreased and were lower in patients with pressure gradient value normalization; (4) before and after therapy, peripheral and hepatic endothelin-1, transforming growth factor-β1/2 levels correlated significantly with liver failure indicators (laboratory parameters, Child-Pough and MELD scores) and pressure gradient values. CONCLUSIONS Peripheral endothelin-1 and transforming growth factor-β1 levels, which strongly correlate with their hepatic levels, reflect the stage of portal hypertension and liver insufficiency in cirrhosis.
Collapse
Affiliation(s)
- Urszula Wereszczynka-Siemiatkowska
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, M. Curie-Sklodowskiej 24a, 15276 Bialystok, Poland
| | - Agnieszka Swidnicka-Siergiejko
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, M. Curie-Sklodowskiej 24a, 15276 Bialystok, Poland.
| | - Andrzej Siemiatkowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Bialystok, M. Curie-Sklodowskiej 24a, 15276 Bialystok, Poland
| | - Zofia Bondyra
- Department of Radiology, Medical University of Bialystok, M. Curie-Sklodowskiej 24a, 15276 Bialystok, Poland
| | - Justyna Wasielica-Berger
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, M. Curie-Sklodowskiej 24a, 15276 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, M. Curie-Sklodowskiej 24a, 15276 Bialystok, Poland
| | - Jacek Janica
- Department of Radiology, Medical University of Bialystok, M. Curie-Sklodowskiej 24a, 15276 Bialystok, Poland
| | - Andrzej Dabrowski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, M. Curie-Sklodowskiej 24a, 15276 Bialystok, Poland
| |
Collapse
|
134
|
Sharma M, Mitnala S, Vishnubhotla RK, Mukherjee R, Reddy DN, Rao PN. The Riddle of Nonalcoholic Fatty Liver Disease: Progression From Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis. J Clin Exp Hepatol 2015; 5:147-58. [PMID: 26155043 PMCID: PMC4491606 DOI: 10.1016/j.jceh.2015.02.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver (NAFL) is an emerging global epidemic which progresses to nonalcoholic steatohepatitis (NASH) and cirrhosis in a subset of subjects. Various reviews have focused on the etiology, epidemiology, pathogenesis and treatment of NAFLD. This review highlights specifically the triggers implicated in disease progression from NAFL to NASH. The integrating role of genes, dietary factors, innate immunity, cytokines and gut microbiome have been discussed.
Collapse
Key Words
- AGE, Advanced glycation end products
- ALT, Alanine aminotransferase
- AMPK, AMP-activated protein Kinase
- APPL1 and 2, Adaptor protein 1 and 2
- ATP, Adenosine tri-phosphatase
- BMI, Basal Metabolic Index
- CD, Cluster of differentiation
- COL13A1, Collagen, type XIII, alpha 1
- DAMP, Damage assocauted molecular pattern molecules
- EFCAB4B, EF-hand calcium binding domain 4B
- FA, Fatty acid
- FDFT1, Farnesyl-diphosphate farnesyltransferase 1
- FFA, Free fatty acid
- GCKR, Glucokinase regulatory protein
- GLUT 5, Glucose transporter type 5
- GWAS, Genome wide association studies
- HDL, High density lipoprotein
- HMGB1, High-mobility group protein B1
- HOMA-IR, Homoestatic model assessment-insulin resistance
- HSC, Hepatic Stellate Cells
- Hh, Hedgehog
- IL6, Interleukin 6
- IR, Insulin Resistance
- KC, Kupffer Cells
- LPS, Lipopolysacharrides
- LYPLAL1, Lypophospholipase like 1
- MCP, Monocyte chemotactic protein
- NAD, Nicotinamide adenine dinucleotide
- NAFL, Nonalcoholic fatty liver
- NAFLD, Nonalcoholic fatty liver disease
- NASH, Nonalcoholic steatohepatitis
- NCAN, Neurocan gene
- NF-KB, Nuclear Factor Kappa B
- NK, Natural Killer
- NKL, Natural Killer T cells
- NLR, NOD like receptor
- NNMT, Nicotinamide N-methyltransferase gene
- OXLAM, Oxidized linolenic acid metabolite
- PAMP, Pathogen-associated Molecular pattern
- PARVB, Beta Parvin Gene
- PDGF, Platelet-derived growth factor
- PNPLA3
- PNPLA3, Patatin-like phospholipase domain-containing protein 3
- PPAR-α, Peroxisome proliferator activated receptor alpha
- PPP1R3B, Protein phosphatase 1 R3B
- PUFA, Poly unsaturated fatty acid
- PZP, Pregnancy-zone protein
- ROS, Reactive oxygen species
- SAMM, Sorting and assembly machinery component
- SCAP, SREBP cleavage-activating protein
- SFA, Saturated fatty acid
- SNP, Single nucleotide polymorphism
- SOCS3, Suppressor of cytokine signaling 3
- SOD2, Superoxide dismutase 2 gene
- SREBP-1C, Sterol regulatory Element—Binding Protein 1-C gene
- TLR, Toll like receptor
- TNF α, Tumor necrosis factor Alpha
- UCP3, Uncoupling protein 3 gene
- adiponectin
- cytokines
- gut microbiota
- lipotoxicity
Collapse
Affiliation(s)
- Mithun Sharma
- Department of Hepatology and Nutrition, Asian Institute of Gastroenterology, Hyderabad, Telangana, India,Address for correspondence: Mithun Sharma, Consultant Hepatologist, Asian Institute of Gastroenterology, 6-3-661, Red Rose Café Lane, Somajigudda, Hyderabad 500082, India. Tel.: +91 8790622655.
| | - Shasikala Mitnala
- Research Labs, Institute of Basic Sciences and Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Ravi K. Vishnubhotla
- Department of Genetics, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Rathin Mukherjee
- Department of Molecular Biology, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Duvvur N. Reddy
- Department of Gastroenterology, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Padaki N. Rao
- Department of Hepatology and Nutrition, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| |
Collapse
|
135
|
Thapa M, Chinnadurai R, Velazquez VM, Tedesco D, Elrod E, Han JH, Sharma P, Ibegbu C, Gewirtz A, Anania F, Pulendran B, Suthar MS, Grakoui A. Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity. Hepatology 2015; 61:2067-79. [PMID: 25711908 PMCID: PMC4441566 DOI: 10.1002/hep.27761] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) leads to liver fibrosis. Here, we postulated that the immune regulatory properties of HSCs might promote the profibrogenic activity of B cells. Fibrosis is completely attenuated in carbon tetrachloride-treated, B cell-deficient µMT mice, showing that B cells are required. The retinoic acid produced by HSCs augmented B-cell survival, plasma cell marker CD138 expression, and immunoglobulin G production. These activities were reversed following addition of the retinoic acid inhibitor LE540. Transcriptional profiling of fibrotic liver B cells revealed increased expression of genes related to activation of nuclear factor κ light chain enhancer of activated B cells, proinflammatory cytokine production, and CD40 signaling, suggesting that these B cells are activated and may be acting as inflammatory cells. Biological validation experiments also revealed increased activation (CD44 and CD86 expression), constitutive immunoglobulin G production, and secretion of the proinflammatory cytokines tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α. Likewise, targeted deletion of B-cell-intrinsic myeloid differentiation primary response gene 88 signaling, an innate adaptor with involvement in retinoic acid signaling, resulted in reduced infiltration of migratory CD11c(+) dendritic cells and Ly6C(++) monocytes and, hence, reduced liver pathology. CONCLUSION Liver fibrosis occurs through a mechanism of HSC-mediated augmentation of innate B-cell activity. These findings highlight B cells as important "first responders" of the intrahepatic immune environment.
Collapse
Affiliation(s)
- Manoj Thapa
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Raghavan Chinnadurai
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Victoria M. Velazquez
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Dana Tedesco
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Elizabeth Elrod
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jin-Hwan Han
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Prachi Sharma
- Division of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Chris Ibegbu
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Andrew Gewirtz
- Department of Biology, Georgia State University, Atlanta, GA 30303
| | - Frank Anania
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Bali Pulendran
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Mehul S. Suthar
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322,Department of Pediatrics and Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322,Division of Infectious diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
136
|
Lactobacillus fermentum ZYL0401 Attenuates Lipopolysaccharide-Induced Hepatic TNF-α Expression and Liver Injury via an IL-10- and PGE2-EP4-Dependent Mechanism. PLoS One 2015; 10:e0126520. [PMID: 25978374 PMCID: PMC4433256 DOI: 10.1371/journal.pone.0126520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in intestinal permeability. Together, we demonstrated that LF41 pre-feeding enabled the liver to alleviate LPS-induced hepatic TNF-α expression and injury via a PGE2-EP4- and IL-10-dependent mechanism.
Collapse
|
137
|
Staphylococcal toxic shock syndrome: superantigen-mediated enhancement of endotoxin shock and adaptive immune suppression. Immunol Res 2015; 59:182-7. [PMID: 24816557 DOI: 10.1007/s12026-014-8538-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Infectious diseases caused by Staphylococcus aureus present a significant clinical and public health problem. S. aureus causes some of the most severe hospital-associated and community-acquired illnesses. Specifically, it is the leading cause of infective endocarditis and osteomyelitis, and the second leading cause of sepsis in the USA. While pathogenesis of S. aureus infections is at the center of current research, many questions remain about the mechanisms underlying staphylococcal toxic shock syndrome (TSS) and associated adaptive immune suppression. Both conditions are mediated by staphylococcal superantigens (SAgs)-secreted staphylococcal toxins that are major S. aureus virulence factors. Toxic shock syndrome toxin-1 (TSST-1) is the SAg responsible for almost all menstrual TSS cases in the USA. TSST-1, staphylococcal enterotoxin B and C are also responsible for most cases of non-menstrual TSS. While SAgs mediate all of the hallmark features of TSS, such as fever, rash, hypotension, and multi-organ dysfunction, they are also capable of enhancing the toxic effects of endogenous endotoxin. This interaction appears to be critical in mediating the severity of TSS and related mortality. In addition, interaction between SAgs and the host immune system has been recognized to result in a unique form of adaptive immune suppression, contributing to poor outcomes of S. aureus infections. Utilizing rabbit models of S. aureus infective endocarditis, pneumonia and sepsis, and molecular genetics techniques, we aim to elucidate the mechanisms of SAg and endotoxin synergism in the pathogenesis of TSS, and examine the cellular and molecular mechanisms underlying SAg-mediated immune dysfunction.
Collapse
|
138
|
Tomar S, Nagarkatti M, Nagarkatti PS. 3,3'-Diindolylmethane attenuates LPS-mediated acute liver failure by regulating miRNAs to target IRAK4 and suppress Toll-like receptor signalling. Br J Pharmacol 2015; 172:2133-47. [PMID: 25521277 DOI: 10.1111/bph.13036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/13/2014] [Accepted: 12/03/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute liver failure (ALF) is a severe and potentially lethal clinical syndrome. 3,3'-Diindolylmethane (DIM) is a natural plant-derived compound with anti-cancer activities. Recently, DIM has also been shown to have anti-inflammatory properties. Here, we tested the hypothesis that DIM would suppress endotoxin-induced ALF. EXPERIMENTAL APPROACH We investigated the therapeutic potential of DIM in a mouse model of D-galactosamine/Lipopolysaccharide (GalN/LPS)-induced ALF. The efficacy of DIM treatment was assessed by survival, liver histopathology, serum levels of alanine transaminase, pro-inflammatory cytokines and number of activated liver macrophages. Effects of DIM on the expression of two miRNAs, 106a and 20b, and their predicted target gene were measured by qRT-PCR and Western blotting. Effects of DIM on the release of TNF-α from RAW264.7 macrophages transfected with mimics of these miRNAs and activated by LPS was assessed by elisa. KEY RESULTS DIM treatment protected mice from ALF symptoms and reduced the number of activated liver macrophages. DIM increased expression of miR-106a and miR-20b in liver mononuclear cells and decreased expression of their predicted target gene IL-1 receptor-associated kinase 4 (IRAK4), involved in signalling from Toll-like receptor 4 (TLR4). In vitro transfection of RAW264.7 cells using miRNA mimics of miR-106a and 20b decreased expression of IRAK4 and of TNF-α secretion, following LPS stimulation. CONCLUSIONS AND IMPLICATIONS DIM attenuated GalN/LPS-induced ALF by regulating the expression of unique miRNAs that target key molecules in the TLR4 inflammatory pathway. DIM may represent a potential novel hepatoprotective agent.
Collapse
Affiliation(s)
- S Tomar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | |
Collapse
|
139
|
Tomar S, Zumbrun EE, Nagarkatti M, Nagarkatti PS. Protective role of cannabinoid receptor 2 activation in galactosamine/lipopolysaccharide-induced acute liver failure through regulation of macrophage polarization and microRNAs. J Pharmacol Exp Ther 2015; 353:369-79. [PMID: 25749929 DOI: 10.1124/jpet.114.220368] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Acute liver failure (ALF) is a potentially life-threatening disorder without any effective treatment strategies. d-Galactosamine (GalN)/lipopolysaccharide (LPS)-induced ALF is a widely used animal model to identify novel hepato-protective agents. In the present study, we investigated the potential of a cannabinoid receptor 2 (CB2) agonist, JWH-133 [(6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran], in the amelioration of GalN/LPS-induced ALF. JWH-133 treatment protected the mice from ALF-associated mortality, mitigated alanine transaminase and proinflammatory cytokines, suppressed histopathological and apoptotic liver damage, and reduced liver infiltration of mononuclear cells (MNCs). Furthermore, JWH-133 pretreatment of M1/M2-polarized macrophages significantly increased the secretion of anti-inflammatory cytokine interleukin-10 (IL-10) in M1 macrophages and potentiated the expression of M2 markers in M2-polarized macrophages. In vivo, JWH-133 treatment also suppressed ALF-triggered expression of M1 markers in liver MNCs, while increasing the expression of M2 markers such as Arg1 and IL-10. microRNA (miR) microarray analysis revealed that JWH-133 treatment altered the expression of only a few miRs in the liver MNCs. Gene ontology analysis of the targets of miRs suggested that Toll-like receptor (TLR) signaling was among the most significantly targeted cellular pathways. Among the altered miRs, miR-145 was found to be the most significantly decreased. This finding correlated with concurrent upregulated expression of its predicted target gene, interleukin-1 receptor-associated kinase 3, a negative regulator of TLR4 signaling. Together, these data are the first to demonstrate that CB2 activation attenuates GalN/LPS-induced ALF by inducing an M1 to M2 shift in macrophages and by regulating the expression of unique miRs that target key molecules involved in the TLR4 pathway.
Collapse
Affiliation(s)
- Sunil Tomar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (S.T., E.E.Z., M.N., P.S.N.); and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina (M.N.)
| | - Elizabeth E Zumbrun
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (S.T., E.E.Z., M.N., P.S.N.); and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina (M.N.)
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (S.T., E.E.Z., M.N., P.S.N.); and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina (M.N.)
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (S.T., E.E.Z., M.N., P.S.N.); and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina (M.N.)
| |
Collapse
|
140
|
Pretreatment with wortmannin alleviates lipopolysaccharide/d-galactosamine-induced acute liver injury. Biochem Biophys Res Commun 2014; 455:234-40. [DOI: 10.1016/j.bbrc.2014.10.152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
|
141
|
Møller S, Henriksen JH, Bendtsen F. Extrahepatic complications to cirrhosis and portal hypertension: Haemodynamic and homeostatic aspects. World J Gastroenterol 2014; 20:15499-15517. [PMID: 25400435 PMCID: PMC4229516 DOI: 10.3748/wjg.v20.i42.15499] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023] Open
Abstract
In addition to complications relating to the liver, patients with cirrhosis and portal hypertension develop extrahepatic functional disturbances of multiple organ systems. This can be considered a multiple organ failure that involves the heart, lungs, kidneys, the immune systems, and other organ systems. Progressive fibrosis of the liver and subsequent metabolic impairment leads to a systemic and splanchnic arteriolar vasodilatation. This affects both the haemodynamic and functional homeostasis of many organs and largely determines the course of the disease. With the progression of the disease, the circulation becomes hyperdynamic with cardiac, pulmonary as well as renal consequences for dysfunction and reduced survival. Infections and a changed cardiac function known as cirrhotic cardiomyopathy may be involved in further aggravation of other complications such as renal failure precipitating the hepatorenal syndrome. Patients with end-stage liver disease and related complications as for example the hepatopulmonary syndrome can only radically be treated by liver transplantation. As a bridge to this treatment, knowledge on the mechanisms of the pathophysiology of complications is essential for the choice of vasoactive drugs, antibiotics, drugs with specific effects on fibrogenesis and inflammation, and drugs that target specific receptors.
Collapse
|
142
|
Jang JY, Kim TY, Sohn JH, Lee TH, Jeong SW, Park EJ, Lee SH, Kim SG, Kim YS, Kim HS, Kim BS. Relative adrenal insufficiency in chronic liver disease: its prevalence and effects on long-term mortality. Aliment Pharmacol Ther 2014; 40:819-26. [PMID: 25078874 DOI: 10.1111/apt.12891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/29/2014] [Accepted: 07/07/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The relationship between relative adrenal insufficiency (RAI) and chronic liver disease is unclear. AIM To determine the frequency with which RAI is observed in noncritically ill patients at various stages of chronic liver disease, and the correlation between RAI and disease severity and long-term mortality. METHODS In total, 71 non-critically ill patients with liver cirrhosis (n = 54) and chronic hepatitis (n = 17) were evaluated prospectively. A short stimulation test (SST) with 250 μg of corticotrophin was performed to detect RAI. RAI was defined as an increase in serum cortisol of <9 μg/dL in patients with a basal total cortisol of <35 μg/dL. RESULTS RAI was observed in only 13 (24.1%) of 54 patients with cirrhosis. Compared to those without RAI, cirrhotic patients with RAI had significantly higher Child-Turcotte-Pugh score (10.3 ± 1.7 vs. 7.1 ± 1.8, mean ± s.d., P < 0.001) and Model for End-Stage Liver Disease score (14.5 ± 6.6 vs. 9.4 ± 3.7, P = 0.017). The cortisol response to corticotropin was negatively correlated with the severity of cirrhosis (P < 0.05). In addition, the mortality rate was higher in cirrhotic patients with RAI (69.2%) than in those without RAI (4.9%; P < 0.001) during the follow-up period of 20.1 ± 13.5 months (range, 5.8-51.1 months). The cumulative 1-year survival rates in cirrhotic patients with and without RAI were 69.2% and 95.0%, respectively (P = 0.05), while the corresponding cumulative 3-year survival rates were 0% and 95.0% (P < 0.001). CONCLUSIONS Relative adrenal insufficiency is more commonly observed in those with severe cirrhosis, and is clearly associated with more advanced liver disease and a shortened long-term survival. This suggests that relative adrenal insufficiency is an independent prognostic factor in non-critically ill patients with cirrhosis.
Collapse
Affiliation(s)
- J Y Jang
- Division of Gastroenterology, Department of Internal Medicine, Digestive Disease Center, Institute for Digestive Research, College of Medicine, Soonchunhyang University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J, Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Ehrlich SD, Zheng S, Li L. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513:59-64. [PMID: 25079328 DOI: 10.1038/nature13568] [Citation(s) in RCA: 1424] [Impact Index Per Article: 142.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
Liver cirrhosis occurs as a consequence of many chronic liver diseases that are prevalent worldwide. Here we characterize the gut microbiome in liver cirrhosis by comparing 98 patients and 83 healthy control individuals. We build a reference gene set for the cohort containing 2.69 million genes, 36.1% of which are novel. Quantitative metagenomics reveals 75,245 genes that differ in abundance between the patients and healthy individuals (false discovery rate < 0.0001) and can be grouped into 66 clusters representing cognate bacterial species; 28 are enriched in patients and 38 in control individuals. Most (54%) of the patient-enriched, taxonomically assigned species are of buccal origin, suggesting an invasion of the gut from the mouth in liver cirrhosis. Biomarkers specific to liver cirrhosis at gene and function levels are revealed by a comparison with those for type 2 diabetes and inflammatory bowel disease. On the basis of only 15 biomarkers, a highly accurate patient discrimination index is created and validated on an independent cohort. Thus microbiota-targeted biomarkers may be a powerful tool for diagnosis of different diseases.
Collapse
Affiliation(s)
- Nan Qin
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China [3]
| | - Fengling Yang
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China [2]
| | - Ang Li
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China [2]
| | - Edi Prifti
- 1] Metagenopolis, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France [2]
| | - Yanfei Chen
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China [2]
| | - Li Shao
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China [3]
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | | | - Jian Yao
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - Lingjiao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Jiawei Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Shujun Ni
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Lin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Nicolas Pons
- Metagenopolis, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Jean Michel Batto
- Metagenopolis, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Sean P Kennedy
- Metagenopolis, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Pierre Leonard
- Metagenopolis, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Chunhui Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Wenchao Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Yuanting Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Xinjun Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Beiwen Zheng
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - Guirong Qian
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Wei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - S Dusko Ehrlich
- 1] Metagenopolis, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France [2] King's College London, Centre for Host-Microbiome Interactions, Dental Institute Central Office, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - Shusen Zheng
- 1] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China [2] Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University, 310003 Hangzhou, China
| | - Lanjuan Li
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| |
Collapse
|
144
|
Zhang JJ, Fan YC, Zhao ZH, Yang Y, Dou CY, Gao S, Wang K. Prognoses of patients with acute-on-chronic hepatitis B liver failure are closely associated with altered SOCS1 mRNA expression and cytokine production following glucocorticoid treatment. Cell Mol Immunol 2014; 11:396-404. [PMID: 24727541 DOI: 10.1038/cmi.2014.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 12/28/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS) 1 plays a crucial role in the immune response and might contribute to the prognoses of liver failure treated with glucocorticoid. We recruited 47 acute-on-chronic hepatitis B liver failure (ACHBLF) patients receiving glucocorticoid treatment and 30 healthy controls to determine the potential effects of glucocorticoid on the transcriptional level of SOCS1 in peripheral blood mononuclear cells. On the third and twenty-eighth days of glucocorticoid treatment, SOCS1 expression was negatively correlated with model for end-stage liver disease (MELD) score. Interleukin-6 (IL-6) and tumor-necrosis factor-α (TNF-α) levels were statistically lower, while the SOCS1 transcription level was higher in survivors than non-survivors both in pre- and post-treatment ACHBLF patients. The methylation rate of the SOCS1 promoter in ACHBLF patients was higher than in healthy control patients as determined by methylation-specific polymerase chain reaction. The mRNA level of SOCS1 in methylated promoters was significantly lower than from patients with unmethylated SOCS1 promoters. interferon (IFN)-γ-responsive and STAT1-dependent gene expression was higher in survivors and was dramatically decreased with rising expression of SOCS1 after glucocorticoid treatment. Mortality rates were significantly higher in methylated patients than for those without methylation at the end of a 90-day follow-up. Furthermore, we found that five in six surviving patients displayed demethylated SOCS1 on the twenty-eighth day after treatment, while that number was 3 in 10 in the non-survivors. These findings suggested that ACHBLF patients without SOCS1 methylation may have a favorable response to corticosteroid treatment.
Collapse
Affiliation(s)
- Jian-Jun Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Yu-Chen Fan
- 1] Department of Hepatology, Qilu Hospital of Shandong University, Ji'nan, China [2] Institute of Hepatology, Shandong University, Ji'nan, China
| | - Ze-Hua Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Yang Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Cheng-Yun Dou
- Department of Hepatology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Kai Wang
- 1] Department of Hepatology, Qilu Hospital of Shandong University, Ji'nan, China [2] Institute of Hepatology, Shandong University, Ji'nan, China
| |
Collapse
|
145
|
Endotoxin adsorbents in extracorporeal blood purification: do they fulfill expectations? Int J Artif Organs 2014; 37:222-32. [PMID: 24744167 DOI: 10.5301/ijao.5000304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Lipopolysaccharides (LPS) are extremely strong stimulators of inflammatory reactions, act at very low concentrations, and are involved in the pathogenesis of sepsis and septic shock. Because of its toxicity, the efficient removal of endotoxin from patients' blood is very important in clinical medicine. The purpose of this study was to determine the endotoxin adsorption capacities of commercial endotoxin adsorbers for endotoxin removal in buffer solution, protein solution, serum and heparinized plasma; some of these were also characterized in whole blood. The tested LPS adsorbers were Toraymyxin® PMX-20R, Alteco® LPS Adsorber, DEAE-Sepharose, Polymyxin B-Agarose, and EndoTrap® red. METHODS The adsorber materials were tested in buffer and protein solutions spiked with fluorescently labeled LPS (100 ng/ml). Additionally, batch tests with LPS-spiked serum, heparinized plasma and whole blood were performed with an LPS concentration of 5 ng/ml. Additionally, the washing solutions of the two tested Polymyxin B (PMB)-based adsorbers were analyzed for PMB release to determine if the resulting LPS inactivation was caused by PMB leakage. RESULTS The results show that DEAE-Sepharose was most effective in LPS adsorption. Of the other tested endotoxin removal materials, only the PMB-based adsorbers were able to reduce the LPS activity. However, we were able to show that the reduction in LPS activity was caused by desorbed PMB, which inactivates endotoxins. CONCLUSIONS None of the adsorbents that were tested in this study showed promising results for potential use in extracorporeal blood purification.
Collapse
|
146
|
Fletcher NF, Sutaria R, Jo J, Barnes A, Blahova M, Meredith LW, Cosset FL, Curbishley SM, Adams DH, Bertoletti A, McKeating JA. Activated macrophages promote hepatitis C virus entry in a tumor necrosis factor-dependent manner. Hepatology 2014; 59:1320-30. [PMID: 24259385 PMCID: PMC4255687 DOI: 10.1002/hep.26911] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/19/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Macrophages are critical components of the innate immune response in the liver. Chronic hepatitis C is associated with immune infiltration and the infected liver shows a significant increase in total macrophage numbers; however, their role in the viral life cycle is poorly understood. Activation of blood-derived and intrahepatic macrophages with a panel of Toll-like receptor agonists induce soluble mediators that promote hepatitis C virus (HCV) entry into polarized hepatoma cells. We identified tumor necrosis factor α (TNF-α) as the major cytokine involved in this process. Importantly, this effect was not limited to HCV; TNF-α increased the permissivity of hepatoma cells to infection by Lassa, measles and vesicular stomatitis pseudoviruses. TNF-α induced a relocalization of tight junction protein occludin and increased the lateral diffusion speed of HCV receptor tetraspanin CD81 in polarized HepG2 cells, providing a mechanism for their increased permissivity to support HCV entry. High concentrations of HCV particles could stimulate macrophages to express TNF-α, providing a direct mechanism for the virus to promote infection. CONCLUSION This study shows a new role for TNF-α to increase virus entry and highlights the potential for HCV to exploit existing innate immune responses in the liver to promote de novo infection events.
Collapse
Affiliation(s)
- Nicola F Fletcher
- Hepatitis C Research Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - Rupesh Sutaria
- NIHR Liver Biomedical Research Unit, University of BirminghamBirmingham, UK
| | - Juandy Jo
- Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*STAR)Singapore
| | - Amy Barnes
- Hepatitis C Research Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - Miroslava Blahova
- NIHR Liver Biomedical Research Unit, University of BirminghamBirmingham, UK
| | - Luke W Meredith
- Hepatitis C Research Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | | | | | - David H Adams
- NIHR Liver Biomedical Research Unit, University of BirminghamBirmingham, UK
| | - Antonio Bertoletti
- Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*STAR)Singapore
| | - Jane A McKeating
- Hepatitis C Research Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK,NIHR Liver Biomedical Research Unit, University of BirminghamBirmingham, UK
| |
Collapse
|
147
|
Zhan Y, Wang Z, Yang P, Wang T, Xia L, Zhou M, Wang Y, Wang S, Hua Z, Zhang J. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice. Cell Death Dis 2014; 5:e985. [PMID: 24407238 PMCID: PMC4040656 DOI: 10.1038/cddis.2013.516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/16/2013] [Accepted: 11/21/2013] [Indexed: 11/09/2022]
Abstract
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.
Collapse
Affiliation(s)
- Y Zhan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Z Wang
- East Hospital, Tongji University, Shanghai 200120, China
| | - P Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - T Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - L Xia
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - M Zhou
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Y Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - S Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Z Hua
- The State Kay Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - J Zhang
- 1] Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China [2] The State Kay Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
148
|
Ingawale DK, Mandlik SK, Naik SR. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): a critical discussion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:118-133. [PMID: 24322620 DOI: 10.1016/j.etap.2013.08.015] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 06/03/2023]
Abstract
Liver is a primary organ involved in biotransformation of food and drugs. Hepatic diseases are a major worldwide problem. Hepatic disorders are mainly caused by toxic chemicals (alcohol), xenobiotics (carbon tetrachloride, chlorinated hydrocarbons and gases CO₂ and O₂) anticancer (azathioprine, doxorubicin, cisplatin), immunosuppressant (cyclosporine), analgesic anti-inflammatory (paracetamol, thioacetamide), anti-tubercular (isoniazid, rifampicin) drugs, biologicals (Bacillus-Calmette-Guerin vaccine), radiations (gamma radiations), heavy metals (cadmium, arsenic), mycotoxin (aflatoxin), galactosamine, lipopolysaccharides, etc. Various risk factors for hepatic injury include concomitant hepatic diseases, age, gender, alcoholism, nutrition and genetic polymorphisms of cytochrome P450 enzymes have also been emphasized. The present review enumerates various in vivo animal models and in vitro methods of hepatic injury using diverse toxicants, their probable metabolic pathways, and numerous biochemical changes viz. serum biomarkers enzymes, liver function, oxidative stress associated events like free radicals formation, lipid peroxidation, enzyme antioxidants and participation of cytokines (tumour necrosis factor-α, transforming growth factor-β, tumour necrosis factor-related apoptosis inducing ligand), and other biomolecules (Fas and C-jun N-terminal kinase) are also discussed. The underlying cellular, molecular, immunological, and biochemical mechanism(s) of action responsible for liver damage (toxicity) are also been discussed. This review should be immensely useful for researchers especially for phytochemists, pharmacologists and toxicologists working on hepatotoxicity, hepatotoxic chemicals and drugs, hepatoprotective agents and drug research organizations involved especially in phytopharmaceuticals and other natural products.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Sinhgad Technical Education Society's, Sinhgad Institute of Pharmaceutical Sciences, S. No. 309/310, Off Mumbai-Pune Expressway, Kusgaon (Bk.), Lonavala, Pune 410 401, Maharashtra, India
| | - Satish K Mandlik
- Sinhgad College of Pharmacy, S. No. 44/1, Vadgaon (Bk.), Off Sinhgad Road, Pune 411 041, Maharashtra, India
| | - Suresh R Naik
- Sinhgad Technical Education Society's, Sinhgad Institute of Pharmaceutical Sciences, S. No. 309/310, Off Mumbai-Pune Expressway, Kusgaon (Bk.), Lonavala, Pune 410 401, Maharashtra, India.
| |
Collapse
|
149
|
Hasebe T, Sawada K, Nakajima S, Maeda S, Abe M, Suzuki Y, Ohtake T, Hasebe C, Fujiya M, Kohgo Y. Effective control of relapsing disseminated intravascular coagulation in a patient with decompensated liver cirrhosis by recombinant soluble thrombomodulin. Intern Med 2014; 53:29-33. [PMID: 24390524 DOI: 10.2169/internalmedicine.53.1201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 70-year-old Japanese man was hospitalized for expanding purpura and chronic disseminated intravascular coagulation (DIC) caused by decompensated liver cirrhosis. As there are no effective treatments for chronic DIC caused by liver cirrhosis, we decided to administer recombinant human soluble thrombomodulin (rhsTM) after he provided informed consent. The DIC was rapidly improved; however, the purpura and coagulopathy recurred after two months, and repeated rhsTM treatments were required. The rhsTM treatment sufficiently controlled the coagulopathy for two years, without any complications, including bleeding. This is the first report demonstrating that rhsTM can be administered safely and repeatedly to a patient with decompensated liver cirrhosis, and that it appears to be associated with a favorable outcome.
Collapse
Affiliation(s)
- Takumu Hasebe
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Activated effects of parathyroid hormone-related protein on human hepatic stellate cells. PLoS One 2013; 8:e76517. [PMID: 24116114 PMCID: PMC3792035 DOI: 10.1371/journal.pone.0076517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Background & Aims After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP) has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1), which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC) and LX-2 cell lines. Methods TGF-β1, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase 2 (MMP-2), and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR) after HSCs or LX-2 cells were treated with PTHrP(1–36) or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA) of HSC cell culture media. Results In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs. Conclusions PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.
Collapse
|