101
|
Sanz-Cameno P, Martín-Vílchez S, Lara-Pezzi E, Borque MJ, Salmerón J, Muñoz de Rueda P, Solís JA, López-Cabrera M, Moreno-Otero R. Hepatitis B virus promotes angiopoietin-2 expression in liver tissue: role of HBV x protein. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1215-22. [PMID: 17003480 PMCID: PMC1698851 DOI: 10.2353/ajpath.2006.051246] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The progression of chronic hepatitis B (CHB) is related to fibrosis and to the emergence of intrahepatic anomalous vascular structures. Hepatitis B virus (HBV) X protein transactivator (HBx) may play a significant role in both processes. To analyze how HBV induces vascular growth and remodeling in vivo, we assessed the expression of angiopoietin-2 (Ang2) in liver biopsies from CHB patients by reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry because of the relevant role of Ang2 in vascular development, remodeling, and tumor promotion. In addition, we analyzed the influence of HBx in the expression of Ang2 in HBx-expressing hepatocyte cell lines and in hepatic stellate cells stimulated with conditional medium from HBx-hepatocytes. Ang2 expression was clearly up-regulated at both mRNA and protein levels in the liver of CHB patients, showing an intense staining of inflammatory infiltrates and vascular structures at inflamed portal areas. HBx-expressing hepatocytes and stimulated stellate cells showed a significant induction of Ang2 expression. PI3K inhibitor and antioxidants repressed the 64-kd Ang2 form but further enhanced the inflammation-related 50-kd molecular species. Therefore, HBx could account for the induction of Ang2 observed in CHB, especially the 50-kd form, contributing to pathological angiogenesis and hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Paloma Sanz-Cameno
- Hepatology (Planta 3), Hospital Universitario de la Princesa, Diego de León 62, E-28006, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Yoshikawa T, Tohyama H, Enomoto H, Matsumoto H, Toyama Y, Yasuda K. Expression of vascular endothelial growth factor and angiogenesis in patellar tendon grafts in the early phase after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2006; 14:804-10. [PMID: 16534655 DOI: 10.1007/s00167-006-0051-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/17/2005] [Indexed: 01/28/2023]
Abstract
The aim of this study was to clarify vascular endothelial growth factor (VEGF) expression and angiogenesis in the patellar tendon (PT) autograft in the early phase after anterior cruciate ligament (ACL) reconstruction using a rabbit model. The right knees of 30 Japanese white rabbits underwent ACL reconstruction using the medial third of the PT complex. We evaluated the grafted tendon at 1, 2, 3, 4, and 8 weeks after ACL reconstruction by immunohistology for proliferating cell nuclear antigen, VEGF, and CD31, which is a marker for vascular endothelial cells. At week 1 , few cells were observed at the midsubstance of the grafted tendon. A number of proliferating cells were observed at the surface area of the PT graft 2 weeks after graft transplantation, while no vessel formation was observed in the graft at the same time. VEGF was highly expressed 2-3 weeks postoperatively. Vessel formation in the PT graft increased with time from 3 to 8 weeks after ACL reconstruction. The rates of proliferating cells and VEGF-expressing cells decreased with time from 3 to 8 weeks. This study has suggested that VEGF is involved in the graft remodeling process particularly at the early phase after ACL reconstruction.
Collapse
Affiliation(s)
- T Yoshikawa
- Department of Sports Medicine and Joint Reconstruction Surgery, Hokkaido University School of Medicine, Kita-15 Nishi-7, Sapporo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
103
|
Kurogi M, Nakashima O, Miyaaki H, Fujimoto M, Kojiro M. Clinicopathological study of scirrhous hepatocellular carcinoma. J Gastroenterol Hepatol 2006; 21:1470-7. [PMID: 16911695 DOI: 10.1111/j.1440-1746.2006.04372.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Scirrhous hepatocellular carcinoma (SHCC) is characterized by diffuse fibrosis of the tumor, however, its clinicopathological features are not fully clarified. This study aimed to clarify the clinicopathological features of SHCC. METHODS Among 546 consecutively resected HCC without preoperative anticancer therapies, 25 SHCC were selected for the study and compared with 521 cases without scirrhous as the control. RESULTS SHCC accounted for 4.6% of cases. On diagnostic imagings, SHCC was frequently misdiagnosed as cholangiocarcinoma (CC), combined HCC-CC or metastatic carcinoma. Overall survival rate was significantly higher than the control. The average (+/-SD) tumor size of SHCC was 3.4 +/- 1.8 cm without significant difference to the control. The majority of SHCC (88%) were located close to the liver capsule. SHCC was characterized by stellate fibrosis (84%), no encapsulation (100%), no necrosis and hemorrhage (100%), intratumoral portal tracts (80%), remarkable lymphocyte infiltration (84%), clear cell change (84%), and hyaline bodies (52%). The number of alpha-smooth muscle actin-positive myofibroblast-like cells (activated stellate cells) in the tumor was about three times more than that in the control. Regarding the developmental mechanism of scirrhous change, a close correlation with unique tumor location and activation of stellate cells was suggested. CONCLUSIONS SHCC presents with characteristic clinicopathological features and the recognition of SHCC is important for both clinicians and pathologists.
Collapse
MESH Headings
- Adenocarcinoma, Scirrhous/metabolism
- Adenocarcinoma, Scirrhous/pathology
- Adenocarcinoma, Scirrhous/physiopathology
- Adenocarcinoma, Scirrhous/surgery
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/physiopathology
- Carcinoma, Hepatocellular/surgery
- Diagnosis, Differential
- Female
- Humans
- Liver Function Tests
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/physiopathology
- Liver Neoplasms/surgery
- Male
- Middle Aged
- Survival Rate
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- Mina Kurogi
- Department of Pathology, Kurume University School of Medicine, Center of the 21st Century COE Program for Medical Science, Kurume University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
104
|
Abstract
Alcohol abuse is a main cause of liver fibrosis and cirrhosis in the western world. Although the major mechanisms of fibrogenesis are independent of the origin of liver injury, alcoholic liver fibrosis features distinctive characteristics, including the pronounced inflammatory response of immune cells due to elevated gut-derived endotoxin plasma levels, increased formation of reactive oxygen species (ROS), ethanol-induced pericentral hepatic hypoxia or formation of cell-toxic and pro-fibrogenic ethanol metabolites (e.g., acetaldehyde or lipid oxidation products). These factors are together responsible for increased hepatocellular cell death and activation of hepatic stellate cells (HSCs), the key cell type of liver fibrogenesis. To date, removing the causative agent is the most effective intervention to prevent the manifestation of liver cirrhosis. A novel experimental approach in fibrosis therapy is the selective induction of cell death in HSCs. Substances such as gliotoxin, anandamide or antibody against tissue inhibitor of metalloproteinase (TIMP)-1 can selectively induce cell death in activated HSCs. These new results in basic science are encouraging for the search of new antifibrotic treatment.
Collapse
Affiliation(s)
- Sören V Siegmund
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
105
|
Jeong HJ, Hong SH, Park RK, Shin T, An NH, Kim HM. Hypoxia-induced IL-6 production is associated with activation of MAP kinase, HIF-1, and NF-kappaB on HEI-OC1 cells. Hear Res 2006; 207:59-67. [PMID: 15913932 DOI: 10.1016/j.heares.2005.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 12/20/2022]
Abstract
In the present study, we investigated the signal transduction pathways of expression of IL-6 in the desferrioxamine (DFX)-stimulated cochlear auditory cell line, HEI-OC1 cells. DFX increased the expression of HIF-1alpha and NF-kappaB in HEI-OC1 cells. DFX significantly increased the production of IL-6 (P<0.05) and expression of IL-6 mRNA but did not affect TNF-alpha production. DFX also induced the activation of mitogen-activated protein kinase (MAPK) including p38, ERK, and JNK on HEI-OC1. Increased IL-6 by DFX was significantly inhibited by p38 inhibitor, SB203580 (about 72% inhibition, P=0.027) but not ERK inhibitor, PD98059 or JNK inhibitor, SP600125. SB203580 inhibited the expression of IL-6 mRNA. Increased IL-6 production was partially inhibited by treatment of iron (HIF-1 inhibitor) or pyrriolidine-dithiocarbamate (PDTC, NF-kappaB inhibitor). DFX also induced IL-6 production and HIF-1alpha expression in the inner ear. We demonstrated the regulatory effects of MAPK, HIF-1alpha, and NF-kappaB on DFX-induced IL-6 production in a HEI-OC1 for the first time. In conclusion, these data indicate that regulation of inflammatory cytokine IL-6 by DFX, through mimicking hypoxic conditions, might explain its beneficial effect in the treatment of hypoxia-induced inner ear diseases.
Collapse
Affiliation(s)
- Hyun-Ja Jeong
- College of Oriental Medicine, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
106
|
|
107
|
Antoine M, Tag CG, Wirz W, Borkham-Kamphorst E, Sawitza I, Gressner AM, Kiefer P. Upregulation of pleiotrophin expression in rat hepatic stellate cells by PDGF and hypoxia: Implications for its role in experimental biliary liver fibrogenesis. Biochem Biophys Res Commun 2005; 337:1153-64. [PMID: 16226713 DOI: 10.1016/j.bbrc.2005.09.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 09/27/2005] [Indexed: 01/16/2023]
Abstract
Pleiotrophin (PTN) is a secretory heparin binding protein with various biological activities including mitogenesis, angiogenesis, and tissue repair after injury. Recent studies have shown that PTN is a strong mitogen of hepatocytes and involved in liver regeneration. In adult liver cells Ptn gene is mainly expressed by quiescent hepatic stellate cells (HSCs). Although we have been able to demonstrate mRNA and protein expression of the anaplastic lymphoma kinase-the receptor tyrosine kinase for PTN-on HSCs, PTN did not act as a mitogen of HSCs in contrast to hepatocytes. PTN immunoreactivity was markedly increased in experimental fibrogenesis by common bile duct ligation and observed in sinusoidal HSCs. In primary HSC cultures, Ptn transcription was significantly increased by PDGF-BB, and under hypoxic atmosphere. Mechanistically, hypoxia and PDGF mediated induction of PTN expression in sinusoidal HSCs may provide a strong mitogenic signal for hepatocytes to limit the damage to the parenchymal cells in biliary-type liver fibrogenesis.
Collapse
Affiliation(s)
- M Antoine
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
108
|
Aleffi S, Petrai I, Bertolani C, Parola M, Colombatto S, Novo E, Vizzutti F, Anania FA, Milani S, Rombouts K, Laffi G, Pinzani M, Marra F. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 2005; 42:1339-48. [PMID: 16317688 DOI: 10.1002/hep.20965] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leptin upregulates collagen expression in hepatic stellate cells (HSCs), but the possible modulation of other actions has not been elucidated. The aim of this study was to investigate the expression and function of leptin receptors (ObR) in human HSCs and the biological actions regulated by leptin. Exposure of HSCs to leptin resulted in upregulation of monocyte chemoattractant protein 1 (MCP-1) expression. Leptin also increased gene expression of the proangiogenic cytokines vascular endothelial growth factor (VEGF) and angiopoietin-1, and VEGF was also upregulated at the protein level. Activated HSCs express ObRb and possibly other ObR isoforms. Exposure to leptin increased the tyrosine kinase activity of ObR immunoprecipitates and resulted in activation of signal transducer and activator of transcription 3. Several signaling pathways were activated by leptin in HSCs, including extracellular-signal-regulated kinase, Akt, and nuclear factor kappaB, the latter being relevant for chemokine expression. Leptin also increased the abundance of hypoxia-inducible factor 1alpha, which regulates angiogenic gene expression, in an extracellular-signal-regulated kinase- and phoshatidylinositol 3-kinase-dependent fashion. In vivo, leptin administration induced higher MCP-1 expression and more severe inflammation in mice after acute liver injury. Conversely, in leptin-deficient mice, the increase in MCP-1 messenger RNA and mononuclear infiltration was less marked than in wild-type littermates. Finally, ObR expression colocalized with VEGF and alpha-smooth muscle actin after induction of fibrosis in rats. In conclusion, ObR activation in HSCs leads to increased expression of proinflammatory and proangiogenic cytokines, indicating a complex role for leptin in the regulation of the liver wound-healing response.
Collapse
Affiliation(s)
- Sara Aleffi
- Dipartimento di Medicina Interna, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Benten D, Kumaran V, Joseph B, Schattenberg J, Popov Y, Schuppan D, Gupta S. Hepatocyte transplantation activates hepatic stellate cells with beneficial modulation of cell engraftment in the rat. Hepatology 2005; 42:1072-81. [PMID: 16250034 DOI: 10.1002/hep.20889] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We investigated whether transplanted hepatocytes interact with hepatic stellate cells, as cell-cell interactions could modulate their engraftment in the liver. We transplanted Fischer 344 rat hepatocytes into syngeneic dipeptidyl peptidase IV-deficient rats. Activation of hepatic stellate cells was analyzed by changes in gene expression, including desmin and alpha-smooth muscle actin, matrix proteases and their inhibitors, growth factors, and other stellate cell-associated genes with histological methods or polymerase chain reaction. Furthermore, the potential role of hepatic ischemia, Kupffer cells, and cytokine release in hepatic stellate cell activation was investigated. Hepatocyte transplantation activated desmin-positive hepatic stellate cells, as well as Kupffer cells, including in proximity with transplanted cells. Inhibition of Kupffer cells by gadolinium chloride, blockade of tumor necrosis factor alpha (TNF-alpha) activity with etanercept or attenuation of liver ischemia with nitroglycerin did not decrease this hepatic stellate cell perturbation. After cell transplantation, soluble signals capable of activating hepatic stellate cells were rapidly induced, along with early upregulated expression of matrix metalloproteinases-2, -3, -9, -13, -14, and their inhibitors. Moreover, prior depletion of activated hepatic stellate cells with gliotoxin decreased transplanted cell engraftment. In conclusion, cell transplantation activated hepatic stellate cells, which, in turn, contributed to transplanted cell engraftment in the liver. Manipulation of hepatic stellate cells might provide new strategies to improve liver repopulation after enhanced transplanted cell engraftment.
Collapse
Affiliation(s)
- Daniel Benten
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Beaussier M, Wendum D, Fouassier L, Rey C, Barbu V, Lasnier E, Lienhart A, Scoazec JY, Rosmorduc O, Housset C. Adaptative bile duct proliferative response in experimental bile duct ischemia. J Hepatol 2005; 42:257-65. [PMID: 15664253 DOI: 10.1016/j.jhep.2004.10.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 10/18/2004] [Accepted: 10/26/2004] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS A rat model of bile duct ischemia was established and used to examine the potential of bile duct proliferation to provide an adaptative response in cholestatic disorders. METHODS Rats underwent partial or complete arterial deprivation of the liver. Serum biochemical tests, histological analyses and bile secretion measurements were performed at different time points up to 6 weeks after surgery. RESULTS Rats developed biochemical signs of cholestasis exclusively after complete arterial deprivation. Within 4h, cholangiocytes in these rats showed morphological signs of cell damage. After 48h, they displayed VEGF expression and became proliferative. The proportion of Ki67-labeled cholangiocytes ( approximately 30%) was similar in interlobular bile ducts and periportal ductules. A ductular reaction made of well-formed bile ducts confined to portal tracts developed within 1 week. Bile flow which was initially decreased, was restored at 3 weeks, while the biochemical signs of cholestasis completely resolved at 6 weeks. At this time, the number of bile duct sections was maximal. Fibrosis intensity was also maximal, although moderate (<F2 METAVIR staging) as assessed by Sirius-red staining morphometry. CONCLUSIONS In the present model of bile duct ischemia, ductular reaction derives from bile ducts of all anatomical compartments, and provides a poorly fibrogenic functional response to biliary dysfunction.
Collapse
Affiliation(s)
- Marc Beaussier
- INSERM U402, Faculté de Médecine Saint-Antoine, Université Pierre et Marie Curie, 27 rue Chaligny, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Increased Angiogenesis and Expression of Vascular Endothelial Growth Factor during Scarless Repair. Plast Reconstr Surg 2005. [DOI: 10.1097/01.prs.0000138252.51581.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
112
|
Abstract
Alcohol abuse is a major cause of liver fibrosis and cirrhosis in developed countries. Before alcoholic liver fibrosis becomes evident, the liver undergoes several stages of alcoholic liver disease including steatosis and steatohepatitis. Although the main mechanisms of fibrogenesis are independent of the etiology of liver injury, alcoholic liver fibrosis is distinctively characterized by a pronounced inflammatory response due to elevated gut-derived endotoxin plasma levels, an augmented generation of oxidative stress with pericentral hepatic hypoxia and the formation of cell-toxic and profibrogenic ethanol metabolites (e.g. acetaldehyde or lipid oxidation products). These factors, based on a complex network of cytokine actions, together result in increased hepatocellular damage and activation of hepatic stellate cells, the key cell type of liver fibrogenesis. Although to date removal of the causative agent, i.e. alcohol, still represents the most effective intervention to prevent the manifestation of alcoholic liver disease, sophisticated molecular approaches are underway, aiming to specifically blunt profibrogenic signaling pathways in liver cells or specifically induce cell death in activated hepatic stellate cells to decrease the scarring of the liver.
Collapse
Affiliation(s)
- Soren V Siegmund
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
113
|
Friedman SL. Mechanisms of Disease: mechanisms of hepatic fibrosis and therapeutic implications. ACTA ACUST UNITED AC 2004; 1:98-105. [PMID: 16265071 DOI: 10.1038/ncpgasthep0055] [Citation(s) in RCA: 385] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 10/25/2004] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis, or scarring of the liver, is emerging as a treatable complication of advanced liver disease, following significant progress in understanding its underlying mechanisms. Efforts have focused on the hepatic stellate cell, as these cells can undergo 'activation' into proliferative and fibrogenic myofibroblast-like cells during liver injury. Stimuli driving stellate cell activation include hepatocellular necrosis due to oxidant stress, apoptosis, and soluble growth factors. Specific lymphocyte subsets can also stimulate fibrogenesis. A cascade of signaling and transcriptional events in stellate cells underlies the fibrogenic response to liver injury, with each step in the cascade being a potential target for antifibrotic therapy. Disease-specific fibrogenic mechanisms have also been uncovered: in hepatitis C, this may include direct stimulation of stellate cell activation by viral infection; in nonalcoholic steatohepatitis, elevated levels of leptin and increased leptin signaling by stellate cells increase fibrogenesis. Determinants of fibrosis progression include both environmental and genetic factors, with ongoing efforts to define specific polymorphisms correlating with fibrosis progression rates. Human studies now indicate that fibrosis and even cirrhosis could be reversible, especially if the underlying disease is eradicated. A key challenge is to establish noninvasive means of assessing fibrosis stage and progression using either serum tests and/or imaging. In addition, endpoints of antifibrotic clinical trials need to be established so that reliable evidence of benefit can be identified. We are on the cusp of a new era in which antifibrotic therapies could become important in treating chronic fibrosing liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
114
|
|
115
|
Scalise A, Tucci MG, Lucarini G, Giantomassi F, Orlando F, Pierangeli M, Pugnaloni A, Bertani A, Ricotti G, Biagini G. Local rh-VEGF administration enhances skin flap survival more than other types of rh-VEGF administration: a clinical, morphological and immunohistochemical study. Exp Dermatol 2004; 13:682-90. [PMID: 15500640 DOI: 10.1111/j.0906-6705.2004.00220.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to evaluate experimentally whether administration of recombinant (rh) vascular endothelial growth factor (VEGF) can protect skin flaps from necrosis and to study the optimum mode of rh-VEGF administration. We used rats to study the effects of local or systemic administration of rh-VEGF on skin flap during surgery; we also tested preoperative systemic administration of rh-VEGF to assess whether it may prepare the tissue to respond to the hypoxic injury better than previously tested methods. The animals were 30 male Sprague-Dawley rats. Group I rats received multiple systemic injections of rh-VEGF in the tail artery prior to flap dissection. Group II rats were injected with rh-VEGF in the clamped left epigastric artery during flap dissection; in this group, the left flaps thus received rh-VEGF locally (via incubation for 10 min during hypoxia) and the right flaps systemically, after blood flow restoration. Group III received saline solution instead of VEGF in the same way as group II. Skin samples from the distal portion of the flaps were collected on day 7 for morphological and immunohistochemical analysis. The flaps exhibiting the least necrosis were those treated with local rh-VEGF, followed by those treated with systemic rh-VEGF. The flaps that received rh-VEGF locally showed a strong VEGF expression on keratinocytes and endothelial cells, the greatest amount of mature and newly formed vessels and strong survivin expression in endothelial cells. Local rh-VEGF administration should thus be considered as an effective therapeutic option to enhance the survival of a tissue at risk for perfusion.
Collapse
Affiliation(s)
- Alessandro Scalise
- Clinica di Chirurgia Plastica Ricostruttiva, Università Politecnica delle Marche, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
DeLeve LD, Wang X, Hu L, McCuskey MK, McCuskey RS. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol 2004; 287:G757-63. [PMID: 15191879 DOI: 10.1152/ajpgi.00017.2004] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phenotypic features of liver sinusoidal endothelial cells (SEC), open fenestrae in sieve plates and lack of a basement membrane, are lost with capillarization. The current study examines localization of CD31 as a marker for the dedifferentiated, nonfenestrated SEC and examines regulation of SEC phenotype in vitro. CD31 localization in SEC was examined by confocal microscopy and immunogold-scanning electron microscopy. SEC cultured for 1 day express CD31 in the cytoplasm, whereas after 3 days, CD31 is also expressed on cell-cell junctions. Immunogold-scanning electron microscopy confirmed the absence of CD31 surface expression on fenestrated SEC 1 day after isolation and demonstrated the appearance of CD31 surface expression on SEC that had lost fenestration after 3 days in culture. SEC isolated from fibrotic liver do show increased expression of CD31 on the cell surface. Coculture with either hepatocytes or stellate cells prevents CD31 surface expression, and this effect does not require heterotypic contact. The paracrine effect of hepatocytes or stellate cells on SEC phenotype is abolished with anti-VEGF antibody and is reproduced by addition of VEGF to SEC cultured alone. VEGF stimulates SEC production of nitric oxide. NG-nitro-L-arginine methyl ester blocked the paracrine effect of hepatocytes or stellate cells on SEC phenotype and blocked the ability of VEGF to preserve the phenotype of SEC cultured alone. In conclusion, surface expression of CD31 is a marker of a dedifferentiated, nonfenestrated SEC. The VEGF-mediated paracrine effect of hepatocytes or stellate cells on maintenance of SEC phenotype requires autocrine production of nitric oxide by SEC.
Collapse
Affiliation(s)
- Laurie D DeLeve
- Research Center for Liver Diseases and the Division of Gastrointestinal and Liver Diseases,USC Keck School of Medicine, Div. of Gastrointestinal and Liver Diseases, 2011 Zonal Ave.-HMR 603, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
117
|
Yang ZF, Poon RT, Luo Y, Cheung CK, Ho DW, Lo CM, Fan ST. Up-regulation of vascular endothelial growth factor (VEGF) in small-for-size liver grafts enhances macrophage activities through VEGF receptor 2-dependent pathway. THE JOURNAL OF IMMUNOLOGY 2004; 173:2507-15. [PMID: 15294966 DOI: 10.4049/jimmunol.173.4.2507] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study aims to investigate the potential role of vascular endothelial growth factor (VEGF) and VEGF-R2 (fetal liver kinase (Flk)-1) in mediating macrophage activities in small-for-size liver transplantation. A rat orthotopic liver transplantation model was performed using either whole, 50, or 30% liver grafts (both 50 and 30% were regarded as small-for-size) in syngeneic or allogeneic combinations, respectively. Firstly, the mRNA and protein levels of VEGF and Flk-1 in liver grafts were detected by RT-PCR and Western blot, and the number of Flk-1(+) macrophages (labeled by ED1) was determined by flow cytometry. It was found that the small-for-size isografts and allografts presented higher levels of VEGF and Flk-1 expression than the whole isograft and allograft. In addition, a higher number of Flk-1(+)ED1(+) cells were detected in the small-for-size isografts and allografts than the whole isograft and allograft. Secondly, our study revealed that macrophage cell lines did not initially express detectable Flk-1, but could be induced by VEGF, and the inducible expression of Flk-1 in macrophages was related to their migration and proliferation activities. Finally, our study demonstrated that the induction of Flk-1 expression on macrophages by VEGF was associated with the expression of NF-kappaB and heat shock protein 90. In conclusion, the present study showed that the up-regulated expression of VEGF and its interaction with Flk-1 in small-for-size liver grafts might facilitate the activities of macrophages.
Collapse
Affiliation(s)
- Zhen Fan Yang
- Center for the Study of Liver Disease and Department of Surgery, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
118
|
Marfella R, Esposito K, Nappo F, Siniscalchi M, Sasso FC, Portoghese M, Di Marino MP, Baldi A, Cuzzocrea S, Di Filippo C, Barboso G, Baldi F, Rossi F, D'Amico M, Giugliano D. Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes. Diabetes 2004; 53:2383-91. [PMID: 15331549 DOI: 10.2337/diabetes.53.9.2383] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inadequate angiogenic response to ischemia in diabetic myocardium could result in poor collateral formation. Because hypoxia-inducible factor (HIF)-1alpha is a transcriptional activator of vascular endothelial growth factor (VEGF) and is critical for initiating angiogenic responses to hypoxia, we investigated the expression of HIF-1alpha and VEGF in specimens of human heart tissue to elucidate the molecular responses to myocardial ischemia in diabetic patients during unstable angina. Moreover, accumulation of a marker of protein nitration nitrotyrosine, as well as the superoxide anion (O(2)(-)) levels and inducible nitric oxide synthase (iNOS), were evaluated. Ventricular biopsy specimens from 15 type 2 diabetic and 14 nondiabetic patients presenting with unstable angina (ischemic group) and from 20 patients (11 type 2 diabetic and 9 nondiabetic patients) who underwent coronary bypass surgery without angina within the preceding 10 days (control group) were collected during coronary bypass surgery. Nondiabetic patients had higher HIF-1alpha and VEGF expressions compared with diabetic patients (P < 0.001). As compared with nondiabetic specimens, diabetic specimens showed higher levels of both iNOS mRNA and protein levels (P < 0.001) associated with the highest tissue levels of nitrotyrosine and O(2)(-) (P < 0.001). Diabetes is associated with increased myocardial tissue levels of iNOS, O(2)(-), and nitrotyrosine and reduced expression of myocardial angiogenesis factors during ischemia.
Collapse
Affiliation(s)
- Raffaele Marfella
- Department of Geriatrics and Metabolic Diseases, Section of Pathology, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Yao L, Yao ZM, Weng H, Zhao GP, Zhou YJ, Yu T. Effect of rat serum containing Biejiajian oral liquid on proliferation of rat hepatic stellate cells. World J Gastroenterol 2004; 10:1911-3. [PMID: 15222035 PMCID: PMC4572229 DOI: 10.3748/wjg.v10.i13.1911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: Liver fibrosis is a common pathological process of chronic liver diseases. Activation of hepatic stellate cells (HSCs) is the key issue in the occurrence of liver fibrosis. In this study, we observed the inhibitory action of rat serum containing Biejiajian oral liquid (BOL), a decoction of turtle shell, on proliferation of rat HSCs, and to explore the anti-hepatofibrotic mechanisms of BOL.
METHODS: A rat model of hepatic fibrosis was induced by subcutaneous injection of CCl4. Serum containing low, medium and high dosages of BOL was prepared respectively. Normal and fibrotic HSCs were isolated and cultured. The effect of sera containing BOL on proliferation of HSCs was determined by 3H-TdR incorporation.
RESULTS: The inhibitory rate of normal rat HSC proliferation caused by 100 mL/mL sera containing medium and high dosages of BOL showed a remarkable difference as compared with that caused by colchicine (medium dosage group: 34.56% ± 4.21% vs 29.12% ± 2.85%, P < 0.01; high dosage group: 37.82% ± 1.32% vs 29.12% ± 2.85%, P < 0.01). The inhibitory rate of fibrotic rat HSC proliferation caused by 100 mL/L serum containing medium and high dosages of BOL showed a remarkable difference as compared with that caused by colchicine (medium dosage group: 51.31% ± 3.14% vs 38.32% ± 2.65%, P < 0.01; high dosage group: 60.15% ± 5.36% vs 38.32% ± 2.65%, P < 0.01). The inhibitory rate of normal rat HSC proliferation caused by 100 mL/L and 200 mL/L sera containing a medium dosage of BOL showed a significant difference as compared with that caused by 50 mL/L (100 mL/L group: 69.02% ± 9.96% vs 50.82% ± 9.28%, P < 0.05; 200 mL/L group: 81.78% ± 8.92% vs 50.82% ± 9.28%, P < 0.01). The inhibitory rate of fibrotic rat HSC proliferation caused by 100 mL/L and 200 mL/L sera containing a medium dosage of BOL showed a significant difference as compared with that caused by 50 mL/L (100 mL/L group: 72.19% ± 10.96% vs 61.38% ± 7.16%, P < 0.05; 200 mL/L group: 87.16% ± 8.54% vs 61.38% ± 7.16%, P < 0.01).
CONCLUSION: Rat serum containing BOL can inhibit proliferation of rat HSCs, and the inhibition depends on the dosage and concentration of BOL. The inhibitory effect on HSC proliferation is one of the main anti-hepatofibrotic mechanisms of BOL.
Collapse
Affiliation(s)
- Li Yao
- Department of Pharmacology, Zhejiang College of Traditional Chinese Medicine, Hangzhou 310053, Zhejiang Province, China.
| | | | | | | | | | | |
Collapse
|
120
|
Matsumoto K, Ishikawa H, Nishimura D, Hamasaki K, Nakao K, Eguchi K. Antiangiogenic property of pigment epithelium-derived factor in hepatocellular carcinoma. Hepatology 2004; 40:252-9. [PMID: 15239109 DOI: 10.1002/hep.20259] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous antiangiogenic reagents discovered to date. Its antiangiogenic potential in neoplastic disease remains unclear. In this study, we investigated antiangiogenic property of PEDF in hepatocellular carcinoma (HCC), a typical hypervascular tumor. In HCC cell lines, constitutive messenger RNA and protein expression of PEDF varied. Genomic DNA encoding the PEDF gene was the same in the cell lines examined by Southern blotting. In chemically induced hypoxic conditions, secreted PEDF protein was suppressed in contrast to elevation of vascular endothelial growth factor protein. When PEDF was overexpressed by gene transfer, proliferation and migration of endothelial cells were inhibited in conditioned media derived from all HCC cell lines. However, the serum concentration of PEDF, as measured by enzyme-linked immunosorbent assay, was decreased in patients with cirrhosis or HCC complicated by cirrhosis compared to healthy volunteers and patients with chronic hepatitis. According to the endothelial cell proliferation assay, the serum PEDF of patients with HCC had antiangiogenic activity. Moreover, intratumoral injection of a PEDF-expressing plasmid in athymic mouse models caused significant inhibition of preestablished tumor growth. In conclusion, PEDF plays a role in the angiogenic properties of HCC. Reduction of serum PEDF concentration associated with the development of chronic liver diseases may contribute to the progression of HCC. In addition, gene therapy using PEDF may provide an efficient treatment for HCC.
Collapse
Affiliation(s)
- Kojiro Matsumoto
- First Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto, Japan
| | | | | | | | | | | |
Collapse
|
121
|
Vogten JM, Drixler TA, te Velde EA, Schipper ME, van Vroonhoven TJMV, Voest EE, Borel Rinkes IHM. Angiostatin inhibits experimental liver fibrosis in mice. Int J Colorectal Dis 2004; 19:387-94. [PMID: 14716496 DOI: 10.1007/s00384-003-0562-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2003] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Liver fibrosis is a response to chronic hepatic damage, which ultimately leads to liver failure and necessitates liver transplantation. A characteristic of fibrosis is pathological vessel growth. This type of angiogenesis may contribute to the disturbance of hepatocyte perfusion dynamics and lead to aggravation of disease. We hypothesized that angiostatin can inhibit pathological vessel growth and, consequently, the development of hepatic fibrosis. METHODS Hepatic fibrosis was induced by injection of carbon tetrachloride for 5 weeks. Angiostatin mice received carbon tetrachloride for 5 weeks and angiostatin during weeks 4 and 5. After 5 weeks, immunohistochemistry for endothelial cell marker von Willebrand factor and for cell proliferation was performed. Angiogenesis was quantified by counting the number of immunopositive microvessels. Also, the relative fibrotic surface was determined using Sirius Red histostaining and computer image analysis. RESULTS Immunohistochemistry revealed increased expression for von Willebrand factor in fibrotic livers. Immunopositive microvessels were localized in fibrotic areas surrounding larger vessels and in emerging fibrotic septa. Angiostatin reduced the number of immunopositive microvessels by 69% (p<0.001). In addition, angiostatin reduced the relative fibrotic area in the liver by 63+/-0.1% (p<0.001). Finally, angiostatin treatment was not associated with differences in cell proliferation. CONCLUSIONS Angiostatin inhibits the development of pathological angiogenesis and liver fibrosis in mice. These results warrant further evaluation of angiostatin as an antifibrotic agent, potentially contributing to the deferment of liver transplantation and reduced recurrence of fibrotic disease in the transplanted liver.
Collapse
Affiliation(s)
- J Mathys Vogten
- Department of Surgery, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
122
|
Wang YQ, Luk JM, Ikeda K, Man K, Chu AC, Kaneda K, Fan ST. Regulatory role of vHL/HIF-1alpha in hypoxia-induced VEGF production in hepatic stellate cells. Biochem Biophys Res Commun 2004; 317:358-62. [PMID: 15063765 DOI: 10.1016/j.bbrc.2004.03.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Indexed: 01/11/2023]
Abstract
Activated hepatic stellate cells (HSCs) produce cyclooxygenase-2 (COX-2) protein to induce vascular endothelial growth factor (VEGF) production that participates in angiogenesis in injured liver. To reveal the unknown regulatory mechanism, we used hypoxic atmosphere mimicking injured-tissue microenvironment to induce VEGF expression in a rat hepatic stellate cell line (T6-HSCs). The present study showed that hypoxia up-regulated the protein levels of COX-2 and hypoxia-inducible factor-1-alpha (HIF-1alpha), but rapidly effected degradation of von Hippel-Lindau (vHL) protein. As a result, expression of VEGF in HSCs was markedly elevated; and pretreatment with COX-2 inhibitors (nimesulide or indomethacin) could significantly ameliorate the angiogenic event. Collectively, hypoxic HSCs increased accumulation of HIF-1alpha protein and induced VEGF expression in a time-dependent manner. Inhibition of COX-2 activities would prevent vHL protein from degradation and suppress HIF-1alpha up-regulation. Thus, vHL/HIF-1alpha has a regulatory role in COX-2-mediated VEGF production in hypoxic stellate cells in injured liver.
Collapse
Affiliation(s)
- Yang Q Wang
- Centre for the Study of Liver Disease and Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
123
|
|
124
|
Abstract
Intrahepatic hypoxia may occur during the inflammatory and fibrotic processes that characterize several chronic liver diseases of viral and autoimmune origin. As a consequence, new vascular structures are formed to provide oxygen and nutrients. Angiogenesis involves a tightly regulated network of cellular and molecular mechanisms that result in the formation of functional vessels. Of particular importance are growth factors, molecules involved in matrix remodeling and cell migration, and vessel maturation-related factors. In recent years, a number of studies have examined the expression and function of many pro- and antiangiogenic molecules in the setting of nontumoral chronic liver diseases and liver regeneration. This review examines the potential pathogenetic role of angiogenesis in the context of viral hepatitis, cirrhosis, autoimmune hepatitis, primary biliary cirrhosis, and alcoholic liver disease. The future perspectives for research in this field are outlined.
Collapse
Affiliation(s)
- Jesús Medina
- Liver Unit, Hospital de la Princesa, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
125
|
Takimoto Y, Dixit V, Arthur M, Gitnick G. De novo liver tissue formation in rats using a novel collagen-polypropylene scaffold. Cell Transplant 2004; 12:413-21. [PMID: 12911129 DOI: 10.3727/000000003108746966] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In experimental and clinical settings hepatocyte transplantation has provided limited benefit to patients with chronic liver disease because the transplanted hepatocytes were short-lived and were merely maintained for a brief period within the body. Except for whole-liver transplantation, creation of de novo liver tissue is necessary to treat this condition on a long-term basis. The aim of this study was to facilitate the formation of new tissue by actual self-regeneration, rather than by compensatory hypertrophy, or scar formation, with our collagen-polypropylene composite scaffold. Collagen-polypropylene composite scaffolds, not containing hepatocytes, were implanted into the median liver lobe and the dynamics of new liver tissue formation was analyzed immunohistochemically over a 6-month period. Control scaffolds consisted of polypropylene scaffolds without collagen matrix. The control scaffold implants remained hollow throughout the study period and became encapsulated with a hard connective tissue capsule 1 week after implantation. In contrast, the collagen-polypropylene composite scaffold was filled with regenerating tissue structures 3 weeks after implantation. At this time, the predominant cell type within the scaffold was sesmin-positive stellate cells. A week earlier, oval cells were identified using monoclonal antibody staining (OV-6). Subsequently, these cells differentiated into alpha-fetoprotein-positive immature hepatocytes. After 6 months, mature liver tissue, juxtaposed with bile ducts and blood vessels, was seen within the polypropylene scaffolds. We report the first evidence of de novo formation of liver tissue within a polypropylene scaffold, following implantation in the liver. This scaffold may play a role in treating chronic liver diseases requiring organ replacement therapy.
Collapse
Affiliation(s)
- Yukinobu Takimoto
- University of California, Los Angeles, Department of Medicine, Division of Digestive Diseases, UCLA School of Medicine, Center for the Health Sciences, Los Angeles, CA 90095-7019, USA
| | | | | | | |
Collapse
|
126
|
Namba T, Koike H, Murakami K, Aoki M, Makino H, Hashiya N, Ogihara T, Kaneda Y, Kohno M, Morishita R. Angiogenesis induced by endothelial nitric oxide synthase gene through vascular endothelial growth factor expression in a rat hindlimb ischemia model. Circulation 2003; 108:2250-7. [PMID: 14568906 DOI: 10.1161/01.cir.0000093190.53478.78] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Because the mechanism of the angiogenic property of nitric oxide (NO) was not fully understood in vivo, we focused on the role of vascular endothelial growth factor (VEGF) in angiogenesis induced by endothelial NO synthase (eNOS) gene transfer. METHODS AND RESULTS After intramuscular injection of eNOS DNA into a rat ischemic hindlimb, transfection of eNOS vector resulted in a significant increase in eNOS protein 1 week after transfection. In addition, tissue concentrations of nitrite and nitrate were significantly increased in rats transfected with the eNOS gene up to 2 weeks after transfection. The increase in tissue nitrite and nitrate concentrations was completely inhibited by NG-nitro-L-arginine methyl ester (L-NAME). In contrast, serum concentrations of nitrite and nitrate and blood pressure were not changed by eNOS gene transfer. Importantly, overexpression of the eNOS gene resulted in a significant increase in peripheral blood flow, whereas L-NAME inhibited the increase in blood flow. Interestingly, basal blood flow was significantly lower in rats treated with L-NAME than in control rats. A significant increase in capillary number was consistently detected in rats transfected with the eNOS gene at 4 weeks after transfection, accompanied by a significant increase in VEGF. Moreover, administration of neutralizing anti-VEGF antibody abolished the increase in blood flow and capillary density induced by eNOS plasmid injection. CONCLUSIONS Overall, intramuscular injection of bovine eNOS plasmid induced therapeutic angiogenesis in a rat ischemic hindlimb model, a potential therapy for peripheral arterial disease. The stimulation of angiogenesis by NO might be due to upregulation of local VEGF expression.
Collapse
Affiliation(s)
- Tsunetatsu Namba
- Division of Clinical Gene Therapy, Osaka University Medical School, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Saab S, Tam SP, Tran BIN, Melton AC, Tangkijvanich P, Wong H, Yee HF. Myosin mediates contractile force generation by hepatic stellate cells in response to endothelin-1. J Biomed Sci 2003. [PMID: 12432226 DOI: 10.1007/bf02254988] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although endothelin-1-stimulated contractile force generation by stellate cells is believed to play an important role in hepatic pathophysiology, the molecular signals that mediate this process are incompletely understood. The aim of this study was to test the hypothesis that myosin mediates the contractile force generated by stellate cells in response to endothelin-1. Contractile force generation by primary and immortalized stellate cells was directly and quantitatively measured. Myosin phosphorylation and reorganization, and actin stress fiber formation were investigated in immortalized stellate cells. Endothelin-1 stimulated a rapid and robust generation of contractile force by primary and immortalized stellate cells with a similar dose dependence. Myosin phosphorylation, actin stress fiber assembly, and reorganization of myosin to stress fibers were induced by concentrations of endothelin-1 that also stimulated stellate cell contraction. BQ-123, a selective endothelin receptor antagonist, inhibited myosin phosphorylation and contractile force generation. Y-27632, which selectively inhibits rho-associated kinase, also blocked endothelin-1-stimulated myosin phosphorylation and contractile force generation with a similar dose dependence. These results suggest that endothelin-1-stimulated contractile force generation by stellate cells is mediated by myosin.
Collapse
Affiliation(s)
- Sammy Saab
- Department of Medicine, UCLA School of Medicine, Los Angeles, Calif 90095, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Benlloch S, Beltrán B, Moreno R, Berenguer M. [Fibrogenesis and liver transplantation]. GASTROENTEROLOGIA Y HEPATOLOGIA 2003; 26:381-95. [PMID: 12809575 DOI: 10.1016/s0210-5705(03)70375-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- S Benlloch
- Servicio de Medicina Digestiva. Hospital La Fe. Valencia. España
| | | | | | | |
Collapse
|
129
|
Mizunuma K, Ohdan H, Tashiro H, Fudaba Y, Ito H, Asahara T. Prevention of ischemia-reperfusion-induced hepatic microcirculatory disruption by inhibiting stellate cell contraction using rock inhibitor. Transplantation 2003; 75:579-86. [PMID: 12640293 DOI: 10.1097/01.tp.0000052593.16876.af] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We demonstrated that hepatic stellate cells (HSCs) isolated from rat livers exposed to warm ischemia are significantly contractile when compared with HSCs from intact rat livers. This suggests that ischemia-reperfusion (IR)-induced impairment of sinusoidal microcirculation results, at least in part, from contraction of HSCs. METHODS Rho-associated coiled-coil forming protein serine/threonine kinase (ROCK) is one of the key regulators of HSCs motility. Therefore we investigated whether Y-27632, a p160ROCK-specific inhibitor, has beneficial effects on warm IR injury in an in vivo rat partial liver IR model and a rat orthotopic liver transplantation model. RESULTS After reperfusion following 90 min of warm ischemia, livers in untreated control rats had persistent congestion and impaired mitochondrial respiration, as demonstrated by increasing deoxy-hemoglobin and reduced cytochrome oxidase contents in the hepatic tissues using in vivo near-infrared spectroscopy. Serum levels of transaminase and endothelin (ET)-1 in these rats were markedly increased 1 hr after reperfusion. In contrast, when Y-27632 (3-30 mg/kg) was administered orally, hepatic tissue contents of deoxy-hemoglobin and cytochrome oxidase rapidly normalized. In such animals, the elevation of serum transaminase levels, but not that of ET-1 levels, was significantly suppressed. This is consistent with in vitro data demonstrating that Y-27632 causes HSCs to undergo relaxation even in the presence of ET-1. Moreover, in a rat orthotopic liver transplantation model, Y-27632 pretreatment dramatically improved the survival of recipients with liver grafts subjected to 45 min of warm ischemia. CONCLUSIONS Y-27632 attenuates IR-induced hepatic microcirculation disruption by inhibiting contraction of HSCs.
Collapse
Affiliation(s)
- Kazuyuki Mizunuma
- Second Department of Surgery, Hiroshima University, Faculty of Medicine, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
130
|
Olaso E, Salado C, Egilegor E, Gutierrez V, Santisteban A, Sancho-Bru P, Friedman SL, Vidal-Vanaclocha F. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 2003; 37:674-85. [PMID: 12601365 DOI: 10.1053/jhep.2003.50068] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myofibroblasts infiltrate malignant liver tumors, although their pathogenic implications are unclear. Immunohistochemical detection of alpha-smooth muscle actin, glial fibrillary acidic protein (GFAP), and CD31 and CD34 expression was used to analyze the contribution of myofibroblasts to angiogenesis in hepatic metastasis produced by intrasplenically-injected B16 melanoma (B16M). Because activated hepatic stellate cells (HSCs) are oxygen-sensing myofibroblasts producing vascular endothelial growth factor (VEGF), the effect of B16M and human A375 melanoma supernatants on VEGF production by immortalized rat HSC line T6 and primary cultured human HSCs also was studied under an hypoxic atmosphere mimicking a tumor microenvironment. Myofibroblast infiltration preceded endothelium recruitment in avascular micrometastasis and generated specific stroma for sinusoidal-type and portal-type angiogeneses. Thereafter, myofibroblasts and endothelial cells colocalized within both angiogenic patterns and their numerical densities correlated with metastasis development. Myofibroblasts often were GFAP-positive, suggesting an HSC origin. Melanoma supernatants stimulated VEGF messenger RNA and protein synthesis by HSCs. These effects were potentiated by hypoxia. VEGF up-regulation was accompanied by increased expression of cyclooxygenase type 2 (COX-2) and PGE2 synthesis. HSC production of VEGF decreased under COX-2 inhibition, whereas it was increased by exogenous PGE2. The high VEGF expression in HSCs induced by melanoma factors and hypoxia resulted in mitogenic, antiapoptotic, and motogenic stimulation of both murine hepatic sinusoidal endothelium and human umbilical vein endothelium. In conclusion, temporal and positional relationships evolve between myofibroblast and endothelium recruitment during metastasis development. Mechanistically, hypoxic induction of VEGF in tumor-activated HSCs may create a proangiogenic microenvironment, facilitating endothelial cell recruitment and survival during hepatic metastasis transition from an avascular to a vascular stage.
Collapse
Affiliation(s)
- Elvira Olaso
- University of the Basque Country, School of Medicine and Dentistry, Bizkaia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Mizunuma K, Ohdan H, Fudaba Y, Tashiro H, Asahara T. ROCK inhibitor, Y-27632, inhibits anoxia-reoxygenation-induced contraction of hepatic stellate cells. Transplant Proc 2003; 35:111-3. [PMID: 12591329 DOI: 10.1016/s0041-1345(02)03903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- K Mizunuma
- Department of Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
132
|
Dulak J, Józkowicz A. Regulation of vascular endothelial growth factor synthesis by nitric oxide: facts and controversies. Antioxid Redox Signal 2003; 5:123-32. [PMID: 12626124 DOI: 10.1089/152308603321223612] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vascular endothelial growth factor (VEGF) is the major molecule governing angiogenesis, defined as the growth of blood vessels from vascular structure. There is abundant evidence that nitric oxide (NO) is an effector molecule mediating the activity of VEGF. By binding to its receptors, VEGF initiates the signaling cascades leading to NO production and angiogenic activation of endothelial cells. Recent data show that NO induces VEGF synthesis in numerous cell types, including vascular smooth muscle cells, macrophages, keratinocytes, and tumor cells. NO enhances VEGF production by augmenting its expression through activation of Akt kinase, followed by induction of several transcription factors, of which stabilization of hypoxia-inducible factor (HIF-1) is the critical step. With respect to its effect on VEGF expression, NO mimics hypoxia, the classical activator of HIF-1 and VEGF synthesis. The effect of NO on VEGF production is also mediated by heme oxygenase, an enzyme generating carbon monoxide, which appears to stimulate VEGF release. In this review, we attempt to elucidate the molecular mechanisms underlying the effects of NO on VEGF synthesis. We also discuss some discrepant data and suggest explanations for various aspects of the NO-VEGF relationship.
Collapse
Affiliation(s)
- Józef Dulak
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, Kraków, Poland.
| | | |
Collapse
|
133
|
Pan D, Zhe X, Jakkaraju S, Taylor GA, Schuger L. P311 induces a TGF-beta1-independent, nonfibrogenic myofibroblast phenotype. J Clin Invest 2002; 110:1349-58. [PMID: 12417574 PMCID: PMC151607 DOI: 10.1172/jci15614] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
P311, also called PTZ17, was identified by suppressive subtraction hybridization as potentially involved in smooth muscle (SM) myogenesis. P311 is an 8-kDa protein with several PEST-like motifs found in neurons and muscle. P311 transfection into two fibroblast cell lines, NIH 3T3 and C3H10 T1/2, induced phenotypic changes consistent with myofibroblast transformation, including upregulation of SM alpha-actin and SM22, induction of FGF-2, VEGF, PDGF, and PDGF receptors, upregulation of integrins alpha3 and alpha5, and increased proliferation rate. The P311-mediated changes differed, however, from the well-characterized myofibroblast in that P311 inhibited TGF-beta1, TGF-beta receptor 2, and TGF-beta1-activating MMP-2 and MMP-9, with the resultant decrease in collagen 1 and 3 expression. The effect of P311 on collagen was overcome by exogenous TGF-beta1, indicating that the cells were responsive to TGF-beta1 paracrine stimulus. In support of a role for P311 in vivo, immunohistochemical examination of human wounds showed P311 only in myofibroblasts and their activated precursors. To our knowledge, these studies are the first to implicate P311 in myofibroblast transformation, to demonstrate that transformation may occur independently of TGF-beta1, and to suggest that P311 may prevent fibrosis.
Collapse
Affiliation(s)
- Desi Pan
- Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
134
|
Pan D, Zhe X, Jakkaraju S, Taylor GA, Schuger L. P311 induces a TGF-β1–independent, nonfibrogenic myofibroblast phenotype. J Clin Invest 2002. [DOI: 10.1172/jci0215614] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
135
|
Kimura H, Ogura T, Kurashima Y, Weisz A, Esumi H. Effects of nitric oxide donors on vascular endothelial growth factor gene induction. Biochem Biophys Res Commun 2002; 296:976-82. [PMID: 12200144 DOI: 10.1016/s0006-291x(02)02029-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) has been reported to modulate the vascular endothelial growth factor (VEGF) gene by accumulating hypoxia-inducible factor-1alpha (HIF-1alpha) protein, but there is a contradiction among effects of various NO donors. The effects of NO donors including S-nitroso-N-acetyl-penicillamine (SNAP), S-nitroso-glutathione (GSNO), 1-hydroxy-2-oxo-3,3-bis(2-aminoethyl)-1-triazene (NOC18), 3-[(+/-)-(E)-ethyl-2(')-[(E)-hydroxyimino]-5-nitro-3-hexenecarbamoyl]-pyridine (NOR4), 3-morpholinosydnonimine (SIN-1), and nitroprusside (SNP) on the VEGF reporter gene were examined. SNAP, GSNO, NOC18, and NOR4 enhanced the VEGF reporter activity under normoxia and modulated the hypoxic induction. In contrast, SNP had only an inhibitory effect. An NO scavenger attenuated the reporter activation by NO donors except NOR4, but did not ameliorate the inhibitory effect of SNP. A reducing compound dithiothreitol suppressed NO-induced activation of the VEGF reporter gene. SNAP, GSNO, and NOC18 induced the accumulation of HIF-1alpha protein, while others did not. These results suggest that SNAP, GSNO, and NOC compounds are suitable for pharmacological studies in HIF-1-mediated VEGF gene activation by NO.
Collapse
Affiliation(s)
- Hideo Kimura
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
136
|
Hypoxia May Increase Rat Insulin mRNA Levels by Promoting Binding of the Polypyrimidine Tract-binding Protein (PTB) to the Pyrimidine-rich Insulin mRNA 3′-Untranslated Region. Mol Med 2002. [DOI: 10.1007/bf03402152] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
137
|
Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, Housset C, Rosmorduc O. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002; 35:1010-21. [PMID: 11981751 DOI: 10.1053/jhep.2002.32524] [Citation(s) in RCA: 369] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cirrhosis consists of hepatocyte nodules surrounded by a highly vascularized fibrous tissue. We previously showed that the development of biliary cirrhosis in the rat is associated with the occurrence of hepatocellular hypoxia and the induction of hepatic angiogenesis. We herein examined the occurrence of hypoxia in an experimental model of diethylnitrosamine (DEN)-induced cirrhosis. We also determined whether hypoxia directly affects the expression of vascular endothelial growth factor (VEGF), of VEGF receptors (Flt-1, Flk-1), and of type I and type IV collagens in activated hepatic stellate cells (HSCs) and the expression of VEGF in hepatocytes. Our results show that in DEN-treated rats, although the progression of liver fibrosis is associated with hepatocellular hypoxia and angiogenesis, VEGF and Flt-1 expressions in the liver are increased and correlated with the density of microvessels. In vitro, hypoxia induces the expression of VEGF, Flt-1, and type I collagen in activated HSCs and that of VEGF in hepatocytes. In addition, we show that hypoxia-induced type I collagen expression in HSCs may occur independently of transforming growth factor beta1 (TGF-beta1) overexpression. In conclusion, the present study provides further evidence that hepatocellular hypoxia and angiogenesis progress together with fibrogenesis after liver injury and that hypoxia directly contributes to the progression of liver fibrosis.
Collapse
Affiliation(s)
- Christophe Corpechot
- Service d'Hépatologie, the INSERM Unit 402, the Laboratoire Commun de Biologie Moléculaire, the Service d'Anatomie et de Cytologie Pathologiques, Centre Hospitalier Universitaire Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Chen PS, Zhai WR, Zhou XM, Zhang JS, Zhang YE, Ling YQ, Gu YH. Effects of hypoxia, hyperoxia on the regulation of expression and activity of matrix metalloproteinase-2 in hepatic stellate cells. World J Gastroenterol 2001; 7:647-51. [PMID: 11819847 PMCID: PMC4695567 DOI: 10.3748/wjg.v7.i5.647] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Revised: 06/06/2001] [Accepted: 06/12/2001] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effects of hypoxia, hyperoxia on the regulation of expression and activity of matrix metalloproteinase-2 (MMP-2) in hepatic stellate cells (HSC). METHODS The expressions of MMP-2, tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) and membrane type matrix metalloproteinase-1 (MT1-MMP) in cultured rat HSC were detected by immunocytochemistry (ICC) and in situ hybridization (ISH). The contents of MMP-2 and TIMP-2 in culture supernatant were detected with ELISA and the activity of MMP-2 in supernatant was revealed by zymography. RESULTS In the situation of hypoxia for 12h, the expression of MMP-2 protein was enhanced (hypoxia group positive indexes: 5.7 +/- 2.0, n=10; control: 3.2 +/- 1.0, n = 7; P<0.05), while TIMP-2 protein was decreased in HSC (hypoxia group positive indexes: 2.5 +/- 0.7, n = 10; control: 3.6 +/- 1.0, n = 7; P < 0.05), and the activity (total A) of MMP-2 in supernatant declined obviously (hypoxia group: 7.334 +/- 1.922, n = 9; control: 17.277 +/- 7.424, n = 11; P < 0.01). Compared the varied duration of hypoxia, the changes of expressions including mRNA and protein level as well as activity of MMP-2 were most notable in 6h group. The highest value(A(hypoxia)-A(control)) of the protein and the most intense signal of mRNA were in the period of hypoxia for 6h, along with the lowest activity of MMP-2. In the situation of hyperoxia for 12h, the contents (A(450)) of MMP-2 and TIMP-2 in supernatant were both higher than those in the control, especially the TIMP-2 (hyperoxia group: 0.0499 +/- 0.0144, n = 16; control: 0.0219 +/- 0.0098, n = 14; P < 0.01), and so was the activity of MMP-2 (hyperoxia group: 5.252 +/- 0.771, n = 14; control: 4.304 +/- 1.083, n = 12; P < 0.05), and the expression of MT1-MMP was increased. CONCLUSION HSC is sensitive to the oxygen, hypoxia enhances the expression of MMP-2 and the effect is more marked at the early stage; hyperoxia mainly raises the activity of MMP-2.
Collapse
Affiliation(s)
- P S Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
139
|
Kraizer Y, Mawasi N, Seagal J, Paizi M, Assy N, Spira G. Vascular endothelial growth factor and angiopoietin in liver regeneration. Biochem Biophys Res Commun 2001; 287:209-15. [PMID: 11549276 DOI: 10.1006/bbrc.2001.5548] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver architecture remodeling following partial hepatectomy (PHx) involves the formation of a complex network of liver sinusoids through which the blood flows. The present study examines the involvement of vascular endothelial growth factor (VEGF) and angiopoietin-1 (ang-1) during liver regeneration. Following PHx, VEGF and ang-1 mRNA levels increase, followed by gradual return to baseline levels. RT-PCR analysis of VEGF mRNA reveals three isoforms, VEGF120, VEGF164 and VEGF188. Of the three, VEGF188 is the predominant isoform, VEGF120 being the less abundant. Although VEGF mRNA fluctuates following PHx, the relative expression of each isoform remains the same throughout the recovery process. The level of neuropilin-1, an accessory receptor of VEGF to main receptor corresponds with that of VEGF and ang-1. We have previously demonstrated the capacity of exogenous VEGF165 to stimulate liver cell proliferation following PHx. We now report similar effect using VEGF121, further demonstrating the benefit of manipulating growth factors where such an intervention is required.
Collapse
Affiliation(s)
- Y Kraizer
- Department of Anatomy and Cell Biology, Rappaport Family Institute for Research in the Medical Sciences, Technion, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
140
|
|
141
|
Eng FJ, Friedman SL. Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex. Am J Physiol Gastrointest Liver Physiol 2000; 279:G7-G11. [PMID: 10898741 DOI: 10.1152/ajpgi.2000.279.1.g7] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic stellate cell activation is a complex process. Paradoxes and controversies include the origin(s) of hepatic stellate cells, the regulation of membrane receptor signaling and transcription, and the fate of the cells once liver injury resolves. Major themes have emerged, including the dominance of autocrine signaling and the identification of counterregulatory stimuli that oppose key features of activated cells. Advances in analytical methods including proteomics and gene array, coupled with powerful bioinformatics, promise to revolutionize how we view cellular responses. Our understanding of stellate cell activation is likely to benefit from these advances, unearthing modes of regulating cellular behavior that are not even conceivable on the basis of current paradigms.
Collapse
Affiliation(s)
- F J Eng
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|