101
|
Jaggar JH. Intravascular pressure regulates local and global Ca(2+) signaling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2001; 281:C439-48. [PMID: 11443043 DOI: 10.1152/ajpcell.2001.281.2.c439] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of intracellular Ca(2+) signals in smooth muscle cells and arterial diameter by intravascular pressure was investigated in rat cerebral arteries (approximately 150 microm) using a laser scanning confocal microscope and the fluorescent Ca(2+) indicator fluo 3. Elevation of pressure from 10 to 60 mmHg increased Ca(2+) spark frequency 2.6-fold, Ca(2+) wave frequency 1.9-fold, and global intracellular Ca(2+) concentration ([Ca(2+)](i)) 1.4-fold in smooth muscle cells, and constricted arteries. Ryanodine (10 microM), an inhibitor of ryanodine-sensitive Ca(2+) release channels, or thapsigargin (100 nM), an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, abolished sparks and waves, elevated global [Ca(2+)](i), and constricted pressurized (60 mmHg) arteries. Diltiazem (25 microM), a voltage-dependent Ca(2+) channel (VDCC) blocker, significantly reduced sparks, waves, and global [Ca(2+)](i), and dilated pressurized (60 mmHg) arteries. Steady membrane depolarization elevated Ca(2+) signaling similar to pressure and increased transient Ca(2+)-sensitive K(+) channel current frequency e-fold for approximately 7 mV, and these effects were prevented by VDCC blockers. Data are consistent with the hypothesis that pressure induces a steady membrane depolarization that activates VDCCs, leading to an elevation of spark frequency, wave frequency, and global [Ca(2+)](i). In addition, pressure induces contraction via an elevation of global [Ca(2+)](i), whereas the net effect of sparks and waves, which do not significantly contribute to global [Ca(2+)](i) in arteries pressurized to between 10 and 60 mmHg, is to oppose contraction.
Collapse
Affiliation(s)
- J H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| |
Collapse
|
102
|
Lee CH, Poburko D, Sahota P, Sandhu J, Ruehlmann DO, van Breemen C. The mechanism of phenylephrine-mediated [Ca(2+)](i) oscillations underlying tonic contraction in the rabbit inferior vena cava. J Physiol 2001; 534:641-50. [PMID: 11483697 PMCID: PMC2278727 DOI: 10.1111/j.1469-7793.2001.t01-1-00641.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. We characterized the mechanisms in vascular smooth muscle cells (VSMCs) that produce asynchronous, wave-like Ca(2+) oscillations in response to phenylephrine (PE). Confocal imaging was used to observe [Ca(2+)](i) in individual VSMCs of intact inferior vena cava (IVC) from rabbits. 2. It was found that the Ca(2+) waves were initiated by Ca(2+) release from the sarcoplasmic reticulum (SR) via inositol 1,4,5-trisphosphate-sensitive SR Ca(2+) release channels (IP(3)R channels) and that refilling of the SR Ca(2+) store through the sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase (SERCA) was required for maintained generation of the repetitive Ca(2+) waves. 3. Blockade of L-type voltage-gated Ca(2+) channels (L-type VGCCs) with nifedipine reduced the frequency of PE-stimulated [Ca(2+)](i) oscillations, while additional blockade of receptor-operated channels/store-operated channels (ROCs/SOCs) with SKF96365 abolished the remaining oscillations. Parallel force measurements showed that nifedipine inhibited PE-induced tonic contraction by 27 % while SKF96365 abolished it. This indicates that stimulated Ca(2+) entry refills the SR to support the recurrent waves of SR Ca(2+) release and that both L-type VGCCs and ROCs/SOCs contribute to this process. 4. Application of the Na(+)-Ca(2+) exchanger (NCX) inhibitors 2',4'-dichlorobenzamil (forward- and reverse-mode inhibitor) and KB-R7943 (reverse-mode inhibitor) completely abolished the nifedipine-resistant component of [Ca(2+)](i) oscillations and markedly reduced PE-induced tone. 5. Thus, we conclude that each Ca(2+) wave depends on initial SR Ca(2+) release via IP(3)R channels followed by SR Ca(2+) refilling through SERCA. Na(+) entry through ROCs/SOCs facilitates Ca(2+) entry through the NCX operating in the reverse mode, which refills the SR and maintains PE-induced [Ca(2+)](i) oscillations. In addition some Ca(2+) entry through L-type VGCCs and ROCs/SOCs serves to modulate the frequency of the oscillations and the magnitude of force development.
Collapse
Affiliation(s)
- C H Lee
- Vancouver Vascular Biology Research Center, University of British Columbia, St Paul's Hospital, Room 292, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | | | | | | | | | | |
Collapse
|
103
|
Pabelick CM, Sieck GC, Prakash YS. Invited review: significance of spatial and temporal heterogeneity of calcium transients in smooth muscle. J Appl Physiol (1985) 2001; 91:488-96. [PMID: 11408467 DOI: 10.1152/jappl.2001.91.1.488] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The multiplicity of mechanisms involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle results in both intra- and intercellular heterogeneities in [Ca(2+)](i). Heterogeneity in [Ca(2+)](i) regulation is reflected by the presence of spontaneous, localized [Ca(2+)](i) transients (Ca(2+) sparks) representing Ca(2+) release through ryanodine receptor (RyR) channels. Ca(2+) sparks display variable spatial Ca(2+) distributions with every occurrence within and across cellular regions. Individual sparks are often grouped, and fusion of sparks produces large local elevations in [Ca(2+)](i) that occasionally trigger propagating [Ca(2+)](i) waves. Ca(2+) sparks may modulate membrane potential and thus smooth muscle contractility. Sparks may also be the target of other regulatory factors in smooth muscle. Agonists induce propagating [Ca(2+)](i) oscillations that originate from foci with high spark incidence and also represent Ca(2+) release through RyR channels. With increasing agonist concentration, the peak of regional [Ca(2+)](i) oscillations remains relatively constant, whereas both frequency and propagation velocity increase. In contrast, the global cellular response appears as a concentration-dependent increase in peak as well as mean cellular [Ca(2+)](i), representing a spatial and temporal integration of the oscillations. The significance of agonist-induced [Ca(2+)](i) oscillations lies in the establishment of a global [Ca(2+)](i) level for slower Ca(2+)-dependent physiological processes.
Collapse
Affiliation(s)
- C M Pabelick
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
104
|
Tanaka H, Takamatsu T. Calcium spots: elementary signals in response to mechanical stress in vascular endothelial cells. Circ Res 2001; 88:852-4. [PMID: 11348991 DOI: 10.1161/hh0901.091207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
105
|
Zang WJ, Balke CW, Wier WG. Graded alpha1-adrenoceptor activation of arteries involves recruitment of smooth muscle cells to produce 'all or none' Ca(2+) signals. Cell Calcium 2001; 29:327-34. [PMID: 11292389 DOI: 10.1054/ceca.2000.0193] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Confocal laser scanning microscopy and Fluo-4 were used to visualize Ca(2+) transients within individual smooth muscle cells (SMC) of rat resistance arteries during alpha(1)-adrenoceptor activation. The typical spatio-temporal pattern of [Ca(2+)] in an artery after exposure to a maximally effective concentration of phenylephrine (PE, 10.0 microM) was a large, brief, relatively homogeneous Ca(2+) transient, followed by Ca(2+) waves, which then declined in frequency over the course of 5 min and which were asynchronous in different SMC. Concentration-Effect (CE) curves relating the concentration of PE (range: 0.1 microM to 10.0 microM) to the effects (fraction of cells producing at least one Ca(2+) wave, and number of Ca(2+) waves during 5 min) had EC(50) values of approximately 0.5 microM and approximately 1.0 microM respectively. The initial Ca(2+) transient and the subsequent Ca(2+) waves were abolished in the presence of caffeine (10.0 mM). A repeated exposure to PE, 1.5 min after the first had ended, elicited fewer Ca(2+) waves in fewer cells than did the initial exposure. Caffeine-sensitive Ca(2+) stores were not depleted at this time, however, as caffeine alone was capable of inducing a large release of Ca(2+)1.5 min after PE. In summary, the mechanism of a graded response to graded alpha(1)-adrenoceptor activation is the progressive 'recruitment' of individual SMC, which then respond in 'all or none' fashion (viz. asynchronous Ca(2+) waves). Ca(2+) signaling continues in the arterial wall throughout the time-course (at least 5 min) of activation of alpha(1)-adrenoceptors. The fact that the Ca(2+) waves are asynchronous accounts for the previously reported fall in 'arterial wall [Ca(2+)]' (i.e. spatial average [Ca(2+)] over all cells).
Collapse
MESH Headings
- Adrenergic alpha-Agonists/metabolism
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Arteries/physiology
- Caffeine/pharmacology
- Calcium Signaling/physiology
- Dose-Response Relationship, Drug
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Phenylephrine/metabolism
- Phenylephrine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/metabolism
Collapse
Affiliation(s)
- W J Zang
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore St. Baltimore, MD 21201, USA
| | | | | |
Collapse
|
106
|
Mauban JR, Lamont C, Balke CW, Wier WG. Adrenergic stimulation of rat resistance arteries affects Ca(2+) sparks, Ca(2+) waves, and Ca(2+) oscillations. Am J Physiol Heart Circ Physiol 2001; 280:H2399-405. [PMID: 11299247 DOI: 10.1152/ajpheart.2001.280.5.h2399] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Confocal laser scanning microscopy and fluo 4 were used to visualize local and whole cell Ca(2+) transients within individual smooth muscle cells (SMC) of intact, pressurized rat mesenteric small arteries during activation of alpha1-adrenoceptors. A method was developed to record the Ca(2+) transients within individual SMC during the changes in arterial diameter. Three distinct types of "Ca(2+) signals" were influenced by adrenergic activation (agonist: phenylephrine). First, asynchronous Ca(2+) transients were elicited by low levels of adrenergic stimulation. These propagated from a point of origin and then filled the cell. Second, synchronous, spatially uniform Ca(2+) transients, not reported previously, occurred at higher levels of adrenergic stimulation and continued for long periods during oscillatory vasomotion. Finally, Ca(2+) sparks slowly decreased in frequency of occurrence during exposure to adrenergic agonists. Thus adrenergic activation causes a decrease in the frequency of Ca(2+) sparks and an increase in the frequency of asynchronous wavelike Ca(2+) transients, both of which should tend to decrease arterial diameter. Oscillatory vasomotion is associated with spatially uniform synchronous oscillations of cellular [Ca(2+)] and may have a different mechanism than the asynchronous, propagating Ca(2+) transients.
Collapse
Affiliation(s)
- J R Mauban
- Department of Physiology and Division of Cardiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
107
|
Abstract
Vasomotion is the regular variation in tone of arteries. In our study, we suggest a model for the initiation of vasomotion. We suggest that intermittent release of Ca(2+) from the sarcoplasmic reticulum (SR, cytosolic oscillator), which is initially unsynchronized between the vascular smooth muscle cells, becomes synchronized to initiate vasomotion. The synchronization is achieved by an ion current over the cell membrane, which is activated by the oscillating Ca(2+) release. This current results in an oscillating membrane potential, which synchronizes the SR in the vessel wall and starts vasomotion. Therefore, the pacemaker of the vascular wall can be envisaged as a diffuse array of individual cytosolic oscillators that become entrained by a reciprocal interaction with the cell membrane. The model is supported by experimental data. Confocal [Ca(2+)](i) imaging and isometric force development in isolated rat resistance arteries showed that low norepinephrine concentrations induced SR-dependent unsynchronized waves of Ca(2+) in the vascular smooth muscle. In the presence of the endothelium, the waves converted to global synchronized oscillations of [Ca(2+)](i) after some time, and vasomotion appeared. Synchronization was also seen in the absence of endothelium if 8-bromo-cGMP was added to the bath. Using the patch-clamp technique and microelectrodes, we showed that Ca(2+) release can activate an inward current in isolated smooth muscle cells from the arteries and cause depolarization. These electrophysiological effects of Ca(2+) release were cGMP dependent, which is consistent with the possibility that they are important for the cGMP-dependent synchronization. Further support for the model is the observation that a short-lasting current pulse can initiate vasomotion in an unsynchronized artery as expected from the model.
Collapse
Affiliation(s)
- H Peng
- Department of Physiology and Danish Biomembrane Research Centre, Aarhus University, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
108
|
Dreja K, Nordström I, Hellstrand P. Rat arterial smooth muscle devoid of ryanodine receptor function: effects on cellular Ca(2+) handling. Br J Pharmacol 2001; 132:1957-66. [PMID: 11309269 PMCID: PMC1572725 DOI: 10.1038/sj.bjp.0703986] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Accepted: 01/25/2001] [Indexed: 11/08/2022] Open
Abstract
The roles of intracellular Ca(2+) stores and ryanodine (Ry) receptors for vascular Ca(2+) homeostasis and viability were investigated in rat tail arterial segments kept in organ culture with Ry (10 - 100 microM) for up to 4 days. Acute exposure to Ry or the non-deactivating ryanodine analogue C(10)-O(eq) glycyl ryanodine (10 microM) eliminated Ca(2+) release responses to caffeine (20 mM) and noradrenaline (NA, 10 microM), whereas responses to NA, but not caffeine, gradually returned to normal within 4 days of exposure to RY: Ry receptor protein was detected on Western blots in arteries cultured either with or without RY: Brief Ca(2+) release events (sparks) were absent after culture with Ry, whereas Ca(2+) waves still occurred. The propagation velocity of waves was equal ( approximately 19 microm s(-1)) in tissue cultured either with or without RY: Inhibition of Ca(2+) accumulation into the sarcoplasmic reticulum (SR) by culture with caffeine (5 mM), cyclopiazonic acid or thapsigargin (both 10 microM) decreased contractility due to Ca(2+)-induced cell damage. In contrast, culture with Ry did not affect contractility. Removal of Ca(2+) from the cytosol following a Ca(2+) load was retarded after Ry culture. Thapsigargin reduced the rate of Ca(2+) removal in control cultured rings, but had no effect after Ry culture. It is concluded that intracellular Ca(2+) stores recover during chronic Ry treatment, while Ry receptors remain non-functional. Ry receptor activity is required for Ca(2+) sparks and for SR-dependent recovery from a Ca(2+) load, but not for Ca(2+) waves or basal Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Karl Dreja
- Department of Physiological Sciences, Lund University, Lund, Sweden
| | - Ina Nordström
- Department of Physiological Sciences, Lund University, Lund, Sweden
| | - Per Hellstrand
- Department of Physiological Sciences, Lund University, Lund, Sweden
| |
Collapse
|
109
|
Schuster A, Oishi H, Bény JL, Stergiopulos N, Meister JJ. Simultaneous arterial calcium dynamics and diameter measurements: application to myoendothelial communication. Am J Physiol Heart Circ Physiol 2001; 280:H1088-96. [PMID: 11179051 DOI: 10.1152/ajpheart.2001.280.3.h1088] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of the present study was to analyze the intercellular calcium communication between smooth muscle cells (SMCs) and endothelial cells (ECs) by simultaneously monitoring artery diameter and intracellular calcium concentration in a rat mesenteric arterial segment in vitro under physiological pressure (50 mmHg) and flow (50 microl/min) in a specially developed system. Intracellular calcium was expressed as the fura 2 ratio. The diameter was measured using a digital image acquisition system. Stimulation of SMCs with the alpha(1)-agonist phenylephrine (PE) caused not only an increase in the free intracellular calcium concentration of the SMCs as expected but also in the ECs, suggesting a calcium flux from the SMCs to the ECs. The gap junction uncoupler palmitoleic acid greatly reduced this increase in calcium in the ECs on stimulation of the SMCs with PE. This indicates that the signaling pathway passes through the gap junctions. Similarly, although vasomotion originates in the SMCs, calcium oscillates in both SMCs and ECs during vasomotion, suggesting again a calcium flux from the SMCs to the ECs.
Collapse
Affiliation(s)
- A Schuster
- Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
110
|
Wang Y, Chen J, Wang Y, Taylor CW, Hirata Y, Hagiwara H, Mikoshiba K, Toyo-oka T, Omata M, Sakaki Y. Crucial role of type 1, but not type 3, inositol 1,4,5-trisphosphate (IP(3)) receptors in IP(3)-induced Ca(2+) release, capacitative Ca(2+) entry, and proliferation of A7r5 vascular smooth muscle cells. Circ Res 2001; 88:202-9. [PMID: 11157673 DOI: 10.1161/01.res.88.2.202] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stimulation of G protein- or tyrosine kinase-coupled receptors regulates cell proliferation through intracellular Ca(2+) ([Ca(2+)](i)) signaling. In A7r5 cells, we confirmed that inositol 1,4,5-trisphosphate (IP(3)) mediates vasopressin (VP)-evoked Ca(2+) release from intracellular stores and showed that types 1 (IP(3)R(1)) and 3 (IP(3)R(3)) IP(3) receptors were expressed. Using antisera selective for IP(3)R(1) or IP(3)R(3) and another that interacted equally well with both subtypes, together with membranes from SF:9 cells expressing only single IP(3)R subtypes to calibrate immunoblotting, we established that A7r5 cells express 81% IP(3)R(1) and 19% IP(3)R(3). To elucidate the contributions of IP(3)R(1) and IP(3)R(3) to Ca(2+) signaling and proliferation, stable clones expressing promoter-inducible antisense cDNA fragments (-90 to +9) corresponding to the two IP(3)R subtypes were selected. Mild inhibition of IP(3)R(1) (71+/-8% of control level) slightly attenuated the IP(3)-evoked Ca(2+) release (IICR) induced by VP but significantly decreased the subsequent capacitative Ca(2+) entry (CCE) and proliferation. Moderate inhibition (34+/-6%) strongly decreased both IICR and CCE and further blocked proliferation. Complete inhibition almost abolished IICR and CCE and arrested proliferation entirely. Complete inhibition of IP(3)R(3) expression slightly attenuated IICR without affecting CCE or proliferation. In cells microinjected with a low dose of heparin, VP-induced CCE was more susceptible than IICR to mild inhibition of both IP(3)R(1) and IP(3)R(3). A high dose of heparin had a similar effect to complete inhibition of IP(3)R(1) expression: it blocked VP-evoked IICR entirely and CCE by 90%. We conclude that IP(3)R(1), but not IP(3)R(3), is crucial for IICR, CCE, and proliferation of vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Division/drug effects
- Cell Line
- Clone Cells/cytology
- Clone Cells/drug effects
- Clone Cells/metabolism
- Dose-Response Relationship, Drug
- Heparin/administration & dosage
- Immunoblotting
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Microinjections
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Vasopressins/metabolism
- Vasopressins/pharmacology
Collapse
Affiliation(s)
- Y Wang
- Human Genome Center, Second Department of Internal Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
The control and maintenance of vascular tone is due to a balance between vasoconstrictor and vasodilator pathways. Vasomotor responses to neural, metabolic and physical factors vary between vessels in different vascular beds, as well as along the same bed, particularly as vessels become smaller. These differences result from variation in the composition of neurotransmitters released by perivascular nerves, variation in the array and activation of receptor subtypes expressed in different vascular beds and variation in the signal transduction pathways activated in either the vascular smooth muscle or endothelial cells. As the study of vasomotor responses often requires pre-existing tone, some of the reported heterogeneity in the relative contributions of different vasodilator mechanisms may be compounded by different experimental conditions. Biochemical variations, such as the expression of ion channels, connexin subtypes and other important components of second messenger cascades, have been documented in the smooth muscle and endothelial cells in different parts of the body. Anatomical variations, in the presence and prevalence of gap junctions between smooth muscle cells, between endothelial cells and at myoendothelial gap junctions, between the two cell layers, have also been described. These factors will contribute further to the heterogeneity in local and conducted responses.
Collapse
Affiliation(s)
- C E Hill
- Autonomic Synapse Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 0200 ACT, Australia.
| | | | | |
Collapse
|
112
|
Jaggar JH, Nelson MT. Differential regulation of Ca(2+) sparks and Ca(2+) waves by UTP in rat cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2000; 279:C1528-39. [PMID: 11029300 DOI: 10.1152/ajpcell.2000.279.5.c1528] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uridine 5'-triphosphate (UTP), a potent vasoconstrictor that activates phospholipase C, shifted Ca(2+) signaling from sparks to waves in the smooth muscle cells of rat cerebral arteries. UTP decreased the frequency of Ca(2+) sparks and transient Ca(2+)-activated K(+) (K(Ca)) currents and increased the frequency of Ca(2+) waves. The UTP-induced reduction in Ca(2+) spark frequency did not reflect a decrease in global cytoplasmic Ca(2+), Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCC), or Ca(2+) load of the sarcoplasmic reticulum (SR), since global Ca(2+) was elevated, blocking VDCC did not prevent the effect, and SR Ca(2+) load did not decrease. However, blocking protein kinase C (PKC) with bisindolylmaleimide I did prevent UTP reduction of Ca(2+) sparks and transient K(Ca) currents. UTP decreased the effectiveness of caffeine, which increases the Ca(2+) sensitivity of ryanodine-sensitive Ca(2+) release (RyR) channels, to activate transient K(Ca) currents. This work supports the concept that vasoconstrictors shift Ca(2+) signaling modalities from Ca(2+) sparks to Ca(2+) waves through the concerted actions of PKC on the Ca(2+) sensitivity of RyR channels, which cause Ca(2+) sparks, and of inositol trisphosphate (IP(3)) on IP(3) receptors to generate Ca(2+) waves.
Collapse
Affiliation(s)
- J H Jaggar
- Department of Pharmacology, the University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
113
|
Abstract
The rabbit inferior vena cava (IVC) is a large-capacitance vessel that displays typical contractile dose-response curves for caffeine and phenylephrine (PE). Using confocal microscopy on the endothelium-denuded IVC, we undertook experiments to correlate these whole-tissue contractile dose-response curves with changes in subcellular [Ca(2+)](i) signals in the in situ vascular smooth muscle cells (VSMCs). We observed that both caffeine and PE initially elicited Ca(2+) waves in individual VSMCs. The [Ca(2+)](i) in cells challenged with caffeine subsequently returned to baseline whereas the [Ca(2+)](i) in cells challenged with PE exhibited repetitive asynchronous Ca(2+) waves. These [Ca(2+)](i) oscillations were related to Ca(2+) release from the sarcoplasmic reticulum as they were inhibited by ryanodine and caffeine. The lack of synchronicity of the [Ca(2+)](i) oscillations between VSMCs can explain the observed tonic contraction at the whole-tissue level. The nature of these Ca(2+) waves was further characterized. For caffeine, the amplitude was all-or-none in nature, with individual cells differing in sensitivity, leading to their recruitment at different concentrations of the agonist. This concentration dependency of recruitment appears to form the basis for the concentration dependency of caffeine-induced contraction. Furthermore, the speed of the Ca(2+) waves correlated positively with the concentration of caffeine. In the case of PE, we observed the same characteristics with respect to wave speed, amplitude, and recruitment. Increasing concentrations of PE also enhance the frequency of the [Ca(2+)](i) oscillations. We therefore conclude that PE stimulates whole-tissue contractility through differential recruitment of VSMCs and enhancement of the frequency of asynchronous [Ca(2+)](i) oscillations once the cells are recruited.
Collapse
Affiliation(s)
- D O Ruehlmann
- Vancouver Vascular Biology Research Centre, University of British Columbia, St. Paul's Hospital, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
114
|
Prakash YS, Pabelick CM, Kannan MS, Sieck GC. Spatial and temporal aspects of ACh-induced [Ca2+]i oscillations in porcine tracheal smooth muscle. Cell Calcium 2000; 27:153-62. [PMID: 11007128 DOI: 10.1054/ceca.1999.0106] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study evaluated the relationship between regional elevation in intracellular calcium concentration ([Ca2+]i) induced by acetylcholine (ACh) and the global cellular responses in porcine tracheal smooth muscle (TSM) cells. Regional (approximately 1.5 microm3) and global (whole cell) changes in [Ca2+]i were measured in fluo-3 loaded TSM cells using real-time confocal microscopy. Regional responses appeared as propagating [Ca2+]i oscillations whereas global responses reflected the spatiotemporal integration of these regional responses. Within a region, [Ca2+]i oscillations were 'biphasic' with initial higher frequencies, followed by slower steady-state oscillations. With increasing ACh concentration, the peak (maximum value relative to 0 nM) of regional [Ca2+]i oscillations remained relatively constant, whereas both frequency and propagation velocity increased. In contrast, the global spatiotemporal integration of the regional oscillatory responses appeared as a concentration-dependent increase in peak as well as mean cellular [Ca2+]i. We conclude that the significance of ACh-induced [Ca2+]i oscillations lies in the establishment of mean [Ca2+]i level for slower Ca2+-dependent physiological processes via modulation of oscillation frequency and propagation velocity.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
115
|
Abstract
Local intracellular Ca(2+) transients, termed Ca(2+) sparks, are caused by the coordinated opening of a cluster of ryanodine-sensitive Ca(2+) release channels in the sarcoplasmic reticulum of smooth muscle cells. Ca(2+) sparks are activated by Ca(2+) entry through dihydropyridine-sensitive voltage-dependent Ca(2+) channels, although the precise mechanisms of communication of Ca(2+) entry to Ca(2+) spark activation are not clear in smooth muscle. Ca(2+) sparks act as a positive-feedback element to increase smooth muscle contractility, directly by contributing to the global cytoplasmic Ca(2+) concentration ([Ca(2+)]) and indirectly by increasing Ca(2+) entry through membrane potential depolarization, caused by activation of Ca(2+) spark-activated Cl(-) channels. Ca(2+) sparks also have a profound negative-feedback effect on contractility by decreasing Ca(2+) entry through membrane potential hyperpolarization, caused by activation of large-conductance, Ca(2+)-sensitive K(+) channels. In this review, the roles of Ca(2+) sparks in positive- and negative-feedback regulation of smooth muscle function are explored. We also propose that frequency and amplitude modulation of Ca(2+) sparks by contractile and relaxant agents is an important mechanism to regulate smooth muscle function.
Collapse
Affiliation(s)
- J H Jaggar
- Department of Pharmacology, College of Medicine, The University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
116
|
Iino M. Molecular basis of spatio-temporal dynamics in inositol 1,4,5-trisphosphate-mediated Ca2+ signalling. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 82:15-20. [PMID: 10874583 DOI: 10.1254/jjp.82.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signalling regulates many important cell functions, and the spatio-temporal dynamics of the Ca2+ signalling is a crucial factor for its versatility. The molecular mechanisms that control Ca2+ signalling are now being investigated, and I here describe the subtypes of IP3 receptors that have distinct functional properties and contribute to the diversity of Ca2+ signalling patterns. I also discuss the spatio-temporal dynamics of intracellular IP3 concentration, describing recent methodological advances in monitoring intracellular IP3 concentration. These findings highlight the potential importance of the spatio-temporal information of any signalling molecule.
Collapse
Affiliation(s)
- M Iino
- Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Japan
| |
Collapse
|
117
|
Griffith TM, Edwards DH. Integration of non-linear cellular mechanisms regulating microvascular perfusion. Proc Inst Mech Eng H 1999; 213:369-83. [PMID: 10581964 DOI: 10.1243/0954411991534988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is becoming increasingly evident that interactions between the different cell types present in the vessel wall and the physical forces that result from blood flow are highly complex. This short article will review evidence that irregular fluctuations in vascular resistance are generated by non-linearity in the control mechanisms intrinsic to the smooth muscle cell and can be classified as chaotic. Non-linear systems theory has provided insights into the mechanisms involved at the cellular level by allowing the identification of dominant control variables and the construction of one-dimensional iterative maps to model vascular dynamics. Experiments with novel peptide inhibitors of gap junctions have shown that the coordination of aggregate responses depends on direct intercellular communication. The sensitivity of chaotic trajectories to perturbation may nevertheless generate a high degree of variability in the response to pharmacological interventions and altered perfusion conditions.
Collapse
Affiliation(s)
- T M Griffith
- Department of Diagnostic Radiology, University of Wales College of Medicine, Cardiff, UK
| | | |
Collapse
|
118
|
Asada Y, Yamazawa T, Hirose K, Takasaka T, Iino M. Dynamic Ca2+ signalling in rat arterial smooth muscle cells under the control of local renin-angiotensin system. J Physiol 1999; 521 Pt 2:497-505. [PMID: 10581318 PMCID: PMC2269666 DOI: 10.1111/j.1469-7793.1999.00497.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. We visualized the changes in intracellular Ca2+ concentration ([Ca2+]i), using fluo-3 as an indicator, in individual smooth muscle cells within intact rat tail artery preparations. 2. On average in about 45 % of the vascular smooth muscle cells we found spontaneous Ca2+ waves and oscillations ( approximately 0.13 Hz), which we refer to here as Ca2+ ripples because the peak amplitude of [Ca2+]i was about one-seventh of that of Ca2+ oscillations evoked by noradrenaline. 3. We also found another pattern of spontaneous Ca2+ transients often in groups of two to three cells. They were rarely observed and are referred to as Ca2+ flashes because their peak amplitude was nearly twice as large as that in noradrenaline-evoked responses. 4. Sympathetic nerve activity was not considered responsible for the Ca2+ ripples, and they were abolished by inhibitors of either the Ca2+ pump in the sarcoplasmic reticulum (cyclopiazonic acid) or phospholipase C (U-73122). 5. Both angiotensin antagonists ([Sar1,Ile8]-angiotensin II and losartan) and an angiotensin converting enzyme inhibitor (captopril) inhibited the Ca2+ ripples. 6. The extracellular Ca2+-dependent tension borne by unstimulated arterial rings was reduced by the angiotensin antagonist by approximately 50 %. 7. These results indicate that the Ca2+ ripples are generated via inositol 1,4, 5-trisphosphate-induced Ca2+ release from the intracellular Ca2+ stores in response to locally produced angiotensin II, which contributes to the maintenance of vascular tone.
Collapse
Affiliation(s)
- Y Asada
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
119
|
Parthimos D, Edwards DH, Griffith TM. Minimal model of arterial chaos generated by coupled intracellular and membrane Ca2+ oscillators. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1119-44. [PMID: 10484436 DOI: 10.1152/ajpheart.1999.277.3.h1119] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a mathematical model of arterial vasomotion in which irregular rhythmic activity is generated by the nonlinear interaction of intracellular and membrane oscillators that depend on cyclic release of Ca2+ from internal stores and cyclic influx of extracellular Ca2+, respectively. Four key control variables were selected on the basis of the pharmacological characteristics of histamine-induced vasomotion in rabbit ear arteries: Ca2+ concentration in the cytosol, Ca2+ concentration in ryanodine-sensitive stores, cell membrane potential, and the open state probability of Ca2+-activated K+ channels. Although not represented by independent dynamic variables, the model also incorporates Na+/Ca2+ exchange, the Na+-K+-ATPase, Cl- fluxes, and Ca2+ efflux via the extrusion ATPase. Simulations reproduce a wide spectrum of experimental observations, including 1) the effects of interventions that modulate the functionality of Ca2+ stores and membrane ion channels, 2) paradoxes such as the apparently unpredictable dual action of Ca2+ antagonists and low extracellular Na+ concentration, which can abolish vasomotion or promote the appearance of large-amplitude oscillations, and 3) period-doubling, quasiperiodic, and intermittent routes to chaos. Nonlinearity is essential to explain these diverse patterns of experimental vascular response.
Collapse
Affiliation(s)
- D Parthimos
- Department of Diagnostic Radiology, Cardiovascular Sciences Research Group, University of Wales College of Medicine, Cardiff CF4 4XN, United Kingdom
| | | | | |
Collapse
|
120
|
Maruya J, Norota I, Takemura S, Kayama T, Sato M, Endoh M. Differential regulation of intracellular Ca2+ signalling induced by high K+ and endothelin-1 in single smooth muscle cells of intact canine basilar artery: detection by means of confocal laser microscopy. Life Sci 1999; 64:995-1004. [PMID: 10210282 DOI: 10.1016/s0024-3205(99)00026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Changes in intracellular calcium concentration ([Ca2+]i) in smooth muscle cells play the key role in regulation of vascular smooth muscle tone and pathogenesis of cerebral vasospasm. In this study, we adopted the confocal laser microscopy to detect the fluorescence signals arising from the individual smooth muscle cells of canine basilar artery. Ring preparations were made, loaded with fluo-3 and changes in fluorescence induced by high K+ and endothelin-1 (ET-1) were measured by confocal laser microscopy. In some unstimulated smooth muscle cells Ca2+ waves arising from discrete region of the cell propagated to the whole cell with a velocity of approximately 10 microm/s. High K+ (80 mmol/L) induced a rapid rise in [Ca2+]i, the peak level being consistently reached approximately 10 s after stimulation. In contrast, the time to peak level of [Ca2+]i induced by ET-1 (0.3 micromol/L) varied widely between 13 and 26 s among individual cells, an indication that the extent of nonuniform coordination of increases in [Ca2+]i in individual cells may be partly responsible for the different time courses of tension development of vascular smooth muscle in response to the vasoactive stimulants. The increase in [Ca2+]i induced by ET-1 was transient but a pronounced and sustained contraction developed further in response to ET-1. Thus ET-1 has a biological property as a potential candidate to elicit cerebral vasospasm. Confocal laser microscopy could be a useful tool to measure the changes in [Ca2+]i in individual smooth muscle cells of cerebral artery.
Collapse
Affiliation(s)
- J Maruya
- Department of Pharmacology, Yamagata University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
121
|
Shimamura K, Sekiguchi F, Sunano S. Tension oscillation in arteries and its abnormality in hypertensive animals. Clin Exp Pharmacol Physiol 1999; 26:275-84. [PMID: 10225137 DOI: 10.1046/j.1440-1681.1999.03030.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The mechanisms of oscillatory contraction of arterial smooth muscle in vitro are discussed. 2. The membrane potential and cytoplasmic free Ca2+ concentration in smooth muscle cells oscillate in the presence of agonists. 3. The oscillatory change in the membrane potential of smooth muscle cells is related to Ca2+ release from intracellular stores. 4. Gap junctions between smooth muscle cells play important roles in the synchronized oscillation of the cytoplasmic free Ca2+ concentration in this population of cells. 5. Endothelial cells may increase or decrease the tension oscillation of smooth muscle cells. 6. In arteries from hypertensive rats, an increase in membrane excitability and the number of gap junctions between smooth muscle cells and impaired endothelial function are the main factors responsible for the modulation of tension oscillation.
Collapse
Affiliation(s)
- K Shimamura
- Research Institute of Hypertension, Kinki University, Osaka, Japan.
| | | | | |
Collapse
|
122
|
Pabelick CM, Prakash YS, Kannan MS, Jones KA, Warner DO, Sieck GC. Effect of halothane on intracellular calcium oscillations in porcine tracheal smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L81-9. [PMID: 9887059 DOI: 10.1152/ajplung.1999.276.1.l81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of halothane on intracellular Ca2+ concentration ([Ca2+]i) regulation in porcine tracheal smooth muscle cells was examined with real-time confocal microscopy. Both 1 and 2 minimum alveolar concentration (MAC) halothane increased basal [Ca2+]i when Ca2+ influx and efflux were blocked, suggesting increased sarcoplasmic reticulum (SR) Ca2+ leak and/or decreased reuptake. In beta-escin-permeabilized cells, heparin inhibition of inositol 1,4, 5-trisphosphate-receptor channels blunted the halothane-induced increase in [Ca2+]i. Both 1 and 2 MAC halothane decreased the frequency and amplitude of ACh-induced [Ca2+]i oscillations (which represent SR Ca2+ release through ryanodine-receptor channels), abolishing oscillations in approximately 20% of tracheal smooth muscle cells at 2 MAC. When Ca2+ influx and efflux were blocked, halothane increased the baseline and decreased the frequency and amplitude of [Ca2+]i oscillations, inhibiting oscillations in approximately 70% of cells at 2 MAC. The fall time of [Ca2+]i oscillations and the rate of fall of the [Ca2+]i response to caffeine were both increased by halothane. These results suggest that halothane abolishes agonist-induced [Ca2+]i oscillations by 1) depleting SR Ca2+ via increased Ca2+ leak through inositol 1,4, 5-trisphosphate-receptor channels, 2) decreasing Ca2+ release through ryanodine-receptor channels, and 3) inhibiting reuptake.
Collapse
Affiliation(s)
- C M Pabelick
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
123
|
Iino M. Dynamic regulation of intracellular calcium signals through calcium release channels. Mol Cell Biochem 1999; 190:185-90. [PMID: 10098986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
After the seminal work of Ebashi and coworkers which established the essential role of the intracellular Ca2+ concentration ([Ca2+]i) in the regulation of skeletal muscle contraction, we have witnessed an explosive elongation of the list of cell functions that are controlled by the [Ca2+]i. In numerous instances, release of intracellular Ca2+ stores plays important roles in Ca2+ signalling which displays significant variation in spatio-temporal pattern. There are two families of Ca2+ release channels, ryanodine receptors and inositol 1,4,5-trisphosphate (IP3) receptors. These Ca2+ release channels are structurally and functionally similar. In particular, the activity of both types of channels is regulated by the [Ca2+]i. The [Ca2+]i dependence of the Ca2+ release channel activity provides both types of channels with properties of a Ca2+ signal amplifier. This function of the ryanodine receptor is important in striated muscle excitation-contraction coupling, whereas that of the IP3 receptor seems to be the basis of the generation of Ca2+ waves. Thus the wide variety of Ca2+ signalling patterns seem to be critically dependent on the [Ca2+]i dependence of the Ca2+ release channels.
Collapse
Affiliation(s)
- M Iino
- Department of Pharmacology, Faculty of Medicine, The University of Tokyo, Japan
| |
Collapse
|
124
|
Gollasch M, Wellman GC, Knot HJ, Jaggar JH, Damon DH, Bonev AD, Nelson MT. Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events. Circ Res 1998; 83:1104-14. [PMID: 9831705 DOI: 10.1161/01.res.83.11.1104] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca2+ release through ryanodine receptors (RyRs) in the sarcoplasmic reticulum is a key element of excitation-contraction coupling in muscle. In arterial smooth muscle, Ca2+ release through RyRs activates Ca2+-sensitive K+ (KCa) channels to oppose vasoconstriction. Local Ca2+ transients ("Ca2+ sparks"), apparently caused by opening of clustered RyRs, have been observed in smooth and striated muscle. We explored the fundamental issue of whether RyRs generate Ca2+ sparks to regulate arterial smooth muscle tone by examining the function of RyRs during ontogeny of arteries in the brain. In the present study, Ca2+ sparks were measured using the fluorescent Ca2+ indicator fluo-3 combined with laser scanning confocal microscopy. Diameter and arterial wall [Ca2+] measurements obtained from isolated pressurized arteries were also used in this study to provide functional insights. Neonatal arteries (<1 day postnatal), although still proliferative, have the molecular components for excitation-contraction coupling, including functional voltage-dependent Ca2+ channels, RyRs, and KCa channels and also constrict to elevations in intravascular pressure. Despite having functional RyRs, Ca2+ spark frequency in intact neonatal arteries was approximately 1/100 of adult arteries. In marked contrast to adult arteries, neonatal arteries did not respond to inhibitors of RyRs and KCa channels. These results support the hypothesis that RyRs organize during postnatal development to cause Ca2+ sparks, and RyRs must generate Ca2+ sparks to regulate the function of the intact tissue.
Collapse
Affiliation(s)
- M Gollasch
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Muraki K, Imaizumi Y, Watanabe M. Effects of UTP on membrane current and potential in rat aortic myocytes. Eur J Pharmacol 1998; 360:239-47. [PMID: 9851591 DOI: 10.1016/s0014-2999(98)00674-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The electrophysiological effects of UTP on freshly isolated rat aortic myocytes were examined using the perforated patch clamp technique. Application of alpha,beta-methylene ATP (alphabeta-meATP) and UTP, putative P2X and P2Y2 or P2Y4 purinoceptor agonists, induced transient and oscillatory inward currents, respectively. Experiments with Cl- channel blockers and different external Cl- concentrations demonstrated that the oscillatory current elicited by UTP is attributable to activation of Cl- channels. The transient component elicited by (alphabeta-meATP appeared to be responsible for a non-selective cationic current. With internal application of low-molecular-weight heparin, a blocker of inositol 1,4,5-trisphosphate (InsP3), the oscillatory current elicited by UTP was abolished. The oscillatory current was activated in an all-or-none manner by UTP over the concentration range 0.1 and 1 microM and the frequency and amplitude were independent of the UTP concentration. Under current-clamp mode, UTP produced an oscillatory membrane potential. These results show that rat aortic myocytes have at least two types of P2 receptors. Activation of the P2Y receptor by UTP produces InsP3, which releases Ca2+ from the store site. The resulting increase in intracellular Ca2+ concentration causes the oscillatory Cl- current and the subsequent membrane potential changes.
Collapse
Affiliation(s)
- K Muraki
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | | | | |
Collapse
|
126
|
Jaggar JH, Stevenson AS, Nelson MT. Voltage dependence of Ca2+ sparks in intact cerebral arteries. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1755-61. [PMID: 9611142 DOI: 10.1152/ajpcell.1998.274.6.c1755] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ca2+ sparks have been previously described in isolated smooth muscle cells. Here we present the first measurements of local Ca2+ transients ("Ca2+ sparks") in an intact smooth muscle preparation. Ca2+ sparks appear to result from the opening of ryanodine-sensitive Ca2+ release (RyR) channels in the sarcoplasmic reticulum (SR). Intracellular Ca2+ concentration ([Ca2+]i) was measured in intact cerebral arteries (40-150 micron in diameter) from rats, using the fluorescent Ca2+ indicator fluo 3 and a laser scanning confocal microscope. Membrane potential depolarization by elevation of external K+ from 6 to 30 mM increased Ca2+ spark frequency (4. 3-fold) and amplitude (approximately 2-fold) as well as global arterial wall [Ca2+]i (approximately 1.7-fold). The half time of decay ( approximately 50 ms) was not affected by membrane potential depolarization. Ryanodine (10 microM), which inhibits RyR channels and Ca2+ sparks in isolated cells, and thapsigargin (100 nM), which indirectly inhibits RyR channels by blocking the SR Ca2+-ATPase, completely inhibited Ca2+ sparks in intact cerebral arteries. Diltiazem, an inhibitor of voltage-dependent Ca2+ channels, lowered global [Ca2+]i and Ca2+ spark frequency and amplitude in intact cerebral arteries in a concentration-dependent manner. The frequency of Ca2+ sparks (<1 s-1 . cell-1), even under conditions of steady depolarization, was too low to contribute significant amounts of Ca2+ to global Ca2+ in intact arteries. These results provide direct evidence that Ca2+ sparks exist in quiescent smooth muscle cells in intact arteries and that changes of membrane potential that would simulate physiological changes modulate both Ca2+ spark frequency and amplitude in arterial smooth muscle.
Collapse
Affiliation(s)
- J H Jaggar
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
127
|
Neylon CB, Nickashin A, Tkachuk VA, Bobik A. Heterotrimeric Gi protein is associated with the inositol 1,4,5-trisphosphate receptor complex and modulates calcium flux. Cell Calcium 1998; 23:281-9. [PMID: 9681191 DOI: 10.1016/s0143-4160(98)90024-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vascular smooth muscle, pertussis toxin (PT) inhibits thrombin-induced Ca2+ release by a mechanism independent of its effect on IP3 formation. Thus, the possibility of a direct role of G alpha i proteins in regulating IP3-sensitive Ca2+ release was investigated by examining whether G alpha i proteins are associated with the IP3 receptor complex. Purified microsomal membranes were prepared and separated by sucrose density gradient centrifugation. The relative density of [3H]-IP3 binding sites between the microsomal fractions was inversely related to the distribution of the plasma membrane marker. The relative distribution of G alpha i3 determined by immunoblotting was closely correlated with the density of [3H]-IP3 binding. Levels of G alpha i2 were more evenly distributed with highest levels present in plasma membrane-enriched fractions. IP3 receptor immunoprecipitated from triton-solubilized microsomal membranes contained G alpha i3 immunoreactivity. To determine whether G alpha i proteins influence IP3-induced Ca2+ release, the effect of PT on Ca2+ release from digitonin-permeabilized cell suspensions using Fluo-3 was examined. Exposure to PT (0.1 microgram/ml, 5 min) attenuated the initial rate of IP3 (1 microM)-induced Ca2+ release. Together, these findings are consistent with the hypothesis that a heterotrimeric G alpha i protein directly regulates IP3-dependent Ca2+ release.
Collapse
MESH Headings
- Adenosine Diphosphate Ribose/metabolism
- Animals
- Aorta/cytology
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Cell Membrane Permeability/drug effects
- Cells, Cultured
- Digitonin/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Ion Transport/drug effects
- Macromolecular Substances
- Microsomes/drug effects
- Microsomes/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pertussis Toxin
- Rats
- Rats, Inbred WKY
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/physiology
- Signal Transduction/physiology
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- C B Neylon
- Baker Medical Research Institute, Prahran, Victoria, Australia.
| | | | | | | |
Collapse
|
128
|
Kasai Y, Yamazawa T, Sakurai T, Taketani Y, Iino M. Endothelium-dependent frequency modulation of Ca2+ signalling in individual vascular smooth muscle cells of the rat. J Physiol 1997; 504 ( Pt 2):349-57. [PMID: 9365909 PMCID: PMC1159915 DOI: 10.1111/j.1469-7793.1997.349be.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. We visualized intracellular Ca2+ concentration ([Ca2+]i) changes, using fluo-3 as an indicator, of individual vascular smooth muscle cells and endothelial cells within intact rat tail arteries by confocal microscopy. 2. Using a piezo-driven objective, we focused on endothelial and smooth muscle cell layers alternately to obtain Ca2+ images of their cells. In the presence of 1 microM acetylcholine (ACh), individual endothelial cells responded with intermittent increases in the [Ca2+]i (Ca2+ oscillations). At the same time, the frequency of Ca2+ oscillations in smooth muscle cells induced by electrical stimulation of the perivascular sympathetic nerve was greatly decreased. 3. A [Ca2+]i rise during the oscillations in the endothelial cells propagated in the form of a wave along the long axis of the cells. 4. In the presence of a NO synthase inhibitor, no significant inhibitory effect of ACh on the Ca2+ signalling in the vascular smooth muscle cells was detected, although the Ca2+ oscillations in the endothelial cells persisted. 5. The inhibitory effect of ACh on the frequency of Ca2+ oscillations in the vascular smooth muscle cells was mimicked by 1 microM sodium nitroprusside, a NO donor. 6. These results indicate that Ca2+ waves and oscillations in vascular endothelial cells regulate NO production, which modulates vascular tone by decreasing the frequency of Ca2+ oscillations in smooth muscle cells activated by sympathetic agonists.
Collapse
Affiliation(s)
- Y Kasai
- Department of Pharmacology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
129
|
Garcha RS, Hughes AD. Action of ryanodine on neurogenic responses in rat isolated mesenteric small arteries. Br J Pharmacol 1997; 122:142-8. [PMID: 9298540 PMCID: PMC1564896 DOI: 10.1038/sj.bjp.0701337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Rat mesenteric (approximately 250 microns) were set up in a single-channel isometric myograph designed to allow with 6 microM fura-2AM for 2 h and simultaneous recordings of neurogenic contraction (force) and intracellular calcium [Ca2+]i were obtained. In other experiments, arteries were loaded with 1 microCi ml-1 [3H]-noradrenaline (NA) for 30 min in order to measure release of [3H]-NA in response to field stimulation to examine whether ryanodine directly inhibited neuronal release of NA. 2. Arteries were activated by single intermittent field stimulation or continuously to excite intrinsic sympathetic nerves, or by cumulative addition of noradrenaline (1 nM-10 microM) to the bathing solution. 3. Pre-incubation with ryanodine markedly inhibited the contraction and [Ca2+]i release in response to single-pulse nerve stimulation. Ryanodine also inhibited an early phasic component of the response to continuous field stimulation and reduced the rate of rise in force in response to continuous field stimulation. However, stable maximal contraction and [Ca2+]i in response to continuous field stimulation as well as maximal responses to exogenous NA were unaffected. Release of [3H]-NA in response to single intermittent field stimulation was not affected by ryanodine when compared to vehicle. 4. Our results suggest that brief intermittent activation of intramural sympathetic nerves increases [Ca2+]i and contracts small arteries primarily by releasing Ca2+ from a ryanodine-sensitive intracellular store. In contrast, the stable rise in tone and [Ca2+]i resulting from continuous nerve stimulation may largely depend on sources of Ca2+ other than the ryanodine-sensitive intracellular store.
Collapse
Affiliation(s)
- R S Garcha
- Department of Clinical Pathology, Imperial College School of Medicine, St. Mary's London
| | | |
Collapse
|
130
|
Chaytor AT, Evans WH, Griffith TM. Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol 1997; 503 ( Pt 1):99-110. [PMID: 9288678 PMCID: PMC1159890 DOI: 10.1111/j.1469-7793.1997.099bi.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Phenylephrine (10 microM) evoked rises in tension in isolated rings of endothelium-denuded rabbit superior mesenteric artery. These increases consisted of a tonic component with superimposed rhythmic activity, the frequency of which generally remained constant over time but whose amplitude exhibited cycle-to-cycle variability. 2. The amplitude, but not the frequency, of the rhythmic activity was affected by a series of short peptides possessing sequence homology with extracellular loops 1 and 2 of connexin 43 (Cx43). Oscillatory behaviour was abolished at concentrations of 100-300 microM (IC50 of 20-30 microM), without change in average tone. No synergy was evident between peptides corresponding to the extracellular loops, and cytoplasmic loop peptides were biologically inactive. 3. The putative gap junction inhibitor heptanol mimicked the action of the extracellular loop peptides and abolished rhythmic activity at concentrations of 100-300 microM without effects on frequency. However, in marked contrast to the peptides, heptanol completely inhibited the contraction evoked by phenylephrine (IC50, 283 +/- 28 microM). 4. The presence of mRNA encoding Cx32, Cx40 and Cx43 was detected in the rabbit superior mesenteric artery by reverse transcriptase-polymerase chain reaction. Western blot analysis showed that Cx43 was the major connexin in the endothelium-denuded vessel wall. 5. We conclude that intercellular communication between vascular smooth muscle cells via gap junctions is essential for synchronized rhythmic activity in isolated arterial tissue, whereas tonic force development appears to be independent of cell-cell coupling. The molecular specificity of the peptide probes employed in the study suggests that the smooth muscle relaxant effects of heptanol may be non-specific and unrelated to inhibition of gap junctional communication.
Collapse
MESH Headings
- Alcohols/pharmacology
- Amino Acid Sequence
- Animals
- Connexin 43/biosynthesis
- Connexin 43/chemistry
- Connexin 43/pharmacology
- Connexins/biosynthesis
- Endothelium, Vascular/physiology
- Gap Junctions/drug effects
- Gap Junctions/physiology
- Heptanol
- In Vitro Techniques
- Lung/metabolism
- Male
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiology
- Molecular Sequence Data
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocardium/metabolism
- Oscillometry
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Phenylephrine/pharmacology
- Polymerase Chain Reaction
- Protein Structure, Secondary
- RNA, Messenger/analysis
- Rabbits
- Time Factors
- Transcription, Genetic
- Gap Junction beta-1 Protein
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- A T Chaytor
- Department of Diagnostic Radiology, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | |
Collapse
|
131
|
Sieck GC, Kannan MS, Prakash YS. Heterogeneity in dynamic regulation of intracellular calcium in airway smooth muscle cells. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-103] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
132
|
Ohata H, Ujike Y, Momose K. Confocal imaging analysis of ATP-induced Ca2+ response in individual endothelial cells of the artery in situ. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C1980-7. [PMID: 9227427 DOI: 10.1152/ajpcell.1997.272.6.c1980] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanisms for mobilization of intracellular free Ca2+ have been studied in various types of isolated and cultured cells, but little is known about Ca2+ mobilization in individual cells in situ. We tried to establish imaging analysis of intracellular free Ca2+ concentration ([Ca2+]i) in individual cells loaded with the acetoxymethyl ester of fluo 3 in situ, using laser scanning confocal microscopy. The method permitted us to distinguish signals from endothelial and smooth muscle cells of guinea pig artery. Addition of ATP to the artery caused a transient increase in endothelial [Ca2+]i. It was concluded that the response was induced via P2Y purinoceptors, because adenosine 5'-O-(2-thiodiphosphate), but not UTP, caused a similar response independent of extracellular Ca2+. The percentage of cells that responded to ATP (1-10 microM) and the peak amplitude of the transient increase in [Ca2+]i were dose dependently increased. Using rapid xy-scanning and line-scanning modes, we confirmed that 10 microM ATP induced Ca2+ waves, at a rate of 10-30 microns/s, after a lag time of approximately 3 s. These results show that [Ca2+]i waves within endothelial cells are physiologically induced by ATP via P2Y purinoceptor, but not P2U purinoceptor, in aortic strips in situ. The method should be of use in the study of vascular physiology and pathophysiology.
Collapse
MESH Headings
- Adenosine Diphosphate/analogs & derivatives
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/pharmacology
- Aniline Compounds
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/physiology
- Calcium/metabolism
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Fluorescent Dyes
- Guinea Pigs
- In Vitro Techniques
- Kinetics
- Microscopy, Confocal/methods
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/physiology
- Thionucleotides/pharmacology
- Uridine Triphosphate/pharmacology
- Xanthenes
Collapse
Affiliation(s)
- H Ohata
- Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | |
Collapse
|
133
|
Prakash YS, van der Heijden HF, Kannan MS, Sieck GC. Effects of salbutamol on intracellular calcium oscillations in porcine airway smooth muscle. J Appl Physiol (1985) 1997; 82:1836-43. [PMID: 9173948 DOI: 10.1152/jappl.1997.82.6.1836] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Relaxation of airway smooth muscle (ASM) by beta-adrenoceptor agonists involves reduction of intracellular Ca2+ concentration ([Ca2+]i). In porcine ASM cells, acetylcholine induces [Ca2+]i oscillations that display frequency modulation by agonist concentration and basal [Ca2+]i. We used real-time confocal microscopy to examine the effect of salbutamol (1 nM to 1 microM), a beta 2-adrenoceptor agonist, on [Ca2+]i oscillations in freshly dissociated porcine ASM cells. Salbutamol decreased the frequency of [Ca2+]i oscillations in a concentration-dependent fashion, completely inhibiting the oscillations at 1 microM. These effects were mimicked by a cell-permeant analog of adenosine 3',5'-cyclic monophosphate. The inhibitory effect of salbutamol was partially reversed by BAY K 8644. Salbutamol reduced [Ca2+]i even when sarcoplasmic reticulum (SR) Ca2+ reuptake and Ca2+ influx were blocked. Lanthanum blockade of Ca2+ efflux attenuated the inhibitory effect of salbutamol on [Ca2+]i. The [Ca2+]i response to caffeine was unaffected by salbutamol. On the basis of these results, we conclude that beta 2-adrenoceptor agonists have little effect on SR Ca2+ release in ASM cells but reduce [Ca2+]i by inhibiting Ca2+ influx through voltage-gated channels and by enhancing Ca2+ efflux.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
134
|
Kang TM, So I, Kim KW. Caffeine- and histamine-induced oscillations of K(Ca) current in single smooth muscle cells of rabbit cerebral artery. Pflugers Arch 1995; 431:91-100. [PMID: 8584422 DOI: 10.1007/bf00374381] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present experiment, we characterized the intracellular Ca2+ oscillations induced by caffeine (1mM) or histamine (1-3microM) in voltage-clamped single smooth muscle cells of rabbit cerebral (basilar) artery. Superfusion of caffeine or histamine induced periodic oscillations of large whole-cell K+ current with fairly uniform amplitudes and intervals. The oscillatory K+ current was abolished by inclusion of ethylenebis(oxonitrilo)tetraacetate (EGTA, 5mM) in the pipette solution. Caffeine- and histamine-induced periodic activation of the large-conductance Ca2+-activated K+ [K(Ca)] channel was recorded in the cell-attached patch mode. These results suggest that the oscillations of K+ current are carried by the K(Ca) channel and reflect the oscillations of intracellular Ca2+ concentration ([Ca2+]i). Ryanodine (1-10microM) abolished both caffeine- and histamine-induced oscillations. Caffeine-induced oscillations were abolished by the sarcoplasmic reticulum Ca2+-adenosine 5'-triphosphatase (Ca2+-ATPase) inhibitor, cyclopiazonic acid (10microM), and a high concentration of caffeine (10mM). Inclusion of heparin (3mg/ml) in the pipette solution blocked histamine-induced oscillations, but did not block caffeine-induced oscillations. By the removal of extracellular Ca2+, but not by the addition of verapamil and Cd2+, the caffeine-induced oscillations were abolished. Increasing Ca2+ influx rate increased the frequencies of caffeine-induced oscillations. Spontaneous oscillations were also observed in cells that were not superfused with agonists, and had similar characteristics to the caffeine-induced oscillations. From the above results, it is concluded, that in smooth muscle cells of the rabbit cerebral (basilar) artery, ryanodine-sensitive Ca2+-induced Ca2+ release pools play key roles in the generation of caffeine- and histamine-induced intracellular Ca2+ oscillations.
Collapse
Affiliation(s)
- T M Kang
- Department of Physiology and Biophysics, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, Korea
| | | | | |
Collapse
|