101
|
Studies on nutritional intervention of rice starch- oleic acid complex (resistant starch type V) in rats fed by high-fat diet. Carbohydr Polym 2020; 246:116637. [DOI: 10.1016/j.carbpol.2020.116637] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022]
|
102
|
Effect of Dietary Magnesium Content on Intestinal Microbiota of Rats. Nutrients 2020; 12:nu12092889. [PMID: 32971775 PMCID: PMC7551274 DOI: 10.3390/nu12092889] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Magnesium is a mineral that modulates several physiological processes. However, its relationship with intestinal microbiota has been scarcely studied. Therefore, this study aimed to assess the role of dietary magnesium content to modulate the intestinal microbiota of Wistar male rats. Methods: Rats were randomly assigned one of three diets: a control diet (C-Mg; 1000 mg/kg), a low magnesium content diet (L-Mg; 60 mg/kg), and a high magnesium content diet (H-Mg; 6000 mg/kg), for two weeks. After treatment, fecal samples were collected. Microbiota composition was assessed by sequencing the V3–V4 hypervariable region. Results: The C-Mg and L-Mg groups had more diversity than H-Mg group. CF231, SMB53, Dorea, Lactobacillus and Turibacter were enriched in the L-Mg group. In contrast, the phyla Proteobacteria, Parabacteroides, Butyricimonas, and Victivallis were overrepresented in the H-Mg group. PICRUSt analysis indicated that fecal microbiota of the L-Mg group were encoded with an increased abundance of metabolic pathways involving carbohydrate metabolism and butanoate metabolism. Conclusion: Dietary magnesium supplementation can result in intestinal dysbiosis development in a situation where there is no magnesium deficiency. Conversely, low dietary magnesium consumption is associated with microbiota with a higher capacity to harvest energy from the diet.
Collapse
|
103
|
Yanni AE, Mitropoulou G, Prapa I, Agrogiannis G, Kostomitsopoulos N, Bezirtzoglou E, Kourkoutas Y, Karathanos VT. Functional modulation of gut microbiota in diabetic rats following dietary intervention with pistachio nuts ( Pistacia vera L.). Metabol Open 2020; 7:100040. [PMID: 32812934 PMCID: PMC7424811 DOI: 10.1016/j.metop.2020.100040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gut microbiota holds a key-role in numerous biological functions and has emerged as a driving force for the development of diabetes. Diet contributes to gut microbiota diversity and functionality providing a tool for the prevention and management of the disease. The study aimed to investigate the effect of a dietary intervention with pistachio nuts, a rich source of monounsaturated fatty acids, dietary fibers and phytochemicals on gut microbiota composition in the rat model of Type 1 Diabetes. METHODS Male Wistar rats were randomly assigned into four groups: healthy animals which received control diet (CD) or pistachio diet (PD), and diabetic animals which received control diet (DCD) or pistachio diet (DPD) for 4 weeks. Plasma biochemical parameters were determined and histological examination of liver and pancreas was performed at the end of the dietary intervention. Adherent intestinal microbiota populations in jejunum, ileum, caecum and colon were analyzed. Fecal microbiota populations at the beginning and the end of the study were determined by microbiological analysis and 16S rRNA sequencing. RESULTS Diabetic animals of both groups exhibited high plasma glucose and low insulin concentrations, as well as characteristic pancreatic lesions. Pistachio supplementation significantly increased lactobacilli and bifidobacteria populations in jejunum, ileum and caecum (p < 0.05) and normalized microbial flora in all examined intestinal regions of diabetic animals. After 4 weeks of supplementation, populations of bifidobacteria and lactobacilli were increased in feces of both healthy and diabetic animals, while enterococci levels were decreased (p < 0.05). Next Generation Sequencing of fecal samples revealed increased and decreased counts of Firmicutes and Bacteroidetes, respectively, in healthy animals that received the pistachio diet. Actinobacteria OTUs were higher in diabetic animals and increased over time in the pistachio treated groups, along with increased abundance of Bifidobacterium. Lactobacillus, Turicibacter and Romboutsia populations were elevated in healthy animals administered the pistachio nuts. Of note, relative abundance of Bacteroides was higher in healthy than in diabetic rats (p < 0.05). CONCLUSION Dietary pistachio restored normal flora and enhanced the presence of beneficial microbes in the rat model of streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Georgios Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Vaios T. Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
104
|
Adewole D. Effect of Dietary Supplementation with Coarse or Extruded Oat Hulls on Growth Performance, Blood Biochemical Parameters, Ceca Microbiota and Short Chain Fatty Acids in Broiler Chickens. Animals (Basel) 2020; 10:E1429. [PMID: 32824171 PMCID: PMC7459877 DOI: 10.3390/ani10081429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to determine the effect of dietary supplementation with coarse or extruded oat hulls on growth performance, blood biochemistry, cecal microbiota, and short chain fatty acids (SCFA) in broiler chickens. Chickens were randomly allotted to four dietary treatments consisting of a corn-wheat-soybean meal-based diet (Basal), Basal + Bacitracin methylenedisalicylate (BMD), Basal +3% coarse OH (COH), and basal +3% extruded OH (EOH). Feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) were recorded weekly. On day 36, eight chickens/treatment were euthanized, blood samples were collected, and organ weights were determined. Cecal digesta samples were collected for the determination of SCFA concentration and microbial DNA sequence. Data were subjected to ANOVA using the mixed procedure of SAS. Alpha diversity was estimated with the Shannon index, and the significance of diversity differences was tested with ANOVA. Birds fed COH and EOH had reduced (p < 0.05) BWG, but there was no effect of treatment on FCR. There was a significant increase (p = 0.0050) in relative gizzard empty weight among birds that were fed COH, compared to the other treatments. Dietary treatments had no effect on blood biochemical parameters and SCFA concentration. Cecal microbial composition of chickens was mostly comprised of Firmicutes and Tenericutes. Seven OTUs that were differentially abundant among treatments were identified. In conclusion, supplementation of broiler chickens' diets with 3% COH or EOH did not affect the FCR, blood biochemical parameters and SCFA concentration, but modified few cecal microbiota at the species level. Dietary supplementation with COH but not EOH significantly increased the relative gizzard weight.
Collapse
Affiliation(s)
- Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
105
|
Wu X, Cao J, Li M, Yao P, Li H, Xu W, Yuan C, Liu J, Wang S, Li P, Wang Y. An integrated microbiome and metabolomic analysis identifies immunoenhancing features of Ganoderma lucidum spores oil in mice. Pharmacol Res 2020; 158:104937. [DOI: 10.1016/j.phrs.2020.104937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022]
|
106
|
Li C, Zhang Y, Ge Y, Qiu B, Zhang D, Wang X, Liu W, Tao H. Comparative transcriptome and microbiota analyses provide new insights into the adverse effects of industrial trans fatty acids on the small intestine of C57BL/6 mice. Eur J Nutr 2020; 60:975-987. [PMID: 32564148 DOI: 10.1007/s00394-020-02297-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/04/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To reveal the mechanism that links industrial trans fatty acids (iTFAs) to various chronic diseases, we examined the impact of iTFAs on the local microenvironment of the small intestine (duodenum, jejunum and ileum). METHODS Forty male 8-week-old mice were fed diets containing one of the following: (1) low soybean oil (LS); (2) high soybean oil (HS); (3) low partially hydrogenated oil (LH), and (4) high partially hydrogenated oil (HH). The analysis of microbiota from small intestinal content was performed by real-time qPCR. The fatty acid composition of small intestine mucosa was measured by GC/MS, and comparative transcriptome of the small intestinal mucosa was analyzed by RNA-sequencing. RESULTS The intake of iTFAs changed the fatty acid spectrum of the small intestine mucosa, especially the excessive accumulation of iTFA (mainly elaidic acid). For microbiota, the relative abundance of δ- and γ-proteobacteria, Lactobacillus, Desulfovibrio, Peptostreptococcus and Turicibacter were significantly different in the iTFA diet groups compared to the control group. Based on the identification of differently expressed genes(DEGs) and pathway annotation, comparative transcriptome analysis of the small intestine mucosa revealed obvious overexpression of genes involved in the extracellular matrix (ECM)-receptor interaction and the peroxisome proliferator-activated receptor signaling pathway, which suggests that ECM remodeling and abnormal lipid metabolism may have occurred with iTFA ingestion. CONCLUSION Our research demonstrated multiple adverse effects of iTFA that may have originated from the small intestine. This finding could be to facilitate the development of new strategies to suppress iTFA-related diseases by reversing the adverse effects of iTFA on intestinal health.
Collapse
Affiliation(s)
- Can Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yuhan Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Yueting Ge
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Bin Qiu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Di Zhang
- Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xianshu Wang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
107
|
Tong Q, Du XP, Hu ZF, Cui LY, Bie J, Zhang QZ, Xiao JH, Lin Y, Wang HB. Comparison of the gut microbiota of Rana amurensis and Rana dybowskii under natural winter fasting conditions. FEMS Microbiol Lett 2020; 366:5645232. [PMID: 31778183 DOI: 10.1093/femsle/fnz241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/27/2019] [Indexed: 01/02/2023] Open
Abstract
Rana amurensis and R. dybowskii occupy similar habitats. As temperatures decrease with the onset of winter, both species migrate to ponds for hibernation. Our goal was to determine whether different species possess different intestinal microbiota under natural winter fasting conditions. We used high-throughput Illumina sequencing of 16S rRNA gene sequences to analyse the diversity of intestinal microbes in the two species. The dominant gut bacterial phyla in both species were Bacteroidetes, Proteobacteria and Firmicutes. Linear discriminant analysis (LDA) effect size revealed significant enrichment of Proteobacteria in R. amurensis and Firmicutes in R. dybowskii. There were significant differences in the gut microbiota composition between the species. The core operational taxonomic unit numbers in R. amurensis and R. dybowskii shared by the two species were 106, 100 and 36. This study indicates that the intestinal bacterial communities of the two frog species are clearly different. Phylum-level analysis showed that R. amurensis was more abundant in Proteobacteria and Verrucomicrobia than R. dybowskii was This is the first study of the composition and diversity of the gut microbiota of these two species, providing important insights for future research on the gut microbiota and the role of these bacterial communities in frogs.
Collapse
Affiliation(s)
- Qing Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Hejiang Forestry Research Institute of Heilongjiang Province, Jiamusi, China
| | - Xiao-Peng Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zong-Fu Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li-Yong Cui
- Hejiang Forestry Research Institute of Heilongjiang Province, Jiamusi, China
| | - Jia Bie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qian-Zhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jian-Hua Xiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu Lin
- Shenzhen Withsum Technology Limited, Shenzhen 518031, China
| | - Hong-Bin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
108
|
Hu S, Yang H, Gao X, Li S, Jiang W, Liu Y. Egg oil from Portunus trituberculatus alleviated obesity and regulated gut microbiota in mice. Sci Rep 2020; 10:8454. [PMID: 32439940 PMCID: PMC7242455 DOI: 10.1038/s41598-020-65199-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Egg oil from Portunus trituberculatus (Pt-egg oil) can overcome insulin resistance resulting from abundant bioactive lipids. However, its effects on obesity and gut microbiota were unclear. Here, we evaluated whether Pt-egg oil could improve obesity and gut microbiota or not in high-fat diet feeding mice. Results exhibited that Pt-egg oil markedly reduced body weight and adipose weight gain, improved lipid accumulation and circulatory cytokines, inhibited epididymal adipose cell size. Moreover, Pt-egg oil modified gut microbiota, involving decreases in the ratio of Firmicutes to Bacteroidetes, Proteobacteria, Actinobacteria, and increase in Verrucomicrobia phylum. Pt-egg oil reduced serum and fecal lipopolysaccharide (LPS) levels and down-regulated Toll-like receptor 4 pathway in both epididymal adipose and liver tissues. Meanwhile, Pt-egg oil increased short chain fatty acids and up-regulated of G-protein-coupled receptors in both epididymal adipose and liver tissues. These suggest that Pt-egg oil could be alternative food supplement for the prophylactic effects on anti-obesity and improvement in human gut health.
Collapse
Affiliation(s)
- Shiwei Hu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China.
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan, 316021, China.
| | - Xiang Gao
- College of Food Science, Qingdao University, Qingdao, 266071, China
| | - Shijie Li
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Wei Jiang
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Yu Liu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| |
Collapse
|
109
|
Zhou JC, Zhang XW. Akkermansia muciniphila: a promising target for the therapy of metabolic syndrome and related diseases. Chin J Nat Med 2020; 17:835-841. [PMID: 31831130 DOI: 10.1016/s1875-5364(19)30101-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 12/18/2022]
Abstract
The probiotic Akkermansia muciniphila (A. muciniphila) is an intestinal bacterium that was first identified in human feces in 2004. Its specialization in mucin degradation makes it a key microorganism that maintains intestinal mucosal barrier function. As an unique representative strain of the phylum Verrucomicrobia that can be cultured in vitro, A. muciniphila is much easier to detect by metagenomic analysis of intestinal flora. In the past few years, A. muciniphila has been getting increasing attention for the positive correlation between its intestinal colonization and host homeostatic metabolism. In this review, we summarize the relationship between A. muciniphila and host health and diseases, especially focusing on metabolic diseases and related mechanisms, as well as the natural food and drug-derived substrates affecting its colonization in the host, expecting to provide evidence and clues for the development of drugs targeting A. muciniphila.
Collapse
Affiliation(s)
- Ji-Chao Zhou
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100000, China
| | - Xiao-Wei Zhang
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100000, China.
| |
Collapse
|
110
|
Asano M, Nakano F, Nakatsukasa E, Tsuduki T. The 1975 type Japanese diet improves the gut microbial flora and inhibits visceral fat accumulation in mice. Biosci Biotechnol Biochem 2020; 84:1475-1485. [PMID: 32255390 DOI: 10.1080/09168451.2020.1747973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, the 1975 type Japanese diet was prepared and its effects and related mechanism were examined in mice. Mice were assigned to three experimental groups, the CD group fed a control diet, the MD group fed a modern Japanese diet (MD), and the JD group fed the 1975 type Japanese diet (JD) for 4 weeks. MD and JD were low protein, high fat, and high carbohydrate diets compared to the CD. Total white adipose tissue weights were significantly increased in the MD group compared to those in the CD group and were decreased in the JD group compared to those in the MD group. In the JD group, adipocyte hypertrophy was inhibited and Hsl mRNA expression was enhanced in epididymal adipose tissue and the number of bacteria associated with the production of short chain fatty acids was increased. Therefore, the JD inhibits lipid accumulation in white adipose tissue. ABBREVIATIONS Actb: β-actin; ALT: alanine aminotransferase; ANOVA: analyses of variance; AST: aspartate aminotransferase; Fas: fatty acid synthase; G6pdx: glucose 6-phosphate dehydrogenase; HE: hematoxylin and eosin; HOMA-IR: Homeostatic model assessment for insulin resistance; Hsl: hormone-sensitive lipase; JD: 1975 type Japanese diet; Leptin: leptin; MD: modern Japanese diet; Me: malic enzyme; NEFA: non-esterified fatty acids; PL: phospholipids; Pparδ: peroxisome proliferator-activated receptor delta; Pparγ: peroxisome proliferator-activated receptor gamma; qRT-PCR: quantitative reverse transcriptase polymerase chain reaction; SAMP8: senescence-accelerated prone 8; SEM: standard error of the mean; Srebp1c: Sterol regulatory element binding protein 1c; TBARS: thiobarbituric acid reactive substance; TC: total cholesterol; TG: Triacylglycerol; V3: variable regions 3.
Collapse
Affiliation(s)
- Masaki Asano
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University , Sendai, Japan
| | - Fumika Nakano
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University , Sendai, Japan
| | - Eriko Nakatsukasa
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University , Sendai, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University , Sendai, Japan
| |
Collapse
|
111
|
Chen CY, Hsu KC, Yeh HY, Ho HC. Visualizing the effects of antibiotics on the mouse colonic mucus layer. Tzu Chi Med J 2020; 32:145-153. [PMID: 32269946 PMCID: PMC7137371 DOI: 10.4103/tcmj.tcmj_70_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/30/2019] [Accepted: 05/27/2019] [Indexed: 01/18/2023] Open
Abstract
Objective Mucus provides a protective barrier separating sensitive epithelial surfaces from the outside world. The mouse colonic mucus is organized as a bacteria-free inner layer and a bacteria-colonized outer layer. Antibiotic treatments are known to disturb gut microbiota, but their effect on the mucosal barrier is rarely discussed. The aim was to evaluate and visualize the impact of antibiotics on the colonic mucus and the microbial community. Materials and Methods Two sets of experiments were conducted. In the antibiotic experiment, mice orally ingested both streptomycin and bacitracin for 7 days. In the recovery experiment, mice were allowed to recover for 7 days without antibiotics after having received the 7-day antibiotic treatment. Mouse colons were isolated and divided into proximal, middle, and distal parts. Specimens were examined under a transmission electron microscope to identify morphological changes. The gut microbial community was evaluated by analyzing 16S rDNA sequences isolated from the different parts of the mouse colon. Results The antibiotic-treated mice were physiologically normal. However, a significantly increased inner mucus layer in the proximal and middle colon and a dramatic decrease in bacterial numbers in the outer mucus layers were observed. The 16S rDNA compositions showed a similarity in the dominant taxa among different colon sections. While control mice had a diverse microbiota, antibiotic treatments effectively eliminated most of the bacteria, such that the community was dominated by only one genus (Turicibacter or Staphylococcus). Furthermore, following antibiotic withdrawal in treated mice, the thickness of the inner mucus layer returned to control levels, and the microbial community regained a more complex structure, dominated by Firmicutes, Bacteroidetes, and Proteobacteria. Conclusions Our results indicated that antibiotic treatments not only disturbed the microbiota but also altered the structure of the mucus layer. After the withdrawal of antibiotics, the mucus layer was quickly regenerated within days, probably in response to microbial growth. The recolonization by gut inhabitants with diverse ecological roles, such as mucin-degraders and fermenters indicate that the gut ecosystem is functionally sound and highly resilient.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Kai-Chieh Hsu
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsuan-Yu Yeh
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
112
|
Meng Y, Chen C, Qiu N, Keast R. Modulation of gut microbiota in rats fed whole egg diets by processing duck egg to preserved egg. J Biosci Bioeng 2020; 130:54-62. [PMID: 32224011 DOI: 10.1016/j.jbiosc.2020.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/03/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Abstract
Pidan, as the preserved duck egg, is a traditional alkaline-pickled food in China. Previous studies have suggested preserved egg white has an anti-inflammatory effect, though the mechanism of action was unclear. In this work, the difference of peptides distribution in the digestive products was identified from those of duck egg. The effects of preserved egg diet on the modulation of gut microbiota as well as the alteration in fecal metabolites were further investigated. Minor variations of gut microbiota in phylum level were observed between preserved and fresh duck egg diet groups, even though, preserved egg diet intake attributed to increases in the relative abundance of Prevotella and Phascolarctobacterium (p < 0.05), while Ruminococcaceae and Allobaculum were quantitatively decreased (p < 0.05). In terms of metabolites, the contents of acetic acid (p < 0.01) and propionic acid (p < 0.05) were significantly increased in the preserved egg diet group. It was speculated that the preserved egg diet might alter the proportion of short-chain fatty acids (SCFAs) in the gut of rats by modulating specific intestinal bacteria, and subsequently play an active role in anti-inflammatory effects. Compared to the fresh egg group, the bacterial produced SCFAs of preserved egg group were increased in abundance (p < 0.05), which may have potential anti-obesity and anti-inflammatory effects. The results provide a novel insight into the relationship between preserved egg intake, gut microbiota and potential positive effects on host health.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Can Chen
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Russell Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
113
|
Wu M, Yang S, Wang S, Cao Y, Zhao R, Li X, Xing Y, Liu L. Effect of Berberine on Atherosclerosis and Gut Microbiota Modulation and Their Correlation in High-Fat Diet-Fed ApoE-/- Mice. Front Pharmacol 2020; 11:223. [PMID: 32231564 PMCID: PMC7083141 DOI: 10.3389/fphar.2020.00223] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis and its associated cardiovascular diseases (CVDs) are serious threats to human health and have been reported to be associated with the gut microbiota. Recently, the role of berberine (BBR) in atherosclerosis and gut microbiota has begun to be appreciated. The purposes of this study were to observe the effects of high or low doses of BBR on atherosclerosis and gut microbiota modulation, and to explore their correlation in ApoE-/- mice fed a high-fat diet. A significant decrease in atherosclerotic lesions was observed after treatment with BBR, with the effect of the high dose being more obvious. Both BBR treatments significantly reduced total cholesterol, APOB100, and very low-density lipoprotein cholesterol levels but levels of high/low-density lipoprotein cholesterol and lipoprotein (a) were only reduced by high-dose BBR. Decreased pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6 and increased anti-inflammatory IL-10 and adiponectin levels were observed in the high-dose BBR group, but no decrease in IL-6 or increase in IL-10 was evident using the low-dose of BBR. 16S rRNA sequencing showed that BBR significantly altered the community compositional structure of gut microbiota. Specifically, BBR enriched the abundance of Roseburia, Blautia, Allobaculum, Alistipes, and Turicibacter, and changed the abundance of Bilophila. These microbiota displayed good anti-inflammatory effects related to the production of short-chain fatty acids (SCFAs) and were related to glucolipid metabolism. Alistipes and Roseburia were significantly enriched in high-dose BBR group while Blautia and Allobaculum were more enriched in low-dose, and Turicibacter was enriched in both BBR doses. Metagenomic analysis further showed an elevated potential for lipid and glycan metabolism and synthesis of SCFAs, as well as reduced potential of TMAO production after BBR treatment. The findings demonstrate that both high and low-dose BBR can improve serum lipid and systemic inflammation levels, and alleviate atherosclerosis induced by high-fat diet in ApoE-/- mice. The effects are more pronounced for the high dose. This anti-atherosclerotic effect of BBR may be partly attributed to changes in composition and functions of gut microbiota which may be associated with anti-inflammatory and metabolism of glucose and lipid. Notably, gut microbiota alterations showed different sensitivity to BBR dose.
Collapse
Affiliation(s)
- Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songzi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
114
|
Diet change affects intestinal microbiota restoration and improves vertical sleeve gastrectomy outcome in diet-induced obese rats. Eur J Nutr 2020; 59:3555-3564. [PMID: 32055963 PMCID: PMC7669806 DOI: 10.1007/s00394-020-02190-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Purpose Obesity, a worldwide health problem, is linked to an abnormal gut microbiota and is currently most effectively treated by bariatric surgery. Our aim was to characterize the microbiota of high-fat fed Sprague–Dawley rats when subjected to bariatric surgery (i.e., vertical sleeve gastrectomy) and posterior refeeding with either a high-fat or control diet. We hypothesized that bariatric surgery followed by the control diet was more effective in reverting the microbiota modifications caused by the high-fat diet when compared to either of the two factors alone. Methods Using next-generation sequencing of ribosomal RNA amplicons, we analyzed and compared the composition of the cecal microbiota after vertical sleeve gastrectomy with control groups representing non-operated rats, control fed, high-fat fed, and post-operative diet-switched animals. Rats were fed either a high-fat or control low-fat diet and were separated into three comparison groups after eight weeks comprising no surgery, sham surgery, and vertical sleeve gastrectomy. Half of the rats were then moved from the HFD to the control diet. Using next-generation sequencing of ribosomal RNA amplicons, we analyzed the composition of the cecal microbiota of rats allocated to the vertical sleeve gastrectomy group and compared it to that of the non-surgical, control fed, high-fat fed, and post-operative diet-switched groups. Additionally, we correlated different biological parameters with the genera exhibiting the highest variation in abundance between the groups. Results The high-fat diet was the strongest driver of altered taxonomic composition, relative microbial abundance, and diversity in the cecum. These effects were partially reversed in the diet-switched cohort, especially when combined with sleeve gastrectomy, resulting in increased diversity and shifting relative abundances. Several highly-affected genera were correlated with obesity-related parameters. Conclusions The dysbiotic state caused by high-fat diet was improved by the change to the lower fat, higher fiber control diet. Bariatric surgery contributed significantly and additively to the diet in restoring microbiome diversity and complexity. These results highlight the importance of dietary intervention following bariatric surgery for improved restoration of cecal diversity, as neither surgery nor change of diet alone had the same effects as when combined. Electronic supplementary material The online version of this article (10.1007/s00394-020-02190-8) contains supplementary material, which is available to authorized users.
Collapse
|
115
|
Zhao Y, Zhang X. Interactions of tea polyphenols with intestinal microbiota and their implication for anti-obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:897-903. [PMID: 31588996 DOI: 10.1002/jsfa.10049] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Tea polyphenols (TP) are the main components in tea. Studies in vitro have shown they have significant biological activity; however, the results are inconsistent with experiments in vivo. For the low bioavailability, most TP are thought to remain in the gut and metabolized by intestinal bacteria. In the gut, the unabsorbed TP are metabolized to a variety of derivative products by intestinal flora, which may accumulate to exert beneficial effects. Numerous studies have shown that TP can inhibit obesity and its related metabolism disorders effectively. Meanwhile, it has demonstrated that TP and their derivatives may modulate intestinal micro-ecology. The understanding of the interaction between TP and intestinal microbiota will allow us to better evaluate the contribution of microbial metabolites of TP to anti-obesity activity. This review showed implications for the use of TP as functional food with potential therapeutic utility against obesity by modulating intestinal microbiota, contributing to the improvement of human health. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
116
|
González-Mercado VJ, Lim J, Berk L, Esele M, Rodríguez CS, Colón-Otero G. Gut microbiota differences in Island Hispanic Puerto Ricans and mainland non-Hispanic whites during chemoradiation for rectal cancer: A pilot study. Curr Probl Cancer 2020; 44:100551. [PMID: 32057462 DOI: 10.1016/j.currproblcancer.2020.100551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate whether there are differences in diversity, taxonomic composition, and predicted functional pathways of the gut microbiome between Island Hispanic Puerto Ricans (HPR) and mainland non-Hispanic whites (NHW) measured before and at the end of chemo-radiation (CRT) for Rectal Cancer. METHODS Fifty-six stool samples of newly diagnosed rectal cancer patients (25 HPR and 31 NHW) were amplicon-sequenced during chemo-radiotherapy. 16S rRNA gene data was analyzed using QIIME2, phyloseq, and LEfSe. RESULTS We observed similar within-sample alpha diversity for HPR and NHW participants during CRT. However, at the end of CRT, several taxa were present at significantly different abundances across both groups. Taxa enriched in the gut of HPR compared to NHW included Muribaculaceae, Prevotella 2 and 7, Gemella, Bacillales Family XI, Catenibacterium, Sutterella, Pasteurellales, and Pasteurellaceae genera, whereas over-represented taxa in NHW participants were Turicibacter and Eubacteriaceae. Significant differences in predicted HPR microbiota functions included pathways for synthesis of L-methionine and degradation of phenylethylamine and phenylacetate. CONCLUSION In this pilot study, taxonomic analyses and functional predictions of the gut microbiomes suggest greater inflammatory potential in gut microbial functions among HPR rectal cancer patients undergoing CRT compared to that of NHW participants.
Collapse
Affiliation(s)
| | - Jean Lim
- College of Nursing, University of South Florida, Tampa, Florida
| | - Lawrence Berk
- Radiation Oncology, College of Medicine Radiology, University of South Florida, Tampa, Florida
| | - Mary Esele
- School of Nursing, South University, Tampa, Florida
| | | | - Gerardo Colón-Otero
- Division of Hematology-Oncology, Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Jacksonville, Florida
| |
Collapse
|
117
|
Aljahdali N, Gadonna-Widehem P, Anton PM, Carbonero F. Gut Microbiota Modulation by Dietary Barley Malt Melanoidins. Nutrients 2020; 12:nu12010241. [PMID: 31963440 PMCID: PMC7019678 DOI: 10.3390/nu12010241] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/27/2023] Open
Abstract
Melanoidins are the final Maillard reaction products (protein–carbohydrate complexes) produced in food by prolonged and intense heating. We assessed the impact of the consumption of melanoidins from barley malts on gut microbiota. Seventy-five mice were assigned into five groups, where the control group consumed a non-melanoidin malt diet, and other groups received melanoidin-rich malts in increments of 25% up to 100% melanoidin malts. Feces were sampled at days 0, 1, 2, 3, 7, 14, and 21 and the microbiota was determined using V4 bacterial 16S rRNA amplicon sequencing and short-chain fatty acids (SCFA) by gas chromatography. Increased melanoidins was found to result in significantly divergent gut microbiota profiles and supported sustained SCFA production. The relative abundance of Dorea, Oscillibacter, and Alisitpes were decreased, while Lactobacillus, Parasutterella, Akkermansia, Bifidobacterium, and Barnesiella increased. Bifidobacterium spp. and Akkermansia spp. were significantly increased in mice consuming the highest melanoidin amounts, suggesting remarkable prebiotic potential.
Collapse
Affiliation(s)
- Nesreen Aljahdali
- Department of Biological Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia;
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Pascale Gadonna-Widehem
- Transformations et Agro-Ressources—EA7519-Institut Polytechnique UniLaSalle, 60026 Beauvais, France; (P.G.-W.); (P.M.A.)
| | - Pauline M. Anton
- Transformations et Agro-Ressources—EA7519-Institut Polytechnique UniLaSalle, 60026 Beauvais, France; (P.G.-W.); (P.M.A.)
| | - Franck Carbonero
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
- Department of Nutrition and Excercise Physiology, Elson Floyd School of Medicine, Washington State University-Spokane, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
- Correspondence:
| |
Collapse
|
118
|
Kumar S, Adhikari P, Oakley B, Kim WK. Changes in cecum microbial community in response to total sulfur amino acid (TSAA: DL-methionine) in antibiotic-free and supplemented poultry birds. Poult Sci 2020; 98:5809-5819. [PMID: 31347673 DOI: 10.3382/ps/pez380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/24/2019] [Indexed: 01/15/2023] Open
Abstract
The effect of essential total sulfur amino acids (TSAA) like methionine and cysteine on the cecal microbiome of broilers was investigated at 2 different time points (days 21 and 42) of broiler rearing. A total of 360-day-old Cobb male broiler chicks were randomly distributed to 6 dietary treatments in a 2 × 3 factorial arrangement, with 2 levels of antibiotic growth promoters (AGP: 0 and 0.05%) and 3 levels of TSAA (DL-methionine) either for starter (0.7, 0.8, and 0.9%) or finisher chicks (0.52, 0.62, and 0.72%), labeled as diets 1 to 6. Cecal digesta from each replicate (n = 10) were sampled on days 21 and 42. DNA was extracted for the amplification of the V4 region of bacterial 16S rRNA genes and subjected to Illumina sequencing. Bioinformatic analyses were performed using QIIME, Mothur, and ad hoc tools and functional profiles of the inferred metagenome were analyzed using PICRUST. Statistical difference was determined by 2-way ANOVA and PERMANOVA. Clustering of cecal communities using PCoA showed clear separation of microbial communities based on age (P < 0.05) of birds and between low and medium/ high levels of TSAA (DL-methionine). At day 21, bacterial richness and diversity were higher than at day 42 where Clostridium cluster XI and Lactobacillus were found most abundant. No variability in taxonomic richness at the genus level was observed with AGP and DL-methionine supplementation. Interbird variation for richness was greater at day 42 compared to day 21. The mean fold difference of richness was greater (1.5 mean fold) with diets 1 and 6, suggesting interactive effects of AGP and TSAA (DL-methionine) in the diet. KEGG function profiles calculated by PICRUST suggest that the cecal microbiome increased glycolysis and energy generation correlated with increased dietary TSAA (DL-methionine) supplementation levels during the late broiler growth period (day 42). This study increases our knowledge of microbial dynamics and functions that are relevant to host nutrition and performance that may help us tailoring alternative strategies for raising poultry birds under antibiotic-free conditions.
Collapse
Affiliation(s)
- S Kumar
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - P Adhikari
- Department of Poultry Science, University of Georgia, Athens, GA 30602.,Department of Poultry Science, Mississippi State University, Starkville, MS 39762
| | - B Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| |
Collapse
|
119
|
Ji X, Hou C, Gao Y, Xue Y, Yan Y, Guo X. Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model. Food Funct 2020; 11:163-173. [DOI: 10.1039/c9fo02171j] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence has reported that the gut microbiota could play important roles in the occurrence and progression of colorectal cancer.
Collapse
Affiliation(s)
- Xiaolong Ji
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P.R. China
| | - Chunyan Hou
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P.R. China
| | - Yonggang Gao
- Basic Medical College
- Hebei University of Chinese Medicine
- Shijiazhuang 050200
- PR China
| | - Yuqiang Xue
- Basic Medical College
- Hebei University of Chinese Medicine
- Shijiazhuang 050200
- PR China
| | - Yizhe Yan
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P.R. China
| | - Xudan Guo
- Basic Medical College
- Hebei University of Chinese Medicine
- Shijiazhuang 050200
- PR China
| |
Collapse
|
120
|
Rotundic Acid Protects against Metabolic Disturbance and Improves Gut Microbiota in Type 2 Diabetes Rats. Nutrients 2019; 12:nu12010067. [PMID: 31887996 PMCID: PMC7019423 DOI: 10.3390/nu12010067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Rotundic acid (RA) is a major triterpene constituent in the barks of Ilex rotunda Thunb, which have been widely used to make herbal tea for health care in southern China. RA has a variety of bioactivities such as anti-inflammation and lipid-lowering effect. However, little is known about the effects and mechanisms of RA on metabolic disturbance in type 2 diabetes (T2D) and its effect on gut microbiota. A T2D rat model induced by high fat diet (HFD) feeding and low-dose streptozotocin (STZ) injection was employed and RA showed multipronged effects on T2D and its complications, including improving glucolipid metabolism, lowering blood pressure, protecting against cardiovascular and hepatorenal injuries, and alleviating oxidative stress and inflammation. Furthermore, 16s rRNA gene sequencing was carried out on an Illumina HiSeq 2500 platform and RA treatment could restore the gut microbial dysbiosis in T2D rats to a certain extent. RA treatment significantly enhanced the richness and diversity of gut microbiota. At the genus level, beneficial or commensal bacteria Prevotella, Ruminococcus, Leuconostoc and Streptococcus were significantly increased by RA treatment, while RA-treated rats had a lower abundance of opportunistic pathogen Klebsiella and Proteus. Spearman’s correlation analysis showed that the abundances of these bacteria were strongly correlated with various biochemical parameters, suggesting that the improvement of gut microbiota might help to prevent or attenuate T2D and its complication. In conclusion, our findings support RA as a nutraceutical agent or plant foods rich in this compound might be helpful for the alleviation of T2D and its complications through improving gut microbiota.
Collapse
|
121
|
González-Mercado VJ, Sarkar A, Penedo FJ, Pérez-Santiago J, McMillan S, Marrero SJ, Marrero-Falcón MA, Munro CL. Gut microbiota perturbation is associated with acute sleep disturbance among rectal cancer patients. J Sleep Res 2019; 29:e12915. [PMID: 31599472 DOI: 10.1111/jsr.12915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
Abstract
Cancer treatment-associated gut microbial perturbation/dysbiosis has been implicated in the pathobiology of sleep disturbance; however, evidence is scarce. Eighteen newly diagnosed rectal cancer patients (ages 52-81 years; 10 males) completed a sleep disturbance questionnaire and provided stool samples for 16s RNA gene sequencing during chemo-radiotherapy. Descriptive statistics, Wilcoxon test and regression analyses were computed. Regression analyses showed the Shannon's diversity index to be a significant factor associated with sleep disturbance. This preliminary work suggests that the biological "gut-brain axis" mechanism may be associated with symptoms of sleep disturbance.
Collapse
Affiliation(s)
| | - Anujit Sarkar
- College of Nursing, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Frank J Penedo
- Department of Psychology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Susan McMillan
- College of Nursing, University of South Florida, Tampa, FL, USA
| | - Sara Janet Marrero
- College of Art and Sciences, University of South Florida, Tampa, FL, USA
| | | | - Cindy L Munro
- University of Miami School of Nursing and Health Studies, Miami, FL, USA
| |
Collapse
|
122
|
Mayengbam S, Mickiewicz B, Trottier SK, Mu C, Wright DC, Reimer RA, Vogel HJ, Shearer J. Distinct Gut Microbiota and Serum Metabolites in Response to Weight Loss Induced by Either Dairy or Exercise in a Rodent Model of Obesity. J Proteome Res 2019; 18:3867-3875. [PMID: 31533430 DOI: 10.1021/acs.jproteome.9b00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Energy imbalance is a primary cause of obesity. While the classical approach to attenuate weight gain includes an increase in energy expenditure through exercise, dietary manipulation such as the inclusion of dairy products has also been proven effective. In the present study, we explored the potential mechanisms by which dairy and exercise attenuate weight gain in diet-induced obese rats. Male Sprague-Dawley rats were fed a high fat, high-sugar (HFHS) diet to induce obesity for 8 weeks. Rats were then further grouped into either control (HFHS + casein) or dairy diet (HFHS + nonfat skim milk) with and without treadmill exercise for 6 weeks. Serum and fresh fecal samples were collected for gut microbiota, serum metabolomics, and metallomics analysis. Diet and exercise resulted in distinct separation in both gut microbiota and serum metabolite profiles. Most intriguingly, obesogenic bacteria including Desulfovibrio and Oribacterium were reduced, and bioactive molecules such as mannose and arginine were significantly increased in the dairy group. Correlations of at least six bacterial genera with serum metal ions and metabolites were also found. Results reveal distinct impacts of dairy and exercise on the gut microbiota and in the modulation of circulating metabolites with the former primarily responsible for driving microbial alterations known to attenuate weight gain.
Collapse
Affiliation(s)
- Shyamchand Mayengbam
- Alberta Children's Hospital Research Institute , Alberta Children's Hospital , Calgary T3B 6A8 , Alberta , Canada
| | | | - Sarah K Trottier
- Department of Human Health and Nutritional Sciences , University of Guelph , Guelph N1G 2W1 , Ontario , Canada
| | - Chunlong Mu
- Alberta Children's Hospital Research Institute , Alberta Children's Hospital , Calgary T3B 6A8 , Alberta , Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences , University of Guelph , Guelph N1G 2W1 , Ontario , Canada
| | - Raylene A Reimer
- Alberta Children's Hospital Research Institute , Alberta Children's Hospital , Calgary T3B 6A8 , Alberta , Canada
| | | | - Jane Shearer
- Alberta Children's Hospital Research Institute , Alberta Children's Hospital , Calgary T3B 6A8 , Alberta , Canada
| |
Collapse
|
123
|
Nagata R, Kamibayashi R, Bochimoto H, Fukuma N, Shimada K, Tachibe M, Takaishi Y, Han K, Fukushima M. Chemical Modification of Cornstarch by Hydroxypropylation Enhances Cecal Fermentation‐Mediated Lipid Metabolism in Rats. STARCH-STARKE 2019. [DOI: 10.1002/star.201900050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ryuji Nagata
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary Medicine West 2–11, Inada Obihiro 080–8555 Japan
- The United Graduate School of Agricultural SciencesIwate University 3‐18‐8 Ueda Morioka 020–8550 Japan
| | - Ryohei Kamibayashi
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary Medicine West 2–11, Inada Obihiro 080–8555 Japan
| | - Hiroki Bochimoto
- Health Care Administration CenterObihiro University of Agriculture and Veterinary Medicine West 2–11, Inada Obihiro 080–8555 Japan
| | - Naoki Fukuma
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary Medicine West 2–11, Inada Obihiro 080–8555 Japan
- Research Center for Global AgromedicineObihiro University of Agriculture and Veterinary Medicine West 2–11, Inada Obihiro 080–8555 Japan
| | - Kenichiro Shimada
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary Medicine West 2–11, Inada Obihiro 080–8555 Japan
| | - Makoto Tachibe
- Matsutani Chemical Industry Co Ltd, Research Laboratory 5‐3 Kitaitami Itami 664–8508 Japan
| | - Yasuyuki Takaishi
- Matsutani Chemical Industry Co Ltd, Research Laboratory 5‐3 Kitaitami Itami 664–8508 Japan
| | - Kyu‐Ho Han
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary Medicine West 2–11, Inada Obihiro 080–8555 Japan
- Research Center for Global AgromedicineObihiro University of Agriculture and Veterinary Medicine West 2–11, Inada Obihiro 080–8555 Japan
| | - Michihiro Fukushima
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary Medicine West 2–11, Inada Obihiro 080–8555 Japan
| |
Collapse
|
124
|
Li JW, Fang B, Pang GF, Zhang M, Ren FZ. Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:68-79. [PMID: 31400786 DOI: 10.1016/j.pestbp.2019.05.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/15/2019] [Accepted: 05/24/2019] [Indexed: 05/28/2023]
Abstract
Chlorpyrifos is a pesticide frequently detected in food and has been reported to disturb endocrine and gut health, which was regulated by gut microbiota and enteroendocrine cells. In this study, newly weaned (3 week) and adult (8 week) male rats fed a normal- or high- fat diet were chronically exposed to 0.3 mg chlorpyrifos/kg bodyweight/day. The effects of chlorpyrifos exposure on serum hormone levels, proinflammatory cytokines and gut microbiota were evaluated. Chronic exposure to chlorpyrifos significantly decreased the concentrations of luteinizing hormone, follicule stimulating hormone and testosterone, which was found only in the normal-fat diet. The counteracted effect of high-fat diet was also found in gut hormones and proinflammatory cytokines. Significantly higher concentrations of glucagon-like peptide-1, pancreatic polypeptide, peptide tyrosine tyrosine (PYY), ghrelin, gastric inhibitory poly-peptide, IL-6, monocyte chemoattractant protein-1, and TNF-α were found in rats exposed to chlorpyrifos beginning at newly weaned, whereas only the PYY, ghrelin and IL-6 concentrations increased significantly in rats exposed in adulthood. Furthermore, a decrease in epinephrine induced by chlorpyrifos exposure was found in rats exposed to chlorpyrifos beginning at newly weaned, regardless of their diet. Chlorpyrifos-induced disturbances in the microbiome community structure were more apparent in rats fed a high-fat diet and exposed beginning at newly weaned. The affected bacteria included short-chain fatty acid-producing bacteria (Romboutsia, Turicibacter, Clostridium sensu stricto 1, norank_f_Coriobacteriaceae, Faecalibaculum, Parasutterella and norank_f__Erysipelotrichaceae), testosterone-related genus (Turicibacter, Brevibacterium), pathogenic bacteria (Streptococcus), and inflammation-related bacteria (unclassified_f__Ruminococcaceae, Ruminococcaceae_UCG-009, Parasutterella, Oscillibacter), which regulated the endocrine system via the hypothalamic-pituitary-adrenal axis, as well as the immune response and gut barrier. Early exposure accelerated the endocrine-disturbing effect and immune responses of chlorpyrifos, although these effects can be eased or recovered by a high-fat diet. This study helped clarify the relationship between disrupted endocrine function and gut microbiota dysbiosis induced by food contaminants such as pesticides.
Collapse
Affiliation(s)
- Jin-Wang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China
| |
Collapse
|
125
|
Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20174146. [PMID: 31450675 PMCID: PMC6747549 DOI: 10.3390/ijms20174146] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The human organism coexists with its microbiota in a symbiotic relationship. These polymicrobial communities are involved in many crucial functions, such as immunity, protection against pathogens, and metabolism of dietary compounds, thus maintaining homeostasis. The oral cavity and the colon, although distant anatomic regions, are both highly colonized by distinct microbiotas. However, studies indicate that oral bacteria are able to disseminate into the colon. This is mostly evident in conditions such as periodontitis, where specific bacteria, namely Fusobacterium nucrelatum and Porphyromonas gingivalis project a pathogenic profile. In the colon these bacteria can alter the composition of the residual microbiota, in the context of complex biofilms, resulting in intestinal dysbiosis. This orally-driven disruption promotes aberrant immune and inflammatory responses, eventually leading to colorectal cancer (CRC) tumorigenesis. Understanding the exact mechanisms of these interactions will yield future opportunities regarding prevention and treatment of CRC.
Collapse
|
126
|
Wei T, Dang Y, Cao J, Wu Z, He J, Sun Y, Pan D, Tian Z. Different duck products protein on rat physiology and gut microbiota. J Proteomics 2019; 206:103436. [PMID: 31265922 DOI: 10.1016/j.jprot.2019.103436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
We report the effects of protein from different duck products on the intestinal flora and physiology of rats. After 30 days of feeding, rats fed water-boiled salted duck protein had the lowest gut microbial diversity and richness. Allobaculum, Lactobacillus, Coprococcus and Eubacterium increased in rats fed wine-cured duck protein, while rats fed water-boiled salted and wine-cured duck protein showed increased serum urea (UREA) concentrations and serum cholesterol (CHOL) to HDL-cholesterol (HDLC) ratios, but decreased retroperitoneal white adipose tissue (rWAT) and perirenal white adipose tissue (pWAT) to body weight ratios. The changes in gut bacteria were mainly associated with the fat-mass index (weight of rWAT or pWAT to body weight ratio), accompanied by the opposite correlation with UREA content. SIGNIFICANCE: It showed that protein from different duck products impacted the intestinal flora and caused physiological changes in rats. Different sources of processed protein vary in their digestibility and digestive kinetics, all of which can affect the intestinal microbiota and physiology. We report the effects is an effort to map the complex interactions of "host physiology-nutrition-microbiota" in order to provide some insights into that food processing can be improved to promote beneficial gut microbes and enhance human health.
Collapse
Affiliation(s)
- Taotao Wei
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315800, PR China; Food & Pharmaceutical Sciences College of Ningbo University, Ningbo 315800, PR China
| | - Yali Dang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315800, PR China; Food & Pharmaceutical Sciences College of Ningbo University, Ningbo 315800, PR China
| | - Jinxuan Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315800, PR China; Food & Pharmaceutical Sciences College of Ningbo University, Ningbo 315800, PR China
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315800, PR China; Food & Pharmaceutical Sciences College of Ningbo University, Ningbo 315800, PR China
| | - Jun He
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315800, PR China; Food & Pharmaceutical Sciences College of Ningbo University, Ningbo 315800, PR China
| | - Yangying Sun
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315800, PR China; Food & Pharmaceutical Sciences College of Ningbo University, Ningbo 315800, PR China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315800, PR China; Food & Pharmaceutical Sciences College of Ningbo University, Ningbo 315800, PR China.
| | - Zhenwen Tian
- Hubei Xiaohu Duck Food Co., Ltd, Jingzhou 434000, PR China
| |
Collapse
|
127
|
Monovalerin and trivalerin increase brain acetic acid, decrease liver succinic acid, and alter gut microbiota in rats fed high-fat diets. Eur J Nutr 2019. [DOI: 10.1007/s00394-018-1688-z and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
128
|
Payahoo L, Khajebishak Y, Alivand MR, Soleimanzade H, Alipour S, Barzegari A, Ostadrahimi A. Investigation the effect of oleoylethanolamide supplementation on the abundance of Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: A randomized clinical trial. Appetite 2019; 141:104301. [PMID: 31132422 DOI: 10.1016/j.appet.2019.05.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
Akkermansia muciniphila bacterium is one of the inhabitant gut microbiota involving in the energy homeostasis and inhibition of the inflammations. The present study was designed to evaluate the effects of Oleoylethanolamide (OEA) supplementation on the abundance of A. muciniphila and the dietary intakes in obese people. In this randomized, double-blind, controlled clinical trial, 60 eligible obese people were selected and divided randomly into two groups including OEA group (received two capsules containing 125 mg of OEA daily) and placebo group (received two capsules containing 125 mg of starch daily). The treatment lasted for 8 weeks. Dietary intakes were evaluated according to the three -day food record and, were analyzed by the Nutritionist 4 software. In order to evaluate the changes in the abundance of A. muciniphila bacterium, faeces samples were collected at baseline and at the end of study. The targeting of the 16S rRNA gene in A. muciniphila was measured by the quantitative real-time PCR analysis. For OEA group, the energy and carbohydrate intakes decreased significantly after adjusting for baseline values and confounder factors; (p = 0.035), the amount of carbohydrate was reported as 422.25 (SD = 103.11) gr and 368.44 (SD = 99.08) gr; (p = 0.042)), before and after the treatment, respectively. The abundance of A. muciniphila bacterium increased significantly in OEA group compared to placebo group (p < 0.001). Considering the accumulating evidence identified OEA as a novel, safe, and efficacious pharmaceutical agent increasing the abundance of A. muciniphila bacterium and modifying the energy balance, therefore it is suggested to use its supplement for treatment of the obese people. However, future studies are needed to confirm the positive results obtained in this study.
Collapse
Affiliation(s)
- Laleh Payahoo
- Assistant Professor of Nutrition Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Yaser Khajebishak
- Assistant Professor of Nutrition Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soleimanzade
- Department of Applied Biochemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abolfazl Barzegari
- Student Research Committee, School of Advanced Biomedical Sciences, Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
129
|
Maltz RM, Keirsey J, Kim SC, Mackos AR, Gharaibeh RZ, Moore CC, Xu J, Somogyi A, Bailey MT. Social Stress Affects Colonic Inflammation, the Gut Microbiome, and Short-chain Fatty Acid Levels and Receptors. J Pediatr Gastroenterol Nutr 2019; 68:533-540. [PMID: 30540706 PMCID: PMC6428608 DOI: 10.1097/mpg.0000000000002226] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Gastrointestinal disorders, such as inflammatory bowel diseases (IBDs) and functional gastrointestinal disorders (FGIDs), involve disrupted homeostatic interactions between the microbiota and the host. Both disorders are worsened during stress, and in laboratory mice, stress exposure has been shown to change the composition of the gut microbiome. Stress-induced changes to the microbiome exacerbate intestinal inflammation and alter intestinal motility in mice. It is, however, not yet known whether microbiota-derived short-chain fatty acids (butyrate, propionate, and acetate) and their receptors contribute to this effect. METHODS Mice were exposed to a social disruption stress, or left undisturbed as a control. After the first stress exposure, mice were orally challenged with Citrobacter rodentium or with vehicle. The levels of short-chain fatty acids (SCFAs) were measured using gas chromatography-mass spectrometry. SCFA receptors were measured via real-time polymerase chain reaction. Microbial community composition was assessed using 16S rRNA gene sequencing. RESULTS Stress exposure reduced colonic SCFA levels. Stress exposure and C rodentium, however, significantly increased SCFA levels and changed the expression of SCFA receptors. The levels of SCFAs did not correlate with the severity of colonic inflammation, but the colonic expression of the SCFA receptor GPR41 was positively associated with inflammatory cytokines and colonic histopathology scores. The relative abundances of several taxa of colonic bacteria were significantly changed by stress exposure, including SCFA producers. CONCLUSIONS Social stress can have a significant effect on infection-induced colonic inflammation, and stress-induced changes in microbial-produced metabolites and their receptors may be involved.
Collapse
Affiliation(s)
- Ross M. Maltz
- Pediatric Gastroenterology, Nationwide Children’s Hospital, Columbus, OH, United States
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jeremy Keirsey
- Campus Chemical Instrumentation Center Mass Spec and Proteomics, The Ohio State University, Columbus, OH, United States
| | - Sandra C. Kim
- Pediatric Gastroenterology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, Columbus, OH, United States
| | - Raad Z. Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, United States
| | - Cathy C. Moore
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Jinyu Xu
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Arpad Somogyi
- Campus Chemical Instrumentation Center Mass Spec and Proteomics, The Ohio State University, Columbus, OH, United States
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
130
|
Bisphenol A alteration of type 1 diabetes in non-obese diabetic (NOD) female mice is dependent on window of exposure. Arch Toxicol 2019; 93:1083-1093. [PMID: 30826855 DOI: 10.1007/s00204-019-02419-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic β-cell destruction can be mediated by dysbiosis, infiltration of pro-inflammatory immune cells, and cytokines/chemokines. Exposure to bisphenol A (BPA), an endocrine disruptor (ED), can lead to aberrant immunity and gut microbiota. We determined whether BPA had age-dependent effects on T1D by modulating immune homeostasis following various windows of exposure in non-obese diabetic (NOD) mice. Juvenile NOD females were orally exposed to 0 or 30 µg BPA/kg BW from postnatal day (PND) 28 to PND56. Adult NOD females were exposed to 0 or 300 µg BPA/kg BW. Female and male NOD offspring were exposed to 0 or 300 µg BPA/kg BW perinatally from gestation day 5 to PND28 by dosing the dams. It was found that BPA increased T1D risk in juvenile females with gut microbiota shifted towards pro-inflammation (e.g. increased Jeotgalicoccus). In agreement with our previous study, adult females had a trend of increased T1D and a general increase in immune responses. However, female offspring had a reduced T1D development. Consistently, female offspring had a shift towards anti-inflammation (e.g. decreased pro-inflammatory F4/80+Gr1+ cells). In contrast, BPA had minimal effects on immunity and T1D in male offspring. Thus, it was concluded that BPA had age- and sex-dependent effects on T1D with the alteration of gut microbiota and inflammation being the primary mechanisms for T1D exacerbation in juvenile exposure and decreases of inflammation being responsible for attenuated T1D in perinatally exposed females.
Collapse
|
131
|
Characteristics of Gut Microbiota in Sows and Their Relationship with Apparent Nutrient Digestibility. Int J Mol Sci 2019; 20:ijms20040870. [PMID: 30781601 PMCID: PMC6412398 DOI: 10.3390/ijms20040870] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
The gut microbiota plays important roles in animal health and nutrient digestibility. The characteristics of gut microbiota population in grower pigs and their correlation with apparent nutrient digestibility were assessed in previous study. Here we studied characteristics of intestinal microbiota of sows and analyzed their relationships with apparent nutrient (ether extract (EE), crude protein (CP), crude fiber (CF), neutral detergent fiber (NDF) and acid detergent fiber (ADF)) digestibility. Firmicutes and Bacteroidetes were the most dominant phyla, approximately 73% of the total sequences. Treponema, Oscillibacter and Lactobacillus were the most dominant generas, more than 49% of the total sequences. The microbiota of sows clustered separately from the microbiota of grower pigs at the age of D28 D60, D90 and D150. The abundance of Clostridium and Turicibacter was positively correlated with apparent EE digestibility. The abundance of Anaerofustis and Robinsoniella in sow fecal samples was positively correlated with apparent CF digestibility. The abundance of Collinsella and Sutterella was positively correlated with apparent NDF digestibility. The abundance of Clostridium, Collinsella, Robinsoniella and Turicibacter was positively correlated with apparent ADF digestibility. Sows have their unique gut microbial structure compared with grower pigs and some of them participate in the digestive process of different nutrients.
Collapse
|
132
|
Zhou W, Xu H, Zhan L, Lu X, Zhang L. Dynamic Development of Fecal Microbiome During the Progression of Diabetes Mellitus in Zucker Diabetic Fatty Rats. Front Microbiol 2019; 10:232. [PMID: 30837966 PMCID: PMC6382700 DOI: 10.3389/fmicb.2019.00232] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Although substantial efforts have been made to link the gut microbiota to type 2 diabetes, dynamic changes in the fecal microbiome under the pathological conditions of diabetes have not been investigated. Methods: Four male Zucker diabetic fatty (ZDF) rats received Purina 5008 chow [protein = 23.6%, Nitrogen-Free Extract (by difference) = 50.3%, fiber (crude) = 3.3%, ash = 6.1%, fat (ether extract) = 6.7%, and fat (acid hydrolysis) = 8.1%] for 8 weeks. A total of 32 stool samples were collected from weeks 8 to 15 in four rats. To decipher the microbial populations in these samples, we used a 16S rRNA gene sequencing approach. Results: Microbiome analysis showed that the changes in the fecal microbiome were associated with age and disease progression. In all the stages from 8 to 15 weeks, phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria primarily dominated the fecal microbiome of the rats. Although Lactobacillus and Turicibacter were the predominant genera in 8- to 10-week-old rats, Bifidobacterium, Lactobacillus, Ruminococcus, and Allobaculum were the most abundant genera in 15-week-old rats. Of interest, compared to the earlier weeks, relatively greater diversity (at the genus level) was observed at 10 weeks of age. Although the microbiome of 12-week-old rats had the highest diversity, the diversity in 13–15-week-old rats was reduced. Spearman’s correlation analysis showed that F/B was negatively correlated with age. Random blood glucose was negatively correlated with Lactobacillus and Turicibacter but positively correlated with Ruminococcus and Allobaculum and Simpson’s diversity index. Conclusion: We demonstrated the time-dependent alterations of the abundance and diversity of the fecal microbiome during the progression of diabetes in ZDF rats. At the genus level, dynamic changes were observed. We believe that this work will enhance our understanding of fecal microbiome development in ZDF rats and help to further analyze the role of the microbiome in metabolic diseases. Furthermore, our work may also provide an effective strategy for the clinical treatment of diabetes through microbial intervention.
Collapse
Affiliation(s)
- Wen Zhou
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiying Xu
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, China
| | - Lijing Zhang
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
133
|
Ohtsu A, Takeuchi Y, Katagiri S, Suda W, Maekawa S, Shiba T, Komazaki R, Udagawa S, Sasaki N, Hattori M, Izumi Y. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice. Oral Dis 2019; 25:868-880. [PMID: 30667148 DOI: 10.1111/odi.13044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Increasing evidence suggests that periodontitis can exacerbate diabetes, and gut bacterial dysbiosis appears to be linked with the diabetic condition. The present study examined the effects of oral administration of the periodontopathic bacterium, Porphyromonas gingivalis, on the gut microbiota and systemic conditions in streptozotocin-induced diabetic mice. MATERIALS AND METHODS Diabetes was induced by streptozotocin injection in C57BL/6J male mice (STZ). STZ and wild-type (WT) mice were orally administered P. gingivalis (STZPg, WTPg) or saline (STZco, WTco). Feces were collected, and the gut microbiome was examined by 16S rRNA gene sequencing. The expression of genes related to inflammation, epithelial tight junctions, and glucose/fatty acid metabolism in the ileum or liver were examined by quantitative PCR. RESULTS The relative abundance of several genera, including Brevibacterium, Corynebacterium, and Facklamia, was significantly increased in STZco mice compared to WTco mice. The relative abundances of Staphylococcus and Turicibacter in the gut microbiome were altered by oral administration of P. gingivalis in STZ mice. STZPg mice showed higher concentrations of fasting blood glucose and inflammatory genes levels in the ileum, compared to STZco mice. CONCLUSIONS Oral administration of P. gingivalis altered the gut microbiota and aggravated glycemic control in streptozotocin-induced diabetic mice.
Collapse
Affiliation(s)
- Anri Ohtsu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rina Komazaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Udagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoki Sasaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Faculty of Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
134
|
Alterations in gut microbiota composition and metabolic parameters after dietary intervention with barley beta glucans in patients with high risk for metabolic syndrome development. Anaerobe 2019; 55:67-77. [DOI: 10.1016/j.anaerobe.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/20/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
|
135
|
Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats. Sci Rep 2019; 9:918. [PMID: 30696913 PMCID: PMC6351648 DOI: 10.1038/s41598-018-37505-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota dysbiosis has been considered the essential element in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Antibiotics were administered orally to Dark Agouti (DA) rats early in their life with the aim of perturbing gut microbiota and investigating the effects of such intervention on the course of EAE. As a result, the diversity of the gut microbiota was reduced under the influence of antibiotics. Mainly, Firmicutes and Actinobacteria were replaced by Proteobacteria and Bacteroidetes, while decreased proportions of Clostridia and Bacilli classes were accompanied by an increase in Gamma-Proteobacteria in antibiotic-treated animals. Interestingly, a notable decrease in the Helicobacteraceae, Spirochaetaceae and Turicibacteriaceae was scored in antibiotic-treated groups. Also, levels of short chain fatty acids were reduced in the faeces of antibiotic-treated rats. Consequently, aggravation of EAE, paralleled with stronger immune response in lymph nodes draining the site of immunization, and increased inflammation within the CNS, were observed in antibiotic-treated DA rats. Thus, the alteration of gut microbiota leads to an escalation of CNS-directed autoimmunity in DA rats. The results of this study indicate that antibiotic use in early life may have subsequent unfavourable effects on the regulation of the immune system.
Collapse
|
136
|
Murtaza N, Burke LM, Vlahovich N, Charlesson B, O' Neill H, Ross ML, Campbell KL, Krause L, Morrison M. The Effects of Dietary Pattern during Intensified Training on Stool Microbiota of Elite Race Walkers. Nutrients 2019; 11:nu11020261. [PMID: 30682843 PMCID: PMC6413084 DOI: 10.3390/nu11020261] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022] Open
Abstract
We investigated extreme changes in diet patterns on the gut microbiota of elite race walkers undertaking intensified training and its possible links with athlete performance. Numerous studies with sedentary subjects have shown that diet and/or exercise can exert strong selective pressures on the gut microbiota. Similar studies with elite athletes are relatively scant, despite the recognition that diet is an important contributor to sports performance. In this study, stool samples were collected from the cohort at the beginning (baseline; BL) and end (post-treatment; PT) of a three-week intensified training program during which athletes were assigned to a High Carbohydrate (HCHO), Periodised Carbohydrate (PCHO) or ketogenic Low Carbohydrate High Fat (LCHF) diet (post treatment). Microbial community profiles were determined by 16S rRNA gene amplicon sequencing. The microbiota profiles at BL could be separated into distinct "enterotypes," with either a Prevotella or Bacteroides dominated enterotype. While enterotypes were relatively stable and remained evident post treatment, the LCHF diet resulted in a greater relative abundance of Bacteroides and Dorea and a reduction of Faecalibacterium. Significant negative correlations were observed between Bacteroides and fat oxidation and between Dorea and economy test following LCHF intervention.
Collapse
Affiliation(s)
- Nida Murtaza
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD 4102, Australia.
| | - Louise M Burke
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia.
- Australian Institute of Sport, Canberra, ACT 2617, Australia.
| | - Nicole Vlahovich
- Australian Institute of Sport, Canberra, ACT 2617, Australia.
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia.
| | | | - Hayley O' Neill
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia.
| | - Megan L Ross
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia.
- Australian Institute of Sport, Canberra, ACT 2617, Australia.
| | - Katrina L Campbell
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia.
| | - Lutz Krause
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD 4102, Australia.
| | - Mark Morrison
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD 4102, Australia.
| |
Collapse
|
137
|
Ali MS, Hussein RM, Gaber Y, Hammam OA, Kandeil MA. Modulation of JNK-1/ β-catenin signaling byLactobacillus casei, inulin and their combination in 1,2-dimethylhydrazine-induced colon cancer in mice. RSC Adv 2019; 9:29368-29383. [PMID: 35528422 PMCID: PMC9071812 DOI: 10.1039/c9ra04388h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is a complex disease that involves numerous genetic alterations that change the normal colonic mucosa into invasive adenocarcinoma. In the current study, the protective effects of inulin (prebiotic), Lactobacillus casei (L. casei, probiotic) and their combination (synbiotic) on 1,2-dimethylhydrazine (DMH)-induced colon cancer in male Swiss mice were evaluated. Animals were divided into: Control group, DMH-treated group, DMH plus inulin, DMH plus L. casei and DMH plus inulin plus L. casei-treated groups. Fecal microbiome analysis, biochemical measurements, histopathological examination of the colon tissues, immunostaining and Western blotting analysis of β-catenin, GSK3β and JNK-1 were performed. The prebiotic-, probiotic- and synbiotic-treated groups showed decreased levels of carcinoembryonic antigen and a lower number of aberrant crypt foci compared to the DMH-treated group with the synbiotic group exhibiting a superior effect. Furthermore, all treatments showed a body weight-reducing effect. Administration of inulin, L. casei or their combination increased the expression level of phospho-JNK-1 while they decreased the expression level of β-catenin and phospho-GSK3β. Remarkably, L. casei treatment resulted in enrichment of certain beneficial bacterial genera i.e. Akkermansia and Turicibacter. Therefore, administration of L. casei and inulin as a synbiotic combination protects against colon cancer in mice. The lactobacillus casei and inulin modulate the expression of JNK-1, GSK3β and β-catenin proteins and enrich the beneficial bacteria to protect from colon cancer in mice.![]()
Collapse
Affiliation(s)
- Mohammed S. Ali
- Department of Biochemistry
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Rasha M. Hussein
- Department of Biochemistry
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Yasser Gaber
- Department of Pharmaceutics and Pharmaceutical Technology
- College of Pharmacy
- Mutah University
- Al-Karak
- Jordan
| | - Olfat A. Hammam
- Pathology Department
- Theodor Bilharz Research Institute
- 12411 Giza
- Egypt
| | - Mohamed A. Kandeil
- Department of Biochemistry
- Faculty of Veterinary Medicine
- Beni-Suef University
- Egypt
| |
Collapse
|
138
|
Getachew B, Aubee JI, Schottenfeld RS, Csoka AB, Thompson KM, Tizabi Y. Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties. BMC Microbiol 2018; 18:222. [PMID: 30579332 PMCID: PMC6303954 DOI: 10.1186/s12866-018-1373-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Appreciable evidence suggest that dysbiosis in microbiota, reflected in gut microbial imbalance plays a key role in the pathogenesis of neuropsychiatric disorders including depression and inflammatory diseases. Recently, the antidepressant properties of ketamine have gained prominence due to its fast and long lasting effects. Additional uses for ketamine in inflammatory disorders such as irritable bowel syndrome have been suggested. However, ketamine's exact mechanism of action and potential effects on microbiome is not known. Here, we examined the effects of low dose ketamine, known to induce antidepressant effects, on stool microbiome profile in adult male Wistar rats. Animals (5/group) were injected intraperitoneally with ketamine (2.5 mg/kg) or saline, daily for 7 days and sacrificed on day 8 when intestinal stools were collected and stored at - 80 °C. DNA was extracted from the samples and the 16 S rRNA gene-based microbiota analysis was performed using 16S Metagenomics application. RESULTS At genus-level, ketamine strikingly amplified Lactobacillus, Turicibacter and Sarcina by 3.3, 26 and 42 fold, respectively. Conversely, opportunistic pathogens Mucispirillum and Ruminococcus were reduced by approximately 2.6 and 26 fold, respectively, in ketamine group. Low levels of Lactobacillus and Turicibacter are associated with various disorders including depression and administration of certain species of Lactobacillus ameliorates depressive-like behavior in animal models. Hence, some of the antidepressant effects of ketamine might be mediated through its interaction with these gut bacteria. Additionally, high level of Ruminococcus is positively associated with the severity of irritable bowel syndrome (IBS), and some species of Mucispirillum have been associated with intestinal inflammation. Indirect evidence of anti-inflammatory role of Sarcina has been documented. Hence, some of the anti-inflammatory effects of ketamine and its usefulness in specific inflammatory diseases including IBS may be mediated through its interaction with these latter bacteria. CONCLUSION Our data suggest that at least some of the antidepressant and anti-inflammatory effects of daily ketamine treatment for 7 days may be mediated via its interaction with specific gut bacteria. These findings further validate the usefulness of microbiome as a target for therapeutic intervention and call for more detailed investigation of microbiome interaction with central mediators of mood and/or inflammatory disorders.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC 20059 USA
| | - Joseph I. Aubee
- Department of Microbiology, Howard University College Medicine, Washington, DC 20059 USA
| | - Richard S. Schottenfeld
- Department of Psychiatry and Behavioral Sciences, Howard University College Medicine, Washington, DC 20059 USA
| | - Antonei B. Csoka
- Department of Anatomy, Howard University College Medicine, Washington, DC 20059 USA
| | - Karl M. Thompson
- Department of Microbiology, Howard University College Medicine, Washington, DC 20059 USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC 20059 USA
| |
Collapse
|
139
|
The Role of Succinate in the Regulation of Intestinal Inflammation. Nutrients 2018; 11:nu11010025. [PMID: 30583500 PMCID: PMC6356305 DOI: 10.3390/nu11010025] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Succinate is a metabolic intermediate of the tricarboxylic acid (TCA) cycle within host cells. Succinate is also produced in large amounts during bacterial fermentation of dietary fiber. Elevated succinate levels within the gut lumen have been reported in association with microbiome disturbances (dysbiosis), as well as in patients with inflammatory bowel disease (IBD) and animal models of intestinal inflammation. Recent studies indicate that succinate can activate immune cells via its specific surface receptor, succinate receptor 1(SUCNR1), and enhance inflammation. However, the role of succinate in inflammatory processes within the gut mucosal immune system is unclear. This review includes current literature on the association of succinate with intestinal inflammation and the potential role of succinate–SUCNR1 signaling in gut immune functions.
Collapse
|
140
|
Lemmens E, Moroni AV, Pagand J, Heirbaut P, Ritala A, Karlen Y, Lê KA, Van den Broeck HC, Brouns FJPH, De Brier N, Delcour JA. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr Rev Food Sci Food Saf 2018; 18:305-328. [PMID: 33337026 DOI: 10.1111/1541-4337.12414] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Sprouting induces activation and de novo synthesis of hydrolytic enzymes that make nutrients available for plant growth and development. Consumption of sprouted grains is suggested to be beneficial for human health. Positive consumer perceptions about sprouted cereals have resulted in new food and beverage product launches. However, because there is no generally accepted definition of "sprouting," it is unclear when grains are to be called sprouted. Moreover, guidelines about how much sprouted grain material food products should contain to exert health benefits are currently lacking. Accordingly, there is no regulatory base to develop appropriate food labeling for "sprouted foods." This review describes the nutritional and technological properties of sprouted grains in relation to processing conditions and provides guidelines to optimize sprouting practices in order to maximize nutritive value. Relatively long sprouting times (3 to 5 days) and/or high processing temperatures (25 to 35 °C) are needed to maximize the de novo synthesis and/or release of plant bioactive compounds. Nutrient compositional changes resulting from sprouting are often associated with health benefits. However, supportive data from clinical studies are very scarce, and at present it is impossible to draw any conclusion on health benefits of sprouted cereals. Finally, grains sprouted under the above-mentioned conditions are generally unfit for use in traditional food processing and it is challenging to use sprouted grains as ingredients without compromising their nutrient content. The present review provides a basis for better defining what "sprouting" is, and to help further research and development efforts in this field as well as future food regulations development.
Collapse
Affiliation(s)
- Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Alice V Moroni
- Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, Switzerland
| | - Jennifer Pagand
- Puratos Group, Industrialaan 25, B-1702, Groot-Bijgaarden, Belgium
| | - Pieter Heirbaut
- Puratos Group, Industrialaan 25, B-1702, Groot-Bijgaarden, Belgium
| | - Anneli Ritala
- VTT Technical Research Centre of Finland, Vuorimiehentie 3, 02150, Espoo, Finland
| | - Yann Karlen
- Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, Switzerland
| | - Kim-Anne Lê
- Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, Switzerland
| | - Hetty C Van den Broeck
- Wageningen Univ. & Research, Business unit Bioscience, Droevendaalsesteeg 1, 6708, PB Wageningen, The Netherlands
| | - Fred J P H Brouns
- Dept. of Human Biology School of Nutrition and Translational Research in Metabolism Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 40, 6229, ER Maastricht, The Netherlands
| | - Niels De Brier
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
141
|
Effect of Marine Microalga Chlorella pyrenoidosa Ethanol Extract on Lipid Metabolism and Gut Microbiota Composition in High-Fat Diet-Fed Rats. Mar Drugs 2018; 16:md16120498. [PMID: 30544856 PMCID: PMC6315526 DOI: 10.3390/md16120498] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Effects of marine microalga Chlorella pyrenoidosa 55% ethanol extract (CPE55) on lipid metabolism, gut microbiota and regulation mechanism in high fat diet-fed induced hyperlipidaemia rats were investigated. Structure characterizations of major compounds in CPE55 were determined by ultra-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UPLC-Q-TOF-MS/MS). The compositions of gut microbiota in rats were analyzed by high-throughput next-generation 16S rRNA gene sequencing. Oral administration with CPE55 markedly alleviated dyslipidemia through improving adverse blood lipid profile and inhibiting hepatic lipid accumulation and steatosis. CPE55 has downregulated the gene expression levels of acetyl CoA carboxylase, sterol regulatory element-binding transcription factor-1c, and 3-hydroxy-3-methyl glutaryl coenzyme A reductase and upregulated adenosine 5'-monophosphate-activated protein kinase-α. It has also improved the abundance of bacteria Alistipes, Prevotella, Alloprevotella, and Ruminococcus1 and decreased the abundances of Turicibacter and Lachnospira. Turicibacter and Lachnospira were both positive correlations of metabolic phenotypes. The findings above illustrated that CPE55 might be developed as food ingredients to ameliorate lipid metabolic disorders and hyperlipidaemia.
Collapse
|
142
|
Chang M, Zhao Y, Qin G, Zhang X. Fructo-Oligosaccharide Alleviates Soybean-Induced Anaphylaxis in Piglets by Modulating Gut Microbes. Front Microbiol 2018; 9:2769. [PMID: 30524396 PMCID: PMC6256172 DOI: 10.3389/fmicb.2018.02769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Soybean-induced anaphylaxis poses a severe threat to the health of humans and animals. Some commensal bacteria, such as Lactobacillus and Bifidobacteria, can prevent and treat allergic diseases. Prebiotic oligosaccharides, a food/diet additive, can enhance health and performance via modulating gut microbes and immune responses. The purpose of this study was to examine whether fructo-oligosaccharides (FOS) could alleviate soybean-induced anaphylaxis by modulating gut microbes. Piglets (21 days of age) were sensitized with a diet containing 5% soybean and 30% peeled soybean meal. The treatment with 0.6% FOS started 1 day prior to sensitization and continued everyday thereafter. Blood was collected for measurements of immune indices. The DNA samples isolated from fresh intestinal contents of the middle jejunum (M-jejunum), posterior jejunum (P-jejunum), ileum, and cecum were used for gene sequencing based on 16S rRNA. Our results showed that there was an increase of glycinin-specific IgG, β-conglycinin-specific IgG, total serum IgG and IgE, and occurrence of diarrhea in piglets sensitized with soybean antigen. There was a decrease in interleukin 4 (IL-4) and IL-10 and an increase of interferon-γ (IFN-γ) in piglets with FOS treatment, compared with the piglets without FOS treatment. Improvement of intestinal microbes was indicated mostly by the increase of Lactobacillus and Bifidobacteria in M-jejunum and the decrease of Proteobacteria in P-jejunum and ileum. The correlation analysis indicated that FOS treatment decreased those closely related to the key species of gut microbes. These results suggest that FOS can alleviate soybean antigen-induced anaphylaxis, which is associated with increased Lactobacillus and Bifidobacteria in M-jejunum and declined Proteobacteria in P-jejunum and ileum of piglets.
Collapse
Affiliation(s)
- Meinan Chang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaodong Zhang
- Institute of Zoonosis, Department of Public Health, Jilin University, Changchun, China
| |
Collapse
|
143
|
Kulas J, Mirkov I, Tucovic D, Zolotarevski L, Glamoclija J, Veljovic K, Tolinacki M, Golic N, Kataranovski M. Pulmonary Aspergillus fumigatus infection in rats affects gastrointestinal homeostasis. Immunobiology 2018; 224:116-123. [PMID: 30348457 DOI: 10.1016/j.imbio.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Microbiota inhabiting mucosal tissues is involved in maintenance of their immune homeostasis. Growing body of evidence indicate that dysbiosis in gut influence immune responses at distal sites including lungs. There are also reports concerning gut involvement with pulmonary injury/inflammation in settings of respiratory viral and bacterial infections. The impact of infections with other microorganisms on gut homeostasis is not explored. In this study, the rat model of sublethal pulmonary infection with Aspergillus fumigatus was used to investigate the effect of fungal respiratory infection on gut immune-mediated homeostasis. Signs of intestinal damage, intestinal and gut-draining lymphoid tissue cytokine responses and gut bacterial microbiota diversity were examined. Intestinal injury, inflammatory cell infiltration, as well as increased levels of intestinal interferon-γ (IFN-γ) and interleukin-17 (IL-17) (as opposed to unchanged levels of anti-inflammatory cytokine IL-10) during the two-week period depict intestinal inflammation in rats with pulmonary A. fumigatus infection. It could not be ascribed to the fungus as it was not detected in the intestine of infected rats. Increased production of pro-inflammatory cytokines by major gut-draining mesenteric lymph nodes point to these lymphoid organs as places of generation of cytokine-producing cells. No changes in spleen or systemic cytokine responses was observed, showing lack of the effects of pulmonary A. fumigatus infection outside mucosal immune system. Drop of intestinal bacterial microbiota diversity (disappearance of several bacterial bands) was noted early in infection with normalization starting from day seven. From day three, appearance of new bacterial bands (unique to infected individuals, not present in controls) was seen, and some of them are pathogens. Alterations in intestinal bacterial community might have affected intestinal immune tolerance contributing to inflammation. Disruption of gut homeostasis during pulmonary infection might render gastrointestinal tract more susceptible to variety of physiological and pathological stimuli. Data which showed for the first time gut involvement with pulmonary infection with A. fumigatus provide the baseline for future studies of the impact of fungal lung infections to gut homeostasis, particularly in individuals susceptible to these infections.
Collapse
Affiliation(s)
- Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Lidija Zolotarevski
- Medical College of Applied Sciences, Cara Dusana 254, 11080, Belgrade, Serbia
| | - Jasmina Glamoclija
- Mycology Laboratory, Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Katarina Veljovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Maja Tolinacki
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Nataša Golic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia; Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| |
Collapse
|
144
|
Lai KP, Ng AHM, Wan HT, Wong AYM, Leung CCT, Li R, Wong CKC. Dietary Exposure to the Environmental Chemical, PFOS on the Diversity of Gut Microbiota, Associated With the Development of Metabolic Syndrome. Front Microbiol 2018; 9:2552. [PMID: 30405595 PMCID: PMC6207688 DOI: 10.3389/fmicb.2018.02552] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a dynamic ecosystem formed by thousands of diverse bacterial species. This bacterial diversity is acquired early in life and shaped over time by a combination of multiple factors, including dietary exposure to distinct nutrients and xenobiotics. Alterations of the gut microbiota composition and associated metabolic activities in the gut are linked to various immune and metabolic diseases. The microbiota could potentially interact with xenobiotics in the gut environment as a result of their board enzymatic capacities and thereby affect the bioavailability and toxicity of the xenobiotics in enterohepatic circulation. Consequently, microbiome-xenobiotic interactions might affect host health. Here, we aimed to investigate the effects of dietary perfluorooctane sulfonic acid (PFOS) exposure on gut microbiota in adult mice and examine the induced changes in animal metabolic functions. In mice exposed to dietary PFOS for 7 weeks, body PFOS and lipid contents were measured, and to elucidate the effects of PFOS exposure, the metabolic functions of the animals were assessed using oral glucose-tolerance test and intraperitoneal insulin-tolerance and pyruvate-tolerance tests; moreover, on Day 50, cecal bacterial DNA was isolated and subject to 16S rDNA sequencing. Our results demonstrated that PFOS exposure caused metabolic disturbances in the animals, particularly in lipid and glucose metabolism, but did not substantially affect the diversity of gut bacterial species. However, marked modulations were detected in the abundance of metabolism-associated bacteria belonging to the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Cyanobacteria, including, at different taxonomic levels, Turicibacteraceae, Turicibacterales, Turicibacter, Dehalobacteriaceae, Dehalobacterium, Allobaculum, Bacteroides acidifaciens, Alphaproteobacteria, and 4Cod-2/YS2. The results of PICRUSt analysis further indicated that PFOS exposure perturbed gut metabolism, inducing notable changes in the metabolism of amino acids (arginine, proline, lysine), methane, and a short-chain fatty acid (butanoate), all of which are metabolites widely recognized to be associated with inflammation and metabolic functions. Collectively, our study findings provide key information regarding the biological relevance of microbiome-xenobiotic interactions associated with the ecology of gut microbiota and animal energy metabolism.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Alice Hoi-Man Ng
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hin Ting Wan
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Aman Yi-Man Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Cherry Chi-Tim Leung
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Rong Li
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chris Kong-Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
145
|
Zhu Z, Zhu B, Sun Y, Ai C, Wang L, Wen C, Yang J, Song S, Liu X. Sulfated Polysaccharide from Sea Cucumber and its Depolymerized Derivative Prevent Obesity in Association with Modification of Gut Microbiota in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2018; 62:e1800446. [DOI: 10.1002/mnfr.201800446] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenjun Zhu
- School of Food Science and Technology; National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 China
- College of Light Industry and Food Engineering; Guangxi University; Nanning 530004 China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application; Dalian 116034 China
| | - Beiwei Zhu
- School of Food Science and Technology; National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 China
- College of Light Industry and Food Engineering; Guangxi University; Nanning 530004 China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application; Dalian 116034 China
| | - Yujiao Sun
- School of Food Science and Technology; National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application; Dalian 116034 China
- School of Food and Biological Engineering; Shanxi University of Science and Technology; Xi'an 710021 China
| | - Chunqing Ai
- School of Food Science and Technology; National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application; Dalian 116034 China
| | - Lilong Wang
- School of Food Science and Technology; National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 China
| | - Chengrong Wen
- School of Food Science and Technology; National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application; Dalian 116034 China
| | - Jingfeng Yang
- School of Food Science and Technology; National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application; Dalian 116034 China
| | - Shuang Song
- School of Food Science and Technology; National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application; Dalian 116034 China
- Department of Food Science; University of Massachusetts Amherst; Amherst MA 01003 USA
| | - Xiaoling Liu
- College of Light Industry and Food Engineering; Guangxi University; Nanning 530004 China
| |
Collapse
|
146
|
Effect of probiotic treatment on the clinical course, intestinal microbiome, and toxigenic Clostridium perfringens in dogs with acute hemorrhagic diarrhea. PLoS One 2018; 13:e0204691. [PMID: 30261077 PMCID: PMC6160196 DOI: 10.1371/journal.pone.0204691] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/11/2018] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The impact of probiotics on dogs with acute hemorrhagic diarrhea syndrome (AHDS) has not been evaluated so far. The study aim was to assess the effect of probiotic treatment on the clinical course, intestinal microbiome, and toxigenic Clostridium perfringens in dogs with AHDS in a prospective, placebo-controlled, blinded trial. METHODS Twenty-five dogs with AHDS with no signs of sepsis were randomly divided into a probiotic (PRO; Visbiome, ExeGi Pharma) and placebo group (PLAC). Treatment was administered for 21 days without antibiotics. Clinical signs were evaluated daily from day 0 to day 8. Key bacterial taxa, C. perfringens encoding NetF toxin and enterotoxin were assessed on days 0, 7, 21. RESULTS Both groups showed a rapid clinical improvement. In PRO a significant clinical recovery was observed on day 3 (p = 0.008), while in PLAC it was observed on day 4 (p = 0.002) compared to day 0. Abundance of Blautia (p<0.001) and Faecalibacterium (p = 0.035) was significantly higher in PRO on day 7 compared to day 0, while in PLAC the abundance of Faecalibacterium was not significantly higher on any study day and Blautia (p = 0.016) was only significantly higher on day 21 compared to day 0. Abundance of C. perfringens was significantly lower on day 7 (p = 0.011) compared to day 0 in PRO but not in PLAC. Enterotoxin genes were significantly lower in PRO on day 21 (p = 0.028) compared to PLAC. Fecal samples of 57% of all dogs were positive for netF toxin genes on day 0 and the abundance was significantly lower on day 7 compared to day 0 in PRO (p = 0.016) and PLAC (p = 0.031). CONCLUSION The probiotic treatment was associated with an accelerated normalization of the intestinal microbiome. Dogs with aseptic AHDS showed a rapid decrease of netF toxin genes and fast clinical recovery in both groups under symptomatic treatment without antibiotics.
Collapse
|
147
|
Latorre JD, Adhikari B, Park SH, Teague KD, Graham LE, Mahaffey BD, Baxter MFA, Hernandez-Velasco X, Kwon YM, Ricke SC, Bielke LR, Hargis BM, Tellez G. Evaluation of the Epithelial Barrier Function and Ileal Microbiome in an Established Necrotic Enteritis Challenge Model in Broiler Chickens. Front Vet Sci 2018; 5:199. [PMID: 30186844 PMCID: PMC6110846 DOI: 10.3389/fvets.2018.00199] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Necrotic enteritis (NE) is a recognized multifactorial disease that cost annually to the poultry industry around $2 billion. However, diverse aspects related to its presentation are not completely understood, requiring further studies using known induction experimental models. Therefore, the purpose of this study was to measure the changes occurring in performance, intestinal integrity and ileal microbiome using a previously established NE-challenge model. Chickens were assigned to a negative control group (NC) or a positive control group (PC). In the PC, broilers were orally gavaged with Salmonella Typhimurium (ST) (1 × 107 cfu/chick) at day 1, Eimeria maxima (EM) (2.5 × 104 oocyst/chick) at day 18 and Clostridium perfringens (CP) (1 × 108 cfu/chick/day) at 23-24 days of age. Weekly, body weight (BW), body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) were evaluated. Morbidity and mortality were determined throughout the study, and NE lesion scores were recorded at day 25. Additionally, blood and liver samples were collected to measure gut permeability as determined by levels of serum fluorescein isothiocyanate-dextran (FITC-d) and bacterial translocation (BT). Ileal contents were processed for 16S rRNA gene-based microbiome analysis. Performance parameters and intestinal permeability measurements were negatively impacted in the PC resulting in elevated serum FITC-d and BT with a -6.4% difference in BWG. The NE lesion score in PC (1.97 vs. 0.00) was significantly higher in comparison to NC, although there was no difference in mortality. The microbiome analysis showed a dramatic shift of ileal microbiomes in PC groups as compared to NC (ANOSIM: R = 0.76, P = 0.001). The shift was characterized by reduced abundance of the phylum Actinobacteria (P < 0.01), and increased abundance of the genera Butyrivibrio, Lactobacillus, Prevotella and Ruminococcus in PC compared to NC (P < 0.05). Expectedly, Clostridium was found higher in PC (2.98 ± 0.71%) as compared to NC (1.84 ± 0.36%), yet the difference was not significant. In conclusion, results of the present study showed the different intestinal epithelial and microbiological alterations occurring in an established NE-challenge model that considers paratyphoid Salmonella infections in young chicks as an important predisposing factor for presentation of NE.
Collapse
Affiliation(s)
- Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Bishnu Adhikari
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Si H. Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Kyle D. Teague
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lucas E. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Brittany D. Mahaffey
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mikayla F. A. Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Young M. Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Lisa R. Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH, United States
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
148
|
Teixeira C, Prykhodko O, Alminger M, Fåk Hållenius F, Nyman M. Barley Products of Different Fiber Composition Selectively Change Microbiota Composition in Rats. Mol Nutr Food Res 2018; 62:e1701023. [PMID: 30035373 PMCID: PMC6175208 DOI: 10.1002/mnfr.201701023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/23/2018] [Indexed: 11/25/2022]
Abstract
Scope Several dietary fiber properties are suggested to be important for the profiling of the microbiota composition, but those characteristics are rather unclear. Whether different physico‐chemical properties of barley dietary fiber influence the gut microbiota composition is investigated. Methods and results Seven diets containing equal amounts of dietary fiber from barley malts, brewer's spent grain (BSG), and barley extracts, resulting in varying amounts of β‐glucan, soluble arabinoxylan, and insoluble arabinoxylan in the diets were given to conventional rats. Malts increased microbiota alpha diversity more than BSG and the extracts. The intake of soluble arabinoxylan was related to Akkermansia and propionic acid formation in the cecum of rats, whereas β‐glucan and/or insoluble arabinoxylan were attributed to some potentially butyrate‐producing bacteria (e.g., Lactobacillus, Blautia, and Allobaculum). Conclusion This study demonstrates that there is a potential to stimulate butyrate‐ and propionate‐producing bacteria in the cecum of rats with malt products of specific fiber properties. Moreover, BSG, a by product from beer production, added to malt can possibly be used to further modulate the microbiota composition, toward a higher butyric acid formation. A complex mixture of fiber as in the malts is of greater importance for microbiota diversity than purer fiber extracts.
Collapse
Affiliation(s)
- Cristina Teixeira
- Food for Health Science Centre, Kemicentrum, Lund University, SE-221 00, Lund, Sweden.,Food and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - Olena Prykhodko
- Food for Health Science Centre, Kemicentrum, Lund University, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, SE-221 00, Lund, Sweden
| | - Marie Alminger
- Food and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, SE-221 00, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, SE-221 00, Lund, Sweden
| |
Collapse
|
149
|
Yamamoto K, Kushida M, Tsuduki T. The effect of dietary lipid on gut microbiota in a senescence-accelerated prone mouse model (SAMP8). Biogerontology 2018; 19:367-383. [DOI: 10.1007/s10522-018-9764-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
|
150
|
Zhang X, Zhang M, Ho CT, Guo X, Wu Z, Weng P, Yan M, Cao J. Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|