101
|
WHO/IUIS Allergen Nomenclature: Providing a common language. Mol Immunol 2018; 100:3-13. [PMID: 29625844 DOI: 10.1016/j.molimm.2018.03.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 03/06/2018] [Indexed: 11/23/2022]
Abstract
A systematic nomenclature for allergens originated in the early 1980s, when few protein allergens had been described. A group of scientists led by Dr. David G. Marsh developed a nomenclature based on the Linnaean taxonomy, and further established the World Health Organization/International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-Committee in 1986. Its stated aim was to standardize the names given to the antigens (allergens) that caused IgE-mediated allergies in humans. The Sub-Committee first published a revised list of allergen names in 1986, which continued to grow with rare publications until 1994. Between 1994 and 2007 the database was a text table online, then converted to a more readily updated website. The allergen list became the Allergen Nomenclature database (www.allergen.org), which currently includes approximately 880 proteins from a wide variety of sources. The Sub-Committee includes experts on clinical and molecular allergology. They review submissions of allergen candidates, using evidence-based criteria developed by the Sub-Committee. The review process assesses the biochemical analysis and the proof of allergenicity submitted, and aims to assign allergen names prior to publication. The Sub-Committee maintains and revises the database, and addresses continuous challenges as new "omics" technologies provide increasing data about potential new allergens. Most journals publishing information on new allergens require an official allergen name, which involves submission of confidential data to the WHO/IUIS Allergen Nomenclature Sub-Committee, sufficient to demonstrate binding of IgE from allergic subjects to the purified protein.
Collapse
|
102
|
Gómez-Arribas LN, Benito-Peña E, Hurtado-Sánchez MDC, Moreno-Bondi MC. Biosensing Based on Nanoparticles for Food Allergens Detection. SENSORS 2018; 18:s18041087. [PMID: 29617319 PMCID: PMC5948517 DOI: 10.3390/s18041087] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022]
Abstract
Food allergy is one of the major health threats for sensitized individuals all over the world and, over the years, the food industry has made significant efforts and investments to offer safe foods for allergic consumers. The analysis of the concentration of food allergen residues in processing equipment, in raw materials or in the final product, provides analytical information that can be used for risk assessment as well as to ensure that food-allergic consumers get accurate and useful information to make their food choices and purchasing decisions. The development of biosensors based on nanomaterials for applications in food analysis is a challenging area of growing interest in the last years. Research in this field requires the combined efforts of experts in very different areas including food chemistry, biotechnology or materials science. However, the outcome of such collaboration can be of significant impact on the food industry as well as for consumer’s safety. These nanobiosensing devices allow the rapid, selective, sensitive, cost-effective and, in some cases, in-field, online and real-time detection of a wide range of compounds, even in complex matrices. Moreover, they can also enable the design of novel allergen detection strategies. Herein we review the main advances in the use of nanoparticles for the development of biosensors and bioassays for allergen detection, in food samples, over the past few years. Research in this area is still in its infancy in comparison, for instance, to the application of nanobiosensors for clinical analysis. However, it will be of interest for the development of new technologies that reduce the gap between laboratory research and industrial applications.
Collapse
Affiliation(s)
- Lidia Nazaret Gómez-Arribas
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | - María Cruz Moreno-Bondi
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
103
|
Nugraha R, Kamath SD, Johnston E, Zenger KR, Rolland JM, O'Hehir RE, Lopata AL. Rapid and comprehensive discovery of unreported shellfish allergens using large-scale transcriptomic and proteomic resources. J Allergy Clin Immunol 2018; 141:1501-1504.e8. [DOI: 10.1016/j.jaci.2017.11.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 11/15/2022]
|
104
|
Fiedler KL, Panda R, Croley TR. Analysis of Gluten in a Wheat-Gluten-Incurred Sorghum Beer Brewed in the Presence of Proline Endopeptidase by LC/MS/MS. Anal Chem 2018; 90:2111-2118. [DOI: 10.1021/acs.analchem.7b04371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Katherine L. Fiedler
- Center for Food Safety and
Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Rakhi Panda
- Center for Food Safety and
Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Timothy R. Croley
- Center for Food Safety and
Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| |
Collapse
|
105
|
Jin Y, He X, Andoh‐Kumi K, Fraser RZ, Lu M, Goodman RE. Evaluating Potential Risks of Food Allergy and Toxicity of Soy Leghemoglobin Expressed in Pichia pastoris. Mol Nutr Food Res 2018; 62:1700297. [PMID: 28921896 PMCID: PMC5813221 DOI: 10.1002/mnfr.201700297] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Indexed: 11/24/2022]
Abstract
SCOPE The Soybean (Glycine max) leghemoglobin c2 (LegHb) gene was introduced into Pichia pastoris yeast for sustainable production of a heme-carrying protein, for organoleptic use in plant-based meat. The potential allergenicity and toxicity of LegHb and 17 Pichia host-proteins each representing ≥1% of total protein in production batches are evaluated by literature review, bioinformatics sequence comparisons to known allergens or toxins, and in vitro pepsin digestion. METHODS AND RESULTS Literature searches found no evidence of allergenicity or toxicity for these proteins. There are no significant sequence matches of LegHb to known allergens or toxins. Eleven Pichia proteins have modest identity matches to minor environmental allergens and 13 Pichia proteins have significant matches to proteins from toxic sources. Yet the matched allergens and toxins have similar matches to proteins from the commonly consumed yeast Saccharomyces cerevisiae, without evidence of food allergy or toxicity. The demonstrated history of safe use indicates additional tests for allergenicity and toxicity are not needed. The LegHb and Pichia sp. proteins were rapidly digested by pepsin at pH 2. CONCLUSION These results demonstrate that foods containing recombinant soy LegHb produced in Pichia sp. are unlikely to present an unacceptable risk of allergenicity or toxicity to consumers.
Collapse
Affiliation(s)
- Yuan Jin
- Food Allergy Research and Resource ProgramDept. of Food Science & TechnologyUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Xiaoyun He
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Kwame Andoh‐Kumi
- Food Allergy Research and Resource ProgramDept. of Food Science & TechnologyUniversity of Nebraska‐LincolnLincolnNEUSA
| | | | - Mei Lu
- Food Allergy Research and Resource ProgramDept. of Food Science & TechnologyUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Richard E. Goodman
- Food Allergy Research and Resource ProgramDept. of Food Science & TechnologyUniversity of Nebraska‐LincolnLincolnNEUSA
| |
Collapse
|
106
|
Remington B, Broekman HCH, Blom WM, Capt A, Crevel RWR, Dimitrov I, Faeste CK, Fernandez-Canton R, Giavi S, Houben GF, Glenn KC, Madsen CB, Kruizinga AK, Constable A. Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food Chem Toxicol 2017; 112:97-107. [PMID: 29258956 DOI: 10.1016/j.fct.2017.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
The development and introduction of new dietary protein sources has the potential to improve food supply sustainability. Understanding the potential allergenicity of these new or modified proteins is crucial to ensure protection of public health. Exposure to new proteins may result in de novo sensitization, with or without clinical allergy, or clinical reactions through cross-reactivity. In this paper we review the potential of current methodologies (in silico, in vitro degradation, in vitro IgE binding, animal models and clinical studies) to address these outcomes for risk assessment purposes for new proteins, and especially to identify and characterise the risk of sensitization for IgE mediated allergy from oral exposure. Existing tools and tests are capable of assessing potential crossreactivity. However, there are few possibilities to assess the hazard due to de novo sensitization. The only methods available are in vivo models, but many limitations exist to use them for assessing risk. We conclude that there is a need to understand which criteria adequately define allergenicity for risk assessment purposes, and from these criteria develop a more suitable battery of tests to distinguish between proteins of high and low allergenicity, which can then be applied to assess new proteins with unknown risks.
Collapse
Affiliation(s)
| | - H C H Broekman
- Dep. Dermatology/Allergology, University Medical Centre Utrecht (UMCU), P.O. Box 85500, The Netherlands
| | | | - A Capt
- Bayer SAS, Sophia Antipolis, France
| | - R W R Crevel
- Safety & Environmental Assurance Centre, Unilever, Bedford, UK
| | - I Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, Sofia, 1000 Bulgaria
| | - C K Faeste
- Norwegian Veterinary Institute, Oslo, Norway
| | - R Fernandez-Canton
- Monsanto Europe S.A., Avenue de Tervuren 270-272, B-1150 Brussels, Belgium
| | - S Giavi
- Allergy Department, 2nd Paediatric Clinic, University of Athens, Athens, Greece
| | | | - K C Glenn
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO 63017, USA
| | - C B Madsen
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | | | - A Constable
- Nestec Ltd, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|
107
|
Evaluating proteins for potential allergenicity using bioinformatic approaches. Ann Allergy Asthma Immunol 2017; 119:197-198. [PMID: 28890013 DOI: 10.1016/j.anai.2017.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 11/21/2022]
|
108
|
Dunn SE, Vicini JL, Glenn KC, Fleischer DM, Greenhawt MJ. The allergenicity of genetically modified foods from genetically engineered crops: A narrative and systematic review. Ann Allergy Asthma Immunol 2017; 119:214-222.e3. [PMID: 28890018 DOI: 10.1016/j.anai.2017.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- S Eliza Dunn
- Medical Sciences and Outreach Lead, Monsanto Company, St Louis, Missouri; Division of Emergency Medicine, Washington University, St Louis, Missouri
| | - John L Vicini
- Food and Feed Safety Scientific Affairs Lead, Monsanto Company, St Louis, Missouri
| | - Kevin C Glenn
- Allergenicity/Pipeline Issues Management Lead, Monsanto Company, St Louis, Missouri
| | - David M Fleischer
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Matthew J Greenhawt
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
109
|
Delaney B, Goodman RE, Ladics GS. Food and Feed Safety of Genetically Engineered Food Crops. Toxicol Sci 2017; 162:361-371. [DOI: 10.1093/toxsci/kfx249] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Bryan Delaney
- DuPont Pioneer, International, Inc, 8325 N 62nd Avenue, Johnston, IA 50131, USA
| | - Richard E Goodman
- Food Science & Technology, University of Nebraska, 1901 North 21St Street, Lincoln Nebraska, Lincoln, NE 68588, USA
| | - Gregory S Ladics
- DuPont Haskell Laboratory, 1090 Elkton Road, Newark, DE, 19711, USA
| |
Collapse
|
110
|
Sarkar P, Jana K, Sikdar SR. Overexpression of biologically safe Rorippa indica defensin enhances aphid tolerance in Brassica juncea. PLANTA 2017; 246:1029-1044. [PMID: 28770337 DOI: 10.1007/s00425-017-2750-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Transgenic mustard plants ( Brassica juncea ) expressing non-allergenic and biologically safe RiD peptide show higher tolerance against Lipaphis erysimi. Rorippa indica defensin (RiD) has previously been reported as a novel insecticidal protein derived from a wild crucifer Rorippa indica. RiD was found to have an effective insecticidal property against mustard aphid, Lipaphis erysimi. In the present study, RiD was highly upregulated in R. indica during aphid infestation initiating a defense system mediated by jasmonic acid (JA), but not by salicylic acid (SA)/abscisic acid (ABA). RiD has also been assessed for biosafety according to the FAO/WHO guideline (allergenicity of genetically modified foods; Food And Agriculture Organisation of the United Nations, Rome, Italy, 2001) and Codex Alimentarius Guideline (Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals. Codex Alimentarius Commission. GL, pp 71-2009, 2009). The purified protein was used to sensitize BALB/c mice and they showed normal histopathology of lung and no elevated IgE level in their sera. As the protein was found to be biologically safe and non-allergenic, it was used to develop transgenic Brassica juncea plants with enhanced aphid tolerance, which is one of the most important oilseed crops and is mostly affected by the devastating pest-L. erysimi. The transgene integration was monitored by Southern hybridization, and the positive B. juncea lines were further analyzed by Western blot, ELISA, immunohistolocalization assays and in planta insect bioassay. Transgenic plants expressing RiD conferred a higher level of tolerance against L. erysimi. All these results demonstrated that RiD is a novel, biologically safe, effective insecticidal agent and B. juncea plants expressing RiD are important components of integrated pest management.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Plant Biology, Centenary Campus, Bose Institute, Kolkata, 700054, India
| | - Kuladip Jana
- Department of Molecular Medicine, Centenary Campus, Bose Institute, Kolkata, 700054, India
| | - Samir Ranjan Sikdar
- Division of Plant Biology, Centenary Campus, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
111
|
Abstract
PURPOSE OF REVIEW Allergen extracts are still widely used in allergy diagnosis as they are regarded as sensitive screening tools despite the fact that they may lack some minor allergens. Another drawback of extracts is their low specificity, which is due to the presence of cross-reactive allergens. Progress in allergen identification has disclosed a number of allergenic molecules of homologous sequence and structure which are present in different animal species. This review summarizes recent advances in mammalian and fish allergen identification and focuses on their clinical relevance. RECENT FINDINGS Serum albumins and parvalbumins are well-known animal panallergens. More recently several members of the lipocalin family were found to be cross-reactive between furry animals whereas in fish, additional allergens, enolase, aldolase and collagen, were found to be important and cross-reactive allergens. New epidemiological studies have analysed the prevalence and clinical relevance of mammalian and fish components. Primary sensitization can be distinguished from cross-sensitization by using marker allergens. Although substantial progress has been made in allergen identification, only few markers are commercially available for routine clinical practice.
Collapse
Affiliation(s)
- Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
| | - Marianne van Hage
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
112
|
Jin Y, Goodman RE, Tetteh AO, Lu M, Tripathi L. Bioinformatics analysis to assess potential risks of allergenicity and toxicity of HRAP and PFLP proteins in genetically modified bananas resistant to Xanthomonas wilt disease. Food Chem Toxicol 2017; 109:81-89. [PMID: 28830835 DOI: 10.1016/j.fct.2017.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 11/17/2022]
Abstract
Banana Xanthomonas wilt (BXW) disease threatens banana production and food security throughout East Africa. Natural resistance is lacking among common cultivars. Genetically modified (GM) bananas resistant to BXW disease were developed by inserting the hypersensitive response-assisting protein (Hrap) or/and the plant ferredoxin-like protein (Pflp) gene(s) from sweet pepper (Capsicum annuum). Several of these GM banana events showed 100% resistance to BXW disease under field conditions in Uganda. The current study evaluated the potential allergenicity and toxicity of the expressed proteins HRAP and PFLP based on evaluation of published information on the history of safe use of the natural source of the proteins as well as established bioinformatics sequence comparison methods to known allergens (www.AllergenOnline.org and NCBI Protein) and toxins (NCBI Protein). The results did not identify potential risks of allergy and toxicity to either HRAP or PFLP proteins expressed in the GM bananas that might suggest potential health risks to humans. We recognize that additional tests including stability of these proteins in pepsin assay, nutrient analysis and possibly an acute rodent toxicity assay may be required by national regulatory authorities.
Collapse
Affiliation(s)
- Yuan Jin
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, 1901 North 21st Street, P.O. Box 886207, Lincoln, NE 68588-6207, USA
| | - Richard E Goodman
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, 1901 North 21st Street, P.O. Box 886207, Lincoln, NE 68588-6207, USA
| | - Afua O Tetteh
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, 1901 North 21st Street, P.O. Box 886207, Lincoln, NE 68588-6207, USA
| | - Mei Lu
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, 1901 North 21st Street, P.O. Box 886207, Lincoln, NE 68588-6207, USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture, P.O. Box 30709, Nairobi, Kenya.
| |
Collapse
|
113
|
Röckendorf N, Meckelein B, Scherf KA, Schalk K, Koehler P, Frey A. Identification of novel antibody-reactive detection sites for comprehensive gluten monitoring. PLoS One 2017; 12:e0181566. [PMID: 28759621 PMCID: PMC5536345 DOI: 10.1371/journal.pone.0181566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/23/2017] [Indexed: 12/04/2022] Open
Abstract
Certain cereals like wheat, rye or barley contain gluten, a protein mixture that can trigger celiac disease (CD). To make gluten-free diets available for affected individuals the gluten content of foodstuff must be monitored. For this purpose, antibody-based assays exist which rely on the recognition of certain linear gluten sequence motifs. Yet, not all CD-active gluten constituents and fragments formed during food processing/fermentation may be covered by those tests. In this study, we therefore assayed the coverage of reportedly CD-active gluten components by currently available detection antibodies and determined the antibody-inducing capacity of wheat gluten constituents in order to provide novel diagnostic targets for comprehensive gluten quantitation. Immunizations of outbred mice with purified gliadins and glutenins were conducted and the linear target recognition profile of the sera was recorded using synthetic peptide arrays that covered the sequence space of gluten constituents present in those preparations. The resulting murine immunorecognition profile of gluten demonstrated that further linear binding sites beyond those recognized by the monoclonal antibodies α20, R5 and G12 exist and may be exploitable as diagnostic targets. We conclude that the safety of foodstuffs for CD patients can be further improved by complementing current tests with antibodies directed against additional CD-active gluten components. Currently unrepresented linear gluten detection sites in glutenins and α-gliadins suggest sequences QQQYPS, PQQSFP, QPGQGQQG and QQPPFS as novel targets for antibody generation.
Collapse
Affiliation(s)
- Niels Röckendorf
- Division of Mucosal Immunology & Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Barbara Meckelein
- Division of Mucosal Immunology & Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Katharina A. Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Freising, Germany
| | - Kathrin Schalk
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Freising, Germany
| | - Andreas Frey
- Division of Mucosal Immunology & Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| |
Collapse
|
114
|
Radauer C. Navigating through the Jungle of Allergens: Features and Applications of Allergen Databases. Int Arch Allergy Immunol 2017; 173:1-11. [PMID: 28456806 DOI: 10.1159/000471806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The increasing number of available data on allergenic proteins demanded the establishment of structured, freely accessible allergen databases. In this review article, features and applications of 6 of the most widely used allergen databases are discussed. The WHO/IUIS Allergen Nomenclature Database is the official resource of allergen designations. Allergome is the most comprehensive collection of data on allergens and allergen sources. AllergenOnline is aimed at providing a peer-reviewed database of allergen sequences for prediction of allergenicity of proteins, such as those planned to be inserted into genetically modified crops. The Structural Database of Allergenic Proteins (SDAP) provides a database of allergen sequences, structures, and epitopes linked to bioinformatics tools for sequence analysis and comparison. The Immune Epitope Database (IEDB) is the largest repository of T-cell, B-cell, and major histocompatibility complex protein epitopes including epitopes of allergens. AllFam classifies allergens into families of evolutionarily related proteins using definitions from the Pfam protein family database. These databases contain mostly overlapping data, but also show differences in terms of their targeted users, the criteria for including allergens, data shown for each allergen, and the availability of bioinformatics tools.
Collapse
Affiliation(s)
- Christian Radauer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
115
|
De Angelis E, Pilolli R, Bavaro SL, Monaci L. Insight into the gastro-duodenal digestion resistance of soybean proteins and potential implications for residual immunogenicity. Food Funct 2017; 8:1599-1610. [PMID: 28294226 DOI: 10.1039/c6fo01788f] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Soy is an important component of the human diet thanks to its nutritional value and high protein content; however, it also represents a risk for allergenic consumers due to its potential to trigger adverse reactions in sensitized individuals. The putative correlation between immunoreactivity and resistance to the human gastrointestinal (GI) digestion has drawn attention to investigating soybean proteins digestibility. In this work, we provided further insights into this field by performing in vitro simulated GI digestion experiments directly on ground soybean seeds, to provide more realistic results obtained from the digestion of the whole food matrix. Soybean digestion products were analyzed by SDS-PAGE followed by untargeted HPLC-MS/MS analysis and the final data were software treated to enable protein/peptide identification. The latter allowed monitoring the proteolytic degradation of the main soybean proteins during the gastric and duodenal phases. In particular, β-conglycinin and trypsin inhibitors showed the highest resistance to the combined activity of GI enzymes, showing a partial degradation at the end of the duodenal phase as ascertained by the strong electrophoretic bands displayed at 50 kDa and 20 kDa, respectively. Glycinin subunits also presented, even if to a lower extent, resistance to the complete proteolytic degradation, as demonstrated by polypeptide fragments with molecular weight lower than 20 kDa displayed in the gel at the end of duodenal digestion. In addition, by bioinformatics analysis it was demonstrated that the GI resistant fragments of the allergenic proteins, β-conglycinin and glycinin, retained in their primary structure linear epitopes potentially able to trigger an immunoreaction when exposed to the intestinal mucosa. Moreover, such resistant peptides also presented a structural homology with epitope sequences recognized in other legume species, presenting a potential risk of adverse cross-reaction for a larger category of allergic consumers.
Collapse
Affiliation(s)
- Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Amendola 122/O, 70126, Bari, Italy.
| | | | | | | |
Collapse
|
116
|
McClain S. Bioinformatic screening and detection of allergen cross-reactive IgE-binding epitopes. Mol Nutr Food Res 2017; 61. [PMID: 28191711 PMCID: PMC5573986 DOI: 10.1002/mnfr.201600676] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
Protein allergens can be related by cross‐reactivity. Allergens that share relevant sequence can cross‐react, those lacking sufficient similarity in their IgE antibody‐binding epitopes do not cross‐react. Cross‐reactivity is based on shared epitopes that is based on shared sequence and higher level structure (charge and shape). Epitopes are important in predicting cross‐reactivity potential and may provide the potential to establish criteria that identify homology among allergens. Selected allergen's IgE‐binding epitope sequences were used to determine how the FASTA algorithm could be used to identify a threshold of significance. A statistical measure (expectation value, E‐value) was used to identify a threshold specific to identifying cross‐reactivity potential. Peanut Ara h 1 and Ara h 2, shrimp tropomyosin Pen a 1, and birch tree pollen allergen, Bet v 1 were sources of known epitopes. Each epitope or set of epitopes was inserted into random amino acid sequence to create hypothetical proteins used as queries to an allergen database. Alignments with allergens were noted for the ability to match the epitope's source allergen as well as any cross‐reactive or other homologous allergens. A FASTA expectation value range (1 × 10−5–1 × 10−6) was identified that could act as a threshold to help identify cross‐reactivity potential.
Collapse
|
117
|
Hayes M, Rougé P, Barre A, Herouet-Guicheney C, Roggen EL. In silico tools for exploring potential human allergy to proteins. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ddmod.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|