101
|
Kim ST, Yu S, Kang YH, Kim SG, Kim JY, Kim SH, Kang KY. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. PLANT CELL REPORTS 2008; 27:593-603. [PMID: 18074138 DOI: 10.1007/s00299-007-0485-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/16/2007] [Accepted: 11/15/2007] [Indexed: 05/20/2023]
Abstract
We previously reported that rice blast fungus or jasmonic acid induced the expression of rice pathogenesis-related class 10 (JIOsPR10) proteins (Kim et al. 2003, 2004). However, no further studies have been carried out to examine the expression, localization, and enzymatic activity of this protein in either developmental tissues or in tissues under abiotic stress conditions. In this study, rice JIOsPR10 was examined by Western blot analysis, immunolocalization, and biochemical assays. Western blots revealed that the JIOsPR10 protein was expressed in developmental tissues, including in flower and root. The protein was also expressed under abiotic stresses, such as occurs during senescence and wounding. Using immunohistochemical techniques, we determined that expression of JIOsPR10 was localized to the palea of flower, in the exodermis, and inner part of the endodermis of the root. In senescencing tissues of leaf and coleoptiles, its expression was localized in vascular bundles. The RNase activity using JIOsPR10 recombinant protein was determined and abolished after treatment with DTT in a native in-gel assay. To test this, we created JIOsPR10 mutant proteins containing serine substitutions of amino acids C81S, C83S, or both and examined their RNase activities. The activity of the C83S mutant was decreased in the agarose gel assay compared to the wild type. Taken together, we hypothesize that the JIOsPR10 protein possesses RNase activity that is sensitive to DTT, suggesting the importance of the disulfide bonding between cysteine residues and that it might play a role in constitutive self-defense mechanisms in plants against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Sun Tae Kim
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | |
Collapse
|
102
|
Lin YZ, Chen HY, Kao R, Chang SP, Chang SJ, Lai EM. Proteomic analysis of rice defense response induced by probenazole. PHYTOCHEMISTRY 2008; 69:715-728. [PMID: 17950386 DOI: 10.1016/j.phytochem.2007.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/23/2007] [Accepted: 09/06/2007] [Indexed: 05/25/2023]
Abstract
Here, we report the first proteomic analysis of rice defense response induced by probenazole (PBZ), an agricultural chemical that has been widely used to protect rice plants from rice blast and the bacterial blight pathogen. Two-dimensional gel electrophoresis (2-DE) was utilized to identify a total of 40 protein spots including 9 protein spots that are up-regulated by PBZ and 31 abundant protein spots. A total of 11 unique proteins from these 9 spots were identified by LC-MS/MS, and the majority of them were classified and/or possessed orthologs in defense-related functions. Five protein spots with only one protein species identified in each spot appear to be PBZ-regulated proteins. They are a putative glutathione S-transferase GSTU17, a putative phenylalanine ammonia-lyase (PAL, XP_466843), a putative caffeic acid 3-O-methyltransferase (COMT), a putative NADH-ubiquinone oxidoreductase, and a putative glucose-1-phosphate adenyltransferase. However, the other six protein species identified from the remaining four protein spots could not be conclusively described as PBZ-regulated proteins due to either the co-migration of two protein species in one spot or the presence of one protein species in two spots. Through real-time reverse transcription polymerase chain reaction (RT-PCR), it was determined that PAL (XP_466843) is likely regulated at the protein level, whereas GSTU17 and COMT were regulated at the mRNA level after PBZ application. Interestingly, the mRNA transcripts of two PAL paralogs were found to be up-regulated by PBZ. We propose that PAL, COMT, and GSTU17 are likely to confer PBZ-induced disease resistance via such functions as biosynthesis and transport of flavonoid-type phytoalexin and/or lignin biogenesis.
Collapse
Affiliation(s)
- Yu-Zu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
103
|
Zhen Y, Qi JL, Wang SS, Su J, Xu GH, Zhang MS, Miao L, Peng XX, Tian D, Yang YH. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. PHYSIOLOGIA PLANTARUM 2007; 131:542-54. [PMID: 18251846 DOI: 10.1111/j.1399-3054.2007.00979.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytotoxic aluminum (Al) is a limiting factor for crop production on acid soils. The molecular mechanism, however, underlying Al toxicity and responses in plants is still not well understood. We report here the characterization of comparative proteome of aluminum-stress-responsive proteins in a known Al-resistant soybean cultivar, Baxi 10 (BX10). To investigate time-dependent responses, 1-week-old soybean seedlings were exposed to 50 microM AlCl3 for 24, 48 and 72 h, and total proteins extracted from roots were separated by two-dimensional electrophoresis. More than 1200 root proteins of the soybean BX10 seedling were reproducibly resolved on the gels. A total of 39 differentially expressed spots in abundance were identified by mass spectrometry, with 21 upregulated, 13 newly induced and 5 downregulated. The heat shock protein, glutathione S-transferase, chalcone-related synthetase, GTP-binding protein and ABC transporter ATP-binding protein were previously detected at the transcriptional or translational level in other plants. Other proteins, identified in this study, are new Al-induced proteins. Soybean BX10 roots under aluminum stress could be characterized by the cellular activities involved in stress/defense, signal transduction, transport, protein folding, gene regulation, and primary metabolisms, which are critical for plant survival under Al toxicity. This present study expands our understanding of differentially expressed proteins associated with aluminum stress on soybean BX10.
Collapse
Affiliation(s)
- Yan Zhen
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS, Lee IJ, Renaut J, Lee BH. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. PHYSIOLOGIA PLANTARUM 2007; 131:555-70. [PMID: 18251847 DOI: 10.1111/j.1399-3054.2007.00980.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A comparative proteomic approach has been adopted in combination with physiological and biochemical analysis of tomato leaves responding to waterlogging stress. Waterlogging resulted in increases of relative ion leakage, lipid peroxidation and in vivo H2O2 content, whereas the chlorophyll content was decreased. Histocytochemical investigations with 3,3'-diaminobenzidine to localize H2O2 and Evans blue to detect dead cells suggested that oxidative stress has a significant role to leaf senescence. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant leaf protein, was successfully reduced from the samples by a fractionation method based on 15% polyethylene glycol (PEG). Elimination of Rubisco was further confirmed by Western blot analysis. To elucidate the temporal changes of the protein patterns in tomato leaves, the total soluble and the PEG-fractionated proteins were separated by two-dimensional electrophoresis (2-DE) and visualized by Coomassie Brilliant Blue staining. A total of 52 protein spots were differentially expressed, wherein 33 spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis. The identified proteins are involved in several processes, i.e. photosynthesis, disease resistance, stress and defense mechanisms, energy and metabolism and protein biosynthesis. Results from 2-DE analysis, combined with immunoblotting clearly showed that the fragments of Rubisco large subunit were significantly degraded. This could result from a higher production of reactive oxygen species in leaves under waterlogging stress. Furthermore, four differentially accumulated proteins were analyzed at the mRNA level, confirming the differential gene expression levels and revealing that transcription levels are not always concomitant to the translation level. A number of novel proteins were differentially expressed or appeared only in the PEG-fractionated protein samples, indicating that PEG fractionation system can be used as a versatile protein fractionation technique in proteomic analysis to identify novel or low-abundant proteins from all kinds of plant species.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Applied Life Sciences (BK21 and EB-NCRC), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ, Lee BH. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 2007; 7:3369-83. [PMID: 17722143 DOI: 10.1002/pmic.200700266] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study investigated rice leaf proteome in response to heat stress. Rice seedlings were subjected to a temperature of 42 degrees C and samples were collected 12 and 24 h after treatment. Increased relative ion leakage and lipid peroxidation suggested that oxidative stress frequently was generated in rice leaves exposed to high temperature. 2-DE, coupled with MS, was used to investigate and identify heat-responsive proteins in rice leaves. In order to identify the low-abundant proteins in leaves, samples were prefractionated by 15% PEG. The PEG supernatant and the pellet fraction samples were separated by 2-DE, and visualized by silver or CBB staining. Approximately 1000 protein spots were reproducibly detected on each gel, wherein 73 protein spots were differentially expressed at least at one time point. Of these differentially expressed proteins, a total of 34 and 39 protein spots were found in the PEG supernatant and pellet fractions, respectively. Using MALDI-TOF MS, a total of 48 proteins were identified. These proteins were categorized into classes related to heat shock proteins, energy and metabolism, redox homeostasis, and regulatory proteins. The results of the present study show that a group of low molecular small heat shock proteins (sHSPs) were newly induced by heat stress. Among these sHSPs, a low molecular weight mitochondrial (Mt) sHSP was validated further by Western blot analysis. Furthermore, four differentially accumulated proteins that correspond to antioxidant enzymes were analyzed at the mRNA level, which confirmed the differential gene expression levels, and revealed that transcription levels were not completely concomitant with translation. The identification of some novel proteins in the heat stress response provides new insights that can lead to a better understanding of the molecular basis of heat-sensitivity in plants.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Division of Applied Life Sciences (BK21 and EB-NCRC), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | |
Collapse
|
106
|
Yara A, Yaeno T, Hasegawa M, Seto H, Montillet JL, Kusumi K, Seo S, Iba K. Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturases. PLANT & CELL PHYSIOLOGY 2007; 48:1263-74. [PMID: 17716996 DOI: 10.1093/pcp/pcm107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Linolenic acid (18:3) is the most abundant fatty acid in plant membrane lipids and is a source for various oxidized metabolites, called oxylipins. 18:3 and oxylipins play important roles in the induction of defense responses to pathogen infection and wound stress in Arabidopsis. However, in rice, endogenous roles for 18:3 and oxylipins in disease resistance have not been confirmed. We generated 18:3-deficient transgenic rice plants (F78Ri) with co-suppression of two omega-3 fatty acid desaturases, OsFAD7 and OsFAD8. that synthesize 18:3. The F78Ri plants showed enhanced resistance to the phytopathogenic fungus Magnaporthe grisea. A typical 18:3-derived oxylipin, jasmonic acid (JA), acts as a signaling molecule in defense responses to fungal infection in Arabidopsis. However, in F78Ri plants, the expression of JA-responsive pathogenesis-related genes, PBZ1 and PR1b, was induced after inoculation with M. grisea, although the JA-mediated wound response was suppressed. Furthermore, the application of JA methyl ester had no significant effect on the enhanced resistance in F78Ri plants. Taken together, our results indicate that, although suppression of fatty acid desaturases involves the concerted action of varied oxylipins via diverse metabolic pathways, 18:3 or 18:3-derived oxylipins, except for JA, may contribute to signaling on defense responses of rice to M. grisea infection.
Collapse
Affiliation(s)
- Asanori Yara
- Department of Biology, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Lee JR, Park SC, Kim MH, Jung JH, Shin MR, Lee DH, Cheon MG, Park Y, Hahm KS, Lee SY. Antifungal activity of rice Pex5p, a receptor for peroxisomal matrix proteins. Biochem Biophys Res Commun 2007; 359:941-6. [PMID: 17568562 DOI: 10.1016/j.bbrc.2007.05.210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
We have purified a novel antifungal protein from blast fungus (Magnaporthe grisea)-treated rice leaves using consecutive chromatographies on CM-Sepharose ion-change, Affi-gel blue, and HPLC gel filtration columns. We determined the N-terminal peptide sequence of the purified protein and subjected it to the NCBI/BLAST database and found the protein to be a partial fragment of the peroxisomal receptor protein in rice (OsPex5p). After cloning two cDNAs encoding OsPEX5L and OsPEX5S genes that are splice variants of OsPEX5 from a rice leaf cDNA library, we investigated their antifungal properties. The recombinant proteins were expressed in Escherichia coli and found to significantly inhibit cell growth of various pathogenic fungal strains. mRNA expression of the OsPEX5L gene was induced by diverse external stresses such as rice blast fungus, fungal elicitor, and other signaling molecules including H(2)O(2), abscisic acid, jasmonic acid, and salicylic acid. These results suggest that the peroxisomal receptor protein, OsPex5p, plays a critical role in the rice defense system against diverse external stresses including fungal pathogenic attack.
Collapse
Affiliation(s)
- Jung Ro Lee
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Ahn IP, Lee SW, Suh SC. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:759-68. [PMID: 17601164 DOI: 10.1094/mpmi-20-7-0759] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A nonpathogenic rhizobacterium, Pseudomonas putida LSW17S, elicited systemic protection against Fusarium wilt and pith necrosis caused by Fusarium oxysporum f. sp. lycopersici and P. corrugata in tomato (Lycopersicon esculentum L.). LSW17S also confers disease resistance against P. syringae pv. tomato DC3000 (DC3000) on Arabidopsis ecotype Col-0. To investigate mechanisms underlying disease protection, expression patterns of defense-related genes PR1, PR2, PR5, and PDF1.2 and cellular defense responses such as hydrogen peroxide accumulation and callose deposition were investigated. LSW17S treatment exhibited the typical phenomena of priming. Strong and faster transcription of defense-related genes was induced and hydrogen peroxide or callose were accumulated in Arabidopsis treated with LSW17S and infected with DC3000. In contrast, individual actions of LSW17S and DC3000 did not elicit rapid molecular and cellular defense responses. Priming by LSW17S was translocated systemically and retained for more than 10 days. Treatment with LSW17S reduced pathogen proliferation in Arabidopsis ecotype Col-0 expressing bacterial NahG; however, npr1, etr1, and jar1 mutations impaired inhibition of pathogen growth. Cellular and molecular priming responses support these results. In sum, LSW17S primes Arabidopsis for NPR1-, ethylene-, and jasmonic acid-dependent disease resistance, and efficient molecular and cellular defense responses.
Collapse
Affiliation(s)
- Il-Pyung Ahn
- National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-100, Korea.
| | | | | |
Collapse
|
109
|
Jiang J, Li J, Xu Y, Han Y, Bai Y, Zhou G, Lou Y, Xu Z, Chong K. RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice. PLANT, CELL & ENVIRONMENT 2007; 30:690-9. [PMID: 17470145 DOI: 10.1111/j.1365-3040.2007.01663.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Jasmonic acid (JA) is a well-known defence hormone, but its biological function and mechanism in rice root development are less understood. Here, we describe a JA-induced putative receptor-like protein (OsRLK, AAL87185) functioning in root development in rice. RNA in situ hybridization revealed that the gene was expressed largely in roots, and a fusion protein showed its localization on the plasma membrane. The primary roots in RNAi transgenic rice plants meandered and curled more easily than wild-type (WT) roots under JA treatment. Thus, this gene was renamed Oryza sativa root meander curling (OsRMC). The transgenic primary roots were shorter, the number of adventitious roots increased and the number of lateral roots decreased as compared to the WT. As well, the second sheath was reduced in length. Growth of both primary roots and second sheaths was sensitive to JA treatment. No significant change of JA level appeared in the roots between the transgenic rice line and WT. Expression of RSOsPR10, involved in the JA signalling pathway, was induced in transgenic rice. Western blotting revealed OsRMC induced by JA. Our results suggest that OsRMC of the DUF26 subfamily involved in JA signal transduction mediates root development and negatively regulates root curling in rice.
Collapse
Affiliation(s)
- Jiafu Jiang
- Research Center for Molecular Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, and Graduate School of the Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH. Excess copper induced physiological and proteomic changes in germinating rice seeds. CHEMOSPHERE 2007; 67:1182-93. [PMID: 17182080 DOI: 10.1016/j.chemosphere.2006.10.075] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/11/2006] [Accepted: 10/25/2006] [Indexed: 05/05/2023]
Abstract
Copper is an essential micronutrient for plants. Present at a high concentration in soil, copper is also regarded as a major toxicant to plant cells due to its potential inhibitory effects against many physiological and biochemical processes. The interference of germination-related proteins by heavy metals has not been well documented at the proteomic level. In the current study, physiological, biochemical and proteomic changes of germinating rice seeds were investigated under copper stress. Germination rate, shoot elongation, plant biomass, and water content were decreased, whereas accumulation of copper and TBARS content in seeds were increased significantly with increasing copper concentrations from 0.2mM to 1.5mM followed by germination. The SDS-PAGE showed the preliminary changes in the polypeptides patterns under copper stress. Protein profiles analyzed by two-dimensional electrophoresis (2-DE) revealed that 25 protein spots were differentially expressed in copper-treated samples. Among them, 18 protein spots were up-regulated and 7 protein spots were down-regulated. These differentially displayed proteins were identified by MALDI-TOF mass spectrometry. The up-regulation of some antioxidant and stress-related proteins such as glyoxalase I, peroxiredoxin, aldose reductase, and some regulatory proteins such as DnaK-type molecular chaperone, UlpI protease, and receptor-like kinase clearly indicated that excess copper generates oxidative stress that might be disruptive to other important metabolic processes. Moreover, down-regulation of key metabolic enzymes like alpha-amylase or enolase revealed that the inhibition of seed germinations after exposure to excess copper not only affects starvation in water uptake by seeds but also results in failure in the reserve mobilization processes. These results indicate a good correlation between the physiological and biochemical changes in germinating rice seeds exposed to excess copper.
Collapse
Affiliation(s)
- Nagib Ahsan
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Lee DG, Ahsan N, Lee SH, Kang KY, Lee JJ, Lee BH. An approach to identify cold-induced low-abundant proteins in rice leaf. C R Biol 2007; 330:215-25. [PMID: 17434115 DOI: 10.1016/j.crvi.2007.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/26/2006] [Accepted: 01/03/2007] [Indexed: 11/22/2022]
Abstract
A proteomic approach has been adopted to investigate the low-abundant proteins in rice leaf in response to cold stress. Rice seedlings were exposed to different temperatures, such as 5 or 10 degrees C, and samples were collected after different time course. To eliminate the high-abundant proteins in leaf tissues such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), proteins were fractionated by polyethylene glycol (PEG). The elimination of Rubisco from the protein samples was confirmed by Western blot analysis. The PEG fractionated protein samples were separated by 2-DE and visualized by silver or CBB staining. A total 12 up-regulated protein spots were identified using the analysis of MALDI-TOF mass spectrometry or ESI MS/MS. We identified some novel proteins such as cysteine proteinase, thioredoxin peroxidase, a RING zinc finger protein-like, drought-inducible late embryogenesis abundant, and a fibrillin-like protein that had not yet been reported in the earlier reports on cold proteomic analysis. The identification of some novel low-abundant proteins in response to cold stress may provide a new homeostasis to develop enhanced cold tolerance transgenic plants. Thus, we propose that a PEG fractionation system can be used as an influential protein extraction method from the leaf samples, which can lead to knowledge of the expression pattern of low-abundant proteins in response to various biotic or abiotic stresses.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Division of Applied Life Science (BK21 program), PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
112
|
Shimizu T, Satoh K, Kikuchi S, Omura T. The repression of cell wall- and plastid-related genes and the induction of defense-related genes in rice plants infected with Rice dwarf virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:247-54. [PMID: 17378427 DOI: 10.1094/mpmi-20-3-0247] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An analysis, using microarrays, of gene expression in rice plants infected with Rice dwarf virus revealed significant decreases in levels of expression of genes that are involved in the formation of cell walls, reflecting the stunted growth of diseased plants. The expression of plastid-related genes also was suppressed, as anticipated from the white chlorotic appearance of infected leaves. By contrast, the expression of defense- and stress-related genes was enhanced after viral infection. These results suggest that virus-infected rice plants attempt to survive viral infection and replication by raising the levels of expression of defense- and stress-related genes while suppressing the expression of genes required for the elongation of cells and photosynthesis.
Collapse
Affiliation(s)
- Takumi Shimizu
- Research Team for Vectorborne Diseases, National Agricultural Research Center, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan
| | | | | | | |
Collapse
|
113
|
Vergne E, Ballini E, Marques S, Sidi Mammar B, Droc G, Gaillard S, Bourot S, DeRose R, Tharreau D, Nottéghem JL, Lebrun MH, Morel JB. Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. THE NEW PHYTOLOGIST 2007; 174:159-171. [PMID: 17335506 DOI: 10.1111/j.1469-8137.2007.01971.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
* Our view of genes involved in rice disease resistance is far from complete. Here we used a gene-for-gene relationship corresponding to the interaction between atypical avirulence gene ACE1 from Magnaporthe grisea and rice resistance gene Pi33 to better characterize early rice defence responses induced during such interaction. * Rice genes differentially expressed during early stages of Pi33/ACE1 interaction were identified using DNA chip-based differential hybridization and QRT-PCR survey of the expression of known and putative regulators of disease resistance. * One hundred genes were identified as induced or repressed during rice defence response, 80% of which are novel, including resistance gene analogues. Pi33/ACE1 interaction also triggered the up-regulation of classical PR defence genes and a massive down-regulation of chlorophyll a/b binding genes. Most of these differentially expressed genes were induced or repressed earlier in Pi33/ACE1 interaction than in the gene-for-gene interaction involving Nipponbare resistant cultivar. * Besides demonstrating that an ACE1/Pi33 interaction induced classical and specific expression patterns, this work provides a list of new genes likely to be involved in rice disease resistance.
Collapse
Affiliation(s)
- E Vergne
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - E Ballini
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - S Marques
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - B Sidi Mammar
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - G Droc
- UMR PIA CIRAD TA40/03 Avenue Agropolis 34398 Montpellier Cedex 5, France
| | - S Gaillard
- UMR PIA CIRAD TA40/03 Avenue Agropolis 34398 Montpellier Cedex 5, France
| | - S Bourot
- Bayer BioScience NV, Technologiepark 38, B-9052 Zwijnaarde, Belgium
| | - R DeRose
- Bayer BioScience NV, Technologiepark 38, B-9052 Zwijnaarde, Belgium
| | - D Tharreau
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - J-L Nottéghem
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - M-H Lebrun
- UMR 2579 CNRS, BayerCropscience, 14-20 Rue Pierre Baizet BP 9163, 69263 Lyon Cedex 09, France
| | - J-B Morel
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| |
Collapse
|
114
|
Xu JR, Zhao X, Dean RA. From genes to genomes: a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae. ADVANCES IN GENETICS 2007; 57:175-218. [PMID: 17352905 DOI: 10.1016/s0065-2660(06)57005-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnaporthe oryzae is the most destructive fungal pathogen of rice worldwide and because of its amenability to classical and molecular genetic manipulation, availability of a genome sequence, and other resources it has emerged as a leading model system to study host-pathogen interactions. This chapter reviews recent progress toward elucidation of the molecular basis of infection-related morphogenesis, host penetration, invasive growth, and host-pathogen interactions. Related information on genome analysis and genomic studies of plant infection processes is summarized under specific topics where appropriate. Particular emphasis is placed on the role of MAP kinase and cAMP signal transduction pathways and unique features in the genome such as repetitive sequences and expanded gene families. Emerging developments in functional genome analysis through large-scale insertional mutagenesis and gene expression profiling are detailed. The chapter concludes with new prospects in the area of systems biology, such as protein expression profiling, and highlighting remaining crucial information needed to fully appreciate host-pathogen interactions.
Collapse
Affiliation(s)
- Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
115
|
Giri AP, Wünsche H, Mitra S, Zavala JA, Muck A, Svatos A, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant's proteome. PLANT PHYSIOLOGY 2006; 142:1621-41. [PMID: 17028148 PMCID: PMC1676057 DOI: 10.1104/pp.106.088781] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 09/27/2006] [Indexed: 05/12/2023]
Abstract
When Manduca sexta attacks Nicotiana attenuata, fatty acid-amino acid conjugates (FACs) in the larvae's oral secretions (OS) are introduced into feeding wounds. These FACs trigger a transcriptional response that is similar to the response induced by insect damage. Using two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization-time of flight, and liquid chromatography-tandem mass spectrometry, we characterized the proteins in phenolic extracts and in a nuclear fraction of leaves elicited by larval attack, and/or in leaves wounded and treated with OS, FAC-free OS, and synthetic FACs. Phenolic extracts yielded approximately 600 protein spots, many of which were altered by elicitation, whereas nuclear protein fractions yielded approximately 100 spots, most of which were unchanged by elicitation. Reproducible elicitor-induced changes in 90 spots were characterized. In general, proteins that increased were involved in primary metabolism, defense, and transcriptional and translational regulation; those that decreased were involved in photosynthesis. Like the transcriptional defense responses, proteomic changes were strongly elicited by the FACs in OS. A semiquantitative reverse transcription-PCR approach based on peptide sequences was used to compare transcript and protein accumulation patterns for 17 candidate proteins. In six cases the patterns of elicited transcript accumulation were consistent with those of elicited protein accumulation. Functional analysis of one of the identified proteins involved in photosynthesis, RuBPCase activase, was accomplished by virus-induced gene silencing. Plants with decreased levels of RuBPCase activase protein had reduced photosynthetic rates and RuBPCase activity, and less biomass, responses consistent with those of herbivore-attacked plants. We conclude that the response of the plant's proteome to herbivore elicitation is complex, and integrated transcriptome-proteome-metabolome analysis is required to fully understand this ubiquitous ecological interaction.
Collapse
Affiliation(s)
- Ashok P Giri
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
116
|
Mahmood T, Jan A, Kakishima M, Komatsu S. Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 2006; 6:6053-65. [PMID: 17051650 DOI: 10.1002/pmic.200600470] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants exhibit resistance against incompatible pathogens, via localized and systemic responses as part of an integrated defense mechanism. To study the compatible and incompatible interactions between rice and bacteria, a proteomic approach was applied. Rice cv. Java 14 seedlings were inoculated with compatible (Xo7435) and incompatible (T7174) races of Xanthomonas oryzae pv. oryzae (Xoo). Cytosolic and membrane proteins were fractionated from the leaf blades and separated by 2-D PAGE. From 366 proteins analyzed, 20 were differentially expressed in response to bacterial inoculation. These proteins were categorized into classes related to energy (30%), metabolism (20%), and defense (20%). Among the 20 proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU) was fragmented into two smaller proteins by T7174 and Xo7435 inoculation. Treatment with jasmonic acid (JA), a signaling molecule in plant defense responses, changed the level of protein accumulation for 5 of the 20 proteins. Thaumatin-like protein and probenazole-inducible protein (PBZ) were commonly up-regulated by T7174 and Xo7435 inoculation and JA treatment. These results suggest that synthesis of the defense-related thaumatin-like protein and PBZ are stimulated by JA in the defense response pathway of rice against bacterial blight.
Collapse
|
117
|
Abstract
Plant diseases caused by fungi, oomycetes, viruses, and bacteria are devastating both to the economy and to the food supply of a nation. Therefore, the development of new, rapid methods to identify these pathogens is a highly important area of research that is of international concern. MS-based proteomics has become a powerful and increasingly popular approach to not only identify these pathogens, but also to better understand their biology. However, there is a distinction between identifying a pathogen protein and identifying a pathogen based upon the detection of one of its proteins and this must be considered before the general application of MS for plant pathogen detection is made. There has been a recent push in the proteomics community to make data from large-scale proteomics experiments publicly available in the form of a centralized repository. Such a resource could enable the use of MS as a universal plant pathogen detection technology.
Collapse
Affiliation(s)
- Neerav D Padliya
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | | |
Collapse
|
118
|
Agrawal GK, Jwa NS, Iwahashi Y, Yonekura M, Iwahashi H, Rakwal R. Rejuvenating rice proteomics: Facts, challenges, and visions. Proteomics 2006; 6:5549-76. [PMID: 16991195 DOI: 10.1002/pmic.200600233] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Proteomics is progressing at an unprecedented pace, as can be exemplified by the progress in model organisms such as yeast, bacteria, and mammals. Proteomics research in plants, however, has not progressed at the same pace. Unscrambling of the genome sequences of the dicotyledoneous Arabidopsis thaliana (L.) and monocotyledoneous rice (Oryza sativa L.) plant species, respectively, has made them accessible reference organisms to study plant proteomics. Study of these two reference plants is expected to unravel the mystery of plant biology. Rice, a critically important food crop on the earth, has been termed a "cornerstone" and the "Rosetta stone" for functional genomics of cereal crops. Here, we look at the progress in unraveling rice proteomes and present the facts, challenges, and vision. The text is divided into two major parts: the first part presents the facts and the second part discusses the challenges and vision. The facts include the technology and its use in developing proteomes, which have been critically and constructively reviewed. The challenges and vision deal with the establishment of technologies to exhaustively investigate the protein components of a proteome, to generate high-resolution gel-based reference maps, and to give rice proteomics a functional dimension by studying PTMs and isolation of multiprotein complexes. Finally, we direct a vision on rice proteomics. This is our third review in series on rice proteomics, which aims to stimulate an objective discussion among rice researchers and to understand the necessity and impact of unraveling rice proteomes to their full potential.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Agricultural Biotechnology and Biochemistry, Kathmandu, Nepal.
| | | | | | | | | | | |
Collapse
|
119
|
Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turrà D, Fogliano V, Scala F, Lorito M. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 2006; 50:307-21. [PMID: 17008992 DOI: 10.1007/s00294-006-0091-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/07/2006] [Accepted: 07/09/2006] [Indexed: 01/17/2023]
Abstract
The main molecular factors involved in the complex interactions occurring between plants (bean), two different fungal pathogens (Botrytis cinerea, Rhizoctonia solani) and an antagonistic strain of the genus Trichoderma were investigated. Two-dimensional (2-D) electrophoresis was used to analyze separately collected proteomes from each single, two- or three-partner interaction (i.e., plant, pathogenic and antagonistic fungus alone and in all possible combinations). Differential proteins were subjected to mass spectrometry and in silico analysis to search for homologies with known proteins. In the plant proteome, specific pathogenesis-related proteins and other disease-related factors (i.e., potential resistance genes) seem to be associated with the interaction with either one of the two pathogens and/or T. atroviride. This finding is in agreement with the demonstrated ability of Trichoderma spp. to induce systemic resistance against various microbial pathogens. On the other side, many differential proteins obtained from the T. atroviride interaction proteome showed interesting homologies with a fungal hydrophobin, ABC transporters, etc. Virulence factors, like cyclophilins, were up-regulated in the pathogen proteome during the interaction with the plant alone or with the antagonist too. We isolated and confidently identified a large number of protein factors associated to the multi-player interactions examined.
Collapse
Affiliation(s)
- Roberta Marra
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università degli Studi di Napoli Federico II, Portici (NA), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Rampitsch C, Srinivasan M. The application of proteomics to plant biology: a review. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term proteomics, although still less than a decade old, is becoming commonplace in the vocabulary of biologists. Advances made in yeast and humans have been remarkable, sustained by equally remarkable progress in mass spectrometry, bioinformatics, and separation techniques. Progress in plants has been more recent, much of it in the model organisms Arabidopsis thaliana (L.) Heynh. and rice ( Oryza sativa L.), reflecting the tremendous advantage of a complete genomic sequence for proteomics endeavours. Other plants have also been the subject of investigation and this review deals with recent progress in proteomics under three main subheadings: total proteome studies, stress and post-translational modifications, and symbiotic plant–microbe interactions. Examples from the current literature are used to illustrate how proteomics can be used by itself or as part of a larger strategy to gain insight into the functioning of plants at the molecular level.
Collapse
Affiliation(s)
- Christof Rampitsch
- Cereal Research Centre, Agriculture and Agrifood Canada, 195 Dafoe Road, Winnipeg, MB R3T 2M9, Canada
- Yara International ASA, Bygdøy Alle 2, N-0202, Oslo, Norway
| | - Murali Srinivasan
- Cereal Research Centre, Agriculture and Agrifood Canada, 195 Dafoe Road, Winnipeg, MB R3T 2M9, Canada
- Yara International ASA, Bygdøy Alle 2, N-0202, Oslo, Norway
| |
Collapse
|
121
|
Rampitsch C, Bykova NV, McCallum B, Beimcik E, Ens W. Analysis of the wheat andPuccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics 2006; 6:1897-907. [PMID: 16479535 DOI: 10.1002/pmic.200500351] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Wheat leaf rust is caused by the fungus Puccinia triticina. The genetics of resistance follows the gene-for-gene hypothesis, and thus the presence or absence of a single host resistance gene renders a plant resistant or susceptible to a leaf rust race bearing the corresponding avirulence gene. To investigate some of the changes in the proteomes of both host and pathogen during disease development, a susceptible line of wheat infected with a virulent race of leaf rust were compared to mock-inoculated wheat using 2-DE (with IEF pH 4-8) and MS. Up-regulated protein spots were excised and analyzed by MALDI-QqTOF MS/MS, followed by cross-species protein identification. Where possible MS/MS spectra were matched to homologous proteins in the NCBI database or to fungal ESTs encoding putative proteins. Searching was done using the MASCOT search engine. Remaining unmatched spectra were then sequenced de novo and queried against the NCBInr database using the BLAST and MS BLAST tools. A total of 32 consistently up-regulated proteins were examined from the gels representing the 9-day post-infection proteome in susceptible plants. Of these 7 are host proteins, 22 are fungal proteins of known or hypothetical function and 3 are unknown proteins of putative fungal origin.
Collapse
|
122
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447482 DOI: 10.1002/cfg.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|