101
|
Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 2015; 20:584-606. [DOI: 10.1007/s10495-015-1104-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
102
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
103
|
Strickland LR, Pal HC, Elmets CA, Afaq F. Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett 2015; 359:20-35. [PMID: 25597784 DOI: 10.1016/j.canlet.2015.01.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/19/2022]
Abstract
Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway - the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib - have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies.
Collapse
Affiliation(s)
- Leah Ray Strickland
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Harish Chandra Pal
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
104
|
Danciu C, Vlaia L, Fetea F, Hancianu M, Coricovac DE, Ciurlea SA, Şoica CM, Marincu I, Vlaia V, Dehelean CA, Trandafirescu C. Evaluation of phenolic profile, antioxidant and anticancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells. Biol Res 2015; 48:1. [PMID: 25654588 PMCID: PMC4417255 DOI: 10.1186/0717-6287-48-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Curcuma longa Linnaeus and Zingiber officinale Roscoe are two main representatives of Zingiberaceae family studied for a wide range of therapeutic properties, including: antioxidant, anti-inflammatory, anti-angiogenic, antibacterial, analgesic, immunomodulatory, proapoptotic, anti-human immunodeficiency virus properties and anticancer effects. This study was aimed to analyse the ethanolic extracts of Curcuma rhizome (Curcuma longa Linnaeus) and Zingiber rhizome (Zingiber officinale Roscoe) in terms of polyphenols, antioxidant activity and anti-melanoma potential employing the B164A5 murine melanoma cell line. RESULTS In order to evaluate the total content of polyphenols we used Folin-Ciocâlteu method. The antioxidant activity of the two ethanolic extracts was determined by DPPH assay, and for the control of antiproliferative effect it was used MTT proliferation assay, DAPI staining and Annexin-FITC-7AAD double staining test. Results showed increased polyphenols amount and antioxidant activity for Curcuma rhizome ethanolic extract. Moreover, 100 μg/ml of ethanolic plant extract from both vegetal products presented in a different manner an antiproliferative, respectively a proapoptotic effect on the selected cell line. CONCLUSIONS The study concludes that Curcuma rhizome may be a promising natural source for active compounds against malignant melanoma.
Collapse
Affiliation(s)
- Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Victor Babes", Eftimie Murgu Square, No. 2, Timisoara, 300041, Romania.
| | - Lavinia Vlaia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy Victor Babes", Eftimie Murgu Square, No. 2, Timisoara, 300041, Romania.
| | - Florinela Fetea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Mănăştur Str.,No. 3-5, Cluj-Napoca, 400372, Romania.
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy "Gr.T.Popa", Iasi, Romania.
| | - Dorina E Coricovac
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Square, No. 2, Timisoara, 300041, Romania.
| | - Sorina A Ciurlea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Square, No. 2, Timisoara, 300041, Romania.
| | - Codruţa M Şoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Square, No. 2, Timisoara, 300041, Romania.
| | - Iosif Marincu
- Faculty of Medicine, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Square, No. 2, Timisoara, 300041, Romania.
| | - Vicentiu Vlaia
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Square, No. 2, Timisoara, 300041, Romania.
| | - Cristina A Dehelean
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy "Gr.T.Popa", Iasi, Romania.
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Square, No. 2, Timisoara, 300041, Romania.
| |
Collapse
|
105
|
Tuorkey MJ. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv Med Appl Sci 2014; 6:139-46. [PMID: 25598986 DOI: 10.1556/imas.6.2014.4.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/29/2014] [Accepted: 08/01/2014] [Indexed: 12/13/2022] Open
Abstract
There is no doubt that diet could effectively improve health and halt cancers. Dietary phytochemical compounds and their derivatives represent a cornucopia of effectively anticancer compounds. This review discusses existing data on the anticancer activities of curcumin, and then offers possible explanations for and mechanisms of its cancer-preventive action. This review also offers insights into the molecular mechanism and targets through which curcumin modulates cell cycle, apoptotic signals, anti-apoptotic proteins, miRNAs, Wnt/beta-catenin signaling, protein kinases, nuclear factor-κB, proteasome activation, epigenetic regulation including DNA methylation and histone modification. Finally, this review provides explanations for how curcumin reverses the multi-drug resistance (MDR) of cancer cells.
Collapse
|
106
|
Abouzied MMM, Eltahir HM, Abdel Aziz MA, Ahmed NS, Abd El-Ghany AA, Abd El-Aziz EA, Abd El-Aziz HO. Curcumin ameliorate DENA-induced HCC via modulating TGF-β, AKT, and caspase-3 expression in experimental rat model. Tumour Biol 2014; 36:1763-71. [PMID: 25519685 DOI: 10.1007/s13277-014-2778-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. In laboratory animal models, diethylnitrosamine (DENA) is a well-known agent that has a potent hepatocarcinogenic effect that is used to induce HCC. As curcumin has a potent anti-inflammatory effect with strong therapeutic potential against a variety of cancers, our present study aims to investigate its curative effects and the possible mechanisms of action against DENA-induced HCC in male rats. Investigation of biochemical and molecular parameters of HCC animal model liver showed an overexpression of TGF-β and Akt proteins accompanied with a significant reduction of the proapoptotic marker caspase-3. DENA-induced hepatic cellular injury resulted also in a significant increase in liver function marker enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lipid peroxides in this group. Curcumin treatment partially reversed DENA-induced damage as it reduced the overexpression of the angiogenic and anti-apoptotic factors TGF-β and Akt and improved caspase-3 expression. Also, it could partially normalize the serum values of liver marker enzymes and lipid peroxidation and improve liver architecture. Curcumin shows a unique chemotherapeutic effect in reversing DENA-induced HCC in rat model. This effect is possibly mediated through its proapoptotic, antioxidant, anti-angiogenic, as well as antimitotic effects. It interferes and modulates cell signaling pathways and hence turns death signals and apoptosis on within tumor cells.
Collapse
Affiliation(s)
- Mekky M M Abouzied
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El- Madinah El-Munawarah, P.O. Box 30001, Saudi Arabia,
| | | | | | | | | | | | | |
Collapse
|
107
|
Suo H, Song JLE, Zhou Y, Liu Z, Yi R, Zhu K, Xie J, Zhao X. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett 2014; 9:972-978. [PMID: 25624917 PMCID: PMC4301533 DOI: 10.3892/ol.2014.2756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 11/21/2014] [Indexed: 12/23/2022] Open
Abstract
Larimichthys crocea swim bladder is a traditional food and medicine widely used in China. The in vitro anticancer effects of polysaccharide of L. crocea swim bladder (PLCSB) in HCT-116 human colon cancer cells was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. At concentrations ranging between 0 and 800 μg/ml PLCSB, cancer cell viability was decreased by PLCSB in a concentration-dependent manner. In particular, 400 μg/ml PLCSB significantly (P<0.05) induced apoptosis, which was demonstrated by 4,6-diamidino-2-phenylindole staining and flow cytometry analysis. To elucidate the mechanisms underlying the anticancer effect of PLCSB in HCT-116 cancer cells, the expression of apoptosis and metastasis-associated genes was analyzed by reverse transcription-polymerase chain reaction and western blot analysis. A total of 400 μg/ml PLCSB significantly induced apoptosis in HCT-116 cells (P<0.05) via the upregulation Bax, p53, p21, apoptotic protease activating factor 1, caspase-3, -8, and -9, as well as Fas and the downregulation of B-cell lymphoma 2 (Bcl-2), Bcl-extra large and Fas ligand (L). The results of this study demonstrated that PLCSB exhibits an anticancer effect on HCT-116 colon cancer cells, in vitro.
Collapse
Affiliation(s)
- Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
| | - Jia-LE Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, P.R. China ; Department of Food Science and Nutrition, Pusan National University, Busan 609735, Republic of Korea
| | - Yalin Zhou
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Zhenhu Liu
- Science and Technology Administration, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ruokun Yi
- Department of Food Science and Nutrition, Pusan National University, Busan 609735, Republic of Korea
| | - Kai Zhu
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Jie Xie
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
| | - Xin Zhao
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China ; Institute of Functional Ecological Food, Chongqing University of Education, Chongqing 400067, P.R. China
| |
Collapse
|
108
|
Masuelli L, Stefano ED, Fantini M, Mattera R, Benvenuto M, Marzocchella L, Sacchetti P, Focaccetti C, Bernardini R, Tresoldi I, Izzi V, Mattei M, Frajese GV, Lista F, Modesti A, Bei R. Resveratrol potentiates the in vitro and in vivo anti-tumoral effects of curcumin in head and neck carcinomas. Oncotarget 2014; 5:10745-62. [PMID: 25296980 PMCID: PMC4279407 DOI: 10.18632/oncotarget.2534] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/25/2014] [Indexed: 12/12/2022] Open
Abstract
The survival rate of head and neck squamous cell carcinomas (HNSCC) patients has not considerably changed over the last two decades. Polyphenols inhibit the growth of cancer cells. We determined whether the combination of Resveratrol (RES) and Curcumin (CUR) enhanced their in vitro and in vivo antitumor activities on HNSCC cell lines compared to the single compounds. We provide evidence that RES potentiated the apoptotic effect and reduced the IC50 of CUR on HNSCC cell lines. The model of compounds interaction indicated the onset of an additive effect of the two compounds compared to the single treatment after decrease of their concentrations. RES+CUR compared to CUR increased the PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of LC3 II simultaneously with the formation of autophagic vacuoles. RES and CUR induced cytoplasmic NF-κB accumulation. RES+CUR administrations were safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) more efficiently than CUR. Overall, combinations of CUR and RES was more effective in inhibiting in vivo and in vitro cancer growth than the treatment with CUR. Additional studies will be needed to define the therapeutic potential of these compounds in combination.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Massimo Fantini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Rosanna Mattera
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Laura Marzocchella
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Pamela Sacchetti
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | | | | | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Valerio Izzi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Florigio Lista
- Centro Studi e Ricerche Sanità e Veterinaria Esercito, Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
109
|
LI MINGYING, WU ZHENXUAN, NIU WENYI, WAN YONGGAN, ZHANG LIGONG, SHI GUANGCAN, XI XIU. The protective effect of curcumin against the 19-kDa Mycobacterium tuberculosis protein-induced inflammation and apoptosis in human macrophages. Mol Med Rep 2014; 10:3261-7. [DOI: 10.3892/mmr.2014.2615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 05/14/2014] [Indexed: 11/05/2022] Open
|
110
|
Dimethyl fumarate induces apoptosis of hematopoietic tumor cells via inhibition of NF-κB nuclear translocation and down-regulation of Bcl-xL and XIAP. Biomed Pharmacother 2014; 68:999-1005. [PMID: 25443417 DOI: 10.1016/j.biopha.2014.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/14/2014] [Indexed: 12/17/2022] Open
Abstract
Dimethyl fumarate (DMF) is a fumaric acid ester that is used to treat psoriasis and multiple sclerosis. Recently, DMF was found to exhibit anti-tumor effects. However, the molecular mechanisms underlying these effects have not been elucidated. In this study, we investigated the mechanism of DMF-induced apoptosis in different human hematopoietic tumor cell lines. We found that DMF induced apoptosis in different human hematopoietic tumor cell lines but it did not affect the normal human B lymphocyte cell line RPMI 1788. We also observed a concurrent increase in caspase-3 activity and in the number of Annexin-V-positive cells. Furthermore, an examination of the survival signals, which are activated by apoptotic stimuli, revealed that DMF significantly inhibited nuclear factor-κB (NF-κB) p65 nuclear translocation. In addition, DMF suppressed B-cell lymphoma extra-large (Bcl-xL) and X-linked inhibitor of apoptosis (XIAP) expression whereas Bcl-2, survivin, Bcl-2-associated X protein (Bax), and Bim levels did not change. These results indicated that DMF induced apoptosis by suppressing NF-κB activation, and Bcl-xL and XIAP expression. These findings suggested that DMF might have potential as an anticancer agent that could be used in combination therapy with other anticancer drugs for the treatment of human hematopoietic tumors.
Collapse
|
111
|
Kim S, Stébé MJ, Blin JL, Pasc A. pH-controlled delivery of curcumin from a compartmentalized solid lipid nanoparticle@mesostructured silica matrix. J Mater Chem B 2014; 2:7910-7917. [DOI: 10.1039/c4tb01133c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
112
|
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19:11679-721. [PMID: 25102117 PMCID: PMC6271439 DOI: 10.3390/molecules190811679] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
Collapse
Affiliation(s)
- Tawona N Chinembiri
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Jeanetta du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
113
|
Qiu Y, Yu T, Wang W, Pan K, Shi D, Sun H. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening. Biochem Biophys Res Commun 2014; 448:15-21. [PMID: 24735534 DOI: 10.1016/j.bbrc.2014.04.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 01/13/2023]
Abstract
Here we studied the role of mitochondrial permeability transition pore (mPTP) opening in curcumin's cytotoxicity in melanoma cells. In cultured WM-115 melanoma cells, curcumin induced mitochondrial membrane potential (MPP) decrease, cyclophilin-D (CyPD)-adenine nucleotide translocator 1 (ANT-1) (two mPTP components) mitochondrial association and cytochrome C release, indicating mPTP opening. The mPTP blocker sanglifehrin A (SfA) and ANT-1 siRNA-depletion dramatically inhibited curcumin-induced cytochrome C release and WM-115 cell death. CyPD is required for curcumin-induced melanoma cell death. The CyPD inhibitor cyclosporin A (CsA) or CyPD siRNA-depletion inhibited curcumin-induced WM-115 cell death and apoptosis, while WM-115 cells with CyPD over-expression were hyper-sensitive to curcumin. Finally, we found that C6 ceramide enhanced curcumin-induced cytotoxicity probably through facilitating mPTP opening, while CsA and SfA as well as CyPD and ANT-1 siRNAs alleviated C6 ceramide's effect on curcumin in WM-115 cells. Together, these results suggest that curcumin-induced melanoma cell death is associated with mPTP opening.
Collapse
Affiliation(s)
- Ying Qiu
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China.
| | - Teng Yu
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| | - Wei Wang
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| | - Kun Pan
- Department of Dermatology, The Skin Disease Hospital of Ji-ning City, Ji-ning City, Shandong Province 272011, PR China
| | - Dongmei Shi
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| | - Hui Sun
- Department of Dermatology, Shandong Ji-ning No.1 People's Hospital, Ji-ning City, Shandong Province 272011, PR China
| |
Collapse
|
114
|
Seo BR, Min KJ, Cho IJ, Kim SC, Kwon TK. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability. PLoS One 2014; 9:e95588. [PMID: 24743574 PMCID: PMC3990719 DOI: 10.1371/journal.pone.0095588] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/27/2014] [Indexed: 12/26/2022] Open
Abstract
The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.
Collapse
Affiliation(s)
- Bo Ram Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Kyoung-jin Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Il Je Cho
- College of Oriental Medicine, Daegu Haany University, Gyeongsan, Korea
- Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan, Korea
- Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
- * E-mail: (SCK); (TKK)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
- * E-mail: (SCK); (TKK)
| |
Collapse
|
115
|
Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn CJF, Jabbari E, Linder M, Arab-Tehrany E. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 2014; 461:519-28. [PMID: 24355620 DOI: 10.1016/j.ijpharm.2013.12.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022]
Abstract
The role of curcumin (diferuloylmethane), for cancer treatment has been an area of growing interest. However, due to its low absorption, the poor bioavailability of curcumin limits its clinical use. In this study, we reported an approach of encapsulation a curcumin by nanoliposome to achieve an improved bioavailability of a poorly absorbed hydrophobic compound. We demonstrated that liposomal preparations to deliver curcumin increase its bioavailability. Liposomes composed of salmon's lecithin also improved curcumin bioavailability compared to those constituted of rapeseed and soya lecithins. A real-time label-free cell analysis system based on real-time cell impedance monitoring was used to investigate the in vitro cytotoxicity of liposomal preparations.
Collapse
Affiliation(s)
- M Hasan
- Université de Lorraine, Laboratoire d'ingénierie des Biomolecules, EA 4367, France
| | - N Belhaj
- Université de Lorraine, Laboratoire d'ingénierie des Biomolecules, EA 4367, France
| | - H Benachour
- Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy Cedex 54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, France
| | - M Barberi-Heyob
- Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy Cedex 54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, France; CNRS, GdR 3049 "Médicaments Photoactivables - Photochimiothérapie (PHOTOMED)", France; Centre Alexis Vautrin, CRLCC, Avenue de Bourgogne, Vandœuvre-lès-Nancy Cedex 54519, France
| | - C J F Kahn
- Aix-Marseille Univ, LBA, F-13916 Marseille, France; IFSTTAR, LBA, F-13916 Marseille, France
| | - E Jabbari
- Department of Chemical Engineering, SWNG Engineering Center, Rm 2C02, University of South Carolina, 301 South Main Street, Columbia, SC 29208, United States
| | - M Linder
- Université de Lorraine, Laboratoire d'ingénierie des Biomolecules, EA 4367, France
| | - E Arab-Tehrany
- Université de Lorraine, Laboratoire d'ingénierie des Biomolecules, EA 4367, France.
| |
Collapse
|
116
|
Lao CD, Demierre MF, Sondak VK. Targeting events in melanoma carcinogenesis for the prevention of melanoma. Expert Rev Anticancer Ther 2014; 6:1559-68. [PMID: 17134361 DOI: 10.1586/14737140.6.11.1559] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Melanoma is one of the few tumors that have increased in incidence over the last few decades. Strategies devoted solely to protecting against ultraviolet radiation have, at best, had a modest impact on the development of melanoma. Chemoprevention is an under-explored approach that could significantly decrease the morbidity and mortality from this deadly cancer. However, the scientific and logistical challenges of performing clinical studies in chemoprevention require innovative approaches to prove the effectiveness of putative preventive agents. There are several pharmacological and nutriceutical agents that are mechanistically linked to events in melanoma carcinogenesis that are candidates for advanced human studies. We will review the data for several promising agents, including statins, curcumin, resveratrol, silymarin and green tea, and discuss some importance issues and concepts that should be considered in any melanoma chemoprevention strategy.
Collapse
Affiliation(s)
- Christopher D Lao
- University of Michigan, 1500 East Medical Center DriveAnn Arbor, MI 48109-0848, USA.
| | | | | |
Collapse
|
117
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
118
|
Campos CA, Gianino JB, Bailey BJ, Baluyut ME, Wiek C, Hanenberg H, Shannon HE, Pollok KE, Ashfeld BL. Design, synthesis, and evaluation of curcumin-derived arylheptanoids for glioblastoma and neuroblastoma cytotoxicity. Bioorg Med Chem Lett 2013; 23:6874-8. [PMID: 24183537 PMCID: PMC4240272 DOI: 10.1016/j.bmcl.2013.09.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/28/2022]
Abstract
Using an innovative approach toward multiple carbon-carbon bond-formations that relies on the multifaceted catalytic properties of titanocene complexes we constructed a series of C1-C7 analogs of curcumin for evaluation as brain and peripheral nervous system anti-cancer agents. C2-Arylated analogs proved efficacious against neuroblastoma (SK-N-SH & SK-N-FI) and glioblastoma multiforme (U87MG) cell lines. Similar inhibitory activity was also evident in p53 knockdown U87MG GBM cells. Furthermore, lead compounds showed limited growth inhibition in vitro against normal primary human CD34+hematopoietic progenitor cells. Taken together, the present findings indicate that these curcumin analogs are viable lead compounds for the development of new central and peripheral nervous system cancer chemotherapeutics with the potential for little effects on normal hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Catherine A Campos
- Department of Chemistry and Biochemistry, Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Qian T, Kun L, Gao B, Zhu R, Wu X, Wang S. Photo-ionization and photo-excitation of curcumin investigated by laser flash photolysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 116:6-12. [PMID: 23896291 DOI: 10.1016/j.saa.2013.06.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 06/02/2023]
Abstract
Curcumin (Cur) has putative antitumor properties. In the current study, we examined photophysical and photochemical properties of Cur using laser flash photolysis. The results demonstrated that Cur could be photo-ionized at 355 nm laser pulse to produce radical cation (Cur(+)) and solvated electron e(sol)(-) in 7:3 ethanol-water mixtures. The quantum yield of Cur photo-ionization and the ratio of photo-ionization to photo-excitation were also determined. Cur(+) could be transferred into neutral radical of Cur (Cur) via deprotonation with the pKa 4.13. The excited singlet of Cur ((1)Cur* could be transferred into excited triplet ((3)Cur*, which could be quenched by oxygen to produce singlet oxygen (1)O2*. Reaction of (3)Cur* with tryptophan was confirmed. The results encourage developing curcumin as a photosensitive antitumor agent.
Collapse
Affiliation(s)
- Tingting Qian
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | | | | | | | | | | |
Collapse
|
120
|
Uzarska M, Czajkowski R, Schwartz RA, Bajek A, Zegarska B, Drewa T. Chemoprevention of skin melanoma: facts and myths. Melanoma Res 2013; 23:426-33. [PMID: 24077511 DOI: 10.1097/cmr.0000000000000016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Melanoma is the most dangerous type of skin cancer. Despite the rise of public awareness, the incidence rate among the white population has been rising constantly for several decades. Systematic improvement in knowledge about the biology of pigment cells and molecular mechanisms of their neoplastic transformation has enhanced the possibility of melanoma chemoprevention. Hence, chemopreventive agents that prevent, inhibit, or reverse melanoma development are being investigated intensively. Among synthetic compounds, especially well studied are lipid-lowering drugs and cyclooxygenase inhibitors. Substances found in everyday diet, such as genistein, apigenin, quercetin, resveratrol, and curcumin may also have potential chemopreventive qualities. However, studies examining the chemopreventive activity of these compounds have shown widely varying results. Early reports on the possible chemopreventive activity of statins and fibrates were not proved by the results of randomized clinical trials. Similarly, case-control studies examining the influence of NSAIDs on the risk of melanoma do not confirm the antitumor activity of cyclooxygenase inhibitors. Further clinical trials involving carefully selected target populations as well as the identification of specific biomarkers of prognostic and predictive value seem to be essential for the evaluation of the chemopreventive activity of the studied substances.
Collapse
Affiliation(s)
- Małgorzata Uzarska
- Departments of aTissue Engineering bDermatology, Sexually Transmitted Diseases and Immunodermatology cCosmetology and Esthetic Dermatology dUrology Department, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland eDepartment of Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
121
|
Buss S, Dobra J, Goerg K, Hoffmann S, Kippenberger S, Kaufmann R, Hofmann M, Bernd A. Visible light is a better co-inducer of apoptosis for curcumin-treated human melanoma cells than UVA. PLoS One 2013; 8:e79748. [PMID: 24255713 PMCID: PMC3821844 DOI: 10.1371/journal.pone.0079748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/02/2013] [Indexed: 01/26/2023] Open
Abstract
Curcumin attracts worldwide scientific interest due to its anti-proliferative and apoptosis inducing effects on different tumor cells at concentrations ranging from 10 to 150 µM (3.7-55 µg/ml). Unfortunately, because of a low oral bioavailability, only low and pharmacologically ineffective serum levels are achievable. In this study, an alternative treatment concept consisting of low concentration curcumin (0.2-5 µg/ml) and irradiation with UVA or visible light (VL) has been tested. The experimental results show clearly that this treatment decreases the proliferation and the viability of human melanoma cells while the cell membrane integrity remains intact. We identified the onset of apoptosis characterized by typical markers such as active caspases 8, 9 and 3 as well as DNA fragmentation accompanied by the loss of cell adhesion. The mitochondrial apoptosis signaling pathway is predominant due to an early activation of caspase-9. The present data indicate a higher efficacy of a combination of curcumin and VL than curcumin and UVA. Reduced effects as a result of light absorption by heavily pigmented skin are unlikely if VL is used. These results indicate that a combination of curcumin and light irradiation may be a useful additional therapy in the treatment of malignant disease.
Collapse
Affiliation(s)
- Stephan Buss
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Jadranka Dobra
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Kerstin Goerg
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Stephanie Hoffmann
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Matthias Hofmann
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - August Bernd
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
122
|
Zhang ZJ, Li HM, Sun SQ, Huang LQ, Noda I. Differentiation of Rhizoma Curcumas Longae and Radix Curcumae by a Multistep Infrared Macro-Fingerprint Method. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.805414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
123
|
Mukhtar E, Adhami VM, Khan N, Mukhtar H. Apoptosis and autophagy induction as mechanism of cancer prevention by naturally occurring dietary agents. Curr Drug Targets 2013; 13:1831-41. [PMID: 23140293 DOI: 10.2174/138945012804545489] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/20/2012] [Accepted: 11/03/2012] [Indexed: 12/12/2022]
Abstract
Nontoxic naturally occurring compounds, especially those from dietary sources, are receiving increasing consideration for prevention and treatment of diseases including cancer. There is a growing need for innovative anticancer therapies and therefore search for natural compounds with novel biological activities or antineoplastic potential is currently an important area in drug discovery. Support for this interest also comes from increasing concern over the efficacy and safety of many conventional therapies, especially those that run over a long course of time. Laboratory studies in different in vitro and in vivo systems have shown that many natural compounds possess the capacity to regulate response to oxidative stress and DNA damage, suppress angiogenesis, inhibit cell proliferation and induce autophagy and apoptosis. This review discusses the induction of apoptosis and autophagy as a mechanism of cancer prevention by some of the most studied naturally occurring dietary compounds.
Collapse
Affiliation(s)
- Eiman Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, 1300 University Avenue, 4385 Medical Sciences Center, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
124
|
Yu T, Ji J, Guo YL. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells. Biochem Biophys Res Commun 2013; 441:53-8. [PMID: 24134840 DOI: 10.1016/j.bbrc.2013.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/04/2013] [Indexed: 12/20/2022]
Abstract
Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.
Collapse
Affiliation(s)
- Teng Yu
- Department of Dermatology, Shandong Ji-ning No. 1 People's Hospital, Shandong Province 272011, PR China.
| | | | | |
Collapse
|
125
|
Cui M, Naczynski D, Zevon M, Griffith CK, Sheihet L, Poventud-Fuentes I, Chen S, Roth CM, Moghe PV. Multifunctional albumin nanoparticles as combination drug carriers for intra-tumoral chemotherapy. Adv Healthc Mater 2013; 2:1236-45. [PMID: 23495216 PMCID: PMC5720860 DOI: 10.1002/adhm.201200467] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Indexed: 01/23/2023]
Abstract
Current cancer therapies are challenged by weakly soluble drugs and by drug combinations that exhibit non-uniform biodistribution and poor bioavailability. In this study, we have presented a new platform of advanced healthcare materials based on albumin nanoparticles (ANPs) engineered as tumor penetrating, delivery vehicles of combinatorially applied factors to solid tumors. These materials were designed to overcome three sequential key barriers: tissue level transport across solid tumor matrix; uptake kinetics into individual cancer cells; therapeutic resistance to single chemotherapeutic drugs. The ANPs were designed to penetrate deeper into solid tumor matrices using collagenase decoration and evaluated using a three-dimensional multicellular melanoma tumor spheroid model. Collagenase modified ANPs exhibited 1-2 orders of magnitude greater tumor penetration than unmodified ANPs into the spheroid mass after 96 hours, and showed preferential uptake into individual cancer cells for smaller sized ANPs (<100 nm). For enhanced efficacy, collagenase coated ANPs were modified with two therapeutic agents, curcumin and riluzole, with complementary mechanisms of action for combined cell cycle arrest and apoptosis in melanoma. The collagenase coated, drug loaded nanoparticles induced significantly more cell death within 3-D tumor models than the unmodified, dual drug loaded ANP particles and the kinetics of cytotoxicity was further influenced by the ANP size. Thus, multifunctional nanoparticles can be imbued with complementary size and protease activity features that allow them to penetrate solid tumors and deliver combinatorial therapeutic payload with enhanced cancer cytotoxicity but minimal collateral damage to healthy primary cells.
Collapse
Affiliation(s)
- Mingjie Cui
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Dominik Naczynski
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Margot Zevon
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Craig K. Griffith
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - Larisa Sheihet
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Suzie Chen
- Department of Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Charles M. Roth
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
126
|
Chang Z, Xing J, Yu X. Curcumin induces osteosarcoma MG63 cells apoptosis via ROS/Cyto-C/Caspase-3 pathway. Tumour Biol 2013; 35:753-8. [DOI: 10.1007/s13277-013-1102-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/08/2013] [Indexed: 01/09/2023] Open
|
127
|
Botanical agents for the treatment of nonmelanoma skin cancer. Dermatol Res Pract 2013; 2013:837152. [PMID: 23983679 PMCID: PMC3741697 DOI: 10.1155/2013/837152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022] Open
Abstract
Nonmelanoma skin cancers, including basal cell carcinoma and squamous cell carcinoma, are common neoplasms worldwide and are the most common cancers in the United States. Standard therapy for cutaneous neoplasms typically involves surgical removal. However, there is increasing interest in the use of topical alternatives for the prevention and treatment of nonmelanoma skin cancer, particularly superficial variants. Botanicals are compounds derived from herbs, spices, stems, roots, and other substances of plant origin and may be used in the form of dried or fresh plants, extracted plant material, or specific plant-derived chemicals. They possess multiple properties including antioxidant, anti-inflammatory, and immunomodulatory properties and are, therefore, believed to be possible chemopreventive agents or substances that may suppress or reverse the process of carcinogenesis. Here, we provide a review of botanical agents studied for the treatment and prevention of nonmelanoma skin cancers.
Collapse
|
128
|
Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ, Gately K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol 2013; 3:120. [PMID: 23720710 PMCID: PMC3655421 DOI: 10.3389/fonc.2013.00120] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/28/2013] [Indexed: 12/29/2022] Open
Abstract
Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.
Collapse
Affiliation(s)
- P Godwin
- Department of Clinical Medicine, Thoracic Oncology Research Group, Trinity College Dublin, St. James's Hospital Ireland Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
129
|
Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs. J Ovarian Res 2013; 6:35. [PMID: 23663277 PMCID: PMC3665575 DOI: 10.1186/1757-2215-6-35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022] Open
Abstract
A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP-NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy.
Collapse
|
130
|
Bernd A. Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2013; 13:183-189. [PMID: 24578676 PMCID: PMC3928504 DOI: 10.1007/s11101-013-9296-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/17/2013] [Indexed: 06/03/2023]
Abstract
Curcumin, a dietary pigment from the plant Curcuma longa, inhibits cell proliferation and induces apoptosis in different cell lines. The therapeutic benefit is hampered by a very low absorption after trans-dermal or oral application. Therefore, great efforts were undertaken to enhance the effectiveness of curcumin. Recently, it was demonstrated that curcumin offers the described effects also at low concentrations (0.2-1 μg/ml) when applied in combination with UVA or visible light. The efficacy of this combination was shown in human epidermal keratinocytes and in a panel of other cell species in vitro as well as in a xenograft tumor model with A431 tumor cells injected subcutaneously in the flanks of NMRI nude mice in vivo. The treatment of keratinocytes with curcumin and light resulted in the inhibition of cell growth, and in the induction of apoptosis, whereas no toxic cell membrane damage was detectable. The treatment of tumor bearing nude mice with curcumin and visible light resulted in reduced tumor volumes, reduced proliferation rates, and the induction of apoptosis in the tumors. On the molecular level inhibition of extracellular regulated kinases 1/2 and epidermal growth factor receptor was observed which may aid to inhibition of proliferation and induction of apoptosis. This review covers the experiences of the new combination treatment of human tumors.
Collapse
Affiliation(s)
- August Bernd
- Clinic for Dermatology, Venereology and Allergology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
131
|
Kang D, Park W, Lee S, Kim JH, Song JJ. Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment. Cell Signal 2013; 25:1288-300. [DOI: 10.1016/j.cellsig.2013.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/29/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
|
132
|
Khaw AK, Hande MP, Kalthur G, Hande MP. Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells. J Cell Biochem 2013. [DOI: 10.1002/jcb.24466] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
133
|
Korwek Z, Bielak-Zmijewska A, Mosieniak G, Alster O, Moreno-Villanueva M, Burkle A, Sikora E. DNA damage-independent apoptosis induced by curcumin in normal resting human T cells and leukaemic Jurkat cells. Mutagenesis 2013; 28:411-6. [DOI: 10.1093/mutage/get017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
134
|
Harsono D, Finelt N, Castano EB, Tonnesen MG, Clark RAF. Curcumin myths or wonders? A systematic analysis of in vitro studies. Wound Repair Regen 2013; 21:335-6. [DOI: 10.1111/wrr.12019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Nika Finelt
- Department of Dermatology; Stony Brook University; Stony Brook
| | | | | | | |
Collapse
|
135
|
Wang WZ, Li L, Liu MY, Jin XB, Mao JW, Pu QH, Meng MJ, Chen XG, Zhu JY. Curcumin induces FasL-related apoptosis through p38 activation in human hepatocellular carcinoma Huh7 cells. Life Sci 2013; 92:352-8. [PMID: 23352975 DOI: 10.1016/j.lfs.2013.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/20/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
AIM The aim of this study is to explore the underlying molecular mechanism of curcumin-induced apoptosis in human hepatocellular carcinoma (HCC) Huh7 cells. MAIN METHODS Fas and FasL mRNA expression was analyzed by reverse transcription PCR. Western blot was applied to detect the protein expression of Bcl-2 family members, MAPK family members, c-Jun, c-Fos, ATF-2, caspase-3, PARP, TNF receptor family members and the respective ligands. Apoptotic cells were assayed with annexin V/PI double staining and flow cytometry. KEY FINDINGS Curcumin treatment resulted in a fast and significant increase of Fas and Fas ligand (FasL) along with activation of caspase-3 and cleavage of PARP in Huh7 cells. Inhibition of caspase-3 activity by the specific inhibitor Z-DEVD-FMK rescued Huh7 cells from curcumin-induced apoptosis. Neutralization of FasL significantly protected the cells from curcumin-induced caspase-3 activation and apoptosis in a dose-dependent manner. Moreover, p38 was rapidly activated in response to curcumin, and inactivation of p38 by pharmacologic inhibitor SB203580 dramatically suppressed curcumin-induced FasL expression and apoptosis. SIGNIFICANCE Our results demonstrated that curcumin induces apoptosis through p38-denpendent up-regulation of FasL in Huh7 cells.
Collapse
Affiliation(s)
- Wei-Zhang Wang
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Basile V, Belluti S, Ferrari E, Gozzoli C, Ganassi S, Quaglino D, Saladini M, Imbriano C. bis-Dehydroxy-Curcumin triggers mitochondrial-associated cell death in human colon cancer cells through ER-stress induced autophagy. PLoS One 2013; 8:e53664. [PMID: 23326480 PMCID: PMC3543386 DOI: 10.1371/journal.pone.0053664] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/03/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The activation of autophagy has been extensively described as a pro-survival strategy, which helps to keep cells alive following deprivation of nutrients/growth factors and other stressful cellular conditions. In addition to cytoprotective effects, autophagy can accompany cell death. Autophagic vacuoles can be observed before or during cell death, but the role of autophagy in the death process is still controversial. A complex interplay between autophagy and apoptosis has come to light, taking into account that numerous genes, such as p53 and Bcl-2 family members, are shared between these two pathways. METHODOLOGY/PRINCIPAL FINDINGS In this study we showed a potent and irreversible cytotoxic activity of the stable Curcumin derivative bis-DeHydroxyCurcumin (bDHC) on human colon cancer cells, but not on human normal cells. Autophagy is elicited by bDHC before cell death as demonstrated by increased autophagosome formation -measured by electron microscopy, fluorescent LC3 puncta and LC3 lipidation- and autophagic flux -measured by interfering LC3-II turnover. The accumulation of poly-ubiquitinated proteins and ER-stress occurred upstream of autophagy induction and resulted in cell death. Cell cycle and Western blot analyses highlighted the activation of a mitochondrial-dependent apoptosis, which involves caspase 7, 8, 9 and Cytochrome C release. Using pharmacological inhibitions and RNAi experiments, we showed that ER-stress induced autophagy has a major role in triggering bDHC-cell death. CONCLUSION/SIGNIFICANCE Our findings describe the mechanism through which bDHC promotes tumor selective inhibition of proliferation, providing unequivocal evidence of the role of autophagy in contrasting the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Valentina Basile
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Silvia Belluti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Erika Ferrari
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, via Campi 183, Modena, Italy
| | - Chiara Gozzoli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Sonia Ganassi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Daniela Quaglino
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Monica Saladini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, via Campi 183, Modena, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| |
Collapse
|
137
|
Triptolide-Mediated Apoptosis by Suppression of Focal Adhesion Kinase through Extrinsic and Intrinsic Pathways in Human Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:172548. [PMID: 25945102 PMCID: PMC4402567 DOI: 10.1155/2013/172548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/29/2013] [Accepted: 04/07/2013] [Indexed: 02/03/2023]
Abstract
Triptolide (TPL) has been shown to inhibit cell proliferation and induce apoptosis in various human cancer cells; however, the precise mechanism of apoptosis induced by TPL in human melanoma cells has not yet been elucidated. In this study, we investigated the precise mechanism underlying cytocidal effects of TPL on human melanoma cells. Treatment of human melanoma cells with TPL significantly inhibited cell growth and induced apoptosis, as evidenced by flow cytometry and annexin V-fluorescein isothiocyanate analyses. TPL increased the levels of Fas and Fas-associated death domain (FADD) and induced cleavage of Bid by activation of caspase-8 and cytochrome c release from mitochondria to the cytosol, which resulted in activation of caspase-9 and caspase-3. Moreover, TPL-induced apoptosis in SK-MEL-2 cells was mediated through dephosphorylation of focal adhesion kinase (FAK) and its cleavage by caspase-8-mediated caspase-3 activation via upregulation of Fas expression. We also found that TPL mediated the dissociation of receptor-interacting protein (RIP) from FAK and enhanced the formation of RIP/Fas complex formation initiating cell death. In conclusion, our data firstly demonstrated that TPL induces apoptosis by both extrinsic and intrinsic apoptosis pathways in human melanoma cells and identified that RIP shuttles between Fas and FAK to mediate apoptosis.
Collapse
|
138
|
Shehzad A, Lee YS. Molecular mechanisms of curcumin action: signal transduction. Biofactors 2013; 39:27-36. [PMID: 23303697 DOI: 10.1002/biof.1065] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/10/2012] [Indexed: 02/06/2023]
Abstract
Chemoprevention represents one of the most highly effective anti-cancer strategies and is accompanied by minimal secondary effects as compared to conventional chemotherapies. Many new anti-inflammatory and anti-cancer drug candidates have been derived from chemical scaffolds engineered from natural products discovered just a few decades ago. This approach is widely utilized in drug discovery in order to produce novel molecular entities with enhanced drug activities mediated through various signal transduction pathways for the treatment of different diseases. Curcumin, a polyphenolic derivative of turmeric, is a naturally occurring compound isolated from Curcuma longa that suppresses and inverts carcinogenesis via multifaceted molecular targets. Several reports have demonstrated that curcumin inhibits animal and human cancers, suggesting that it may serve as a chemopreventive agent. Numerous in vitro and in vivo experimental models have also revealed that curcumin regulates several molecules in cell signal transduction pathway including NF-κB, Akt, MAPK, p53, Nrf2, Notch-1, JAK/STAT, β-catenin, and AMPK. Modulation of cell signaling pathways through the pleiotropic effects of curcumin likely activate cell death signals and induce apoptosis in cancer cells, thereby inhibiting the progression of disease. This article provides insights into the natural chemopreventive role of curcumin via cellular transduction pathways and provides an in depth assessment of its physiological activities in the management of diseases.
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | |
Collapse
|
139
|
Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors 2013; 39:37-55. [PMID: 22996381 DOI: 10.1002/biof.1041] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 12/26/2022]
Abstract
Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin.
Collapse
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
140
|
Vandita K, Shashi B, Santosh KG, Pal KI. Enhanced apoptotic effect of curcumin loaded solid lipid nanoparticles. Mol Pharm 2012; 9:3411-21. [PMID: 23127155 DOI: 10.1021/mp300209k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Curcumin is reported to show potent in vitro anticancer effects in a surfeit of human cancer cell lines and majorly in the carcinogenesis of GIT, in animals. Its poor pharmacokinetics and stability limit its vivo clinical efficacy for the other systemic cancers. We recently reported on a 32-155 times enhancement in bioavailability of curcumin when incorporated into solid lipid nanoparticles (C-SLNs). Presently we report on a 54-85% reduction in IC 50 values with developed C-SLNs in comparison to free curcumin against a panel of human cancer cell lines (HL-60, A549, and PC3). Results demonstrate mechanisms similar to those claimed for free curcumin, including induction of cellular apoptosis by activation of caspases, release of cyctochrome c, loss of membrane potential, blockade of nuclear factor kappa B (NF-κB) activation, and upregulation of TNF-R for C-SLNs. However, the extent of cell death provided by C-SLNs in all these tests was significantly higher (p < 0.001). This may be attributed to the presentation of curcumin in a dispersible/soluble form which enhanced permeability across the cell surface. The display of significantly better in vitro anticancer effect coupled with high in vivo bioavailability points toward a great potential of using C-SLNs for cancer therapeutics.
Collapse
Affiliation(s)
- Kakkar Vandita
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh 160014, India
| | | | | | | |
Collapse
|
141
|
Almanaa TN, Geusz ME, Jamasbi RJ. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:195. [PMID: 23095512 PMCID: PMC3528437 DOI: 10.1186/1472-6882-12-195] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 10/15/2012] [Indexed: 01/06/2023]
Abstract
Background Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Methods Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20–80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. Results The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity to curcumin when compared with the original lines. Conclusion Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence.
Collapse
|
142
|
AHN JINCHUL, KANG JUNGWOOK, SHIN JANGIN, CHUNG PHILSANG. Combination treatment with photodynamic therapy and curcumin induces mitochondria-dependent apoptosis in AMC-HN3 cells. Int J Oncol 2012; 41:2184-90. [DOI: 10.3892/ijo.2012.1661] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/14/2012] [Indexed: 11/06/2022] Open
|
143
|
Design and evaluation of cyclodextrin-based delivery systems to incorporate poorly soluble curcumin analogs for the treatment of melanoma. Eur J Pharm Biopharm 2012; 81:548-56. [DOI: 10.1016/j.ejpb.2012.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 11/30/2022]
|
144
|
Chen CC, Chan WH. Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis. Int J Mol Sci 2012; 13:4655-4672. [PMID: 22606002 PMCID: PMC3344238 DOI: 10.3390/ijms13044655] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/31/2012] [Accepted: 04/09/2012] [Indexed: 11/16/2022] Open
Abstract
Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.
Collapse
Affiliation(s)
| | - Wen-Hsiung Chan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-3-2653515; Fax: +886-3-2653599
| |
Collapse
|
145
|
Kössler S, Nofziger C, Jakab M, Dossena S, Paulmichl M. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells. Toxicology 2012; 292:123-35. [PMID: 22178266 PMCID: PMC3274693 DOI: 10.1016/j.tox.2011.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 01/11/2023]
Abstract
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current ICl(swell) in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The ICl(swell) channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1-10 μM curcumin modulates ICl(swell) in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5-5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect ICl(swell) neither if applied from the extracellular nor from the intracellular side - therefore, a direct effect of curcumin on ICl(swell) can be ruled out. Furthermore, we show that curcumin exposure induces apoptosis in human kidney cells, and at a concentration of 5.0-10 μM induces the appearance of a sub-population of cells with a dramatically increased volume. In these cells the regulation of the cell volume seems to be impaired, most likely as a consequence of the ICl(swell) blockade. Similarly, 50 μM curcumin induced apoptosis, caused cell cycle arrest in G1-phase and increased the volume of human colorectal adenocarcinoma HT-29 cells. The cell cycle arrest in G1 phase may be the mechanism underlying the volume increase observed in this cell line after exposure to curcumin.
Collapse
Key Words
- mem, minimum essential eagle medium
- fbs, fetal bovine serum
- iclswell, swelling activated chloride current
- edta, ethylene diamine tetraacetic acid
- dmso, dimethyl sulfoxide
- egta, ethylene glycol tetraacetic acid
- hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- nppb, 5-nitro-2-(3-phenylpropylamino)benzoic acid
- fitc, fluorescein isothiocyanate
- 7-aad, 7-amino-actinomycin d
- dapi, 4′,6-diamidino-2-phenylindole
- cftr, cystic fibrosis transmembrane regulator
- curcumin
- apoptosis
- cell volume regulation
- iclswell
Collapse
Affiliation(s)
- Sonja Kössler
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
146
|
Han X, Xu B, Beevers CS, Odaka Y, Chen L, Liu L, Luo Y, Zhou H, Chen W, Shen T, Huang S. Curcumin inhibits protein phosphatases 2A and 5, leading to activation of mitogen-activated protein kinases and death in tumor cells. Carcinogenesis 2012; 33:868-75. [PMID: 22298641 DOI: 10.1093/carcin/bgs029] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Curcumin can induce p53-independent apoptosis. However, the underlying mechanism remains to be defined. Here, we show that curcumin-induced apoptosis in a panel of tumor cells with mutant p53. Curcumin rapidly induced activation of the mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2 (Erk1/2) and c-Jun N-terminal kinase (JNK). Inhibition of JNK (with SP600125) or Erk1/2 (with U0126) partially prevented curcumin-induced cell death in the cells. Similarly, expression of dominant negative c-Jun or downregulation of Erk1/2 in part attenuated curcumin-induced cell death. It appears that curcumin-induced activation of MAPKs and apoptosis was due to induction of reactive oxygen species (ROS), as pretreatment with N-acetyl-L-cysteine, a ROS scavenger, blocked these events. Furthermore, we found that curcumin-induced activation of MAPK pathways was related to inhibition of the serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5). Overexpression of PP2A or PP5 partially prevented curcumin-induced activation of JNK and Erk1/2 phosphorylation as well as cell death. The results suggest that curcumin induction of ROS activates MAPKs, at least partially by inhibiting PP2A and PP5, thereby leading to p53-independent apoptosis in tumor cells.
Collapse
Affiliation(s)
- Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Yan G, Graham K, Lanza-Jacoby S. Curcumin enhances the anticancer effects of trichostatin a in breast cancer cells. Mol Carcinog 2012; 52:404-11. [PMID: 22290509 DOI: 10.1002/mc.21875] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/15/2011] [Accepted: 12/27/2011] [Indexed: 01/09/2023]
Abstract
Breast cancer patients with HER-2 positive or estrogen receptor negative tumors have a poor prognosis because these tumors are aggressive and respond poorly to standard therapies. Histone deacetylase (HDAC) inhibitors have been shown to decreased cell survival, which suggests that HDAC inhibitors may be developed for preventing and treating breast cancer. Curcumin has anti-inflammatory and proapoptotic effects in cancer cells. We determined whether the HDAC inhibitor, Tricostatin A (TSA) in combination with curcumin would produce greater antiproliferative and apoptotic effects than either agent alone. Increasing the concentration of curcumin from 10 to 20 µM enhanced the growth inhibitory effects of the combination in SkBr3 and 435eB breast cancer cells, which was accompanied by decreased viability along with decreased phosphorylation of ERK and Akt. The decreased cell viability observed in SkBr3 cells when curcumin was combined with TSA led to a G0/G1 cell cycle arrest and increased p21 and p27, and decreased Cyclin D1 protein expression. The combination induced cleavage of caspase 3 and poly(ADP-ribose) polymerase-1, suggesting that cell death occurred by apoptosis. There were no changes in protein expression of Bcl2, Bax, or Bcl-xL and decreased expression of p53. The combination increased protein expression of phosphorylated JNK and phosphorylated p38. Pharmacological inhibition of JNK, but not p38, attenuated the decreased viability induced by the curcumin and TSA combination. We conclude that p53 independent apoptosis induced by combining curcumin and TSA involves JNK activation. These findings provide a rationale for exploring the potential benefits of the combination of curcumin with TSA for treatment of breast cancer.
Collapse
Affiliation(s)
- Guang Yan
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
148
|
Mangalathillam S, Rejinold NS, Nair A, Lakshmanan VK, Nair SV, Jayakumar R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. NANOSCALE 2012; 4:239-250. [PMID: 22080352 DOI: 10.1039/c1nr11271f] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, curcumin loaded chitin nanogels (CCNGs) were developed using biocompatible and biodegradable chitin with an anticancer curcumin drug. Chitin, as well as curcumin, is insoluble in water. However, the developed CCNGs form a very good and stable dispersion in water. The CCNGs were analyzed by DLS, SEM and FTIR and showed spherical particles in a size range of 70-80 nm. The CCNGs showed higher release at acidic pH compared to neutral pH. The cytotoxicity of the nanogels were analyzed on human dermal fibroblast cells (HDF) and A375 (human melanoma) cell lines and the results show that CCNGs have specific toxicity on melanoma in a concentration range of 0.1-1.0 mg mL(-1), but less toxicity towards HDF cells. The confocal analysis confirmed the uptake of CCNGs by A375. The apoptotic effect of CCNGs was analyzed by a flow-cytometric assay and the results indicate that CCNGs at the higher concentration of the cytotoxic range showed comparable apoptosis as the control curcumin, in which there was negligible apoptosis induced by the control chitin nanogels. The CCNGs showed a 4-fold increase in steady state transdermal flux of curcumin as compared to that of control curcumin solution. The histopathology studies of the porcine skin samples treated with the prepared materials showed loosening of the horny layer of the epidermis, facilitating penetration with no observed signs of inflammation. These results suggest that the formulated CCNGs offer specific advantage for the treatment of melanoma, the most common and serious type of skin cancer, by effective transdermal penetration.
Collapse
Affiliation(s)
- Sabitha Mangalathillam
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Cochin 682041, India
| | | | | | | | | | | |
Collapse
|
149
|
Madhunapantula SV, Robertson GP. Chemoprevention of melanoma. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:361-98. [PMID: 22959032 DOI: 10.1016/b978-0-12-397927-8.00012-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite advances in drug discovery programs and molecular approaches for identifying drug targets, incidence and mortality rates due to melanoma continue to rise at an alarming rate. Existing preventive strategies generally involve mole screening followed by surgical removal of the benign nevi and abnormal moles. However, due to lack of effective programs for screening and disease recurrence after surgical resection, there is a need for better chemopreventive agents. Although sunscreens have been used extensively for protecting from UV-induced melanomas, results of correlative population-based studies are controversial, with certain studies suggest increased skin cancer risk in sunscreen users. Therefore, these studies require further authentication to conclusively confirm the chemoprotective efficacy of sunscreens. This chapter reviews the current understanding regarding melanoma chemoprevention and the various strategies used to accomplish this objective.
Collapse
Affiliation(s)
- Subbarao V Madhunapantula
- Jagadguru Sri Shivarathreeshwara Medical College, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| | | |
Collapse
|
150
|
Asensi M, Ortega A, Mena S, Feddi F, Estrela JM. Natural polyphenols in cancer therapy. Crit Rev Clin Lab Sci 2011; 48:197-216. [PMID: 22141580 DOI: 10.3109/10408363.2011.631268] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural polyphenols are secondary metabolites of plants involved in defense against different types of stress. Extracts containing these compounds have been used for thousands of years in traditional eastern medicine. Polyphenols act on multiple targets in pathways and mechanisms related to carcinogenesis, tumor cell proliferation and death, inflammation, metastatic spread, angiogenesis, or drug and radiation resistance. Nevertheless, reported effects claimed for polyphenols are controversial, since correlations between in vitro effects and in vivo evidence are poorly established. The main discrepancy between health claims versus clinical observations is the frequent use of nonphysiologically relevant concentrations of these compounds and their metabolites in efficacy and mechanistic studies. The present review will discuss how in vivo administration correlates with polyphenol metabolism, toxicity, and bioavailability. Analysis of the general application of polyphenols in cancer therapy will be complemented by potential applications in the therapy of specific tumors, including melanoma, colorectal and lung cancers. Possible pharmaceutical formulations, structural modifications, combinations, and delivery systems aimed to increase bioavailability and/or biological effects will be discussed. Final remarks will include recommendations for future research and developments.
Collapse
Affiliation(s)
- Miguel Asensi
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | | | | | | | | |
Collapse
|