101
|
Verma P, Garcia-Alias G, Fawcett JW. Spinal Cord Repair: Bridging the Divide. Neurorehabil Neural Repair 2008; 22:429-37. [DOI: 10.1177/1545968307313500] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The normal spinal cord coordinates movement and sensation in the body. It is a complex organ containing nerve cells, supporting cells, and nerve fibers to and from the brain. The spinal cord is arranged in segments, with higher segments controlling movement and sensation in the upper parts of the body and lower segments controlling the lower parts of the body. Recent notable discoveries in the fields of neuroscience and cell biology have ensured that many more people survive injuries to the brain and spinal cord. The consequences of injury reflect this organization. Although these developments have been mirrored by significant strides in our understanding of the evolution and pathology of spinal injuries, complete repair of structure and hence function remain elusive. Most spinal cord injuries still cause lifelong disability, and continued research is critically needed. Here we review the molecular and cellular processes that occur during the evolution of an injury to the central nervous system. Throughout, we highlight several promising therapies aimed to restore the disrupted connections in the brain and spinal cord. These, used in combination with supportive care and rehabilitation strategies, may help patients to achieve significant long-term recovery.
Collapse
Affiliation(s)
- Poonam Verma
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom,
| | - Guillermo Garcia-Alias
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - James W. Fawcett
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
102
|
Feng SQ, Zhou XF, Rush RA, Ferguson IA. Graft of pre-injured sural nerve promotes regeneration of corticospinal tract and functional recovery in rats with chronic spinal cord injury. Brain Res 2008; 1209:40-8. [DOI: 10.1016/j.brainres.2008.02.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 11/28/2022]
|
103
|
White LJ, Castellano V. Exercise and brain health--implications for multiple sclerosis: Part 1--neuronal growth factors. Sports Med 2008; 38:91-100. [PMID: 18201113 DOI: 10.2165/00007256-200838020-00001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The benefits of regular exercise to promote general health and reduce the risk of hypokinetic diseases associated with sedentary lifestyles are well recognized. Recent studies suggest that exercise may enhance neurobiological processes that promote brain health in aging and disease. A current frontier in the neurodegenerative disorder multiple sclerosis (MS) concerns the role of physical activity for promoting brain health through protective, regenerative and adaptive neural processes. Research on neuromodulation, raises the possibility that regular physical activity may mediate favourable changes in disease factors and symptoms associated with MS, in part through changes in neuroactive proteins. Insulin-like growth factor-I appears to act as a neuroprotective agent and studies indicate that exercise could promote this factor in MS. Neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor likely play roles in neuronal survival and activity-dependent plasticity. Physical activity has also been shown to up-regulate hippocampal BDNF, which may play a role in mood states, learning and memory to lessen the decline in cognitive function associated with MS. In addition, exercise may promote anti-oxidant defences and neurotrophic support that could attenuate CNS vulnerability to neuronal degeneration. Exercise exposure (preconditioning) may serve as a mechanism to enhance stress resistance and thereby may support neuronal survival under heightened stress conditions. Considering that axonal loss and cerebral atrophy occur early in the disease, exercise prescription in the acute stage could promote neuroprotection, neuroregeneration and neuroplasticity and reduce long-term disability. This review concludes with a proposed conceptual model to connect these promising links between exercise and brain health.
Collapse
Affiliation(s)
- Lesley J White
- Department of Kinesiology, University of Georgia, Athens, Georgia 30602, USA.
| | | |
Collapse
|
104
|
Uchida K, Nakajima H, Inukai T, Takamura T, Kobayashi S, Furukawa S, Baba H. Adenovirus-mediated retrograde transfer of neurotrophin-3 gene enhances survival of anterior horn neurons oftwy/twy mice with chronic mechanical compression of the spinal cord. J Neurosci Res 2008; 86:1789-800. [DOI: 10.1002/jnr.21627] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
105
|
Sandrow HR, Shumsky JS, Amin A, Houle JD. Aspiration of a cervical spinal contusion injury in preparation for delayed peripheral nerve grafting does not impair forelimb behavior or axon regeneration. Exp Neurol 2007; 210:489-500. [PMID: 18295206 DOI: 10.1016/j.expneurol.2007.11.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/21/2007] [Accepted: 11/26/2007] [Indexed: 01/17/2023]
Abstract
A peripheral nerve graft model was used to examine axonal growth after a unilateral cervical (C) contusion injury in adult rats and to determine if manipulation of an injury site prior to transplantation affects spontaneous behavioral recovery. After a short delay (7 d) the epicenter of a C4 contusion was exposed and aspirated without harming the cavity walls followed by apposition with one end of a pre-degenerated tibial nerve to the rostral cavity wall. After a longer delay (28 d) the aspirated cavity was treated with GDNF to promote regeneration by chronically injured neurons. In both groups forelimb and hindlimb locomotor scores decreased significantly 2 d after lesion site manipulation, but by 7 d, the forelimb score was not different from the pre-manipulation score. There was no significant difference in grid walking or grip strength scores for the affected forelimb in either group 7 d after contusion vs. 7 d after manipulation. Over 1500 brain stem and propriospinal neurons grew axons into the graft with either delay. These results demonstrate that a contusion injury site can be manipulated prior to transplantation without causing long-lasting forelimb or hindlimb behavioral deficits and that peripheral nerve grafts support axonal growth after acute or chronic contusion injury.
Collapse
Affiliation(s)
- Harra R Sandrow
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
106
|
Blesch A, Tuszynski MH. Transient growth factor delivery sustains regenerated axons after spinal cord injury. J Neurosci 2007; 27:10535-45. [PMID: 17898225 PMCID: PMC6673161 DOI: 10.1523/jneurosci.1903-07.2007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 08/09/2007] [Accepted: 08/16/2007] [Indexed: 01/09/2023] Open
Abstract
Growth factors influence the topography of axonal projections during nervous system development and facilitate axonal sprouting and regeneration after injury in the adult. However, in the absence of target reinnervation and reestablishment of synaptic activity, we hypothesized that continuing delivery of neurotrophins would be required to sustain regenerating axons for prolonged times points after neurotrophin-induced axon growth after spinal cord injury (SCI) in the adult. Using tetracycline-inducible expression of brain-derived neurotrophic factor by genetically modified fibroblasts, we were able to extensively and significantly turn growth factor expression "on" or "off" in vitro and in vivo within sites of SCI. Notably, we find that transient growth factor delivery is sufficient to sustain regenerated axons for prolonged time periods within spinal cord lesion sites. Immunohistochemical analysis demonstrated an absence of neuronal targets or synapses within transient growth factor expressing grafts but the persistent presence of Schwann cells. Thus, the adult CNS appears capable of sustaining axons that have extended after transient growth factor delivery, an effect potentially attributable to the persistence of Schwann cells in lesion/graft sites.
Collapse
Affiliation(s)
- Armin Blesch
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
107
|
Lu P, Tuszynski MH. Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol 2007; 209:313-20. [PMID: 17927983 DOI: 10.1016/j.expneurol.2007.08.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 12/11/2022]
Abstract
There has been remarkable progress in the last 20 years in understanding mechanisms that underlie the success of axonal regeneration in the peripheral nervous system, and the failure of axonal regeneration in the central nervous system. Following the identification of these underlying mechanisms, several distinct therapeutic approaches have been tested in in vivo models of spinal cord injury (SCI) to enhance central axonal structural plasticity, including the therapeutic administration of neurotrophic factors. While several tested mechanisms apparently enhance axonal growth, more recent, properly controlled studies indicate that experimental approaches to combine therapies that target distinct neural mechanisms achieve greater axonal growth than therapies applied in isolation. The search for combination therapies that optimize axonal growth after SCI continues.
Collapse
Affiliation(s)
- Paul Lu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0626, USA
| | | |
Collapse
|
108
|
Golden KL, Pearse DD, Blits B, Garg MS, Oudega M, Wood PM, Bunge MB. Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol 2007; 207:203-17. [PMID: 17719577 PMCID: PMC3513343 DOI: 10.1016/j.expneurol.2007.06.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/16/2007] [Indexed: 01/09/2023]
Abstract
We sought to directly compare growth and myelination of local and supraspinal axons by implanting into the injured spinal cord Schwann cells (SCs) transduced ex vivo with adenoviral (AdV) or lentiviral (LV) vectors encoding a bifunctional neurotrophin molecule (D15A). D15A mimics actions of both neurotrophin-3 and brain-derived neurotrophic factor. Transduced SCs were injected into the injury center 1 week after a moderate thoracic (T8) adult rat spinal cord contusion. D15A expression and bioactivity in vitro; D15A levels in vivo; and graft volume, SC number, implant axon number and cortico-, reticulo-, raphe-, coerulo-spinal and sensory axon growth were determined for both types of vectors employed to transduce SCs. ELISAs revealed that D15A-secreting SC implants contained significantly higher levels of neurotrophin than non-transduced SC and AdV/GFP and LV/GFP SC controls early after implantation. At 6 weeks post-implantation, D15A-secreting SC grafts exhibited 5-fold increases in graft volume, SC number and myelinated axon counts and a 3-fold increase in myelinated to unmyelinated (ensheathed) axon ratios. The total number of axons within grafts of LV/GFP/D15A SCs was estimated to be over 70,000. Also 5-HT, DbetaH, and CGRP axon length was increased up to 5-fold within D15A grafts. In sum, despite qualitative differences using the two vectors, increased neurotrophin secretion by the implanted D15A SCs led to the presence of a significantly increased number of axons in the contusion site. These results demonstrate the therapeutic potential for utilizing neurotrophin-transduced SCs to repair the injured spinal cord.
Collapse
Affiliation(s)
- Kevin L. Golden
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | | | - Martin Oudega
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Patrick M. Wood
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Corresponding author: , Tel. (305) 243-4596, Fax (305) 243-3923, Lois Pope LIFE Center, P.O Box 016960, Mail locator R-48, Miami, FL 33101
| |
Collapse
|
109
|
Kamei N, Tanaka N, Oishi Y, Ishikawa M, Hamasaki T, Nishida K, Nakanishi K, Sakai N, Ochi M. Bone marrow stromal cells promoting corticospinal axon growth through the release of humoral factors in organotypic cocultures in neonatal rats. J Neurosurg Spine 2007; 6:412-9. [PMID: 17542506 DOI: 10.3171/spi.2007.6.5.412] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECT The transplantation of bone marrow stromal cells (BMSCs) is considered to be an alternative treatment to promote central nervous system regeneration, but the precise mechanisms of this regeneration after transplantation of BMSCs have not been clarified. In the present study, the authors assessed the effects of BMSC transplantation on corticospinal axon growth quantitatively, and they analyzed the mechanism of central nervous system regeneration in the injured and BMSC-treated spinal cord using the organotypic coculture system. METHODS Bone marrow stromal cells derived from green fluorescent protein-expressing transgenic Sprague-Dawley rats were transplanted to the organotypic coculture system in which brain cortex and spinal cord specimens obtained in neonatal Sprague-Dawley rats were used. The axon growth from the cortex to the spinal cord was assessed quantitatively, using anterograde tracing with 1,1 '-ioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate. To identify the differentiation of transplanted BMSCs, immunohistochemical examinations were performed. In addition, BMSCs were analyzed using reverse transcriptase polymerase chain reaction (RT-PCR) for mRNA expression of the growth factors. The transplantation of BMSCs beneath the membrane, where the transplanted cells did not come into direct contact with the cultured tissue, promoted corticospinal axon growth to the same extent as transplantation of BMSCs on the tissues. The RT-PCR showed that the transplanted BMSCs expressed the mRNA of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). Con CONCLUSIONS ese findings strongly suggest that humoral factors expressed by BMSCs, including BDNF and VEGF, participate in regeneration of the central nervous system after transplantation of these cells.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Kamei N, Tanaka N, Oishi Y, Hamasaki T, Nakanishi K, Sakai N, Ochi M. BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine (Phila Pa 1976) 2007; 32:1272-8. [PMID: 17515814 DOI: 10.1097/brs.0b013e318059afab] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental study of spinal cord injury using an organotypic slice culture. OBJECTIVE To clarify the mechanism of corticospinal axon regeneration following transplantation of neural progenitor cells (NPCs) in the injured spinal cord. SUMMARY OF BACKGROUND DATA Several mechanisms underlying central nervous system regeneration after transplantation of NPCs have been proposed; however, the precise mechanism has not been clarified. Previously, we demonstrated that transplanted NPCs secreted humoral factors that in turn promoted corticospinal axon growth using the unique organotypic coculture system involving brain cortex and spinal cord from neonatal rats. METHODS Cultured NPCs were immunostained with antibodies against neurotrophic factors including brain-derived neurotrophic factor (BDNF), neurotrophin (NT)-3, nerve growth factor (NGF), and ciliary neurotrophic factor (CNTF) both before and after differentiation. To evaluate corticospinal axon growth quantitatively, we used the organotypic coculture system. The dissected brain cortex and spinal cord obtained from neonatal rats were aligned next to each other and cultured on a membrane. NPCs were transplanted onto the cocultures. Furthermore, neutralizing antibodies against BDNF, NT-3, NGF, or CNTF were added to the cocultures. Axon growth from the brain cortex into the spinal cord was assessed quantitatively using anterograde axon tracing with DiI. RESULTS The cultured NPCs were positively immunostained by antibodies against BDNF, NT3, NGF, and CTNF both before and after differentiation. Transplantation of NPCs promoted axon growth from the brain cortex into the spinal cord. The axon growth promoted by NPCs was significantly suppressed by the addition of neutralizing antibodies against BDNF, NT-3, and NGF but not CNTF. CONCLUSION The neurotrophic factors, BDNF, NT-3, and NGF, secreted by transplanted NPCs, were involved in the promotion of corticospinal axon growth after transplantation of NPCs.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
111
|
Campos LW, Chakrabarty S, Haque R, Martin JH. Regenerating motor bridge axons refine connections and synapse on lumbar motoneurons to bypass chronic spinal cord injury. J Comp Neurol 2007; 506:838-50. [DOI: 10.1002/cne.21579] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
112
|
Sohrabji F, Lewis DK. Estrogen-BDNF interactions: implications for neurodegenerative diseases. Front Neuroendocrinol 2006; 27:404-14. [PMID: 17069877 PMCID: PMC1828910 DOI: 10.1016/j.yfrne.2006.09.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 07/24/2006] [Accepted: 09/01/2006] [Indexed: 01/08/2023]
Abstract
Since its' discovery over 20 years ago, BDNF has been shown to play a key role in neuronal survival, in promoting neuronal regeneration following injury, regulating transmitter systems and attenuating neural-immune responses. Estrogen's actions in the young and mature brain, and its role in neurodegenerative diseases in many cases overlaps with those observed for BDNF. Reduced estrogen and BDNF are observed in patients with Parkinson's disease and Alzheimer's disease, while high estrogen levels are a risk factor for development of multiple sclerosis. Estrogen receptors, which transduce the actions of estrogen, colocalize to cells that express BDNF and its receptor trkB, and estrogen further regulates the expression of this neurotrophin system. This review describes the distribution of BDNF and trkB expressing cells in the forebrain, and the roles of estrogen and the BDNF-trkB neurotrophin system in Parkinson's disease, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, TAMU Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
113
|
Yin XF, Fu ZG, Zhang DY, Jiang BG. Alterations in the expression of ATP-sensitive potassium channel subunit mRNA after acute peripheral nerve and spinal cord injury. Eur Neurol 2006; 57:4-10. [PMID: 17108688 DOI: 10.1159/000097003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/12/2006] [Indexed: 12/24/2022]
Abstract
ATP-sensitive potassium channels (K(ATP)) are involved in the regulation of potassium homeostasis in the nervous system, and they may play an important role in acute peripheral nerve and spinal cord injury. Here, the expression of the K(ATP) genes was monitored by reverse transcription polymerase chain reaction (RT-PCR) in the rat dorsal root ganglion, spinal cord and cerebral cortex following acute sciatic nerve and spinal cord injury. Electrophoresis of the RT-PCR products showed that in comparison with the normal rats, the K(ATP) mRNA expression level was up-regulated for the Kir6.2 subunit in the rat dorsal root ganglion 4 and 24 h after the acute sciatic nerve injury (142.7 +/- 23.0 and 135.5 +/- 21.0%, p < 0.05, vs. control, n = 3), and both Kir6.1 and sulphonylurea receptor 2 mRNA were increased in the spinal cord during the same time period after the acute spinal cord injury (266.5 +/- 67.1 and 248.7 +/- 67.7%; 145.1 +/- 42.6 and 152.6 +/- 44.3%, p < 0.05, vs. control, n = 3). No significant changes of K(ATP) genes were observed in the cerebral cortex among both sciatic-nerve- and spinal-cord-injured animals. These results suggest that acute peripheral nerve and spinal cord injury provoke different regulations of K(ATP) gene expression in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Xiao Feng Yin
- Department of Orthopaedics and Trauma, Peking University People's Hospital, Beijing, China
| | | | | | | |
Collapse
|
114
|
Taylor L, Jones L, Tuszynski MH, Blesch A. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci 2006; 26:9713-21. [PMID: 16988042 PMCID: PMC6674461 DOI: 10.1523/jneurosci.0734-06.2006] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurotrophic factor delivery to sites of spinal cord injury (SCI) promotes axon growth into but not beyond lesion sites. We tested the hypothesis that sustained growth factor gradients beyond regions of SCI will promote significant axonal bridging into and beyond lesions. Adult rats underwent C3 lesions to transect ascending dorsal column sensory axons, and autologous bone marrow stromal cells were grafted into the lesion to provide a cellular bridge for growth into the injured region. Concurrently, lentiviral vectors expressing neurotrophin-3 (NT-3) or green fluorescent protein (GFP) (controls) were injected into the host cord rostral to the lesion to promote axon extension beyond the graft/lesion. Four weeks later, NT-3 gradients beyond the lesion were detectable by ELISA in animals that received NT-3-expressing lentiviral vectors, with highest average NT-3 levels located near the rostral vector injection site. Significantly more ascending sensory axons extended into tissue rostral to the lesion site in animals injected with NT-3 vectors compared with GFP vectors, but only if the zone of NT-3 vector transduction extended continuously from the injection site to the graft; any "gap" in NT-3 expression from the graft to rostral tissue resulted in axon bridging failure. Despite axon bridging beyond the lesion, regenerating axons did not continue to grow over very long distances, even in the presence of a continuing growth factor gradient beyond the lesion. These findings indicate that a localized and continuous gradient of NT-3 can achieve axonal bridging beyond the glial scar, but growth for longer distances is not sustainable simply with a trophic stimulus.
Collapse
Affiliation(s)
- Laura Taylor
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, and
| | - Leonard Jones
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, and
| | - Mark H. Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, and
- Veterans Administration Medical Center, San Diego, California 92165
| | - Armin Blesch
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, and
| |
Collapse
|
115
|
Lu P, Jones LL, Tuszynski MH. Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol 2006; 203:8-21. [PMID: 17014846 DOI: 10.1016/j.expneurol.2006.07.030] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 12/19/2022]
Abstract
Cellular and extracellular inhibitors are thought to restrict axon growth after chronic spinal cord injury (SCI), confronting the axon with a combination of chronic astrocytosis and extracellular matrix-associated inhibitors that collectively constitute the chronic "scar." To examine whether the chronically injured environment is strongly inhibitory to axonal regeneration, we grafted permissive autologous bone marrow stromal cells (MSCs) into mid-cervical SCI sites of adult rats, 6 weeks post-injury without resection of the "chronic scar." Additional subjects received MSCs genetically modified to express neurotrophin-3 (NT-3), providing a further local stimulus to axon growth. Anatomical analysis 3 months post-injury revealed extensive astrocytosis surrounding the lesion site, together with dense deposition of the inhibitory extracellular matrix molecule NG2. Despite this inhibitory environment, axons penetrated the lesion site through the chronic scar. Robust axonal regeneration occurred into chronic lesion cavities expressing NT-3. Notably, chronically regenerating axons preferentially associated with Schwann cell surfaces expressing both inhibitory NG2 substrates and the permissive substrates L1 and NCAM in the lesion site. Collectively, these findings indicate that inhibitory factors deposited at sites of chronic SCI do not create impenetrable boundaries and that inhibition can be balanced by local and diffusible signals to generate robust axonal growth even without resecting chronic scar tissue.
Collapse
Affiliation(s)
- Paul Lu
- Department of Neurosciences-0626, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
116
|
Narazaki DK, Barros Filho TEPD, Oliveira CRGCMD, Cristante AF, Iutaka AS, Marcon RM, Oliveira RP. Spinal cord regeneration: the action of neurotrophin-3 in spinal cord injury in rats. Clinics (Sao Paulo) 2006; 61:453-60. [PMID: 17072444 DOI: 10.1590/s1807-59322006000500013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/26/2006] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE For many years, it was believed that medullary regeneration could not occur, although currently there are many trials using neurotrophic factors, stem cells, fetal medulla grafts, peripheral nerve grafts, and antibodies against myelin-associated proteins that demonstrate the existence of the possibility of spinal cord regeneration. The purpose of this study was to investigate the action of neurotrophin-3, a novel neurotrophic factor. METHODS The New York University impactor, a standardized device for delivery of spinal cord injuries was used on 33 rats, which were divided into 2 groups: a control group receiving distilled water intraperitoneally and a treatment group receiving neurotrophin-3 intraperitoneally. RESULTS Using the Basso, Beattie, and Bresnahan scale, the locomotor recovery curve for the neurotrophin-3 treated group was superior to that of the control group (P < 0.05); the administration of neurotrophin-3 was associated with the absence of deaths, while the control group showed a 28.5% (P = 0.026) mortality rate. Other parameters (hematuria rate and histological analysis) showed no significant differences. CONCLUSIONS Based on these results, it appears that a strong relationship exists between the use of neurotrophin-3 in rats with spinal cord injury and better functional recovery.
Collapse
Affiliation(s)
- Douglas Kenji Narazaki
- Spinal Cord Injury Laboratory, Institute of Orthopedics and Traumatology, Hospital das Clínicas, São Paulo University Medical School, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Spinal cord injury (SCI) can lead to paraplegia or quadriplegia. Although there are no fully restorative treatments for SCI, various rehabilitative, cellular and molecular therapies have been tested in animal models. Many of these have reached, or are approaching, clinical trials. Here, we review these potential therapies, with an emphasis on the need for reproducible evidence of safety and efficacy. Individual therapies are unlikely to provide a panacea. Rather, we predict that combinations of strategies will lead to improvements in outcome after SCI. Basic scientific research should provide a rational basis for tailoring specific combinations of clinical therapies to different types of SCI.
Collapse
Affiliation(s)
- Sandrine Thuret
- Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, P.O. Box 39, 1-2 WW Ground, Denmark Hill, London SE5 8AF, UK
| | | | | |
Collapse
|
118
|
Abstract
During the past few years, several approaches to spinal-cord repair have been successfully established in animal models. For their use in trials of spinal-cord injury (SCI) in human beings, specific difficulties that affect the success of clinical trials have to be recognised. First, transection of the spinal cord is commonly applied in animal models, whereas contusion, which generally leads to injury in two to three segments, represents the typical injury mechanism in human beings. Second, the quadrupedal organisation of locomotion in animals and the more complex autonomic functions in human beings, challenge translation of animal behaviour into recovery from SCI in people. Third, the extensive damage of motor neurons and roots associated with spinal-cord contusion is not addressed in current translational studies. This damage has direct implications for rehabilitation strategies and functional outcome. Fourth, there is increasing evidence for a degradation of neuronal function below the level of the lesion in chronic complete SCI. The relevance of this degradation for a regeneration-inducing treatment needs to be investigated. Fifth, the prerequisites to enable appropriate reconnection of regenerating tract fibres in a postacute stage have still to be established.
Collapse
Affiliation(s)
- Volker Dietz
- Spinal Cord Injury Centre, University Hospital Balgrist, Zürich, Switzerland.
| | | |
Collapse
|
119
|
Lynskey JV, Sandhu FA, Sandhu FA, Dai HN, Dai HN, McAtee M, Slotkin JR, Slotkin JR, MacArthur L, Bregman BS. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats. J Neurotrauma 2006; 23:617-34. [PMID: 16689666 DOI: 10.1089/neu.2006.23.617] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The adult central nervous system is capable of considerable anatomical reorganization and functional recovery after injury. Functional outcomes, however, vary greatly, depending upon size and location of injury, type and timing of intervention, and type of recovery and plasticity evaluated. The present study was undertaken to assess the recovery of skilled and unskilled forelimb function in adult rats after a C5/C6 spinal cord over-hemisection and delayed intervention with fetal spinal cord transplants and neurotrophins. Recovery of forelimb function was evaluated during both target reaching (a skilled behavior) and vertical exploration (an unskilled behavior). Anatomical tracing and immunohistochemistry were used to assess the growth of descending raphespinal, corticospinal, and rubrospinal fibers at the injury site, tracts that normally confer forelimb function. Delayed intervention with transplants and either brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) restored skilled left forelimb reaching to pre-injury levels. Animals showed recovery of normal reaching movements rather than compensation with abnormal movements. Transplants and NT-3 also improved right forelimb use during an unskilled vertical exploration, but not skilled right reaching. Intervention with fetal transplant tissue supported the growth of descending serotonergic, corticospinal, and rubrospinal fibers into the transplant at the lesion site. The addition of neurotrophins, however, did not significantly increase axonal growth at the lesion site. These studies suggest that the recovery of skilled and unskilled forelimb use is possible after a large cervical spinal cord injury following delayed intervention with fetal spinal cord and neurotrophins. Plasticity of both spared and axotomized descending pathways likely contributes to the functional recovery observed.
Collapse
Affiliation(s)
- James V Lynskey
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Xu K, Uchida K, Nakajima H, Kobayashi S, Baba H. Targeted retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene prevents loss of mouse (twy/twy) anterior horn neurons in vivo sustaining mechanical compression. Spine (Phila Pa 1976) 2006; 31:1867-74. [PMID: 16924202 DOI: 10.1097/01.brs.0000228772.53598.cc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemical analysis after adenovirus (AdV)-mediated BDNF gene transfer in and around the area of mechanical compression in the cervical spinal cord of the hyperostotic mouse (twy/twy). OBJECTIVE To investigate the neuroprotective effect of targeted AdV-BDNF gene transfection in the twy mouse with spontaneous chronic compression of the spinal cord motoneurons. SUMMARY OF BACKGROUND DATA Several studies reported the neuroprotective effects of neurotrophins on injured spinal cord. However, no report has described the effect of targeted retrograde neurotrophic gene delivery on motoneuron survival in chronic compression lesions of the cervical spinal cord resembling lesions of myelopathy. METHODS LacZ marker gene using adenoviral vector (AdV-LacZ) was used to evaluate retrograde delivery from the sternomastoid muscle in adult twy mice (16-week-old) and (control). Four weeks after the AdV-LacZ or AdV-BDNF injection, the compressed cervical spinal cord was removed en bloc for immunohistologic investigation of b-galactosidase activity and immunoreactivity and immunoblot analyses of BDNF. The number of anterior horn neurons was counted using Nissl, ChAT and AChE staining. RESULTS Spinal accessory motoneurons between C1 and C3 segments were successfully transfected by AdV-LacZ in both twy and ICR mice after targeted intramuscular injection. Immunoreactivity to BDNF was significantly stronger in AdV-BDNF-gene transfected twy mice than in AdV-LacZ-gene transfected mice. At the cord level showing the maximum compression in AdV-BDNF-transfected twy mice, the number of anterior horn neurons was sinificantly higher in the topographic neuronal cell counting of Nissl-, ChAT-, and AChE-stained samples than in AdV-LacZ-injected twy mice. CONCLUSION Targeted AdV-BDNF-gene delivery significantly increased Nissl-stained anterior horn neurons and enhanced cholinergic enzyme activities in the twy. Our results suggest that targeted retrograde AdV-BDNF-gene in vivo delivery may enhance neuronal survival even under chronic mechanical compression.
Collapse
Affiliation(s)
- Kan Xu
- Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, University of Fukui Faculty of Medicine, Matsuoka, Fukui, Japan
| | | | | | | | | |
Collapse
|
121
|
Houle JD, Tom VJ, Mayes D, Wagoner G, Phillips N, Silver J. Combining an autologous peripheral nervous system "bridge" and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci 2006; 26:7405-15. [PMID: 16837588 PMCID: PMC6674179 DOI: 10.1523/jneurosci.1166-06.2006] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chondroitinase-ABC (ChABC) was applied to a cervical level 5 (C5) dorsal quadrant aspiration cavity of the adult rat spinal cord to degrade the local accumulation of inhibitory chondroitin sulfate proteoglycans. The intent was to enhance the extension of regenerated axons from the distal end of a peripheral nerve (PN) graft back into the C5 spinal cord, having bypassed a hemisection lesion at C3. ChABC-treated rats showed (1) gradual improvement in the range of forelimb swing during locomotion, with some animals progressing to the point of raising their forelimb above the nose, (2) an enhanced ability to use the forelimb in a cylinder test, and (3) improvements in balance and weight bearing on a horizontal rope. Transection of the PN graft, which cuts through regenerated axons, greatly diminished these functional improvements. Axonal regrowth from the PN graft correlated well with the behavioral assessments. Thus, many more axons extended for much longer distances into the cord after ChABC treatment and bridge insertion compared with the control groups, in which axons regenerated into the PN graft but growth back into the spinal cord was extremely limited. These results demonstrate, for the first time, that modulation of extracellular matrix components after spinal cord injury promotes significant axonal regeneration beyond the distal end of a PN bridge back into the spinal cord and that regenerating axons can mediate the return of useful function of the affected limb.
Collapse
Affiliation(s)
- John D Houle
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
| | | | | | | | | | | |
Collapse
|
122
|
Taylor SJ, Sakiyama-Elbert SE. Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model. J Control Release 2006; 116:204-10. [PMID: 16919351 PMCID: PMC1855256 DOI: 10.1016/j.jconrel.2006.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
The goal of this work was to assess the effect of the controlled delivery of neurotrophin-3 (NT-3) from an affinity-based delivery system in fibrin scaffolds on regeneration following spinal cord injury (SCI). A heparin-based delivery system (HBDS) was used to immobilize NT-3 within fibrin scaffolds via non-covalent interactions. The fibrin scaffolds were implanted in lesions immediately after injury in an adult rat model of SCI (complete ablation of a 2 mm segment of the cord at T9). Delivery of NT-3 was controlled by an affinity-based delivery system that limits drug loss by diffusion and releases the drug via cell-mediated processes. Twelve weeks after injury and treatment, animals treated with fibrin scaffolds and NT-3, with or without the delivery system, did not show functional improvement over saline controls. Substantial cavitation at edges of the lesion was present, and while neuronal fibers were present inside the lesion, traced corticospinal and dorsal sensory tracts did not regenerate into the lesion. Therefore, while previous studies indicate that the controlled delivery of NT-3 from fibrin scaffolds may increase the short term regenerative response, the continued degeneration of the cord, indicative of the severity of the injury, limits the long term regeneration stimulated by this treatment. Chronic or repeated treatments or a less severe injury model may prove useful in assessing the utility of controlled delivery systems for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Sara J Taylor
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
123
|
Abstract
The implantation of exogenous cells or tissues has been a popular and successful strategy to overcome physical discontinuity and support axon growth in experimental models of spinal cord injury (SCI). Cellular therapies exhibit a multifarious potential for SCI restoration, providing not only a supportive substrate upon which axons can traverse the injury site, but also reducing progressive tissue damage and scarring, facilitating remyelination repair, and acting as a source for replacing and re-establishing lost neural tissue and its circuitry. The past two decades of research into cell therapies for SCI repair have seen the progressive evolution from whole tissue strategies, such as peripheral nerve grafts, to the use of specific, purified cell types from a diverse range of sources and, recently, to the employment of stem or neural precursor cell populations that have the potential to form a full complement of neural cell types. Although the progression of cell therapies from laboratory to clinical implementation has been slow, human SCI safety and efficacy trials involving several cell types within the US appear to be close at hand.
Collapse
Affiliation(s)
- Damien D Pearse
- University of Miami Miller School of Medicine, The Miami Project to Cure Paralysis, Department of Neurological Surgery, Lois Pope Life Center, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA.
| | | |
Collapse
|
124
|
Abstract
The Schwann cell is one of the most widely studied cell types for repair of the spinal cord. These cells play a crucial role in endogenous repair of peripheral nerves due to their ability to dedifferentiate, migrate, proliferate, express growth promoting factors, and myelinate regenerating axons. Following trauma to the spinal cord, Schwann cells migrate from the periphery into the injury site, where they apparently participate in endogenous repair processes. For transplantation into the spinal cord, large numbers of Schwann cells are necessary to fill injury-induced cystic cavities. Several culture systems have been developed that provide large, highly purified populations of Schwann cells. Importantly, the development of in vitro systems to harvest human Schwann cells presents a unique opportunity for autologous transplantation in the clinic. In animal models of spinal cord injury (SCI), grafting Schwann cells or peripheral nerve into the lesion site has been shown to promote axonal regeneration and myelination. However, axons do not regenerate beyond the transplant due to the inhibitory nature of the glial scar surrounding the injury. To overcome the glial scar inhibition, additional approaches such as increasing the intrinsic capacity of axons to regenerate and/or removal of the inhibitory molecules associated with reactive astrocytes and/or oligodendrocyte myelin should be incorporated. Clearly, Schwann cells have great potential for repair of the injured spinal cord, but they need to be combined with other interventions to maximize axonal regeneration and functional recovery.
Collapse
Affiliation(s)
- Martin Oudega
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida, USA.
| | | |
Collapse
|
125
|
Pizzi M, Brunelli G, Barlati S, Spano P. Glutamatergic innervation of rat skeletal muscle by supraspinal neurons: a new paradigm in spinal cord injury repair. Curr Opin Neurobiol 2006; 16:323-8. [PMID: 16723220 DOI: 10.1016/j.conb.2006.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
Acetylcholine is the specific chemical code of spinal nerve terminal transmission at the mammalian neuromuscular junction (NMJ), whereas nicotinic acetylcholine receptors inserted into the membrane of muscle fibres mediate signalling for the muscle response. Glutamate has a primary role in neuromuscular transmission of organisms that are phylogenetically distant from mammals, the invertebrates, including insect and molluscs. Recent research has shown that diverting descending glutamatergic fibres in the spinal cord to rat skeletal muscle by means of a peripheral nerve graft causes the cholinergic synapse to switch to the glutamatergic type. These data demonstrate that under appropriate surgical manipulation supraspinal neurons can directly target muscle fibres and specify the postsynaptic receptors to achieve a functional glutamatergic NMJ.
Collapse
Affiliation(s)
- Marina Pizzi
- Divisions of Pharmacology and Experimental Therapeutics, Italy
| | | | | | | |
Collapse
|
126
|
Tinsley RB, Zhang SH, Feng SQ, Rush RA, Ferguson IA. Use of engineered peripheral nerve autografts for spinal cord repair. Neuroreport 2006; 17:261-5. [PMID: 16462594 DOI: 10.1097/01.wnr.0000199462.09165.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We developed a clinically compatible protocol for the production of engineered tissue for grafting into the injured spinal cord. We used autologous tissue derived from pre-ligated peripheral nerves, which avoids supply, immunocompatibility and ethical hinderances, combined with non-viral transfection, which is a versatile and non-immunogenic gene transfer method. In-vitro transfection of glial cells or primary tissue from pre-ligated rat peripheral nerve with the neurotrophic gene brain-derived neurotrophic factor significantly enhanced its expression, when quantified or labelled by immunofluorescence. Engineered tissue expressed brain-derived neurotrophic factor after being grafted into the spinal cord of rats that had received spinal contusion injury 3 weeks before. Anatomical and functional assays of repair, conducted on a small cohort, showed that the treatment may promote axonal regeneration and improve motor performance.
Collapse
Affiliation(s)
- Rogan B Tinsley
- Department of Human Physiology, Flinders University School of Medicine, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
127
|
Steward O, Sharp K, Selvan G, Hadden A, Hofstadter M, Au E, Roskams J. A re-assessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats. Exp Neurol 2006; 198:483-99. [PMID: 16494866 DOI: 10.1016/j.expneurol.2005.12.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/30/2005] [Accepted: 12/19/2005] [Indexed: 11/17/2022]
Abstract
This study is part of the NIH "Facilities of Research-Spinal Cord Injury" contract to support independent replication of published studies. We repeated a study reporting that delayed transplantation of olfactory lamina propria (OLP) into the site of a complete spinal cord transection led to significant improvement in hindlimb motor function and induced axon regeneration. Adult female rats received complete spinal cord transections at T10. Thirty days post-injury, pieces of OLP, which contains olfactory ensheathing cells (OECs), or respiratory lamina propria (RLP), which should not contain OECs, were placed into the transection site. Hindlimb motor function was tested using the BBB scale from day 1 post-injury through 10 weeks following transplantation. To assess axonal regeneration across the transection site, Fluorogold was injected into the distal segment, and the distribution of 5HT-containing axons was assessed using immunostaining. BBB analyses revealed no significant recovery after OLP transplantation and no significant differences between OLP vs. RLP transplant groups. Fluorogold injections into caudal segments did not lead to retrograde labeling in any animals. Immunostaining for 5HT revealed that a few 5HT-labeled axons extended into both RLP and OLP transplants and a few 5HT-labeled axons were present in sections caudal to the injury in 2 animals that received OLP transplants and 1 animal that received RLP transplants. Our results indicate that, although OLP transplants may stimulate regeneration under some circumstances, the effect is not so robust as to reliably overcome the hostile setting created by a complete transection paradigm.
Collapse
Affiliation(s)
- Oswald Steward
- Reeve-Irvine Research Center, University of California at Irvine School of Medicine, Department of Anatomy and Neurobiology, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4292, USA.
| | | | | | | | | | | | | |
Collapse
|
128
|
Piotrowicz A, Shoichet MS. Nerve guidance channels as drug delivery vehicles. Biomaterials 2006; 27:2018-27. [PMID: 16239029 DOI: 10.1016/j.biomaterials.2005.09.042] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/26/2005] [Indexed: 11/18/2022]
Abstract
Nerve guidance channels (NGCs) have been shown to facilitate regeneration after transection injury to the peripheral nerve or spinal cord. Various therapeutic molecules, including neurotrophic factors, have improved regeneration and functional recovery after injury when combined with NGCs; however, their impact has not been maximized partly due to the lack of an appropriate drug delivery system. To address this limitation, nerve growth factor (NGF) was incorporated into NGCs of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate), P(HEMA-co-MMA). The NGCs were synthesized by a liquid-liquid centrifugal casting process and three different methods of protein incorporation were compared in terms of protein distribution and NGF release profile: (1) NGF was encapsulated (with BSA) in biodegradable poly(d,l-lactide-co-glycolide) 85/15 microspheres, which were combined with a PHEMA polymerization formulation and coated on the inside of pre-formed NGCs by a second liquid-liquid centrifugal casting technique; (2) pre-formed NGCs were imbibed with a solution of NGF/BSA and (3) NGF/BSA alone was combined with a PHEMA formulation and coated on the inside of pre-formed NGCs by a second liquid-liquid centrifugal casting technique. Using a fluorescently labelled model protein, the distribution of proteins in NGCs prepared with a coating of either protein-loaded microspheres or protein alone was found to be confined to the inner PHEMA layer. Sustained release of NGF was achieved from NGCs with either NGF-loaded microspheres or NGF alone incorporated into the inner layer, but not from channels imbibed with NGF. By day 28, NGCs with microspheres released a total of 220 pg NGF/cm of channel whereas those NGCs imbibed with NGF released 1040 pg/cm and those NGCs with NGF incorporated directly in a PHEMA layer released 8624 pg/cm. The release of NGF from NGCs with microspheres was limited by a slow-degrading microsphere formulation and by the maximum amount of microspheres that could be incorporated into the NGCs structure. Notwithstanding, the liquid-liquid centrifugal casting process is promising for localized and controlled release of multiple factors that are key to tissue regeneration.
Collapse
Affiliation(s)
- Alexandra Piotrowicz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ont., Canada
| | | |
Collapse
|
129
|
Hossain-Ibrahim MK, Rezajooi K, MacNally JK, Mason MRJ, Lieberman AR, Anderson PN. Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons. BMC Neurosci 2006; 7:8. [PMID: 16433912 PMCID: PMC1403789 DOI: 10.1186/1471-2202-7-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 01/24/2006] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS) was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 (a microglia and macrophage marker). Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation. RESULTS Application of LPS induced a gradient of inflammation through the full depth of the motor cortex and promoted c-Jun and SCG10 expression for up to 2 weeks, and GAP-43 upregulation for 3 days by many corticospinal neurons, but had very limited effects on neuronal ATF3 expression. However, many glial cells in the subcortical white matter upregulated ATF3. LPS did not promote sprouting of anterogradely labelled corticospinal axons, which did not grow into or beyond a cervical lesion site. CONCLUSION Inflammation produced by topical application of LPS promoted increased expression of some growth-associated genes in the cell bodies of corticospinal neurons, but was insufficient to promote regeneration of the corticospinal tract.
Collapse
Affiliation(s)
- MK Hossain-Ibrahim
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - K Rezajooi
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - JK MacNally
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - MRJ Mason
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - AR Lieberman
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - PN Anderson
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
130
|
Doyle LMF, Roberts BL. Exercise enhances axonal growth and functional recovery in the regenerating spinal cord. Neuroscience 2006; 141:321-7. [PMID: 16675131 DOI: 10.1016/j.neuroscience.2006.03.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 12/23/2022]
Abstract
We investigated whether enhancing locomotory activity could accelerate the axonal growth underlying the significant recovery of function after a complete spinal transection in the eel, Anguilla. Eels with low spinal transections (at about 60% body length) were kept in holding tanks, where they were inactive, or made to swim continually against a water current at about one body length/s. Their locomotion was periodically assessed by measuring tail beat frequencies at different swimming speeds. Axonal growth was determined from anterograde labeling with 1,1'-diotadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, inserted postmortem into the spinal cord, just rostral to the transection. Twenty days after surgery, there were significantly more labeled growth cones more than 2 mm caudal from the transection in the exercised fish (74.6+/-2.3%; cf. 34.5+/-1.1%). This difference was still observed at 40 days (57.9+/-1.6% cf. 42.1+/-2% >2 mm), but the regenerated axons were of similar maximum lengths by 120 days (9.8+/-0.3 cf. 7.7+/-2.8 mm). After surgery, each eel undulated its whole body faster at any given swimming speed, thus changing the linear relationship between tail beat frequency and forward speed established before transection. The slope increased by up to 112.5+/-27.4% over the first 8 days post-surgery in inactive animals, while a smaller rise (45.6+/-10.5%) was observed in exercised fish during this period. Thereafter, the slope progressively declined to pre-surgery levels in both groups of animals, but the recovery occurred within 20+/-4 days in exercised eels, as opposed to 40+/-5 days in inactive fish. The locomotory performance of sham-operated fish was unaffected by 10 days of continual locomotion and remained similar to that of naïve eels, pre-transection. These data show that elevated locomotory activity enhances axonal growth and accelerates recovery of locomotory function.
Collapse
Affiliation(s)
- L M F Doyle
- Department of Zoology, Trinity College, University of Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
131
|
Arvanian VL, Manuzon H, Davenport M, Bushell G, Mendell LM, Robinson JK. Combined Treatment with Neurotrophin-3 and LSD Facilitates Behavioral Recovery from Double-Hemisection Spinal Injury in Neonatal Rats. J Neurotrauma 2006; 23:66-74. [PMID: 16430373 DOI: 10.1089/neu.2006.23.66] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We explored functional recovery in two spinal cord injury models following a novel combination treatment (NT-3 + LSD). One group of rats received a staggered double hemisection (DH) at postnatal day 2 (P2) of the left hemicord at T11 and the right hemicord at T12. Another group received complete transection (CT) at T11 on P2. A third group was sham operated. Each of these groups was also treated with the drug combination. Drugs were administered intrathecally above the lesion during surgery, and again s.c. at P4, P6, P8, and P10. Intracellular recording in an in vitro spinal cord preparation at P10-P12 in DH rats revealed weak polysynaptic connections to lumbar motoneurons through the injury region, but only in those receiving NT-3 + LSD; NT-3 or LSD alone had no effect. In behavioral experiments, the frequency of rearing in an open field and hindlimb kicks during swimming was assessed every 3-4 days from P9 to P58. Both CT and DH injury severely impaired rearing and hindlimb kicking during swimming. DH rats treated with NT-3 + LSD showed significantly more kicks during swimming than untreated DH or CT rats and treated CT rats beginning as early as P9 and lasting through the duration of testing. Rearing behavior was also improved by treatment but beginning only in the 3rd postnatal week, the time at which it normally develops. Rearing frequency reached sham control levels by P40. Our results suggest this combination treatment may be a promising new strategy for facilitating recovery from moderate spinal cord injury.
Collapse
Affiliation(s)
- Victor L Arvanian
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York 11794-5230, USA
| | | | | | | | | | | |
Collapse
|
132
|
Goraltchouk A, Scanga V, Morshead CM, Shoichet MS. Incorporation of protein-eluting microspheres into biodegradable nerve guidance channels for controlled release. J Control Release 2006; 110:400-407. [PMID: 16325953 DOI: 10.1016/j.jconrel.2005.10.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/18/2005] [Accepted: 10/25/2005] [Indexed: 11/27/2022]
Abstract
Nerve guidance channels (NGCs) promote axonal regeneration after transection injury of the peripheral nerve or spinal cord, yet this regeneration is limited. To enhance regeneration further, we hypothesize that localized delivery of therapeutic molecules combined with the NGC is required. In an attempt to achieve such an NGC, we designed and synthesized a novel NGC in which protein-encapsulated microspheres were stably incorporated into the tube wall. Specifically, poly(lactide-co-glycolide) (PLGA 50/50) microspheres were physically entrapped in the annulus between two concentric tubes, consisting of a chitosan inner tube and a chitin outer tube. Taking advantage of the extensive shrinking that the outer chitin tube undergoes with drying, >15 mg of microspheres were loaded within the tube walls. Using BSA-encapsulated microspheres as the model drug delivery system, BSA was released from microsphere loaded tubes (MLTs) for 84 days, and from freely suspended PLGA microspheres for 70 days. An initial burst release was observed for both MLTs and free microspheres, followed by a degradation-controlled release profile that resulted in a higher release rate from MLTs initially, which was then attenuated likely due to the buffering effect of chitin and chitosan tubes. Epidermal growth factor (EGF), co-encapsulated with BSA in PLGA 50/50 microspheres in MLTs, was released for 56 days with a similar profile to that of BSA. Released EGF was found to be bioactive for at least 14 days as assessed by a neurosphere forming bioassay.
Collapse
Affiliation(s)
- Alex Goraltchouk
- Department of Chemical Engineering and Applied Chemistry, University of Toronto 200 College Street, Toronto, ON, Canada M5S 3E5; Institute of Biomaterials and Biomedical Engineering, University of Toronto 4 Taddle Creek Road, Room 407, Toronto, ON, Canada M5S 3G9
| | - Vanessa Scanga
- Department of Surgery, University of Toronto, 1 King's College Circle-1182, Toronto, ON, Canada M5S 1A8
| | - Cindi M Morshead
- Department of Surgery, University of Toronto, 1 King's College Circle-1182, Toronto, ON, Canada M5S 1A8
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto 200 College Street, Toronto, ON, Canada M5S 3E5; Department of Chemistry, 80 St. George St., Toronto, ON, Canada M5S 1AH; Institute of Biomaterials and Biomedical Engineering, University of Toronto 4 Taddle Creek Road, Room 407, Toronto, ON, Canada M5S 3G9.
| |
Collapse
|
133
|
Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2005; 198:54-64. [PMID: 16336965 DOI: 10.1016/j.expneurol.2005.10.029] [Citation(s) in RCA: 459] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/20/2005] [Accepted: 10/22/2005] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) transplanted at sites of nerve injury are thought to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. To evaluate this phenomenon further, we quantified in human MSCs neurotrophin expression levels and their effects on neuronal cell survival and neuritogenesis. Screening a human MSC cDNA library revealed expressed transcripts encoding BDNF and beta-NGF but not NT-3 and NT-4. Immunostaining demonstrated that BDNF and beta-NGF proteins were restricted to specific MSC subpopulations, which was confirmed by ELISA analysis of 56 separate subclones. Using a co-culture assay, we also demonstrated that BDNF expression levels correlated with the ability of MSC populations or subclones to induce survival and neurite outgrowth in the SH-SY5Y neuroblastoma cell line. However, these MSC-induced effects were only partially inhibited by a neutralizing anti-BDNF antibody. MSCs were also shown to promote neurite outgrowth within dorsal root ganglion explants despite secreting 25-fold lower level of beta-NGF required exogenously to produce a similar effect. Interrogation of the human MSC transcriptome identified expressed mRNAs encoding various neurite-inducing factors, axon guidance and neural cell adhesion molecules. Moreover, a subset of these transcripts was shown to correlate with BDNF expression in MSC subclones. Collectively, these studies reveal the existence of MSC subpopulations that co-express neurotrophins and other potent neuro-regulatory molecules, which contribute to MSC-induced effects on neuronal cell survival and nerve regeneration. These subpopulations may represent more potent vectors for treating a variety of neurological disorders.
Collapse
Affiliation(s)
- Lauren Crigler
- SL-99, Center for Gene Therapy, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
134
|
Midha R, Munro CA, Chan S, Nitising A, Xu QG, Gordon T. Regeneration into Protected and Chronically Denervated Peripheral Nerve Stumps. Neurosurgery 2005; 57:1289-99; discussion 1289-99. [PMID: 16331178 DOI: 10.1227/01.neu.0000187480.38170.ec] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Delayed repair of peripheral nerve injuries often results in poor motor functional recovery. This may be a result of the deterioration or loss of endoneurial pathways in the distal nerve stump before motor axons can regenerate into the stump. METHODS Using the rat femoral nerve, we protected distal endoneurial pathways of the saphenous nerve with either cross-suture of the quadriceps motor nerve (Group A) or resuture of the saphenous nerve (Group B) to compare later motor regeneration into the "protected" saphenous nerve pathway to chronic denervation and "unprotected" saphenous nerve (Group C). A total of 60 rats, 20 per group, were operated on. After this protection (or lack thereof) for 8 weeks, the motor branch of the femoral nerve was cut and sutured to the distal saphenous nerve to allow motor regeneration into protected and unprotected saphenous nerve stumps. The quantitative assessment of axonal regeneration was performed after 6 weeks by use of nerve sampling for axon counts and retrogradely labeled motor neuron counts. RESULTS Significantly more myelinated axons innervated the motor (A) than the sensory (B) and no-protection (C) groups. There were significantly more retrogradely labeled femoral motor neurons in Group A than in the unprotected group (C). CONCLUSION We conclude that even 2 months of denervation of the distal nerve pathway is deleterious to regeneration and that protection of the pathway improves subsequent reinnervation and regeneration. Moreover, if the desired regeneration is motor, protection of the distal nerve pathway by a motor nerve conditions is better than a sensory nerve.
Collapse
Affiliation(s)
- Rajiv Midha
- Division of Neurosurgery, Department of Clinical Neurosciences, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
135
|
Deumens R, Koopmans GC, Joosten EAJ. Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol 2005; 77:57-89. [PMID: 16271433 DOI: 10.1016/j.pneurobio.2005.10.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 08/23/2005] [Accepted: 10/05/2005] [Indexed: 02/03/2023]
Abstract
Axons within the adult mammalian central nervous system do not regenerate spontaneously after injury. Upon injury, the balance between growth promoting and growth inhibitory factors in the central nervous system dramatically changes resulting in the absence of regeneration. Axonal responses to injury vary considerably. In central nervous system regeneration studies, the spinal cord has received a lot of attention because of its relatively easy accessibility and its clinical relevance. The present review discusses the axon-tract-specific requirements for regeneration in the rat. This knowledge is very important for the development and optimalization of therapies to repair the injured spinal cord.
Collapse
Affiliation(s)
- Ronald Deumens
- Department of Psychiatry and Neuropsychology, Division Neuroscience, European Graduate School of Neuroscience EURON, University of Maastricht, Maastricht, The Netherlands.
| | | | | |
Collapse
|
136
|
Hu Y, Leaver SG, Plant GW, Hendriks WTJ, Niclou SP, Verhaagen J, Harvey AR, Cui Q. Lentiviral-mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Mol Ther 2005; 11:906-15. [PMID: 15922961 DOI: 10.1016/j.ymthe.2005.01.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/20/2005] [Accepted: 01/24/2005] [Indexed: 11/22/2022] Open
Abstract
We recently described a method for reconstituting peripheral nerve (PN) sheaths using adult Schwann cells (SCs). Reconstructed PN tissue grafted onto the cut optic nerve supports the regeneration of injured adult rat retinal ganglion cell (RGC) axons. To determine whether genetic manipulation of such grafts can further enhance regeneration, adult SCs were transduced with lentiviral vectors encoding either ciliary neurotrophic factor (LV-CNTF) or green fluorescent protein (LV-GFP). SCs expressed transgenes for at least 4 weeks after transplantation. There were high levels of CNTF mRNA and CNTF protein in PN grafts containing LV-CNTF-transduced SCs. Mean RGC survival was significantly increased with these grafts (11,863/retina) compared with LV-GFP controls (7064/retina). LV-CNTF-transduced SCs enhanced axonal regeneration to an even greater extent (3097 vs 393 RGCs/retina in LV-GFP controls). Many regenerated axons were myelinated. The use of genetically modified, reconstituted PN grafts to bridge tissue defects may provide new therapeutic strategies for the treatment of both CNS and PNS injuries.
Collapse
Affiliation(s)
- Ying Hu
- School of Anatomy and Human Biology, Western Australian Institute for Medical Research, UWA Centre for Medical Research, Perth, Australia
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci 2005; 25:1169-78. [PMID: 15689553 PMCID: PMC6725952 DOI: 10.1523/jneurosci.3562-04.2005] [Citation(s) in RCA: 357] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous obstacles to successful regeneration of injured axons in the adult mammalian spinal cord exist. Consequently, a treatment strategy inducing axonal regeneration and significant functional recovery after spinal cord injury has to overcome these obstacles. The current study attempted to address multiple impediments to regeneration by using a combinatory strategy after complete spinal cord transection in adult rats: (1) to reduce inhibitory cues in the glial scar (chondroitinase ABC), (2) to provide a growth-supportive substrate for axonal regeneration [Schwann cells (SCs)], and (3) to enable regenerated axons to exit the bridge to re-enter the spinal cord (olfactory ensheathing glia). The combination of SC bridge, olfactory ensheathing glia, and chondroitinase ABC provided significant benefit compared with grafts only or the untreated group. Significant improvements were observed in the Basso, Beattie, and Bresnahan score and in forelimb/hindlimb coupling. This recovery was accompanied by increased numbers of both myelinated axons in the SC bridge and serotonergic fibers that grew through the bridge and into the caudal spinal cord. Although prominent descending tracts such as the corticospinal and reticulospinal tracts did not successfully regenerate through the bridge, it appeared that other populations of regenerated fibers were the driving force for the observed recovery; there was a significant correlation between numbers of myelinated fibers in the bridge and improved coupling of forelimb and hindlimb as well as open-field locomotion. Our study tests how proven experimental treatments interact in a well-established animal model, thus providing needed direction for the development of future combinatory treatment regimens.
Collapse
Affiliation(s)
- Karim Fouad
- University of Alberta, Faculty of Rehabilitation Medicine, Edmonton, Canada T6G 2G4.
| | | | | | | | | | | |
Collapse
|
138
|
Salie R, Steeves JD. IGF-1 and BDNF promote chick bulbospinal neurite outgrowth in vitro. Int J Dev Neurosci 2005; 23:587-98. [PMID: 16143487 DOI: 10.1016/j.ijdevneu.2005.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/20/2005] [Accepted: 07/20/2005] [Indexed: 01/09/2023] Open
Abstract
Injured neurons in the CNS do not experience significant functional regeneration and so spinal cord insult often results in permanently compromised locomotor ability. The capability of a severed axon to re-grow is thought to depend on numerous factors, one of which is the decreased availability of neurotrophic factors. Application of trophic factors to axotomized neurons has been shown to enhance survival and neurite outgrowth. Although brainstem-spinal connections play a pivotal role in motor dysfunction after spinal cord injury, relatively little is known about the trophic sensitivity of these populations. This study explores the response of bulbospinal populations to various trophic factors. Several growth factors were initially examined for potential trophic effects on the projection neurons of the brainstem. Brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) significantly enhance mean process length in both the vestibulospinal neurons and spinal projection neurons from the raphe nuclei. Nerve growth factor (NGF), neurotrophin-4 (NT-4) and glial derived neurotrophic factor (GDNF) did not effect process outgrowth in vestibulospinal neurons. At the developmental stages used in this study, it was determined that receptors for BDNF and IGF-1 were present both on bulbospinal neurons and on surrounding cells with a non-neuronal morphology.
Collapse
Affiliation(s)
- Rishard Salie
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
139
|
Brunelli G, Spano P, Barlati S, Guarneri B, Barbon A, Bresciani R, Pizzi M. Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proc Natl Acad Sci U S A 2005; 102:8752-7. [PMID: 15937120 PMCID: PMC1142481 DOI: 10.1073/pnas.0500530102] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetylcholine is the main neurotransmitter at the mammalian neuromuscular junction (NMJ) where nicotinic acetylcholine receptors mediate the signaling between nerve terminals and muscle fibers. We show that under glutamatergic transmission, rat NMJ switches from cholinergic type synapse to glutamatergic synapse. Connecting skeletal muscle to the lateral white matter of the spinal cord by grafting the distal stump of the transected motor nerve produced functional muscle reinnervation. The restored neuromuscular activity became resistant to common curare blockers but sensitive to the glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist. Analysis of the regenerated nerve disclosed new glutamatergic axons and the disappearance of cholinergic fibers. Many axons belonged to the supraspinal neurons located in the red nucleus and the brainstem nuclei. Finally, the innervated muscle displayed high expression and clustering of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits glutamate receptors 1 and 2. Our data suggest that supraspinal neurons can target skeletal muscle, which retains the plasticity to generate functional glutamatergic NMJ.
Collapse
Affiliation(s)
- Giorgio Brunelli
- Foundation for Experimental Spinal Cord Research, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
140
|
Xie Y, Ye L, Zhang X, Cui W, Lou J, Nagai T, Hou X. Transport of nerve growth factor encapsulated into liposomes across the blood–brain barrier: In vitro and in vivo studies. J Control Release 2005; 105:106-19. [PMID: 15893839 DOI: 10.1016/j.jconrel.2005.03.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 03/07/2005] [Accepted: 03/11/2005] [Indexed: 11/30/2022]
Abstract
A nerve growth factor (NGF) was encapsulated into liposomes in order to protect it from the enzyme degradation in vivo and promote it permeability across the blood-brain barrier (BBB). RMP-7, a ligand to the B2 receptor on brain microvascular endothelial cells (BMVEC), was combined with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-n-[poly(ethylenegly-col)]-hydroxy succinamide (DSPE-PEG-NHS) to obtain DSPE-PEG-RMP-7. Then DSPE-PEG-RMP-7 was incorporated into the liposomes' surface to target sterically stabilized liposomes (SSL-T) to the brain. The highest percent of NGF encapsulated into liposomes was about 34%, and the average size of liposomes was below 100 nm. A primary model of BBB was established and evaluated by morphological, permeability, and transendothelial electrical resistance (TEER). The BBB model was employed to study the permeability of NGF liposomes in vitro. The results indicated that the liposomes could enhance transport of NGF across the BBB. The best transport rate was received with NGF-SSL-T. The brain distribution of NGF liposomes was studied in vivo, the amount of NGF in the brain was increased in the order: NGF-SSL-T>NGF-SSL+RMP-7>NGF-SSL>NGF-L. The maximum concentration of NGF was recorded in 30 min following the intravenous injection. In particular, a majority of NGF was distributed in striatum, hippocampus and cortex, and the concentration of NGF was relatively lower in olfactory bulb, cerebellum and brain stem. There was a close relationship between P(e) (permeability coefficient on in vitro BBB model) and T(e) (brain targeted coefficient in vivo) for NGF encapsulated into the liposomes.
Collapse
Affiliation(s)
- Ying Xie
- Department of Physical Pharmacy, School of Pharmaceutical Science, Xueyuan Road #38, Peking University, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
141
|
Pearse DD, Lo TP, Cho KS, Lynch MP, Garg MS, Marcillo AE, Sanchez AR, Cruz Y, Dietrich WD. Histopathological and Behavioral Characterization of a Novel Cervical Spinal Cord Displacement Contusion Injury in the Rat. J Neurotrauma 2005; 22:680-702. [PMID: 15941377 DOI: 10.1089/neu.2005.22.680] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cervical contusive trauma accounts for the majority, of human spinal cord injury (SCI), yet experimental use of cervical contusion injury models has been limited. Considering that (1) the different ways of injuring the spinal cord (compression, contusion, and transection) induce very different processes of tissue damage and (2) the architecture of the spinal cord is not uniform, it is important to use a model that is more clinically applicable to human SCI. Therefore, in the current study we have developed a rat model of contusive, cervical SCI using the Electromagnetic Spinal Cord Injury Device (ESCID) developed at Ohio State University (OSU) to induce injury by spinal cord displacement. We used the device to perform mild, moderate and severe injuries (0.80, 0.95, and 1.1 mm displacements, respectively) with a single, brief displacement of <20 msec upon the exposed dorsal surface of the C5 cervical spinal cord of female (180-200 g) Fischer rats. Characterization of the model involved the analysis of the temporal histopathological progression of the injury over 9 weeks using histochemical stains to analyze white and gray mater integrity and immunohistochemistry to examine cellular changes and physiological responses within the injured spinal cord. Accompanying the histological analysis was a comprehensive determination of the behavioral functionality of the animals using a battery of motor tests. Characterization of this novel model is presented to enable and encourage its future use in the design and experimental testing of therapeutic strategies that may be used for human SCI.
Collapse
Affiliation(s)
- D D Pearse
- The Miami Project to Cure Paralysis, Neurological Surgery, University of Miami School of Medicine, Miami, Florida 33101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Ramer LM, Ramer MS, Steeves JD. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord 2005; 43:134-61. [PMID: 15672094 DOI: 10.1038/sj.sc.3101715] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we review mechanisms and molecules that necessitate protection and oppose axonal growth in the injured spinal cord, representing not only a cast of villains but also a company of therapeutic targets, many of which have yet to be fully exploited. We next discuss recent progress in the fields of bridging, overcoming conduction block and rehabilitation after spinal cord injury (SCI), where several treatments in each category have entered the spotlight, and some are being tested clinically. Finally, studies that combine treatments targeting different aspects of SCI are reviewed. Although experiments applying some treatments in combination have been completed, auditions for each part in the much-sought combination therapy are ongoing, and performers must demonstrate robust anatomical regeneration and/or significant return of function in animal models before being considered for a lead role.
Collapse
Affiliation(s)
- L M Ramer
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
143
|
Feng SQ, Kong XH, Guo SF, Wang P, Li L, Zhong JH, Zhou XF. Treatment of spinal cord injury with co-grafts of genetically modified Schwann cells and fetal spinal cord cell suspension in the rat. Neurotox Res 2005; 7:169-77. [PMID: 15639807 DOI: 10.1007/bf03033785] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fetal spinal cord cells, Schwann cells and neurotrophins all have the capacity to promote repair of injured spinal cord in animal models. To explore the possibility of using these approaches to treat clinical patients, we have examined whether a combination of these protocols produces functional and anatomical improvement. The spinal cords of adult rats (n=16) were injured with a modified New York University (NYU) device (10 gram.5cm). One week after injury, the injured cords were injected with Dulbecco-modified Eagles Medium (DMEM, control group), or fetal spinal cord cell suspension (FSCS) plus nerve growth factor (NGF) gene-modified Schwann cells (SC) and brain-derived neurotrophic factor (BDNF) gene-modified SC (treatment group). The rats were subjected to BBB (Basso, Beattie, Bresnahan, Exp. Neurol. 139:244, 1996) behavioral tests. Anterograde tracing of corticospinal tract was performed before sacrifice 3 months after the treatment. The results showed that the combination treatment elicited a robust growth of corticospinal axons within and beyond the injury site. A dramatic functional recovery in the treatment group was observed compared with the control group. We conclude that the combination of FSCS with genetically modified Schwann cells over-expressing NGF and BDNF was an effective protocol for the treatment of severe spinal cord injury.
Collapse
Affiliation(s)
- Shi-Qing Feng
- Department of Orthopaedic, Tianjin Medical University Hospital, Tianjin, 300052, P.R. China
| | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
There is growing evidence that exercise benefits recovery of neuromuscular function from spinal cord injury (SCI). However, the effect of exercise on gene expression in the spinal cord is poorly understood. We used oligonucleotide microarrays to compare thoracic and lumbar regions of spinal cord of either exercising (voluntary wheel running for 21 days) or sedentary rats. The expression data were filtered using statistical tests for significance, and K-means clustering was then used to segregate lists of significantly changed genes into sets based upon expression patterns across all experimental groups. Levels of brain-derived neurotrophic factor (BDNF) protein were also measured after voluntary exercise, across different regions of the spinal cord. BDNF mRNA increased with voluntary exercise, as has been previously shown for other forms of exercise, contributed to by increases in both exon I and exon III. The exercise-induced gene expression changes identified by microarray analysis are consistent with increases in pathways promoting neuronal health, signaling, remodeling, cellular transport, and development of oligodendrocytes. Taken together these data suggest cellular pathways through which exercise may promote recovery in the SCI population.
Collapse
Affiliation(s)
- Victoria M Perreau
- Institute for Brain Aging and Dementia, 1113 Gillespie N.R.F., University of California Irvine, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
145
|
Tobias CA, Han SSW, Shumsky JS, Kim D, Tumolo M, Dhoot NO, Wheatley MA, Fischer I, Tessler A, Murray M. Alginate Encapsulated BDNF-Producing Fibroblast Grafts Permit Recovery of Function after Spinal Cord Injury in the Absence of Immune Suppression. J Neurotrauma 2005; 22:138-56. [PMID: 15665609 DOI: 10.1089/neu.2005.22.138] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Encapsulation of cells has the potential to provide a protective barrier against host immune cell interactions after grafting. Previously we have shown that alginate encapsulated BDNF-producing fibroblasts (Fb/BDNF) survived for one month in culture, made bioactive neurotrophins, survived transplantation into the injured spinal cord in the absence of immune suppression, and provided a permissive environment for host axon growth. We extend these studies by examining the effects of grafting encapsulated Fb/BDNF into a subtotal cervical hemisection on recovery of forelimb and hindlimb function and axonal growth in the absence of immune suppression. Grafting of encapsulated Fb/BDNF resulted in partial recovery of forelimb usage in a test of vertical exploration and of hindlimb function while crossing a horizontal rope. Recovery was significantly greater compared to animals that received unencapsulated Fb/BDNF without immune suppression, but similar to that of immune suppressed animals receiving unencapsulated Fb/BDNF. Immunocytochemical examination revealed neurofilament (RT-97), 5-HT, CGRP and GAP-43 containing axons surrounding encapsulated Fb/BDNF within the injury site, indicating axonal growth. BDA labeling however showed no evidence of regeneration of rubrospinal axons in recipients of encapsulated Fb/BDNF, presumably because the amounts of BDNF available from the encapsulated grafts are substantially less than those provided by the much larger numbers of Fb/BDNF grafted in a gelfoam matrix in the presence of immune suppression. These results suggest that plasticity elicited by the BDNF released from the encapsulated cells contributed to reorganization that led to behavioral recovery in these animals and that the behavioral recovery could proceed in the absence of rubrospinal tract regeneration. Alginate encapsulation is therefore a feasible strategy for delivery of therapeutic products produced by non-autologous engineered fibroblasts and provides an environment suitable for recovery of lost function in the injured spinal cord.
Collapse
Affiliation(s)
- Christopher A Tobias
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Hill CE, Proschel C, Noble M, Mayer-Proschel M, Gensel JC, Beattie MS, Bresnahan JC. Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration. Exp Neurol 2004; 190:289-310. [PMID: 15530870 DOI: 10.1016/j.expneurol.2004.05.043] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 04/20/2004] [Accepted: 05/25/2004] [Indexed: 12/23/2022]
Abstract
Transplantation of stem cells and immature cells has been reported to ameliorate tissue damage, induce axonal regeneration, and improve locomotion following spinal cord injury. However, unless these cells are pushed down a neuronal lineage, the majority of cells become glia, suggesting that the alterations observed may be potentially glially mediated. Transplantation of glial-restricted precursor (GRP) cells--a precursor cell population restricted to oligodendrocyte and astrocyte lineages--offers a novel way to examine the effects of glial cells on injury processes and repair. This study examines the survival and differentiation of GRP cells, and their ability to modulate the development of the lesion when transplanted immediately after a moderate contusion injury of the rat spinal cord. GRP cells isolated from a transgenic rat that ubiquitously expresses heat-stable human placental alkaline phosphatase (PLAP) were used to unambiguously detect transplanted GRP cells. Following transplantation, some GRP cells differentiated into oligodendrocytes and astrocytes, retaining their differentiation potential after injury. Transplanted GRP cells altered the lesion environment, reducing astrocytic scarring and the expression of inhibitory proteoglycans. Transplanted GRP cells did not induce long-distance regeneration from corticospinal tract (CST) and raphe-spinal axons when compared to control animals. However, GRP cell transplants did alter the morphology of CST axons toward that of growth cones, and CST fibers were found within GRP cell transplants, suggesting that GRP cells may be able to support axonal growth in vivo after injury.
Collapse
Affiliation(s)
- Caitlin E Hill
- STAR Laboratories, The Laboratory for Neural Repair, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Andrews MR, Stelzner DJ. Modification of the regenerative response of dorsal column axons by olfactory ensheathing cells or peripheral axotomy in adult rat. Exp Neurol 2004; 190:311-27. [PMID: 15530871 DOI: 10.1016/j.expneurol.2004.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/08/2004] [Accepted: 08/11/2004] [Indexed: 11/17/2022]
Abstract
The regeneration of sciatic-dorsal column (DC) axons following DC crush injury and treatment with olfactory ensheathing cells (OECs) and/or sciatic axotomy ("conditioning lesion") was evaluated. Sciatic-DC axons were examined with a transganglionic tracer, cholera toxin conjugated to horseradish peroxidase, and evaluated at chronic time points, 2-26 weeks post-lesion. With DC injury alone (n = 7), sciatic-DC axons were localized to the caudal border of the lesion terminating in reactive end bulbs with no indication of growth into the lesion. In contrast, treatment with either a heterogeneous population of OECs (equal numbers of p75- and fibronectin-positive OECs) (n = 9) or an enriched population of OECs (75% p75-positive OECs) (n = 6) injected either directly into the lesion or 1-mm rostral and caudal to the injury, stimulated DC axon growth into the lesion. A similar regenerative response was observed with a conditioning lesion either concurrent to (n = 4) or 1 week before (n = 4) the DC injury. In either of the latter two paradigms, some DC axons grew across the injury, but no axons grew into the rostral intact spinal cord. Upon combining OEC treatment with the conditioning lesion (n = 21), the result was additive, increasing DC axon growth beyond the rostral border of the lesion in best cases. Additional factors that may limit DC regeneration were tested including formation of the glial scar (immunoreactivity to glial fibrillary acidic protein in astrocytes and to chondroitin sulfate proteoglycans), which remained similar between treated and untreated groups.
Collapse
Affiliation(s)
- Melissa R Andrews
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
148
|
Kamei N, Oishi Y, Tanaka N, Ishida O, Fujiwara Y, Ochi M. Neural progenitor cells promote corticospinal axon growth in organotypic co-cultures. Neuroreport 2004; 15:2579-83. [PMID: 15570156 DOI: 10.1097/00001756-200412030-00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The CNS is limited in regeneration following injury in adult mammals. Recent studies show that the transplantation of the neuronal progenitor cells is useful in promoting regeneration. However, the mechanisms of action of the transplanted neural progenitor cells have not been clarified. In this study, we used organotypic co-cultures with neonatal brain cortex and spinal cord as an in vitro assay system for assessing the factors that regulate corticospinal axonal growth. Our results show that the transplantation of neural progenitor cells enhanced corticospinal axon growth in these co-cultures. In addition, neural progenitor cell conditioned medium also significantly promoted axonal growth. These findings strongly suggest that factors derived from neural progenitor cells participate in the effect on axonal growth.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima734-8551, Japan.
| | | | | | | | | | | |
Collapse
|
149
|
Kwon BK, Liu J, Oschipok L, Teh J, Liu ZW, Tetzlaff W. Rubrospinal neurons fail to respond to brain-derived neurotrophic factor applied to the spinal cord injury site 2 months after cervical axotomy. Exp Neurol 2004; 189:45-57. [PMID: 15296835 DOI: 10.1016/j.expneurol.2004.05.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Revised: 05/05/2004] [Accepted: 05/13/2004] [Indexed: 01/07/2023]
Abstract
Numerous experimental therapies to promote axonal regeneration have shown promise in animal models of acute spinal cord injury, but their effectiveness is often found to diminish with a delay in administration. We evaluated whether brain-derived neurotrophic factor (BDNF) application to the spinal cord injury site 2 months after cervical axotomy could promote a regenerative response in chronically axotomized rubrospinal neurons. BDNF was applied to the spinal cord in three different concentrations 2 months after cervical axotomy of the rubrospinal tract. The red nucleus was examined for reversal of neuronal atrophy, GAP43 and Talpha1 tubulin mRNA expression, and trkB receptor immunoreactivity. A peripheral nerve transplant paradigm was used to measure axonal regeneration into peripheral nerve transplants. Rubrospinal axons were anterogradely traced and trkB receptor immunohistochemistry performed on the injured spinal cord. We found that BDNF treatment did not reverse rubrospinal neuronal atrophy, nor promote GAP-43 and Talpha1 tubulin mRNA expression, nor promote axonal regeneration into peripheral nerve transplants. TrkB receptor immunohistochemistry demonstrated immunoreactivity on the neuronal cell bodies, but not on anterogradely labeled rubrospinal axons at the injury site. These findings suggest that the poor response of rubrospinal neurons to BDNF applied to the spinal cord injury site 2 months after cervical axotomy is not related to the dose of BDNF administered, but rather to the loss of trkB receptors on the injured axons over time. Such obstacles to axonal regeneration will be important to identify in the development of therapeutic strategies for chronically injured individuals.
Collapse
Affiliation(s)
- Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| | | | | | | | | | | |
Collapse
|
150
|
Fraidakis MJ, Spenger C, Olson L. Partial recovery after treatment of chronic paraplegia in rat. Exp Neurol 2004; 188:33-42. [PMID: 15191800 DOI: 10.1016/j.expneurol.2004.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 01/30/2004] [Indexed: 11/15/2022]
Abstract
While acute spinal cord injury has been the object of intensive research, chronic spinal cord injury has received less attention although most clinical cases of spinal cord injury become chronic. We attempted to surgically "repair" chronic and acute spinal cord injury in a complete transection rat model using a multiple peripheral nerve grafting protocol. The lesion extent was assessed by magnetic resonance imaging (MRI) before the repair procedure. Rats were treated immediately after injury or at 2, 4, or 8 months postinjury. Standard behavioral methods were used to evaluate functional recovery. Two novel tests, the Bipedal Test and the Head-scratch test, were also employed to evaluate hindpaw positioning, interlimb coordination, and stepping rhythmicity, and to indicate rostrocaudal pathway regeneration. MRI helped guide the treatment procedure that was applied to animals with chronic injury. Treated animals demonstrated significant motor recovery. Axonal regeneration resultant to treatment was demonstrated histologically. The results suggest that not only acute but also chronic total paraplegia can be reversed to a moderate degree in rats with regard to hindlimb motor function.
Collapse
Affiliation(s)
- Matthew J Fraidakis
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|