101
|
Hennessy EJ, Buchwald SL. Synthesis of 4,5-Dianilinophthalimide and Related Analogues for Potential Treatment of Alzheimer's Disease via Palladium-Catalyzed Amination. J Org Chem 2005; 70:7371-5. [PMID: 16122261 DOI: 10.1021/jo051096o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DAPH (4,5-dianilinophthalimide) has previously been shown to reverse the formation of neurotoxic fibrils associated with Alzheimer's disease. We have developed a synthetic route to DAPH and structurally related analogues that employs palladium-catalyzed amination as the key bond-forming step. The requisite substrates are easily obtained, and their coupling with substituted anilines proceeds in generally high yields. Thus, a variety of DAPH analogues can be quickly accessed in a modular fashion. In addition, the route described herein should also be amenable to the incorporation of other classes of nucleophiles into the molecular framework.
Collapse
Affiliation(s)
- Edward J Hennessy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
102
|
Engel T, Lucas JJ, Gómez-Ramos P, Moran MA, Avila J, Hernández F. Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging 2005; 27:1258-68. [PMID: 16054268 DOI: 10.1016/j.neurobiolaging.2005.06.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 06/03/2005] [Accepted: 06/16/2005] [Indexed: 11/28/2022]
Abstract
Here we have tested whether tau modification either by point mutation or by hyperphosphorylation can exert maximal pathogenic effects or if, on the contrary, both types of tau modifications can act synergistically to induce neuropathology. For this, we have combined transgenic mice overexpressing the enzyme GSK-3beta (Tet/GSK-3beta mice), with transgenic mice expressing Tau with a triple FTDP-17 mutation which develop prefibrillar tau-aggregates (VLW mice). Tet/GSK-3beta/VLW transgenic mice show tau hyperphosphorylation in hippocampal neurons. This is accompanied by thioflavin-S staining, and formation of filaments similar in width to those found in tauophaties. Finally, the atrophy of the hippocampal dentate gyrus observed in Tet/GSK-3beta mice develops much faster in Tet/GSK-3beta/VLW mice. All these morphological and biochemical data demonstrate that there is a synergistic contribution of both types of tau modifications and that the potential of GSK-3 inhibitors for AD therapeutics also extends to tauopathies caused by point mutations in tau gene.
Collapse
Affiliation(s)
- Tobias Engel
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Fac. Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
103
|
Kelly BL, Vassar R, Ferreira A. Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. J Biol Chem 2005; 280:31746-53. [PMID: 16002400 PMCID: PMC1364535 DOI: 10.1074/jbc.m503259200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic dysfunction is one of the earliest events in the pathogenesis of Alzheimer disease (AD). However, the molecular mechanisms underlying synaptic defects in AD are largely unknown. We report here that beta-amyloid (Abeta), the main component of senile plaques, induced a significant decrease in dynamin 1, a protein that is essential for synaptic vesicle recycling and, hence, for memory formation and information processing. The Abeta-induced dynamin 1 decrease occurred in the absence of overt synaptic loss and was also observed in the Tg2576 mouse model of AD. In addition, our results provided evidence that the Abeta-induced decrease in dynamin 1 was likely the result of a calpain-mediated cleavage of dynamin 1 protein and possibly the down-regulation of dynamin 1 gene expression. These data suggest a mechanism to explain the early cognitive loss without a major decline in synapse number observed in AD and propose a novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Brent L. Kelly
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, and
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, and
| | - Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, and
- Institute for Neuroscience, Northwestern University, Chicago, IL 6061
- Address correspondence to: Adriana Ferreira*, Northwestern Institute for Neuroscience, Northwestern University, Chicago, IL 60611, Tel. 312-503-0597; Fax. 312-503-7345, E-mail:
| |
Collapse
|
104
|
Medina MG, Ledesma MD, Domínguez JE, Medina M, Zafra D, Alameda F, Dotti CG, Navarro P. Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J 2005; 24:1706-16. [PMID: 15861134 PMCID: PMC1142582 DOI: 10.1038/sj.emboj.7600650] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 03/24/2005] [Indexed: 11/09/2022] Open
Abstract
Tissue plasminogen activator (tPA) is the main activator of plasminogen into plasmin in the brain where it may have beneficial roles but also neurotoxic effects that could be plasmin dependent or not. Little is known about the substrates and pathways that mediate plasmin-independent tPA neurotoxicity. Here we show in primary hippocampal neurons that tPA promotes a catalytic-independent activation of the extracellular regulated kinase (Erk)1/2 signal transduction pathway through the N-methyl-D-aspartate receptor, G-proteins and protein kinase C. This results in GSK3 activation in a process that requires de novo synthesis of proteins, and leads to tau aberrant phosphorylation, microtubule destabilization and apoptosis. Similar effects are produced by amyloid aggregates in a tPA-dependent manner, as demonstrated by pharmacological treatments and in wt and tPA-/- mice neurons. Consistently, in Alzheimer's disease (AD) patients' brains, high levels of tPA colocalize with amyloid-rich areas, activated Erk1/2 and phosphorylated tau. This is the first demonstration of an intracellular pathway by which tPA triggers kinase activation, tau phosphorylation and neurotoxicity, suggesting a key role for this molecule in AD pathology.
Collapse
Affiliation(s)
- Manel G Medina
- Unitat de Biologia Cel.lular i Molecular, IMIM, Barcelona, Spain
| | - Maria Dolores Ledesma
- Cavalieri Ottolenghi Scientific Institute, Universita degli Studi di Torino, Orbassano (Turin), Italy
| | | | | | - Delia Zafra
- IRBB-Parc Científic, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Alameda
- Departament Anatomia Patológica, Hospital del Mar, Barcelona, Spain
| | - Carlos G Dotti
- Cavalieri Ottolenghi Scientific Institute, Universita degli Studi di Torino, Orbassano (Turin), Italy
| | - Pilar Navarro
- Unitat de Biologia Cel.lular i Molecular, IMIM, Barcelona, Spain
- Unitat Biologia Cel.lular i Molecular, Institut Municipal d'Investigació Mèdica, Dr Aiguader, 80, 08003 Barcelona, Spain. Tel.: +34 93 2211009; Fax: +34 93 2213237; E-mail:
| |
Collapse
|
105
|
Abstract
Accumulation of beta amyloid (Abeta) fibrils in senile plaques and cerebral blood vessel walls is characteristic of Alzheimer's disease (AD). We discuss several models that seek to explain the neurotoxic consequences, in particular the manner in which the neurotoxicity promotes cell dysfunction and cell death by an increase in cytosolic calcium ion concentration. To base correctly a new therapy on in vitro experiments, one must choose the right model mechanism.
Collapse
|
106
|
Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 2005; 24:7707-17. [PMID: 15342738 PMCID: PMC6729623 DOI: 10.1523/jneurosci.2211-04.2004] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) may be caused by the abnormal processing of the amyloid precursor protein (APP) and the accumulation of beta-amyloid (Abeta). The amyloid precursor protein can be proteolytically cleaved into multiple fragments, many of which have distinct biological actions. Although a high level of Abeta can be toxic, the alpha-secretase cleaved APP (sAPPalpha) is neuroprotective. However, the mechanism of sAPPalpha protection is unknown. Here, we show that sAPPalpha increases the expression levels of several neuroprotective genes and protects organotypic hippocampal cultures from Abeta-induced tau phosphorylation and neuronal death. Antibody interference and small interfering RNA knock-down demonstrate that the sAPPalpha-driven expression of transthyretin and insulin-like growth factor 2 is necessary for protection against Abeta-induced neuronal death. Mice overexpressing mutant APP possess high levels of sAPPalpha and transthyretin and do not develop the tau phosphorylation or neuronal loss characteristic of human AD. Chronic infusion of an antibody against transthyretin into the hippocampus of mice overexpressing APP with the Swedish mutation (APP(Sw)) leads to increased Abeta, tau phosphorylation, and neuronal loss and apoptosis within the CA1 neuronal field. Therefore, the elevated expression of transthyretin is mediated by sAPPalpha and protects APP(Sw) mice from developing many of the neuropathologies observed in AD.
Collapse
Affiliation(s)
- Thor D Stein
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705-2222, USA
| | | | | | | | | | | |
Collapse
|
107
|
Quintanilla RA, Muñoz FJ, Metcalfe MJ, Hitschfeld M, Olivares G, Godoy JA, Inestrosa NC. Trolox and 17β-Estradiol Protect against Amyloid β-Peptide Neurotoxicity by a Mechanism That Involves Modulation of the Wnt Signaling Pathway. J Biol Chem 2005; 280:11615-25. [PMID: 15659394 DOI: 10.1074/jbc.m411936200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is a key mechanism in amyloid beta-peptide (A beta)-mediated neurotoxicity; therefore, the protective roles of 17beta-estradiol (E2) and antioxidants (Trolox and vitamin C) were assayed on hippocampal neurons. Our results show the following: 1) E2 and Trolox attenuated the neurotoxicity mediated by A beta and H2O2 as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assays, quantification of apoptotic cells, and morphological studies of the integrity of the neurite network. 2) Vitamin C failed to protect neurons from A beta toxicity. 3) A beta-mediated endoperoxide production, reported to induce cell damage, was decreased in the presence of E2 and Trolox. 4) Two key Wnt signaling components were affected by E2 and Trolox; in fact, the enzyme glycogen synthase kinase 3beta was inhibited by both E2 and Trolox, and both compounds were able to stabilize cytoplasmic beta-catenin. 5) E2 activated the expression of the Wnt-5a and Wnt-7a ligands, and at the same time, E2, through the alpha-estrogen receptor, was able to prevent the excitotoxic A beta-induced rise in bulk-free Ca2+ as an alternative pathway to increase cell viability. 6) Finally, the Wnt-7a ligand protected against cytoplasmic calcium disturbances induced by A beta treatment. Our results suggest that control of oxidative stress, regulation of cytoplasmic calcium, and activation of Wnt signaling may prevent A beta neurotoxicity.
Collapse
Affiliation(s)
- Rodrigo A Quintanilla
- Centro de Regulación Celular y Patología Joaquín V. Luco, Millennium Institute of Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
108
|
Castro A, Martinez A. Inhibition of tau phosphorylation: a new therapeutic strategy for the treatment of Alzheimer’s disease and other neurodegenerative disorders. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.10.1519] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
109
|
Bloom GS, Ren K, Glabe CG. Cultured cell and transgenic mouse models for tau pathology linked to beta-amyloid. Biochim Biophys Acta Mol Basis Dis 2005; 1739:116-24. [PMID: 15615631 DOI: 10.1016/j.bbadis.2004.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
The two histopathological signatures of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles, prompting speculation that a causal relationship exists between the respective building blocks of these abnormal brain structures: the beta-amyloid peptides (Abeta) and the neuron-enriched microtubule-associated protein called tau. Transgenic mouse models have provided in vivo evidence for such connections, and cultured cell models have allowed tightly controlled, systematic manipulation of conditions that influence links between Abeta and tau. The emerging evidence supports the view that amyloid pathology lies upstream of tau pathology in a pathway whose details remain largely mysterious. In this communication, we review and discuss published work about the Abeta-tau connection. In addition, we present some of our own previously unpublished data on the effects of exogenous Abeta on primary brain cultures that contain both neurons and glial cells. We report here that continuous exposure to 5 microM non-fibrillar Abeta40 or Abeta42 kills primary brain cells by apoptosis within 2-3 weeks, Abeta42 is more toxic and selective for neurons than Abeta40, and Abeta42, but not Abeta40, induces a transient increase in neurons that are positive for the AD-like PHF1 epitope. These findings demonstrate the greater potency of Abeta42 than Abeta40 at inducing tau pathology and programmed cell death, and corroborate and extend reports that tau-containing cells are more sensitive to Abeta peptides than cells that lack or express low levels of tau.
Collapse
Affiliation(s)
- George S Bloom
- Departments of Biology, and Cell Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
110
|
Michaelis ML, Ansar S, Chen Y, Reiff ER, Seyb KI, Himes RH, Audus KL, Georg GI. {beta}-Amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents. J Pharmacol Exp Ther 2005; 312:659-68. [PMID: 15375176 DOI: 10.1124/jpet.104.074450] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Deposition of beta-amyloid peptide (Abeta) and hyperphosphorylation of the tau protein are associated with neuronal dysfunction and cell death in Alzheimer's disease. Although the relationship between these two processes is not yet understood, studies have shown that both in vitro and in vivo exposure of neurons to Abeta leads to tau hyperphosphorylation and neuronal dystrophy. We previously reported that the microtubule-stabilizing drug paclitaxel (Taxol) protects primary neurons against toxicity induced by the Abeta(25-35) peptide. The studies in this report were undertaken to characterize the actions of paclitaxel more fully, to assess the effectiveness of structurally diverse microtubulestabilizing agents in protecting neurons, and to determine the time course of the protective effects of the drugs. Primary neurons were exposed to Abeta in the presence or absence of several agents shown to interact with microtubules, and neuronal survival was monitored. Paclitaxel protected neurons against Abeta(1-42) toxicity, and paclitaxel-treated cultures exposed to Abeta showed enhanced survival over Abeta-only cultures for several days. Neuronal apoptosis induced by Abeta was blocked by paclitaxel. Other taxanes and three structurally diverse microtubule-stabilizing compounds also significantly increased survival of Abeta-treated cultures. At concentrations below 100 nM, the drugs that protected the neurons did not produce detectable toxicity when added to the cultures alone. Although multiple mechanisms are likely to contribute to the neuronal cell death induced by oligomeric or fibrillar forms of Abeta, low concentrations of drugs that preserve the integrity of the cytoskeletal network may help neurons survive the toxic cascades initiated by these peptides.
Collapse
Affiliation(s)
- M L Michaelis
- Department of Pharmacology and Toxicology, 1251 Wescoe Hall Dr., 5064 Malott Hall, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Kosik KS, Shimura H. Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta Mol Basis Dis 2005; 1739:298-310. [PMID: 15615647 DOI: 10.1016/j.bbadis.2004.10.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 10/26/2004] [Accepted: 10/29/2004] [Indexed: 01/12/2023]
Abstract
Many studies have implicated phosphorylated tau in the Alzheimer disease process. However, the cellular fate of phosphorylated tau has only recently been described. Recent work has shown that tau phosphorylation at substrate sites for the kinases Cdk5 and GSK3-beta can trigger the binding of tau to the chaperones Hsc70 and Hsp27. The binding of phosphorylated tau to Hsc70 implied that the complex may be a substrate for the E3 ligase CHIP and this possibility was experimentally verified. The presence of this system in cells suggests that phosphorylated tau may hold toxic dangers for cell viability, and the response of the cell is to harness a variety of protective mechanisms. These include binding to chaperones, which may prevent more toxic conformations of the protein, ubiquitination which will direct the protein to the proteasome, segregation of tau aggregates from the cellular machinery, and recruitment of Hsp27 which will confer anti-apoptotic properties to the cell.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Department of Neurology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
112
|
Blanchard BJ, Chen A, Rozeboom LM, Stafford KA, Weigele P, Ingram VM. Efficient reversal of Alzheimer's disease fibril formation and elimination of neurotoxicity by a small molecule. Proc Natl Acad Sci U S A 2004; 101:14326-32. [PMID: 15388848 PMCID: PMC521943 DOI: 10.1073/pnas.0405941101] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Abeta1-42 peptide that is overproduced in Alzheimer's disease (AD) from a large precursor protein has a normal amino acid sequence but, when liberated, misfolds at neutral pH to form "protofibrils" and fibrils that are rich in beta-sheets. We find that these protofibrils or fibrils are toxic to certain neuronal cells that carry Ca-permeant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Disrupting the structure of the Abeta1-42 fibrils and protofibrils might lead to the discovery of molecules that would be very useful in the treatment of AD. A high-throughput screen of a library of >3,000 small molecules with known "biological activity" was set up to find compounds that efficiently decrease the beta-sheet content of aggregating Abeta1-42. Lead compounds were characterized by using thioflavin T (ThT) as a beta-sheet assay. The most effective of six compounds found was 4,5-dianilinophthalimide (DAPH) under the following conditions: DAPH at low micromolar concentrations abolishes or greatly reduces previously existing fully formed Abeta1-42 fibrils, producing instead amorphous materials without fibrils but apparently containing some protofibrils and smaller forms. Coincubation of the Abeta1-42 peptide with DAPH produces either amorphous materials or empty fields. Coincubation of DAPH and Abeta1-42 greatly reduces the beta-sheet content, as measured with ThT fluorescence, and produces a novel fluorescent complex with ThT. When the Abeta1-42 peptide was coincubated with DAPH at very low micromolar concentrations, the neuronal toxicity mentioned above (Ca(2+) influx) was eliminated. Clearly, DAPH is a promising candidate for AD therapy.
Collapse
Affiliation(s)
- Barbara J Blanchard
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
113
|
Christensen RA, Shtifman A, Allen PD, Lopez JR, Querfurth HW. Calcium dyshomeostasis in beta-amyloid and tau-bearing skeletal myotubes. J Biol Chem 2004; 279:53524-32. [PMID: 15385569 DOI: 10.1074/jbc.m408473200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The relative scarcity of inclusion-affected muscle cells or markers of cell death in inclusion body myositis (IBM) is in distinction to the specific and early intracellular deposition of several Alzheimer's Disease (AD)-related proteins. The current study examined the possible correlation between myotube beta-amyloid and/or Tau accumulations and a widespread mishandling of intracellular muscle calcium concentration that could potentially account for the unrelenting weakness in affected patients. Cultured myogenic cells (C(2)C(12)) expressed beta-amyloid-42 (Abeta(42)) and fetal Tau peptides, as human transgenes encoded by herpes simplex virus, either individually or concurrently. Co-expression of Abeta(42) in C(2)C(12) myotubes resulted in hyperphosphorylation of Tau protein that was not observed when Tau was expressed alone. Resting calcium concentration and agonist-induced RyR-mediated Ca(2+) release were examined using calcium-specific microelectrodes and Fluo-4 epifluorescence, respectively. Co-expression of Abeta(42) and Tau cooperatively elevated basal levels of myoplasmic-free calcium, an effect that was accompanied by depolarization of the plasma membrane. Sarcoplasmic reticulum (SR) calcium release, induced by KCl depolarization, was not affected by Abeta(42) or Tau. In contrast, expression of Abeta(42), Tau, or Abeta(42) together with Tau resulted in enhanced sensitivity of ryanodine receptors to activation by caffeine. Notably, expression of beta-amyloid, alone, was sufficient to result in an increased sensitivity to direct activation by caffeine. Current results indicate that amyloid proteins cooperate to raise resting calcium levels and that these effects are associated with a passive SR Ca(2+) leak and Tau hyperphosphorylation in skeletal muscle.
Collapse
Affiliation(s)
- Rial A Christensen
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, 736 Cambridge St., Boston, MA 02135, USA
| | | | | | | | | |
Collapse
|
114
|
Anderson KL, Ferreira A. alpha1 Integrin activation: a link between beta-amyloid deposition and neuronal death in aging hippocampal neurons. J Neurosci Res 2004; 75:688-97. [PMID: 14991844 DOI: 10.1002/jnr.20018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A growing body of evidence obtained using in vitro model systems indicates that the deposition of fibrillar beta-amyloid (Abeta) results in neurite degeneration and cell death in central neurons. Little is known, however, about the molecular mechanisms underlying these neurotoxic effects. We have shown previously that fibrillar Abeta induced sustained activation of the mitogen-activated protein kinase (MAPK) followed by hyperphosphorylation of tau proteins in aging hippocampal neurons. Furthermore, the blockage of MAPK activation using specific inhibitors prevented neurite degeneration in these cells. These results suggested that the MAPK signal transduction pathway could play a key role in Abeta-induced neurite degeneration. We sought to identify upstream elements of the MAPK signaling cascade activated by Abeta deposition. We evaluated the participation of the integrins in this pathway by monitoring the activation of MAPK in the presence of specific integrin inhibitors. Our results indicate that pretreatment of mature hippocampal neurons with either echistatin or alpha(1) integrin-blocking antibodies prevented Abeta-induced MAPK activation. In addition, the blockage of alpha(1) activation prevented cell death induced by Abeta. Similar results were obtained when alpha(1) and beta(1) integrin blocking antibodies were used combined. Taken collectively, these results identify alpha(1) integrin and the alpha(1) plus beta(1) integrin complexes as potential targets for therapeutic intervention in the Abeta signaling pathway in aging neurons.
Collapse
Affiliation(s)
- Kelsi L Anderson
- Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
115
|
Puig B, Gómez-Isla T, Ribé E, Cuadrado M, Torrejón-Escribano B, Dalfó E, Ferrer I. Expression of stress-activated kinases c-Jun N-terminal kinase (SAPK/JNK-P) and p38 kinase (p38-P), and tau
hyperphosphorylation in neurites surrounding βA plaques in APP Tg2576 mice. Neuropathol Appl Neurobiol 2004; 30:491-502. [PMID: 15488025 DOI: 10.1111/j.1365-2990.2004.00569.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hyperphosphorylated tau in neurites surrounding beta-amyloid (betaA) deposits, as revealed with phospho-specific anti-tau antibodies, are found in amyloid precursor protein (APP) Tg2576 mice. Because betaA is a source of oxidative stress and may be toxic for cultured cells, the present study examines the expression of phosphorylated (active) stress-activated kinase c-Jun N-terminal kinase (SAPK/JNK-P) and p38 kinase (p38-P), which have the capacity to phosphorylate tau at specific sites, and their specific substrates c-Jun and ATF-2, which are involved in cell death and survival in several paradigms, in Tg2576 mice. The study was planned to shed light about the involvement of these kinases in tau phosphorylation in cell processes surrounding amyloid plaques, as well as in the possible phosphorylation (activation) of c-Jun and activating transcription factor-2 (ATF-2) in relation to betaA deposition. Moderate increase in the expression of phosphorylated mitogen-activated protein kinase and extracelullar signal-regulated kinase (MAPK/ERK-P) occurs in a few amyloid plaques. However, strong expression of SAPK/JNK-P and p38-P is found in the majority of, if not all, amyloid plaques, as seen in serial consecutive sections stained for betaA and stress kinases. Moreover, confocal microscopy reveals colocalization of phospho-tau and SAPK/JNK-P, and phospho-tau and p38-P in many dystrophic neurites surrounding amyloid plaques. Increased expression levels of nonbound tau, SAPK/JNK-P and p38-P are corroborated by Western blots of total cortical homogenate supernatants in Tg2576 mice when compared with age-matched controls. No increase in phosphorylated c-JunSer63 (c-Jun-P) and ATF-2Thr71 (ATF-2-P) is found in association with betaA deposits. In addition, no expression of active (cleaved) caspase-3 (17 kDa) has been found in transgenic mice. Taken together, these observations provide a link between betaA-induced oxidative stress, activation of stress kinases SAPK/JNK and p38, and tau hyperphosphorylation in neurites surrounding amyloid plaques, but activation of these kinases is not associated with accumulation of c-Jun-P and ATF-2-P, nor with activation of active caspase-3 in the vicinity of betaA deposits.
Collapse
Affiliation(s)
- B Puig
- Institut de Neuropatologia, Servei Anatomia Patològica, Hospital de Bellvitge, Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
116
|
Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M, Inestrosa NC. Wnt-3a overcomes β-amyloid toxicity in rat hippocampal neurons. Exp Cell Res 2004; 297:186-96. [PMID: 15194435 DOI: 10.1016/j.yexcr.2004.02.028] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 02/10/2004] [Indexed: 10/26/2022]
Abstract
The aim of this study was to evaluate whether the direct activation of the Wnt signaling pathway by its endogenous Wnt-3a ligand prevents the toxic effects induced by amyloid-beta-peptide (Abeta) in rat hippocampal neurons. We report herein that the Wnt-3a ligand was indeed able to overcome toxic effects induced by Abeta in hippocampal neurons, including a neuronal impairment on cell survival, an increase in glycogen synthase kinase-3beta (GSK-3beta) and tau phosphorylation, a decrease in cytoplasmic beta-catenin and a decrease in the expression of the Wnt target gene engrailed-1. We further demonstrate that Wnt-3a protects hippocampal neurons from apoptosis induced by Abeta. Our results support the hypothesis that a loss of function of Wnt signaling may play a role in the progression of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Alejandra R Alvarez
- Centro FONDAP de Regulación Celular y Patología "Joaquín V. Luco", MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
117
|
Abstract
Cyclin-dependent kinase-5 (CDK5) is predominantly active in the nervous system and it is well established that CDK5 is essential in neuronal development. In addition to its recognized role in development, there is increasing evidence that CDK5 may be involved in the pathogenesis of several neurodegenerative disorders. Although studies have shown that CDK5 can modulate cell death and survival, controversy still exists as to the exact role CDK5 may play in neurodegenerative processes. This review will highlight recent data on the possible roles of CDK5 in neurodegeneration.
Collapse
Affiliation(s)
- Shirley B Shelton
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
118
|
|
119
|
Lu DC, Soriano S, Bredesen DE, Koo EH. Caspase cleavage of the amyloid precursor protein modulates amyloid beta-protein toxicity. J Neurochem 2003; 87:733-41. [PMID: 14535955 DOI: 10.1046/j.1471-4159.2003.02059.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The amyloid beta-protein precursor (APP) is proteolytically cleaved to generate the amyloid beta-protein (Abeta), the principal constituent of senile plaques found in Alzheimer's disease (AD). In addition, Abeta in its oligomeric and fibrillar forms have been hypothesized to induce neuronal toxicity. We and others have previously shown that APP can be cleaved by caspases at the C-terminus to generate a potentially cytotoxic peptide termed C31. Furthermore, this cleavage event and caspase activation were increased in the brains of AD, but not control, cases. In this study, we show that in cultured cells, Abeta induces caspase cleavage of APP in the C-terminus and that the subsequent generation of C31 contributes to the apoptotic cell death associated with Abeta. Interestingly, both Abeta toxicity and C31 pathway are dependent on the presence of APP. Both APP-dependent Abeta toxicity and C31-induced apoptotic cell death involve apical or initiator caspases-8 and -9. Our results suggest that Abeta-mediated toxicity initiates a cascade of events that includes caspase activation and APP cleavage. These findings link C31 generation and its potential cell death activity to Abeta cytotoxicity, the leading mechanism proposed for neuronal death in AD.
Collapse
Affiliation(s)
- Daniel C Lu
- Department of Neurosciences, University of California, San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
120
|
Bhat R, Xue Y, Berg S, Hellberg S, Ormö M, Nilsson Y, Radesäter AC, Jerning E, Markgren PO, Borgegård T, Nylöf M, Giménez-Cassina A, Hernández F, Lucas JJ, Díaz-Nido J, Avila J. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 2003; 278:45937-45. [PMID: 12928438 DOI: 10.1074/jbc.m306268200] [Citation(s) in RCA: 431] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase that has been implicated in pathological conditions such as diabetes and Alzheimer's disease. We report the characterization of a GSK3 inhibitor, AR-A014418, which inhibits GSK3 (IC50 = 104 +/- 27 nM), in an ATP-competitive manner (Ki = 38 nM). AR-A014418 does not significantly inhibit cdk2 or cdk5 (IC50 > 100 microM) or 26 other kinases demonstrating high specificity for GSK3. We report the co-crystallization of AR-A014418 with the GSK3beta protein and provide a description of the interactions within the ATP pocket, as well as an understanding of the structural basis for the selectivity of AR-A014418. AR-A014418 inhibits tau phosphorylation at a GSK3-specific site (Ser-396) in cells stably expressing human four-repeat tau protein. AR-A014418 protects N2A neuroblastoma cells against cell death mediated by inhibition of the phosphatidylinositol 3-kinase/protein kinase B survival pathway. Furthermore, AR-A014418 inhibits neurodegeneration mediated by beta-amyloid peptide in hippocampal slices. AR-A014418 may thus have important applications as a tool to elucidate the role of GSK3 in cellular signaling and possibly in Alzheimer's disease. AR-A014418 is the first compound of a family of specific inhibitors of GSK3 that does not significantly inhibit closely related kinases such as cdk2 or cdk5.
Collapse
Affiliation(s)
- Ratan Bhat
- AstraZeneca R&D, 15185 Södertälje, Sweden, AstraZeneca R&D, 43183 Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Ekinci FJ, Ortiz D, Shea TB. Okadaic acid mediates tau phosphorylation via sustained activation of the L-voltage-sensitive calcium channel. ACTA ACUST UNITED AC 2003; 117:145-51. [PMID: 14559148 DOI: 10.1016/s0169-328x(03)00294-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulation of phosphorylated isoforms of the microtubule-associated protein tau is one hallmark of affected neurons in Alzheimer's disease (AD). This increase has been attributed to increased kinase or decreased phosphatase activity. Prior studies indicate that one of the kinases that phosphorylates tau (mitogen-activated protein kinase, or MAP kinase) does so at least in part indirectly within intact neuronal cells by phosphorylating and activating the L-voltage-sensitive calcium channel. Resultant calcium influx then fosters tau phosphorylation via one or more calcium-activated kinases. We demonstrate herein that treatment of differentiated SH-SY-5Y human neuroblastoma with the phosphatase inhibitor okadaic acid (OA) similarly may increase tau phosphorylation via sustained activation of the L-voltage-sensitive calcium channel. OA increased phospho-tau as indicated by increased immunoreactivity towards an antibody (PHF-1) directed against paired helical filaments from AD brain. This increase was blocked by co-treatment with the channel antagonist nimodipine. OA treatment increased channel phosphorylation. The increases in calcium influx, PHF-1 immunoreactivity and channel phosphorylation were all attenuated by co-treatment with PD98059, which inhibits MAP kinase activity, suggesting that OA mediates these effects at least in part via sustained activation of MAP kinase. These findings underscore that divergent and convergent kinase and phosphatase activities regulate tau phosphorylation.
Collapse
Affiliation(s)
- Fatma J Ekinci
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | | | | |
Collapse
|
122
|
Lauckner J, Frey P, Geula C. Comparative distribution of tau phosphorylated at Ser262 in pre-tangles and tangles. Neurobiol Aging 2003; 24:767-76. [PMID: 12927759 DOI: 10.1016/s0197-4580(02)00228-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Phospho-Ser(262) epitope of phosphorylated tau, which accumulates in tangles in Alzheimer's disease (AD) brains, has been shown to have a strong disruptive effect on microtubules. Using antibodies which specifically recognize the Phospho-Ser(262) of tau, we compared the presence of this epitope in normal appearing neurons (pre-tangles) and tangles, with the presence of Phospho-Ser(199/202) (AT-8) and Phospho-Ser(396/404) (PHF-1) epitopes. All antibodies visualized lightly or darkly stained pre-tangles, neurons with immunoreactive clumps, intracellular and extracellular tangles. Pre-tangles were more abundant in control cases which showed some pathology, when compared with AD brains. Immunoreactivity for Phospho-Ser(262) was preferentially present in intracellular and extracellular tangles and was found in a significantly smaller number of pre-tangles when compared with the other epitopes. These results indicate the presence of various epitopes of Phospho-Tau in a substantial number of pre-tangles which may represent an early marker of tangle formation. The differential distribution of various epitopes suggests that the presence of the Phospho-Ser(262) epitope of tau either accelerates the transition form pre-tangle to tangle, or appears later than the other epitopes in the process of tangle formation.
Collapse
Affiliation(s)
- Jane Lauckner
- Laboratory for Neurodegenerative and Aging Research, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
123
|
Ishizawa T, Sahara N, Ishiguro K, Kersh J, McGowan E, Lewis J, Hutton M, Dickson DW, Yen SH. Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1057-67. [PMID: 12937146 PMCID: PMC1868265 DOI: 10.1016/s0002-9440(10)63465-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transgenic mice expressing human tau with P301L missense mutation (JNPL3) develop progressive amyotrophy, neurofibrillary degeneration, and neuronal loss. Mating of JNPL3 with transgenic mice expressing mutant amyloid precursor protein (Tg2576) leads to bigenic (TAPP) mice with enhanced neurofibrillary pathology. TAPP and JNPL3 mice were studied with immunocytochemistry and immunoblotting with antibodies to glycogen synthase kinase-3 (GKS3) to determine whether the development of tauopathy is associated with activation or increased expression of GSK3, and when the observed changes occur with respect to neurofibrillary tangle (NFT) formation. Accumulation of GSK3alpha/beta phosphorylated at Y279/216 was observed in neurons containing NFTs and granulovacuolar degeneration (GVD), but not in normal neurons or neurons with pretangles. More GSK3 immunoreactive NFTs were detected in TAPP than JNPL3 mice, especially in the amygdala. These differences were notable only in old animals. There was no significant difference between animals with and without NFTs in the level of total, inactive, or Y216-phosphorylated (pY216)GSK3beta. No apparent GSK3 accumulation was detected in neurons in Tg2576 mice. There was also no significant difference in the distribution of GSK3 in lysates fractionated based on their solubility in various reagents, including the sarkosyl-insoluble fraction. The results suggest that the pY216 GSK3beta accumulates in NFT and GVD due to redistribution rather than increased expression or activation, and that pre-existence of tau abnormalities is required for APP/Abeta to exert their effects on tau pathology in TAPP mice.
Collapse
Affiliation(s)
- Takashi Ishizawa
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32225, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:591-607. [PMID: 12875979 PMCID: PMC1868198 DOI: 10.1016/s0002-9440(10)63687-5] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ribosomal S6 protein kinase p70 S6 kinase is known for its role in modulating cell-cycle progression, cell size, and cell survival. In response to mitogen stimulation, p70 S6 kinase activation up-regulates ribosomal biosynthesis and enhances the translational capacity of the cell. In Alzheimer's disease (AD), there is a marked increase in total tau protein in the form of abnormally hyperphosphorylated tau (PHF-tau) in neurons with neurofibrillary tangles (NFTs). In the present study, we investigated whether p70 S6 kinase activation is associated with PHF-tau accumulation in AD. By immunohistochemistry, we found that the levels of phosphorylated p70 S6 kinase (at Thr389 or at Thr421/Ser424) were increased in accordance with the progressive sequence of neurofibrillary changes according to Braak's criteria. Confocal microscopy showed that in AD brain, phosphorylated p70 S6 kinase appeared especially in neurons that are known to later develop NFTs. This pattern of neurons showed dot-like structures of phosphorylated p70 S6 kinase and hyperphosphorylated tau, which partially correlated with rab5 (endosome marker), lamp-1 (lysosome marker), and ubiquitin (ubiquitin-proteasomal system marker). By indirect enzyme-linked immunosorbent assay, phosphorylated p70 S6 kinase (Thr389 or Thr421/Ser424), total tau, and PHF-tau were found to be significantly increased in AD brain as compared to control cases. The levels of total p70 S6 kinase and p70 S6 kinase phosphorylated at Thr421/Ser424 showed significant correlations with the levels of both total tau and PHF-tau. Regression analyses revealed a significant dependence of total tau or PHF-tau on p70 S6 kinase phosphorylated at Thr421/Ser424 rather than at Thr389. The levels of ribosomal protein S6 as well as the levels of markers for the proteolytic system were also significantly increased in AD as compared to control brain. Using a SH-SY5Y neuroblastoma cell model, we found that 100 micro mol/L zinc sulfate could induce p70 S6 kinase phosphorylation and activation, in particular at Thr421/Ser424. This up-regulation of the activated kinase resulted in an increased expression and phosphorylation of tau. Pretreatment of cells with rapamycin (an inhibitor of FRAP/mTOR which is the immediate upstream kinase of the p70 S6 kinase) attenuated the effects induced by zinc. In primary cultured neurons of rat cortical cortex, zinc sulfate treatment could repeat p70 S6 kinase phosphorylation and activation at Thr421/Ser424, followed by increased expression and phosphorylation of tau. Taken together, these data suggest that activated p70 S6 kinase could mediate an up-regulation of tau translation. The partial co-localization of phosphorylated p70 S6 kinase with rab5, lamp-1 and ubiquitin, or PHF-tau with ubiquitin suggests that the activated proteolytic system might not be sufficient to degrade the over-produced and over-phosphorylated tau protein. A p70 S6 kinase modulated up-regulation of tau translation might contribute to PHF-tau accumulation in neurons with neurofibrillary changes.
Collapse
|
125
|
Karasewski L, Ferreira A. MAPK signal transduction pathway mediates agrin effects on neurite elongation in cultured hippocampal neurons. JOURNAL OF NEUROBIOLOGY 2003; 55:14-24. [PMID: 12605455 DOI: 10.1002/neu.10197] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that agrin regulates the rates of axonal and dendritic elongation by modulating the expression of microtubule-associated proteins in cultured hippocampal neurons. However, the mechanisms by which agrin-induced signals are propagated to the nucleus where they can lead to the phosphorylation, and hence the activation, of transcription factors, are not known. In the present study, we identified downstream elements that play essential roles in the agrin-signaling pathway in developing central neurons. Our results indicate that agrin induces the combined activation of the extracellular signal-regulated kinases (ERK1/ERK2) and p38 in central neurons. In addition, they showed that PD98059 and SB202190, synthetic inhibitors of ERK1/ERK2 and p38 respectively, prevented the changes in the rate of neurite elongation induced by agrin in cultured hippocampal neurons. Collectively, these results suggest that agrin might modulate the expression of neuron-specific genes involved in neurite elongation by inducing CREB phosphorylation through the activation of the MAPK signal transduction pathway in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Lisa Karasewski
- Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
126
|
Kasa P, Papp H, Zombori J, Mayer P, Checler F. C-terminal fragments of amyloid-beta peptide cause cholinergic axonal degeneration by a toxic effect rather than by physical injury in the nondemented human brain. Neurochem Res 2003; 28:493-8. [PMID: 12675137 DOI: 10.1023/a:1022813104905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous experimental studies have indicated that amyloid-beta peptide (Abeta) may cause axonal degeneration in the brain of individuals with Alzheimer's disease (AD) by physical injury, mass lesion, or membrane perturbation. In this study, acetylcholinesterase histochemical, and Abeta and tau immunohistochemical double-staining were performed in nondemented elderly human hippocampal and entorhinal brain samples, to demonstrate the presence of dystrophic neurites caused by the C-terminal or N-terminal fragments of Abeta. The early interactions between the Abeta-stained senile plaques (SPs) and the enzyme-positive axons were investigated. The double-stained samples revealed that Abeta deposition occurs first, followed by the development of cholinergic axonal damage. Most of the dystrophic axonal processes are incorporated in the peripheral area of the SPs and are positive for phosphorylated tau [pS202] and tau-5. The result suggests that C-terminal fragments are more harmful than N-terminal fragments of Abeta and may induce the development of dystrophic neurites by a toxic effect rather than by physical injury.
Collapse
Affiliation(s)
- Peter Kasa
- Alzheimer's Disease Research Centre, Department of Psychiatry, University of Szeged, Hungary.
| | | | | | | | | |
Collapse
|
127
|
White AR, Maher F, Brazier MW, Jobling MF, Thyer J, Stewart LR, Thompson A, Gibson R, Masters CL, Multhaup G, Beyreuther K, Barrow CJ, Collins SJ, Cappai R. Diverse fibrillar peptides directly bind the Alzheimer's amyloid precursor protein and amyloid precursor-like protein 2 resulting in cellular accumulation. Brain Res 2003; 966:231-44. [PMID: 12618346 DOI: 10.1016/s0006-8993(02)04173-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Alzheimer's disease Abeta peptide can increase the levels of cell-associated amyloid precursor protein (APP) in vitro. To determine the specificity of this response for Abeta and whether it is related to cytotoxicity, we tested a diverse range of fibrillar peptides including amyloid-beta (Abeta), the fibrillar prion peptides PrP106-126 and PrP178-193 and human islet-cell amylin. All these peptides increased the levels of APP and amyloid precursor-like protein 2 (APLP2) in primary cultures of astrocytes and neurons. Specificity was shown by a lack of change to amyloid precursor-like protein 1, tau-1 and cellular prion protein (PrP(c)) levels. APP and APLP2 levels were elevated only in cultures exposed to fibrillar peptides as assessed by electron microscopy and not in cultures treated with non-fibrillogenic peptide variants or aggregated lipoprotein. We found that PrP106-126 and the non-toxic but fibril-forming PrP178-193 increased APP levels in cultures derived from both wild-type and PrP(c)-deficient mice indicating that fibrillar peptides up-regulate APP through a non-cytotoxic mechanism and irrespective of parental protein expression. Fibrillar PrP106-126 and Abeta peptides bound recombinant APP and APLP2 suggesting the accumulation of these proteins was mediated by direct binding to the fibrillated peptide. This was supported by decreased APP accumulation following extensive washing of the cultures to remove fibrillar aggregates. Pre-incubation of fibrillar peptide with recombinant APP18-146, the putative fibril binding site, also abrogated the accumulation of APP. These findings show that diverse fibrillogenic peptides can induce accumulation of APP and APLP2 and this mechanism could contribute to pathogenesis in neurodegenerative disorders.
Collapse
Affiliation(s)
- Anthony R White
- Department of Pathology, The University of Melbourne, 3010, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Zheng WH, Bastianetto S, Mennicken F, Ma W, Kar S. Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 2003; 115:201-11. [PMID: 12401334 DOI: 10.1016/s0306-4522(02)00404-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuropathological features associated with Alzheimer's disease (AD) brain include the presence of extracellular neuritic plaques composed of amyloid beta protein (Abeta), intracellular neurofibrillary tangles containing phosphorylated tau protein and the loss of basal forebrain cholinergic neurons which innervate regions such as the hippocampus and the cortex. Studies of the pathological changes that characterize AD and several other lines of evidence indicate that Abeta accumulation in vivo may initiate phosphorylation of tau protein, which by disrupting neuronal network may trigger the process of neurodegeneration observed in AD brains. However, the underlying cause of degeneration of the basal forebrain cholinergic neurons and their association, if any, to Abeta peptides or phosphorylated tau remains mostly unknown. In the present study, using rat primary septal cultures, we have shown that aggregated Abeta peptides, in a time (18-96 h)- and concentration (0.7-60 microM)-dependent manner, induce toxicity and decrease choline acetyltransferase enzyme activity in cultured neurons. Using immunocytochemistry and immunoblotting, we have also demonstrated that Abeta treatment can significantly increase the phosphorylation of tau protein in septal cultures. At the cellular level, hyperphosphorylated tau is mostly apparent in the somatodendritic compartment of the neurons. Abeta peptide (10 microM), in addition to tau phosphorylation, also activates mitogen-activated protein kinase and glycogen synthase kinase-3beta, the two kinases which are known to be involved in the formation of hyperphosphorylated tau in the AD brain. Exposure to specific inhibitors of the mitogen-activated protein kinase (i.e. PD98059) or glycogen synthase kinase-3beta (i.e. LiCl) attenuated the hyperphosphorylation of the tau protein in cultured neurons. Given the evidence that tau phosphorylation can induce cell loss by disrupting neuronal cytoskeleton, it is likely that aggregated Abeta peptide triggers degeneration of septal neurons, including those expressing the cholinergic phenotype, by phosphorylation of the tau protein activated by mitogen-activated protein kinase and glycogen synthase kinase-3beta. These results, taken together, suggest that cultured septal cholinergic neurons are vulnerable to Abeta-mediated toxicity and tau phosphorylation may play an important role in Abeta-induced neurodegeneration.
Collapse
Affiliation(s)
- W-H Zheng
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 La Salle Boulevard, Verdun, QC, Canada H4H 1R3
| | | | | | | | | |
Collapse
|
129
|
Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, Grundke-Iqbal I. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 109:45-55. [PMID: 12531514 DOI: 10.1016/s0169-328x(02)00488-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The abnormal hyperphosphorylation of tau in Alzheimer's disease (AD) has been proposed to involve the extracellular-signal-regulated protein kinase (ERK) of the mitogen-activated protein (MAP) kinase family. ERK is phosphorylated and thereby activated by MAP kinase kinase (MEK). In the present study, we determined the intracellular and regional distribution of the active forms of both MEK1/2 and ERK1/2, i.e. p-MEK1/2 and p-ERK1/2 in the entorhinal, hippocampal, and temporal cortices of 49 brains staged for neurofibrillary changes according to Braak and Braak's protocol. We found that p-MEK1/2 and p-ERK1/2 were present in the initial stages of neurofibrillary degeneration in the projecting neurons in the transentorhinal region, and extended into other brain regions co-incident with the progressive sequence of neurofibrillary changes up to and including Braak stage VI. It appeared that the accumulation of p-MEK1/2 and p-ERK1/2 was initiated in the cytoplasm of pretangle neurons in varying size granules, which grew into large aggregates co-existing with the progressive development of neurofibrillary tangles. Accumulation of p-MEK1/2 and p-ERK1/2 was found in cases with stages I-III neurofibrillary degeneration, which were devoid of amyloid deposition. These data provide direct in situ evidence consistent with the possible involvement of MAP kinase pathway in the hyperphosphorylation of tau and the presence of this lesion before deposition of beta-amyloid in AD.
Collapse
Affiliation(s)
- Jin-Jing Pei
- Karolinska Institutet, NEUROTEC, Division of Experimental Geriatrics, Novum, KFC Plan 4, Novum, S-141 86, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
130
|
Pereira EFR, Hilmas C, Santos MD, Alkondon M, Maelicke A, Albuquerque EX. Unconventional ligands and modulators of nicotinic receptors. JOURNAL OF NEUROBIOLOGY 2002; 53:479-500. [PMID: 12436414 DOI: 10.1002/neu.10146] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence gathered from epidemiologic and behavioral studies have indicated that neuronal nicotinic receptors (nAChRs) are intimately involved in the pathogenesis of a number of neurologic disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In the mammalian brain, neuronal nAChRs, in addition to mediating fast synaptic transmission, modulate fast synaptic transmission mediated by the major excitatory and inhibitory neurotransmitters glutamate and GABA, respectively. Of major interest, however, is the fact that the activity of the different subtypes of neuronal nAChR is also subject to modulation by substances of endogenous origin such as choline, the tryptophan metabolite kynurenic acid, neurosteroids, and beta-amyloid peptides and by exogenous substances, including the so-called nicotinic allosteric potentiating ligands, of which galantamine is the prototype, and psychotomimetic drugs such as phencyclidine and ketamine. The present article reviews and discusses the effects of unconventional ligands on nAChR activity and briefly describes the potential benefits of using some of these compounds in the treatment of neuropathologic conditions in which nAChR function/expression is known to be altered.
Collapse
Affiliation(s)
- Edna F R Pereira
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 W Baltimore St Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
131
|
Kim HS, Lee JH, Lee JP, Kim EM, Chang KA, Park CH, Jeong SJ, Wittendorp MC, Seo JH, Choi SH, Suh YH. Amyloid beta peptide induces cytochrome C release from isolated mitochondria. Neuroreport 2002; 13:1989-93. [PMID: 12395106 DOI: 10.1097/00001756-200210280-00032] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amyloid beta peptide (Abeta) is a neurotoxic metabolic product of the amyloid precursor protein (APP). Abeta is strongly implicated in the pathology of Alzheimer's disease (AD) and can be formed intracellularly. In this study, we show that the addition of Abeta to isolated mouse brain mitochondria can directly induce cytochrome c (Cyt c) release and mitochondrial swelling, which were partially inhibited by cyclosporin A (CsA). These results suggest that the Abetaaccumulated intracellularly by APP processing might exert neurotoxicity by interacting with mitochondria and inducing mitochondrial swelling and release of Cyt c, which activates caspase-3 and finally can lead to apoptosis in neuronal cells and to neurodegeneration in AD.
Collapse
Affiliation(s)
- Hye-Sun Kim
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Alvarez G, Muñoz-Montaño JR, Satrústegui J, Avila J, Bogónez E, Díaz-Nido J. Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer's disease. Bipolar Disord 2002; 4:153-65. [PMID: 12180271 DOI: 10.1034/j.1399-5618.2002.01150.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by the accumulation of the beta-amyloid peptide and the hyperphosphorylation of the tau protein, among other features. The most widely accepted hypothesis on the etiopathogenesis of this disease proposes that the aggregates of the beta-amyloid peptide are the main triggers of tau hyperphosphorylation and the subsequent degeneration of affected neurons. In support of this view, fibrillar aggregates of synthetic beta-amyloid peptide induce tau hyperphosphorylation and cell death in cultured neurons. We have previously reported that lithium inhibits tau hyperphosphorylation and also significantly protects cultured neurons from cell death triggered by beta-amyloid peptide. As lithium is a relatively specific inhibitor of glycogen synthase kinase-3 (in comparison with other protein kinases), and other studies also point to a relevant role of this enzyme, we favor the view that glycogen synthase kinase-3 is a crucial element in the pathogenesis of Alzheimer's disease. In our opinion, the possibility of using lithium, or other inhibitors of glycogen synthase kinase-3, in experimental trials aimed to ameliorate neurodegeneration in Alzheimer's disease should be considered.
Collapse
Affiliation(s)
- Gema Alvarez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain, 28049
| | | | | | | | | | | |
Collapse
|
133
|
Wei W, Wang X, Kusiak JW. Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor I protection. J Biol Chem 2002; 277:17649-56. [PMID: 11882652 DOI: 10.1074/jbc.m111704200] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid beta-peptide (Abeta) is implicated as the toxic agent in Alzheimer's disease and is the major component of brain amyloid plaques. In vitro, Abeta causes cell death, but the molecular mechanisms are unclear. We analyzed the early signaling mechanisms involved in Abeta toxicity using the SH-SY5Y neuroblastoma cell line. Abeta caused cell death and induced a 2- to 3-fold activation of JNK. JNK activation and cell death were inhibited by overexpression of a dominant-negative SEK1 (SEK1-AL) construct. Butyrolactone I, a cdk5 inhibitor, had an additional protective effect against Abeta toxicity in these SEK1-AL-expressing cells suggesting that cdk5 and JNK activation independently contributed to this toxicity. Abeta also weakly activated ERK and Akt but had no effect on p38 kinase. Inhibitors of ERK and phosphoinositide 3-kinase (PI3K) pathways did not affect Abeta-induced cell death, suggesting that these pathways were not important in Abeta toxicity. Insulin-like growth factor I protected against Abeta toxicity by strongly activating ERK and Akt and blocking JNK activation in a PI3K-dependent manner. Pertussis toxin also blocked Abeta-induced cell death and JNK activation suggesting that G(i/o) proteins were upstream activators of JNK. The results suggest that activation of the JNK pathway and cdk5 may be initial signaling cascades in Abeta-induced cell death.
Collapse
Affiliation(s)
- Wanli Wei
- Molecular Neurobiology Unit, Laboratory of Cellular and Molecular Biology, NIA, Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|
134
|
Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A. Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A 2002; 99:6364-9. [PMID: 11959919 PMCID: PMC122954 DOI: 10.1073/pnas.092136199] [Citation(s) in RCA: 614] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2001] [Accepted: 03/08/2002] [Indexed: 11/18/2022] Open
Abstract
Senile plaques and neurofibrillary tangles, the two hallmark lesions of Alzheimer's disease, are the results of the pathological deposition of proteins normally present throughout the brain. Senile plaques are extracellular deposits of fibrillar beta-amyloid peptide (Abeta); neurofibrillary tangles represent intracellular bundles of self-assembled hyperphosphorylated tau proteins. Although these two lesions are often present in the same brain areas, a mechanistic link between them has yet to be established. In the present study, we analyzed whether tau plays a key role in fibrillar Abeta-induced neurite degeneration in central neurons. Cultured hippocampal neurons obtained from wild-type, tau knockout, and human tau transgenic mice were treated with fibrillar Abeta. Morphological analysis indicated that neurons expressing either mouse or human tau proteins degenerated in the presence of Abeta. On the other hand, tau-depleted neurons showed no signs of degeneration in the presence of Abeta. These results provide direct evidence supporting a key role for tau in the mechanisms leading to Abeta-induced neurodegeneration in the central nervous system. In addition, the analysis of the composition of the cytoskeleton of tau-depleted neurons suggested that the formation of more dynamic microtubules might confer resistance to Abeta-mediated neurodegeneration.
Collapse
Affiliation(s)
- Mark Rapoport
- Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
135
|
Chen Q, Yoshida H, Schubert D, Maher P, Mallory M, Masliah E. Presenilin binding protein is associated with neurofibrillary alterations in Alzheimer's disease and stimulates tau phosphorylation. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1597-602. [PMID: 11696419 PMCID: PMC1867048 DOI: 10.1016/s0002-9440(10)63005-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel presenilin binding protein, PBP, has recently been identified. PBP is localized to the particulate fraction of extracts of Alzheimer's disease brain but is found in the soluble fractions of brain from age matched normal controls. It is shown here that PBP is associated with neurofibrillary tangles in Alzheimer's disease brain. In addition, the expression of PBP increases the phosphorylation of tau in cultured cells. Therefore PBP may have a regulatory role in tau phosphorylation and in the genesis of neurofibrillary tangles.
Collapse
Affiliation(s)
- Q Chen
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
136
|
Schnurra I, Bernstein HG, Riederer P, Braunewell KH. The neuronal calcium sensor protein VILIP-1 is associated with amyloid plaques and extracellular tangles in Alzheimer's disease and promotes cell death and tau phosphorylation in vitro: a link between calcium sensors and Alzheimer's disease? Neurobiol Dis 2001; 8:900-9. [PMID: 11592857 DOI: 10.1006/nbdi.2001.0432] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate whether the observed association of intracellular neuronal calcium sensor (NCS) proteins with amyloid plaques and neurofibrillar tangles in Alzheimer brains is linked to a possible neuroprotective or neurotoxic activity of the protein, we performed cytotoxicity tests in PC12 cells transfected with the calcium sensor protein VILIP-1 (visinin-like protein) and the calcium buffer protein calbindin-D28K. Whereas VILIP-1 expression enhanced the neurotoxic effect of ionomycin already at low ionophore concentrations, calbindin-D28K protected against ionomycin-induced cytotoxicity only at high ionomycin and therefore calcium concentrations. However, in double-transfected cells calbindin-D28K rescued VILIP-1-mediated cytotoxicity at low ionomycin concentrations. Since VILIP-1 was found to be associated with fibrillar tangles in Alzheimer brains, we tested whether VILIP-1 has an influence on tau hyperphosphorylation. VILIP-1 expression enhanced hyperphosphorylation of tau protein compared to nontransfected or calbindin-D28K-transfected cells. These results raise the possibility that the observed reduction in VILIP-1-expressing cells may indicate a selective vulnerability of these neurons and that the calcium sensor protein is involved in the pathophysiology of Alzheimer's disease. The calcium sensor protein may influence tau phosphorylation and have a role in calcium-mediated neurotoxicity opposed to the previously discovered protective effect of calcium buffer proteins.
Collapse
Affiliation(s)
- I Schnurra
- Research Institute for Applied Neuroscience, FAN GmbH, Magdeburg, Germany
| | | | | | | |
Collapse
|
137
|
Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J Neurosci 2001. [PMID: 11157069 DOI: 10.1523/jneurosci.21-03-00834.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in presenilin genes are linked to early onset familial Alzheimer's disease (FAD). Previous work in non-neuronal cells indicates that presenilin-1 (PS1) associates with cytoskeletal elements and that it facilitates Notch1 signaling. Because Notch1 participates in the control of neurite growth, cultured hippocampal neurons were used to investigate the cytoskeletal association of PS1 and its potential role during neuronal development. We found that PS1 associates with microtubules (MT) and microfilaments (MF) and that its cytoskeletal association increases dramatically during neuronal development. PS1 was detected associated with MT in the central region of neuronal growth cones and with MF in MF-rich areas extending into filopodia and lamellipodia. In differentiated neurons, PS1 mutations reduced the interaction of PS1 with cytoskeletal elements, diminished the nuclear translocation of the Notch1 intracellular domain (NICD), and promoted a marked increase in total neurite length. In developing neurons, PS1 overexpression increased the nuclear translocation of NICD and inhibited neurite growth, whereas PS1 mutations M146V, I143T, and deletion of exon 9 (D9) did not facilitate NICD nuclear translocation and had no effect on neurite growth. In cultures that were treated with amyloid beta (Abeta), PS1 mutations significantly increased neuritic dystrophy and AD-like changes in tau such as hyperphosphorylation, release from MT, and increased tau protein levels. We conclude that PS1 participates in the regulation of neurite growth and stabilization in both developing and differentiated neurons. In the Alzheimer's brain PS1 mutations may promote neuritic dystrophy and tangle formation by interfering with Notch1 signaling and enhancing pathological changes in tau.
Collapse
|
138
|
Masliah E, Sisk A, Mallory M, Games D. Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. J Neuropathol Exp Neurol 2001; 60:357-68. [PMID: 11305871 DOI: 10.1093/jnen/60.4.357] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Overexpression of mutated human amyloid precursor protein (hAPP717V-->F) under control of the platelet-derived growth factor promoter (PDAPP minigene) in transgenic (tg) mice results in plaque formation and astroglial activation similar to Alzheimer disease (AD). However, the extent of the neurofibrillary pathology in this model is less understood. In order to determine if these mice develop AD-like neurofibrillary pathology, vibratome sections from PDAPP tg mice (4- to 20-months-old) were immunolabeled with antibodies against phosphorylated tau (AT8) and phosphorylated neurofilaments (SMI 312, TA51), and analyzed by laser scanning confocal and electron microscopy. Phosphorylated neurofilament-immunoreactive dystrophic neurites in plaques were first seen in mice at 10 to 12 months of age, while phosphorylated tau-immunoreactive dystrophic neurites were observed after 14 months of age. Immunoelectron microscopic analysis revealed that phosphorylated neurofilament immunoreactivity was diffusely distributed along filamentous aggregates (12-15 nm in diameter) in the plaque dystrophic neurites, and occasionally in neuronal cell bodies. In contrast, phosphorylated tau immunoreactivity was observed as clusters distributed along filamentous structures accumulating in the dystrophic neurites and around neurotubules in the axons. However, no paired helical filaments were observed. Taken together, these studies indicate that the PDAPP tg model recapitulates early cytoskeletal pathology similar to that observed in AD.
Collapse
Affiliation(s)
- E Masliah
- Department of Neurosciences, University of California San Diego, La Jolla 92093-0624, USA
| | | | | | | |
Collapse
|
139
|
Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from τ deficient mice. J Cell Sci 2001; 114:1179-87. [PMID: 11228161 DOI: 10.1242/jcs.114.6.1179] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conflicting evidence supports a role for τ as an essential neuronal cytoskeletal protein or as a redundant protein whose function can be fulfilled by other microtubule-associated proteins. To investigate the function of τ in axonogenesis, we created τ deficient mice by disrupting the TAU gene. The engineered mice do not express the τ protein, appear physically normal and are able to reproduce. In contrast to a previously reported τ knockout mouse, embryonic hippocampal cultures from τ deficient mice show a significant delay in maturation as measured by axonal and neuritic extensions. The classic technique of selectively enhancing axonal growth by growth on laminin substrates failed to restore normal neuronal maturation of τ knockout neurons. By mating human TAU-gene transgenic and τ knockout mice, we reconstituted τ-deficient neurons with human τ proteins and restored a normal pattern of axonal growth and neuronal maturation. The ability of human τ proteins to rescue τ-deficient mouse neurons confirms that τ expression affects the rate of neurite extension.
Collapse
Affiliation(s)
- H N Dawson
- Division of Neurology, Department of Medicine, Duke University, Durham, NC 27710 and OSV, Inc., Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
140
|
Wang CN, Chi CW, Lin YL, Chen CF, Shiao YJ. The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. J Biol Chem 2001; 276:5287-95. [PMID: 11083861 DOI: 10.1074/jbc.m006406200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid beta protein (Abeta) elicits a toxic effect on neurons in vitro and in vivo. In present study we attempt to elucidate the mechanism by which Abeta confers its neurotoxicity. The neuroprotective effects of phytoestrogens on Abeta-mediated toxicity were also investigated. Cortical neurons treated with 5 microm Abeta-(25-35) for 40 h decreased the cell viability by 45.5 +/- 4.6% concomitant with the appearance of apoptotic morphology. 50 microm kaempferol and apigenin decreased the Abeta-induced cell death by 81.5 +/- 9.4% and 49.2 +/- 9.9%, respectively. Abeta increased the activity of caspase 3 by 10.6-fold and to a lesser extent for caspase 2, 8, and 9. The Abeta-induced activation of caspase 3 and release of cytochrome c showed a biphasic pattern. Apigenin abrogated Abeta-induced cytochrome c release, and the activation of caspase cascade. Kaempferol showed a similar effect but to a less extent. Kaempferol was also capable of eliminating Abeta-induced accumulation of reactive oxygen species. These two events accounted for the remarkable effect of kaempferol on neuroprotection. Quercetin and probucol did not affect the Abeta-mediated neurotoxicity. However, they potentiated the protective effect of apigenin. Therefore, these results demonstrate that Abeta elicited activation of caspase cascades and reactive oxygen species accumulation, thereby causing neuronal death. The blockade of caspase activation conferred the major neuroprotective effect of phytoestrogens. The antioxidative activity of phytoestrogens also modulated their neuroprotective effects on Abeta-mediated toxicity.
Collapse
Affiliation(s)
- C N Wang
- National Research Institute of Chinese Medicine, No. 155-1 Sec. 2, Li-Nung Street, Peitou, Taipei 112, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
141
|
Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 2001; 20:27-39. [PMID: 11226152 PMCID: PMC140191 DOI: 10.1093/emboj/20.1.27] [Citation(s) in RCA: 691] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase-3beta (GSK-3beta) has been postulated to mediate Alzheimer's disease tau hyperphosphorylation, beta-amyloid-induced neurotoxicity and presenilin-1 mutation pathogenic effects. By using the tet-regulated system we have produced conditional transgenic mice overexpressing GSK-3beta in the brain during adulthood while avoiding perinatal lethality due to embryonic transgene expression. These mice show decreased levels of nuclear beta-catenin and hyperphosphorylation of tau in hippocampal neurons, the latter resulting in pretangle-like somatodendritic localization of tau. Neurons displaying somatodendritic localization of tau often show abnormal morphologies and detachment from the surrounding neuropil. Reactive astrocytosis and microgliosis were also indicative of neuronal stress and death. This was further confirmed by TUNEL and cleaved caspase-3 immunostaining of dentate gyrus granule cells. Our results demonstrate that in vivo overexpression of GSK-3beta results in neurodegeneration and suggest that these mice can be used as an animal model to study the relevance of GSK-3beta deregulation to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Pilar Gómez-Ramos
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC/Universidad Autónoma de Madrid,
Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Center for Neurobiology and Behavior, Columbia University, New York, NY, USA Corresponding author e-mail: J.J.Lucas and F.Hernández contributed equally to this work
| | - María A. Morán
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC/Universidad Autónoma de Madrid,
Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Center for Neurobiology and Behavior, Columbia University, New York, NY, USA Corresponding author e-mail: J.J.Lucas and F.Hernández contributed equally to this work
| | - René Hen
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC/Universidad Autónoma de Madrid,
Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Center for Neurobiology and Behavior, Columbia University, New York, NY, USA Corresponding author e-mail: J.J.Lucas and F.Hernández contributed equally to this work
| | - Jesús Avila
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC/Universidad Autónoma de Madrid,
Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Center for Neurobiology and Behavior, Columbia University, New York, NY, USA Corresponding author e-mail: J.J.Lucas and F.Hernández contributed equally to this work
| |
Collapse
|
142
|
Abstract
beta-amyloid (Abeta) has been proposed to play a role in the pathogenesis of Alzheimer's disease (AD). Deposits of insoluble Abeta are found in the brains of patients with AD and are one of the pathological hallmarks of the disease. It has been proposed that Abeta induces death by oxidative stress, possibly through the generation of peroxynitrite from superoxide and nitric oxide. In our current study, treatment with nitric oxide generators protected against Abeta-induced death, whereas inhibition of nitric oxide synthase afforded no protection, suggesting that formation of peroxynitrite is not critical for Abeta-mediated death. Previous studies have shown that aggregated Abeta can induce caspase-dependent apoptosis in cultured neurons. In all of the neuronal populations studied here (hippocampal neurons, sympathetic neurons, and PC12 cells), cell death was blocked by the broad spectrum caspase inhibitor N-benzyloxycarbonyl-val-ala-asp-fluoromethyl ketone and more specifically by the downregulation of caspase-2 with antisense oligonucleotides. In contrast, downregulation of caspase-1 or caspase-3 did not block Abeta(1-42)-induced death. Neurons from caspase-2 null mice were totally resistant to Abeta(1-42) toxicity, confirming the importance of this caspase in Abeta-induced death. The results indicate that caspase-2 is necessary for Abeta(1-42)-induced apoptosis in vitro.
Collapse
|
143
|
Rapoport M, Ferreira A. PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons. J Neurochem 2000; 74:125-33. [PMID: 10617113 DOI: 10.1046/j.1471-4159.2000.0740125.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
How senile plaques and neurofibrillary tangles are linked represents a major gap in our understanding of the pathophysiology of Alzheimer's disease (AD). We have previously shown that the addition of fibrillar beta-amyloid (Abeta) to mature hippocampal neurons results in progressive neuritic degeneration accompanied by the enhanced phosphorylation of adult tau isoforms. In the present study, we sought to obtain more direct evidence of the signal transduction pathway(s) activated by fibrillar Abeta leading to tau phosphorylation and the generation of dystrophic neurites. Our results indicated that fibrillar Abeta induced the progressive and sustained activation of the mitogen-activated protein kinase (MAPK) in mature hippocampal neurons. On the other hand, the specific inhibition of the MAPK signal transduction pathway by means of PD98059, a MAPK kinase (MEK) specific inhibitor, prevented the phosphorylation of tau (at Ser199/Ser202) induced by fibrillar Abeta. In addition, the inhibition of MAPK activation partially prevented neurite degeneration. Taken collectively, our results suggest that the sustained activation of the MAPK signal transduction pathway induced by fibrillar Abeta may lead to the abnormal phosphorylation of tau and the neuritic degeneration observed in AD.
Collapse
Affiliation(s)
- M Rapoport
- Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
144
|
Alvarez G, Muñoz-Montaño JR, Satrústegui J, Avila J, Bogónez E, Díaz-Nido J. Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett 1999; 453:260-4. [PMID: 10405156 DOI: 10.1016/s0014-5793(99)00685-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The deposition of beta-amyloid peptide (A beta), the hyperphosphorylation of tau protein and the death of neurons in certain brain regions are characteristic features of Alzheimer's disease. It has been proposed that the accumulation of aggregates of A beta is the trigger of neurodegeneration in this disease. In support of this view, several studies have demonstrated that the treatment of cultured neurons with A beta leads to the hyperphosphorylation of tau protein and neuronal cell death. Here we report that lithium prevents the enhanced phosphorylation of tau protein at the sites recognized by antibodies Tau-1 and PHF-1 which occurs when cultured rat cortical neurons are incubated with A beta. Interestingly, lithium also significantly protects cultured neurons from A beta-induced cell death. These results raise the possibility of using chronic lithium treatment for the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- G Alvarez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
145
|
Kampers T, Pangalos M, Geerts H, Wiech H, Mandelkow E. Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer's disease. FEBS Lett 1999; 451:39-44. [PMID: 10356980 DOI: 10.1016/s0014-5793(99)00522-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Alzheimer's disease and related dementias, human tau protein aggregates into paired helical filaments and neurofibrillary tangles. However, such tau aggregates have not yet been demonstrated in transgenic mouse models of the disease. One of the possible explanations would be that mouse tau has different properties which prevents it from aggregating. We have cloned several murine tau isoforms, containing three or four repeats and different combinations of inserts, expressed them in Escherichia coli and show here that they can all be assembled into paired helical filaments similar to those in Alzheimer's disease, using the same protocols as with human tau. Therefore, the absence of pathologically aggregated tau in transgenic mice cannot be explained by intrinsic differences in mouse tau protein and instead must be explained by other as yet unknown factors.
Collapse
Affiliation(s)
- T Kampers
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
146
|
Hüll M, Eistetter J, Fiebich BL, Bauer J. Glutamate but not interleukin-6 influences the phosphorylation of tau in primary rat hippocampal neurons. Neurosci Lett 1999; 261:33-6. [PMID: 10081920 DOI: 10.1016/s0304-3940(98)01003-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid plaques, neuritic degenerations, disturbed glutamatergic neurotransmission and a peculiar inflammatory response. Diffuse plaques develop into neuritic plaques when neurites undergo degeneration in the plaque area. Hyperphosphorylation of tau proteins is a major step in neuritic pathology. Interleukin-6 (IL-6) has been found in diffuse and neuritic amyloid plaques in AD. Therefore the question arises whether IL-6 is involved in the transformation of diffuse into neuritic plaques by affecting tau phosphorylation. We investigated the influence of glutamate and IL-6 on tau phosphorylation in cultured primary rat hippocampal neurons. Glutamate but not IL-6 induced a dephosphorylation of tau. Furthermore IL-6 did not influence the glutamate-induced dephoshorylation of tau. We conclude that the role of IL-6 in AD is not related to the phosphorylation of tau.
Collapse
Affiliation(s)
- M Hüll
- Department of Psychiatry and Psychotherapy, University of Freiburg, Medical School, Germany.
| | | | | | | |
Collapse
|
147
|
Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism. J Neurosci 1998. [PMID: 9736650 DOI: 10.1523/jneurosci.18-18-07296.1998] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The regional selectivity and mechanisms underlying the toxicity of the serine/threonine protein phosphatase inhibitor okadaic acid (OA) were investigated in hippocampal slice cultures. Image analysis of propidium iodide-labeled cultures revealed that okadaic acid caused a dose- and time-dependent injury to hippocampal neurons. Pyramidal cells in the CA3 region and granule cells in the dentate gyrus were much more sensitive to okadaic acid than the pyramidal cells in the CA1 region. Electron microscopy revealed ultrastructural changes in the pyramidal cells that were not consistent with an apoptotic process. Treatment with okadaic acid led to a rapid and sustained tyrosine phosphorylation of the mitogen-activated protein kinases ERK1 and ERK2 (p44/42(mapk)). The phosphorylation was markedly reduced after treatment of the cultures with the microbial alkaloid K-252a (a nonselective protein kinase inhibitor) or the MAP kinase kinase (MEK1/2) inhibitor PD98059. K-252a and PD98059 also ameliorated the okadaic acid-induced cell death. Inhibitors of protein kinase C, Ca2+/calmodulin-dependent protein kinase II, or tyrosine kinase were ineffective. These results indicate that sustained activation of the MAP kinase pathway, as seen after e.g., ischemia, may selectively harm specific subsets of neurons. The susceptibility to MAP kinase activation of the CA3 pyramidal cells and dentate granule cells may provide insight into the observed relationship between cerebral ischemia and dementia in Alzheimer's disease.
Collapse
|