101
|
Ardisson-Araújo DMP, Lima RN, Melo FL, Clem RJ, Huang N, Báo SN, Sosa-Gómez DR, Ribeiro BM. Genome sequence of Perigonia lusca single nucleopolyhedrovirus: insights into the evolution of a nucleotide metabolism enzyme in the family Baculoviridae. Sci Rep 2016; 6:24612. [PMID: 27273152 PMCID: PMC4895240 DOI: 10.1038/srep24612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/01/2016] [Indexed: 12/19/2022] Open
Abstract
The genome of a novel group II alphabaculovirus, Perigonia lusca single nucleopolyhedrovirus (PeluSNPV), was sequenced and shown to contain 132,831 bp with 145 putative ORFs (open reading frames) of at least 50 amino acids. An interesting feature of this novel genome was the presence of a putative nucleotide metabolism enzyme-encoding gene (pelu112). The pelu112 gene was predicted to encode a fusion of thymidylate kinase (tmk) and dUTP diphosphatase (dut). Phylogenetic analysis indicated that baculoviruses have independently acquired tmk and dut several times during their evolution. Two homologs of the tmk-dut fusion gene were separately introduced into the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, which lacks tmk and dut. The recombinant baculoviruses produced viral DNA, virus progeny, and some viral proteins earlier during in vitro infection and the yields of viral occlusion bodies were increased 2.5-fold when compared to the parental virus. Interestingly, both enzymes appear to retain their active sites, based on separate modeling using previously solved crystal structures. We suggest that the retention of these tmk-dut fusion genes by certain baculoviruses could be related to accelerating virus replication and to protecting the virus genome from deleterious mutation.
Collapse
Affiliation(s)
- Daniel M P Ardisson-Araújo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil.,Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Rayane Nunes Lima
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| | - Fernando L Melo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Ning Huang
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sônia Nair Báo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| | | | - Bergmann M Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
102
|
Rattanarojpong T, Khankaew S, Khunrae P, Vanichviriyakit R, Poomputsa K. Recombinant baculovirus mediates dsRNA specific to rr2 delivery and its protective efficacy against WSSV infection. J Biotechnol 2016; 229:44-52. [PMID: 27164257 DOI: 10.1016/j.jbiotec.2016.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 01/11/2023]
Abstract
White spot syndrome virus (WSSV) is a major causative agent in shrimp farming. Consequently, RNAi technology is an effective strategy to prevent WSSV infection in shrimp especially dsRNA targeting to rr2 of WSSV. In an effort to develop dsRNA expression in shrimp for control of WSSV infection, we developed a recombinant baculovirus expressing recombinant VP28 as the gene delivery system to carry a gene encoding dsRNA specific to rr2 for triggering the RNAi process in shrimp. The results showed that the recombinant baculovirus harboring VP28 was able to express VP28 indicated by Western blot with polyclonal antibody specific to VP28. VP28 transcript was detected in shrimp hemocytes after co-culture hemocytes with the recombinant baculovirus displaying VP28. In addition, we found that shrimp injected with the recombinant baculovirus displaying VP28 and encoding dsRNA synthetic gene specific to rr2 (Bac-VP28-dsrr2) showed the lowest cumulative mortality (33%) at 14days post infection (dpi) when compared to shrimp injected with baculovirus displaying VP28 (Bac-VP28) (64% cumulative mortality) (p<0.05). According to the results, shrimp injected with Bac-VP28-dsrr2 also showed significantly lower WSSV copies than shrimp injected with Bac-VP28 (p<0.05) along with the down-regulation of rr2 expression at 1, 3 and 7dpi. In conclusion, the Bac-VP28-dsrr2 was effective in prevention of WSSV infection. Therefore, the results obtained here can be applied to the prevention of WSSV infection by mixing the recombinant baculovirus with shrimp feed in the future.
Collapse
Affiliation(s)
- Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| | - Suthiwat Khankaew
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok 10400, Thailand
| | - Kanokwan Poomputsa
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
103
|
Wang XF, Liu QH, Wu Y, Huang J. Litopenaeus vannamei clathrin coat AP17 involved in white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2016; 52:309-316. [PMID: 26988289 DOI: 10.1016/j.fsi.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
White spot syndrome virus (WSSV) is the main pathogen of shrimp culture, and has brought great losses of the shrimp aquaculture industry every year since it has been found. However, the specific mechanism of the virus into the cell is not very clear. Recent research suggests that clathrin-mediated endocytosis is involved in WSSV infection. By sequence analysis, clathrin coat AP17 is an σ subunit of AP-2 complex which is involved in clathrin-mediated endocytosis. To obtain the full-length sequence of Clathrin coat AP17 of Litopenaeus vannamei (LvCCAP17), the rapid amplification of cDNA ends (RACE) was performed to get the sequence of 3'and 5' end and splicing by DNAMAN. The full-length sequence of LvCCAP17 is 842 bp and expected to encoding 142 amino acids, and the amino acid sequence was analyzed by online software. The mRNA expression of LvCCAP17 in different tissues was carried out with quantitative real-time PCR and the LvCCAP17 was detected in all tested tissues of Litopenaeus vannamei. The transcriptional expression level of LvCCAP17 in epithelium and hepatopancreas was significantly up-regulated after WSSV infection. Far-Western blotting and ELISA assay showed that LvCCAP17 interacted with rVP26 and rVP37. Silencing of LvCCAP17 gene by double-strand RNA (dsRNA) interference significantly delay of cumulative mortality rate in WSSV infected shrimp and reduced the expression level of immediate early gene 1(ie1) and vp28. These results indicated that clathrin-meated endocytosis is responsible for WSSV infection.
Collapse
Affiliation(s)
- Xiu-Fang Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Dalian Ocean University, Dalian, China
| | - Qing-Hui Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yin Wu
- Dalian Ocean University, Dalian, China
| | - Jie Huang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
104
|
Huang Y, Wang W, Ren Q. Two host microRNAs influence WSSV replication via STAT gene regulation. Sci Rep 2016; 6:23643. [PMID: 27029712 PMCID: PMC4814834 DOI: 10.1038/srep23643] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in post-transcriptional regulation of gene expression. During viral infection, viruses utilize hosts to enhance their replication by altering cellular miRNAs. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway plays crucial roles in the antiviral responses. In this study, two miRNAs (miR-9041 and miR-9850) from Macrobrachium rosenbergii were found to promote white spot syndrome virus (WSSV) replication. The up-regulation of miR-9041 or miR-9850 suppresses STAT expression in the gills of M. rosenbergii, which subsequently down-regulates the expression of its downstream dynamin (Dnm) genes: Dnm1, Dnm2, and Dnm3. Knockdown of miR-9041 and miR-9850 restricts WSSV replication by up-regulating STAT and Dnm gene expression. The silencing of STAT, Dnm1, Dnm2, or Dnm3 led to an increase of the number of WSSV copies in shrimp. The injection of recombinant Dnm1, Dnm2, or Dnm3 proteins could inhibit WSSV replication in vivo. Overall, our research indicates the roles of host miRNAs in the enhancement of WSSV replication by regulating the host JAK/STAT pathway.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
105
|
Draft Genome Sequence of White Spot Syndrome Virus Isolated from Cultured Litopenaeus vannamei in Mexico. GENOME ANNOUNCEMENTS 2016; 4:4/2/e01674-15. [PMID: 26966222 PMCID: PMC4786672 DOI: 10.1128/genomea.01674-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first genome sequence of a Mexican white spot syndrome virus is presented here. White spot syndrome is a shrimp pandemic virus that has devastated production in Mexico for more than 10 years. The availability of this genome will greatly aid epidemiological studies worldwide, contributing to the molecular diagnostic and disease prevention in shrimp farming.
Collapse
|
106
|
Rao R, Bhassu S, Bing RZY, Alinejad T, Hassan SS, Wang J. A transcriptome study on Macrobrachium rosenbergii hepatopancreas experimentally challenged with white spot syndrome virus (WSSV). J Invertebr Pathol 2016; 136:10-22. [PMID: 26880158 DOI: 10.1016/j.jip.2016.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
The world production of shrimp such as the Malaysian giant freshwater prawn, Macrobrachium rosenbergii is seriously affected by the white spot syndrome virus (WSSV). There is an urgent need to understand the host pathogen interaction between M. rosenbergii and WSSV which will be able to provide a solution in controlling the spread of this infectious disease and lastly save the aquaculture industry. Now, using Next Generation Sequencing (NGS), we will be able to capture the response of the M. rosenbergii to the pathogen and have a better understanding of the host defence mechanism. Two cDNA libraries, one of WSSV-challenged M. rosenbergii and a normal control one, were sequenced using the Illumina HiSeq™ 2000 platform. After de novo assembly and clustering of the unigenes from both libraries, 63,584 standard unigenes were generated with a mean size of 698bp and an N50 of 1137bp. We successfully annotated 35.31% of all unigenes by using BLASTX program (E-value <10-5) against NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genome pathway (KEGG) and Orthologous Groups of proteins (COG) databases. Gene Ontology (GO) assessment was conducted using BLAST2GO software. Differentially expressed genes (DEGs) by using the FPKM method showed 8443 host genes were significantly up-regulated whereas 5973 genes were significantly down-regulated. The differentially expressed immune related genes were grouped into 15 animal immune functions. The present study showed that WSSV infection has a significant impact on the transcriptome profile of M. rosenbergii's hepatopancreas, and further enhanced the knowledge of this host-virus interaction. Furthermore, the high number of transcripts generated in this study will provide a platform for future genomic research on freshwater prawns.
Collapse
Affiliation(s)
- Rama Rao
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Subha Bhassu
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Robin Zhu Ya Bing
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen 518083, China.
| | - Tahereh Alinejad
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Building 3, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| | - Jun Wang
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
107
|
Li C, Gao XX, Huang J, Liang Y. Studies of the viral binding proteins of shrimp BP53, a receptor of white spot syndrome virus. J Invertebr Pathol 2016; 134:48-53. [DOI: 10.1016/j.jip.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
108
|
Yan M, Liu L, Liang Q, He J, Weng S, He J, Xu X. A mitochondrial outer membrane-localized protein encoded by White spot syndrome virus. Virus Genes 2016; 52:290-3. [DOI: 10.1007/s11262-016-1291-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/09/2016] [Indexed: 12/27/2022]
|
109
|
Verbruggen B, Bickley LK, van Aerle R, Bateman KS, Stentiford GD, Santos EM, Tyler CR. Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments. Viruses 2016; 8:E23. [PMID: 26797629 PMCID: PMC4728583 DOI: 10.3390/v8010023] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host-pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host-pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.
Collapse
Affiliation(s)
- Bas Verbruggen
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| | - Lisa K Bickley
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| | - Ronny van Aerle
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | - Kelly S Bateman
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | - Grant D Stentiford
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| | - Charles R Tyler
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| |
Collapse
|
110
|
Li Z, Li F, Han Y, Xu L, Yang F. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection. J Virol 2016; 90:842-50. [PMID: 26512091 PMCID: PMC4702682 DOI: 10.1128/jvi.02357-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186-200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186-200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms.
Collapse
Affiliation(s)
- Zaipeng Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Yali Han
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| |
Collapse
|
111
|
Xie S, Zhang X, Zhang J, Li F, Xiang J. Envelope Proteins of White Spot Syndrome Virus (WSSV) Interact with Litopenaeus vannamei Peritrophin-Like Protein (LvPT). PLoS One 2015; 10:e0144922. [PMID: 26692362 PMCID: PMC4686314 DOI: 10.1371/journal.pone.0144922] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
White spot syndrome virus (WSSV) is a major pathogen in shrimp cultures. The interactions between viral proteins and their receptors on the surface of cells in a frontier target tissue are crucial for triggering an infection. In this study, a yeast two-hybrid (Y2H) library was constructed using cDNA obtained from the stomach and gut of Litopenaeus vannamei, to ascertain the role of envelope proteins in WSSV infection. For this purpose, VP37 was used as the bait in the Y2H library screening. Forty positive clones were detected after screening. The positive clones were analyzed and discriminated, and two clones belonging to the peritrophin family were subsequently confirmed as genuine positive clones. Sequence analysis revealed that both clones could be considered as the same gene, LV-peritrophin (LvPT). Co-immunoprecipitation confirmed the interaction between LvPT and VP37. Further studies in the Y2H system revealed that LvPT could also interact with other WSSV envelope proteins such as VP32, VP38A, VP39B, and VP41A. The distribution of LvPT in tissues revealed that LvPT was mainly expressed in the stomach than in other tissues. In addition, LvPT was found to be a secretory protein, and its chitin-binding ability was also confirmed.
Collapse
Affiliation(s)
- Shijun Xie
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jiquan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- * E-mail:
| |
Collapse
|
112
|
Thammasorn T, Sangsuriya P, Meemetta W, Senapin S, Jitrakorn S, Rattanarojpong T, Saksmerprome V. Large-scale production and antiviral efficacy of multi-target double-stranded RNA for the prevention of white spot syndrome virus (WSSV) in shrimp. BMC Biotechnol 2015; 15:110. [PMID: 26626024 PMCID: PMC4667486 DOI: 10.1186/s12896-015-0226-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 11/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a specific and effective approach for inhibiting viral replication by introducing double-stranded (ds)RNA targeting the viral gene. In this study, we employed a combinatorial approach to interfere multiple gene functions of white spot syndrome virus (WSSV), the most lethal shrimp virus, using a single-batch of dsRNA, so-called "multi-WSSV dsRNA." A co-cultivation of RNase-deficient E. coli was developed to produce dsRNA targeting a major structural protein (VP28) and a hub protein (WSSV051) with high number of interacting protein partners. RESULTS For a co-cultivation of transformed E. coli, use of Terrific broth (TB) medium was shown to improve the growth of the E. coli and multi-WSSV dsRNA yields as compared to the use of Luria Bertani (LB) broth. Co-culture expression was conducted under glycerol feeding fed-batch fermentation. Estimated yield of multi-WSSV dsRNA (μg/mL culture) from the fed-batch process was 30 times higher than that obtained under a lab-scale culture with LB broth. Oral delivery of the resulting multi-WSSV dsRNA reduced % cumulative mortality and delayed average time to death compared to the non-treated group after WSSV challenge. CONCLUSION The present study suggests a co-cultivation technique for production of antiviral dsRNA with multiple viral targets. The optimal multi-WSSV dsRNA production was achieved by the use of glycerol feeding fed-batch cultivation with controlled pH and dissolved oxygen. The cultivation technique developed herein should be feasible for industrial-scale RNAi applications in shrimp aquaculture. Interference of multiple viral protein functions by a single-batch dsRNA should also be an ideal approach for RNAi-mediated fighting against viruses, especially the large and complicated WSSV.
Collapse
Affiliation(s)
- Thitiporn Thammasorn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Pakkakul Sangsuriya
- Department of Biochemistry, Center of Excellence for Molecular Biology and Genomics of Shrimp, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. .,National Center of Genetic Engineering and Biotechnology, (BIOTEC), Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Watcharachai Meemetta
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,National Center of Genetic Engineering and Biotechnology, (BIOTEC), Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Sarocha Jitrakorn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,National Center of Genetic Engineering and Biotechnology, (BIOTEC), Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,National Center of Genetic Engineering and Biotechnology, (BIOTEC), Thailand Science Park, Pathum Thani, 12120, Thailand.
| |
Collapse
|
113
|
Huang J, Li F, Wu J, Yang F. White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis. Virology 2015; 486:35-43. [PMID: 26397221 DOI: 10.1016/j.virol.2015.08.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
White spot syndrome virus (WSSV) is a major pathogen of aquacultured shrimp. However, the mechanism of its entry remains poorly understood. In this study, by analyzing the internalization of WSSV using crayfish hematopoietic tissue (HPT) cells, we showed that WSSV virions were engulfed by cell membrane invaginations sharing the features of clathrin-coated pits and then internalized into coated cytoplasmic vesicles. Further investigation indicated that WSSV internalization was significantly inhibited by chlorpromazine (CPZ) but not genistein. The internalized virions were colocalized with endogenous clathrin as well as transferrin which undergoes clathrin-dependent uptake. Preventing endosome acidification by ammonium chloride (NH4Cl) or chloroquine (CQ) dramatically reduced WSSV entry as well. Moreover, disturbance of dynamin activity or depletion of membrane cholesterol also blocked WSSV uptake. These data indicate that WSSV enters crayfish HPT cells via clathrin-mediated endocytosis in a pH-dependent manner, and membrane cholesterol as well as dynamin is critical for efficient viral entry.
Collapse
Affiliation(s)
- Jiajun Huang
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Junjun Wu
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| |
Collapse
|
114
|
A novel viral thymidylate kinase with dual kinase activity. J Bioenerg Biomembr 2015; 47:431-40. [PMID: 26315341 DOI: 10.1007/s10863-015-9622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Nucleotide phosphorylation is a key step in DNA replication and viral infections, since suitable levels of nucleotide triphosphates pool are required for this process. Deoxythymidine monophosphate (dTMP) is produced either by de novo or salvage pathways, which is further phosphorylated to deoxythymidine triphosphate (dTTP). Thymidyne monophosphate kinase (TMK) is the enzyme in the junction of both pathways, which phosphorylates dTMP to yield deoxythymidine diphosphate (dTDP) using adenosine triphosphate (ATP) as a phosphate donor. White spot syndrome virus (WSSV) genome contains an open reading frame (ORF454) that encodes a thymidine kinase and TMK domains in a single polypeptide. We overexpressed the TMK ORF454 domain (TMKwssv) and its specific activity was measured with dTMP and dTDP as phosphate acceptors. We found that TMKwssv can phosphorylate dTMP to yield dTDP and also is able to use dTDP as a substrate to produce dTTP. Kinetic parameters K M and k cat were calculated for dTMP (110 μM, 3.6 s(-1)), dTDP (251 μM, 0.9 s(-1)) and ATP (92 μM, 3.2 s(-1)) substrates, and TMKwssv showed a sequential ordered bi-bi reaction mechanism. The binding constants K d for dTMP (1.9 μM) and dTDP (10 μM) to TMKwssv were determined by Isothermal Titration Calorimetry. The affinity of the nucleotidic analog stavudine monophosphate was in the same order of magnitude (K d 3.6 μM) to the canonical substrate dTMP. These results suggest that nucleotide analogues such as stavudine could be a suitable antiviral strategy for the WSSV-associated disease.
Collapse
|
115
|
Rozenberg A, Brand P, Rivera N, Leese F, Schubart CD. Characterization of fossilized relatives of the White Spot Syndrome Virus in genomes of decapod crustaceans. BMC Evol Biol 2015; 15:142. [PMID: 26187050 PMCID: PMC4506587 DOI: 10.1186/s12862-015-0380-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background The White Spot Syndrome Virus (WSSV) is an important pathogen that infects a variety of decapod species and causes a highly contagious disease in penaeid shrimps. Mass mortalities caused by WSSV have pronounced commercial impact on shrimp aquaculture. Until now WSSV is the only known member of the virus family Nimaviridae, a group with obscure phylogenetic affinities. Its isolated position makes WSSV studies challenging due to large number of genes without homology in other viruses or cellular organisms. Results Here we report the discovery of an unusually large amount of sequences with high similarity to WSSV in a genomic library from the Jamaican bromeliad crab Metopaulias depressus. De novo assembly of these sequences allowed for the partial reconstruction of the genome of this endogenized virus with total length of 200 kbp encompassed in three scaffolds. The genome includes at least 68 putative open reading frames with homology in WSSV, most of which are intact. Among these, twelve orthologs of WSSV genes coding for non-structural proteins and nine genes known to code for the major components of the WSSV virion were discovered. Together with reanalysis of two similar cases of WSSV-like sequences in penaeid shrimp genomic libraries, our data allowed comparison of gene composition and gene order between different lineages related to WSSV. Furthermore, screening of published sequence databases revealed sequences with highest similarity to WSSV and the newly described virus in genomic libraries of at least three further decapod species. Analysis of the viral sequences detected in decapods suggests that they are less a result of contemporary WSSV infection, but rather originate from ancestral infection events. Phylogenetic analyses suggest that genes were acquired repeatedly by divergent viruses or viral strains of the Nimaviridae. Conclusions Our results shed new light on the evolution of the Nimaviridae and point to a long association of this viral group with decapod crustaceans. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0380-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Ruhr University Bochum, Department of Animal Ecology, Evolution and Biodiversity, Bochum, Germany.
| | - Philipp Brand
- Ruhr University Bochum, Department of Animal Ecology, Evolution and Biodiversity, Bochum, Germany. .,University of California, Davis, Department of Evolution and Ecology, Center for Population Biology, Davis, USA.
| | - Nicole Rivera
- University of Regensburg, Department of Zoology and Evolutionary Biology, Regensburg, Germany.
| | - Florian Leese
- Ruhr University Bochum, Department of Animal Ecology, Evolution and Biodiversity, Bochum, Germany.
| | - Christoph D Schubart
- University of Regensburg, Department of Zoology and Evolutionary Biology, Regensburg, Germany.
| |
Collapse
|
116
|
Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans JD, de Miranda JR, Neumann P. The Apis mellifera Filamentous Virus Genome. Viruses 2015; 7:3798-815. [PMID: 26184284 PMCID: PMC4517127 DOI: 10.3390/v7072798] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022] Open
Abstract
A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.
Collapse
Affiliation(s)
- Laurent Gauthier
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | | | - Ulrike Hartmann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | - François Cousserans
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
| | - Jay D Evans
- Bee Research Laboratory, Beltsville, MD 20705, USA.
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden.
| | - Peter Neumann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland.
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland.
| |
Collapse
|
117
|
Shekhar MS, Ponniah AG. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp. JOURNAL OF FISH DISEASES 2015; 38:599-612. [PMID: 24953507 DOI: 10.1111/jfd.12279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- M S Shekhar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, Chennai, India
| | - A G Ponniah
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, Chennai, India
| |
Collapse
|
118
|
Ananphongmanee V, Srisala J, Sritunyalucksana K, Boonchird C. Yeast Surface Display of Two Proteins Previously Shown to Be Protective Against White Spot Syndrome Virus (WSSV) in Shrimp. PLoS One 2015; 10:e0128764. [PMID: 26083446 PMCID: PMC4471349 DOI: 10.1371/journal.pone.0128764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/01/2015] [Indexed: 12/11/2022] Open
Abstract
Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7) and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV) could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1) promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7) and partial VP28 (pVP28) were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA) using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against WSSV by oral administration.
Collapse
Affiliation(s)
| | - Jiraporn Srisala
- Shrimp-Virus Interaction Laboratory (ASVI), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kallaya Sritunyalucksana
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Shrimp-Virus Interaction Laboratory (ASVI), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chuenchit Boonchird
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
119
|
de Jesús Durán-Avelar M, Pérez-Enríquez R, Zambrano-Zaragoza JF, Montoya-Rodríguez L, Vázquez-Juárez R, Vibanco-Pérez N. Genotyping WSSV isolates from northwestern Mexican shrimp farms affected by white spot disease outbreaks in 2010-2012. DISEASES OF AQUATIC ORGANISMS 2015; 114:11-20. [PMID: 25958803 DOI: 10.3354/dao02844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
White spot disease (WSD) causes high mortality in cultured shrimp throughout the world. Its etiologic agent is the white spot syndrome virus (WSSV). The genomic repeat regions ORF 75, ORF 94, and ORF 125 have been used to classify WSSV isolates in epidemiological studies using PCR with specific primers and sequencing. The present study investigated the variation in nucleotide sequences from 107, 150, and 143 isolates of WSSV collected from Litopenaeus vannamei shrimp ponds with WSD outbreaks in northwestern Mexico during the period 2010-2012, in the genomic repeat regions ORFs 75, 94, and 125, respectively. The haplotypic nomenclature for each isolate was based on the number of repeat units and the position of single nucleotide polymorphisms on each ORF. We report finding 17, 43, and 66 haplotypes of ORFs 75, 94, and 125, respectively. The study found high haplotypic diversity in WSSV using the complete sequences of ORFs 94 and 125 as independent variables, but low haplotypic diversity for ORF 75. Different haplotypes of WSSV were found from region-to-region and year-to-year, though some individual haplotypes were found in different places and in more than one growing cycle. While these results suggest a high rate of mutation of the viral genome at these loci, or perhaps the introduction of new viral strains into the area, they are useful as a tool for epidemiological surveys. Two haplotypes from some of the ORFs in the same shrimp were encountered, suggesting the possibility of multiple infections.
Collapse
Affiliation(s)
- Ma de Jesús Durán-Avelar
- Universidad Autónoma de Nayarit, Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Tepic 63000, Nayarit, Mexico
| | | | | | | | | | | |
Collapse
|
120
|
Expression profile of bio-defense genes in Penaeus monodon gills in response to formalin inactivated white spot syndrome virus vaccine. Antiviral Res 2015; 117:60-8. [DOI: 10.1016/j.antiviral.2015.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 01/03/2023]
|
121
|
Li S, Wang Z, Li F, Xiang J. One type of VEGFR is involved in WSSV infection to the Pacific whiteleg shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:1-8. [PMID: 25576099 DOI: 10.1016/j.dci.2015.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
VEGF signaling pathway plays vital roles in many physiological processes including cell proliferation, differentiation, migration, survival, cell-cell communication, vessel permeability and virus-host interaction in mammalian species. However, the VEGF signaling pathway and its biological function are still poorly understood in crustaceans. In the present study, an essential member of VEGF signaling pathway, VEGF receptor (LvVEGFR), was isolated from Penaeid shrimp Litopenaeus vannamei and its function during virus infection was analyzed. The deduced amino acid sequence of LvVEGFR possessed all common features of VEGFRs reported in other species, including a signal peptide, six IG-like domains, one immunoglobulin subtype 2 domain, a transmembrane domain, a juxtamembrane domain, a protein kinase domain separated by a kinase insert sequence, one ATP binding site and one tyrosine-protein kinase active site. LvVEGFR is mainly expressed in hemocytes and intestine. The transcriptional level of LvVEGFR could be obviously up-regulated in hemocytes and intestine after WSSV infection. Silencing of LvVEGFR gene by double-strand RNA (dsRNA) interference could not only lead to a decrease of virus copy number in WSSV infected shrimp, but also reduce the mortality of shrimp during WSSV infection. These data suggested that VEGF signaling pathway might play an important role during viral infection to shrimp.
Collapse
Affiliation(s)
- Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, 7 Nanhai Road, Qingdao 266071, China
| | - Zhiwei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, 7 Nanhai Road, Qingdao 266071, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
122
|
Joseph TC, James R, Rajan LA, Surendran PK, Lalitha KV. White spot syndrome virus infection: Threat to crustacean biodiversity in Vembanad Lake, India. ACTA ACUST UNITED AC 2015; 7:51-54. [PMID: 28352566 PMCID: PMC4980699 DOI: 10.1016/j.btre.2015.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 04/14/2015] [Accepted: 04/28/2015] [Indexed: 10/24/2022]
Abstract
The Vembanad Lake located on the south-west coast of India, an ecological hotspot is the nursing ground of many economically important crustaceans. The prevalence of white spot syndrome virus (WSSV) among crustaceans from farmed, estuarine and marine environments surrounding the Vembanad Lake, India was detected using PCR. A total of 308 samples from aquaculture ponds consisting of six species of crustaceans collected from five different farms were tested for the presence of WSSV. Of these, 67% were found to carry the virus. A total of 258 samples of crustaceans from the Cochin backwater system that forms a part of the Vembanad lake viz., Metapenaeus dobsoni, Metapenaeus monoceros, Penaeus monodon and Penaeus indicus were found to contain WSSV in 62% of the samples. Fifteen species of crustaceans caught from the seas off Cochin were also screened for the presence of WSSV. Out of these, twelve species had WSSV incidence levels ranging from 6-23%. WSSV was not detected from three species of deep sea crustaceans tested. The black tiger shrimp, Penaeus monodon had the highest incidence of WSSV among the species screened in farmed, estuarine and marine environments.
Collapse
Affiliation(s)
- Toms C Joseph
- Microbiology, Fermentation and Biotechnology Division, Central Institute of Fisheries Technology, Cochin 682 029, Kerala, India
| | - Roswin James
- Microbiology, Fermentation and Biotechnology Division, Central Institute of Fisheries Technology, Cochin 682 029, Kerala, India
| | - L Anbu Rajan
- Microbiology, Fermentation and Biotechnology Division, Central Institute of Fisheries Technology, Cochin 682 029, Kerala, India
| | - P K Surendran
- Poothuvallil, Dr. Surendran Lane, Perumpadappu, Palluruthy P.O., Cochin 682 006, Kerala, India
| | - K V Lalitha
- Microbiology, Fermentation and Biotechnology Division, Central Institute of Fisheries Technology, Cochin 682 029, Kerala, India
| |
Collapse
|
123
|
Liu QH, Ma FF, Guan GK, Wang XF, Li C, Huang J. White spot syndrome virus VP51 interact with ribosomal protein L7 of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 44:382-388. [PMID: 25736720 DOI: 10.1016/j.fsi.2015.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/24/2015] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
The interaction between viral structural proteins and host plays key functions in viral infection. In previous studies, most research have been undertaken to explore the interaction of envelope structural proteins with host molecules. However, how the nucleocapsid proteins of WSSV interacted with host molecules remained largely unknown. In this study, the interaction of nucleocapsid protein VP51 and ribosomal protein L7 of Litopenaeus vannamei (LvRPL7) was reported. Furthermore, the mRNA transcriptional response of LvRPL7 to WSSV was investigated. The results showed that LvRPL7 was widely distributed in all analyzed tissues of L. vannamei. The high expression levels of LvRPL7 were found in the tissues of muscle and gills. The temporal expression of LvRPL7 in WSSV-challenged shrimp showed that LvRPL7 was up-regulated (P < 0.5) in the muscle at 8 h and 24 h post WSSV challenge and then restored to the normal levels. But the LvRPL7 expression was up-regulated (P < 0.5) in the hepatopancreas at 8 h post WSSV challenge and down-regulated at 12 h and 24 h post WSSV challenge. Indirect immunofluorescence assay indicated that LvRPL7 was mainly located on the surface and cytoplasm of hemocytes. Far-Western blotting showed that VP51 bound with LvRPL7. Moreover, ELISA results appeared that LvRPL7 interacted with VP51 in concentration dependent manner. Neutralization assay in vivo showed that anti-LvRPL7 antibody significantly delayed WSSV infection. Our results reveal that LvRPL7 was involved in WSSV infection.
Collapse
Affiliation(s)
- Qing-Hui Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Fang-Fang Ma
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Shanghai Ocean University, Shanghai, China
| | - Guang-Kuo Guan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Shanghai Ocean University, Shanghai, China
| | - Xiu-Fang Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Dalian Ocean University, Dalian, China
| | - Chen Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jie Huang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
124
|
Ding Z, Yao Y, Zhang F, Wan J, Sun M, Liu H, Zhou G, Tang J, Pan J, Xue H, Zhao Z. The first detection of white spot syndrome virus in naturally infected cultured Chinese mitten crabs, Eriocheir sinensis in China. J Virol Methods 2015; 220:49-54. [PMID: 25907468 DOI: 10.1016/j.jviromet.2015.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 04/06/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
Abstract
An epidemic with a high mortality rate (80-100%) recently occurred in the cultured Chinese mitten crab, Eriocheir sinensis, which is a very important economic crustacean species in China. Using negative stain, histopathology and nested PCR supplemented by sequencing we identified white spot syndrome virus (WSSV) in these crabs. Challenge experiments revealed that the disease was caused by WSSV and confirmed the crab's susceptibility to this virus, which was consistent with previous laboratory-based studies. A cumulative mortality of 100% was observed within 10 days post WSSV injection. This is the first report of WSSV-associated disease outbreaks in the Chinese mitten crab, which is normally reported as an important penaeid-shrimp viral pathogen. Furthermore, this is only the second report to describe a significant pathogen in pond-cultured E. sinensis. These results will enhance the early diagnosis of WSSV in the crab farms and help in monitoring efforts directed at determining the prevalence of the virus in E. sinensis.
Collapse
Affiliation(s)
- Zhengfeng Ding
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| | - Yufeng Yao
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fengxiang Zhang
- Aquaculture Promotion Center of Xinghua City, 68 Changan Road, Xinghua 225700, China
| | - Jinjuan Wan
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Hongyan Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Gang Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Jianqing Tang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Jianlin Pan
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| | - Hui Xue
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| | - Ziming Zhao
- Jiangsu Agri-animal Husbandry Vocational College, 8 Fenghuang East Street, Taizhou 225300, China.
| |
Collapse
|
125
|
Syed Musthaq SK, Kwang J. Reprint of "evolution of specific immunity in shrimp - a vaccination perspective against white spot syndrome virus". DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:342-353. [PMID: 25083808 DOI: 10.1016/j.dci.2014.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/11/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Invertebrates lack true adaptive immunity and it solely depends on the primitive immunity called innate immunity. However, various innate immune molecules and mechanisms are identified in shrimp that plays potential role against invading bacterial, fungal and viral pathogens. Perceiving the shrimp innate immune mechanisms will contribute in developing effective vaccine strategies against major shrimp pathogens. Hence this review intends to explore the innate immune molecules of shrimp with suitable experimental evidences together with the evolution of "specific immune priming" of invertebrates. In addition, we have emphasized on the development of an effective vaccine strategy against major shrimp pathogen, white spot syndrome virus (WSSV). The baculovirus displayed rVP28 (Bac-VP28), a major envelope protein of WSSV was utilized to study its vaccine efficacy by oral route. A significant advantage of this baculovirus expression cassette is the use of WSSV-immediate early 1 (ie1) promoter that derived the abundant expression of rVP28 protein at the early stage of the infection in insect cell. The orally vaccinated shrimp with Bac-VP28 transduced successfully in the shrimp cells as well as provided highest survival rate. In support to our vaccine efficacy we analysed Pattern Recognition Proteins (PRPs) β-1,3 glucan lipopolysaccharides (LGBP) and STAT gene profiles in the experimental shrimp. Indeed, the vaccination of shrimp with Bac-VP28 demonstrated some degree of specificity with enhanced survival rate when compared to control vaccination with Bac-wt. Hence it is presumed that the concept of "specific immune priming" in relevant to shrimp immunity is possible but may not be common to all shrimp pathogens.
Collapse
Affiliation(s)
- Syed Khader Syed Musthaq
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
126
|
Li Z, Chen W, Xu L, Li F, Yang F. Identification of the interaction domains of white spot syndrome virus envelope proteins VP28 and VP24. Virus Res 2015; 200:24-9. [PMID: 25637460 DOI: 10.1016/j.virusres.2015.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022]
Abstract
VP28 and VP24 are two major envelope proteins of white spot syndrome virus (WSSV). The direct interaction between VP28 and VP24 has been described in previous studies. In this study, we confirmed this interaction and mapped the interaction domains of VP28 and VP24 by constructing a series of deletion mutants. By co-immunoprecipitation, two VP28-binding domains of VP24 were located at amino acid residues 46-61 and 148-160, while VP24-binding domain of VP28 was located at amino acid residues 31-45. These binding domains were further corroborated by peptide blocking assay, in which synthetic peptides spanning the binding domains were able to inhibit VP28-VP24 interaction, whereas same-size control peptides from non-binging regions did not.
Collapse
Affiliation(s)
- Zaipeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China; School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - Weiyu Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China
| | - Limei Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China.
| | - Feng Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China.
| |
Collapse
|
127
|
White spot syndrome virus protein kinase 1 defeats the host cell's iron-withholding defense mechanism by interacting with host ferritin. J Virol 2014; 89:1083-93. [PMID: 25378496 DOI: 10.1128/jvi.02318-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Iron is an essential nutrient for nearly all living organisms, including both hosts and invaders. Proteins such as ferritin regulate the iron levels in a cell, and in the event of a pathogenic invasion, the host can use an iron-withholding mechanism to restrict the availability of this essential nutrient to the invading pathogens. However, pathogens use various strategies to overcome this host defense. In this study, we demonstrated that white spot syndrome virus (WSSV) protein kinase 1 (PK1) interacted with shrimp ferritin in the yeast two-hybrid system. A pulldown assay and 27-MHz quartz crystal microbalance (QCM) analysis confirmed the interaction between PK1 and both ferritin and apoferritin. PK1 did not promote the release of iron ions from ferritin, but it prevented apoferritin from binding ferrous ions. When PK1 was overexpressed in Sf9 cells, the cellular labile iron pool (LIP) levels were elevated significantly. Immunoprecipitation and atomic absorption spectrophotometry (AAS) further showed that the number of iron ions bound by ferritin decreased significantly at 24 h post-WSSV infection. Taken together, these results suggest that PK1 prevents apoferritin from iron loading, and thus stabilizes the cellular LIP levels, and that WSSV uses this novel mechanism to counteract the host cell's iron-withholding defense mechanism. IMPORTANCE We show here that white spot syndrome virus (WSSV) ensures the availability of iron by using a previously unreported mechanism to defeat the host cell's iron-withholding defense mechanism. This defense is often implemented by ferritin, which can bind up to 4,500 iron atoms and acts to sequester free iron within the cell. WSSV's novel counterstrategy is mediated by a direct protein-protein interaction between viral protein kinase 1 (PK1) and host ferritin. PK1 interacts with both ferritin and apoferritin, suppresses apoferritin's ability to sequester free iron ions, and maintains the intracellular labile iron pool (LIP), and thus the availability of free iron is increased within cells.
Collapse
|
128
|
Thomas A, Sudheer NS, Viswanathan K, Kiron V, Bright Singh IS, Narayanan RB. Immunogenicity and protective efficacy of a major White Spot Syndrome Virus (WSSV) envelope protein VP24 expressed in Escherichia coli against WSSV. J Invertebr Pathol 2014; 123:17-24. [DOI: 10.1016/j.jip.2014.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/16/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
|
129
|
Characterization of white spot syndrome virus VP52B and its interaction with VP26. Virus Genes 2014; 50:46-51. [PMID: 25331340 DOI: 10.1007/s11262-014-1126-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
White spot syndrome virus (WSSV) is one of the major pathogens of cultured shrimp. Identification of envelope protein interactions has become a central issue for the understanding of WSSV assembly. In this paper, WSSV envelope protein VP52B was fused with GST-tag and expressed in Escherichia coli BL-21(DE3). Immunogold-electron microscopy revealed that VP52B was located on the outside surface of WSSV virions. Far-Western blotting analysis suggested that VP52B might directly interact with a major viral envelope protein VP26, and their interaction was confirmed by GST pull-down assay. Further investigation showed that the VP52B binding domain was located between residues 135-170 of VP26. These findings will enhance our understanding of the molecular mechanisms of WSSV morphogenesis.
Collapse
|
130
|
Gudkovs N, Murwantoko M, Walker PJ. Stability of the WSSV ORF94 VNTR genotype marker during passage in marine shrimp, freshwater crayfish and freshwater prawns. DISEASES OF AQUATIC ORGANISMS 2014; 111:249-257. [PMID: 25320037 DOI: 10.3354/dao02780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The white spot syndrome virus (WSSV) genome contains 3 variable number tandem repeat (VNTR) regions, located in open reading frame (ORF) 75, ORF94 and ORF125, which have been employed for molecular epizootiological studies. A previous report suggested that the ORF 94 VNTR is highly unstable, varying in the number of tandem repeats during single passages from shrimp to other crustaceans. As such rapid variations would have profound implications for the interpretation of molecular epizootiological data, we re-examined the stability of the ORF94 VNTR. Two WSSV isolates with different ORF94 VNTR genotypes (TRS5 and TRS7) were obtained from disease outbreaks in farmed black tiger shrimp Penaeus monodon in Indonesia. High titre stocks of each virus were produced by injection in specific pathogen-free (SPF) Pacific white shrimp Litopenaeus vannamei with filtered infected tissue extracts, and the genotypes were confirmed. Each stock (macerated tissue) was then used to feed SPF Pacific white shrimp, freshwater crayfish (Cherax sp.) and freshwater prawns Macrobrachium rosenbergii through 3 successive passages involving alternative hosts at each level. Taqman real-time PCR was conducted on samples from each group to confirm infection and quantify viral genetic loads. ORF94 VNTR genotype analysis conducted on samples from each of the 43 passage groups indicated no variations in the VNTR number in either genotype TRS5 or genotype TRS7. This finding is contrary to the previous report and suggests that ORF94 VNTR are stable during multiple passages in these crustaceans.
Collapse
Affiliation(s)
- Nicholas Gudkovs
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | | | | |
Collapse
|
131
|
Syed Musthaq SK, Kwang J. Evolution of specific immunity in shrimp - a vaccination perspective against white spot syndrome virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:279-290. [PMID: 24780624 DOI: 10.1016/j.dci.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/11/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Invertebrates lack true adaptive immunity and it solely depends on the primitive immunity called innate immunity. However, various innate immune molecules and mechanisms are identified in shrimp that plays potential role against invading bacterial, fungal and viral pathogens. Perceiving the shrimp innate immune mechanisms will contribute in developing effective vaccine strategies against major shrimp pathogens. Hence this review intends to explore the innate immune molecules of shrimp with suitable experimental evidences together with the evolution of "specific immune priming" of invertebrates. In addition, we have emphasized on the development of an effective vaccine strategy against major shrimp pathogen, white spot syndrome virus (WSSV). The baculovirus displayed rVP28 (Bac-VP28), a major envelope protein of WSSV was utilized to study its vaccine efficacy by oral route. A significant advantage of this baculovirus expression cassette is the use of WSSV-immediate early 1 (ie1) promoter that derived the abundant expression of rVP28 protein at the early stage of the infection in insect cell. The orally vaccinated shrimp with Bac-VP28 transduced successfully in the shrimp cells as well as provided highest survival rate. In support to our vaccine efficacy we analysed Pattern Recognition Proteins (PRPs) β-1,3 glucan lipopolysaccharides (LGBP) and STAT gene profiles in the experimental shrimp. Indeed, the vaccination of shrimp with Bac-VP28 demonstrated some degree of specificity with enhanced survival rate when compared to control vaccination with Bac-wt. Hence it is presumed that the concept of "specific immune priming" in relevant to shrimp immunity is possible but may not be common to all shrimp pathogens.
Collapse
Affiliation(s)
- Syed Khader Syed Musthaq
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
132
|
Huang PH, Lu SC, Yang SH, Cai PS, Lo CF, Chang LK. Regulation of the immediate-early genes of white spot syndrome virus by Litopenaeus vannamei kruppel-like factor (LvKLF). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:364-372. [PMID: 24881625 DOI: 10.1016/j.dci.2014.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Kruppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins, and act as important regulators with diverse roles in cell growth, proliferation, differentiation, apoptosis and tumorigenesis. Our previous research showed that PmKLF from Penaeus monodon is crucial for white spot syndrome virus (WSSV) infection, yet the mechanisms by which PmKLF influences WSSV infection remain unclear. This study cloned KLF from Litopenaeus vannamei (LvKLF), which had 93% similarity with PmKLF. LvKLF formed a dimer via the C-terminal zinc-finger motif. Knockdown of LvKLF expression by dsRNA injection in WSSV-challenged shrimps was found to significantly inhibit the transcription of two important immediate-early (IE) genes, IE1 and WSSV304, and also reduced WSSV copy numbers. Moreover, reporter assays revealed that the promoter activities of these two WSSV IE genes were substantially enhanced by LvKLF. Mutations introduced in the promoter sequences of IE1 and WSSV304 were shown to abolish LvKLF activation of promoter activities; and an electrophoretic mobility shift assay demonstrated that LvKLF binds to putative KLF-response elements (KRE) in the promoters. Taken together, these results indicate that LvKLF transcriptional regulation of key IE genes is critical to WSSV replication.
Collapse
Affiliation(s)
- Ping-Han Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shao-Chia Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Han Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Si Cai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
133
|
Wang XW, Xu YH, Xu JD, Zhao XF, Wang JX. Collaboration between a Soluble C-Type Lectin and Calreticulin Facilitates White Spot Syndrome Virus Infection in Shrimp. THE JOURNAL OF IMMUNOLOGY 2014; 193:2106-2117. [DOI: 10.4049/jimmunol.1400552] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
White spot syndrome virus (WSSV) mainly infects crustaceans through the digestive tract. Whether C-type lectins (CLs), which are important receptors for many viruses, participate in WSSV infection in the shrimp stomach remains unknown. In this study, we orally infected kuruma shrimp Marsupenaeus japonicus to model the natural transmission of WSSV and identified a CL (designated as M. japonicus stomach virus–associated CL [MjsvCL]) that was significantly induced by virus infection in the stomach. Knockdown of MjsvCL expression by RNA interference suppressed the virus replication, whereas exogenous MjsvCL enhanced it. Further analysis by GST pull-down and coimmunoprecipitation showed that MjsvCL could bind to viral protein 28, the most abundant and functionally relevant envelope protein of WSSV. Furthermore, cell-surface calreticulin was identified as a receptor of MjsvCL, and the interaction between these proteins was a determinant for the viral infection–promoting activity of MjsvCL. The MjsvCL–calreticulin pathway facilitated virus entry likely in a cholesterol-dependent manner. This study provides insights into a mechanism by which soluble CLs capture and present virions to the cell-surface receptor to facilitate viral infection.
Collapse
Affiliation(s)
- Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yi-Hui Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Ji-Dong Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
134
|
Tuyen NX, Verreth J, Vlak JM, de Jong MCM. Horizontal transmission dynamics of White spot syndrome virus by cohabitation trials in juvenile Penaeus monodon and P. vannamei. Prev Vet Med 2014; 117:286-94. [PMID: 25189688 DOI: 10.1016/j.prevetmed.2014.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/21/2014] [Accepted: 08/14/2014] [Indexed: 11/25/2022]
Abstract
White spot syndrome virus (WSSV), a rod-shaped double-stranded DNA virus, is an infectious agent causing fatal disease in shrimp farming around the globe. Within shrimp populations WSSV is transmitted very fast, however, the modes and dynamics of transmission of this virus are not well understood. In the current study the dynamics of disease transmission of WSSV were investigated in small, closed populations of Penaeus monodon and Penaeus vannamei. Pair cohabitation experiments using PCR as a readout for virus infection were used to estimate transmission parameters for WSSV in these two species. The mortality rate of contact-infected shrimp in P. monodon was higher than the rate in P. vannamei. The transmission rate parameters for WSSV were not different between the two species. The relative contribution of direct and indirect transmission rates of WSSV differed between the two species. For P. vannamei the direct contact transmission rate of WSSV was significantly lower than the indirect environmental transmission rate, but for P. monodon, the opposite was found. The reproduction ratio R0 for WSSV for these two species of shrimp was estimated to be above one: 2.07 (95%CI 1.53, 2.79) for P. monodon and 1.51 (95%CI 1.12, 2.03) for P. vannamei. The difference in R0 between the two species is due to a lower host mortality and hence a longer infectious period of WSSV in P. monodon.
Collapse
Affiliation(s)
- N X Tuyen
- Quantitative Veterinary Epidemiology Group, WU Animal sciences, Wageningen University, Radix Building, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; Research Institute for Aquaculture No. 2, 116 Nguyen Dinh Chieu St., HoChiMinh City, Viet Nam.
| | - J Verreth
- Aquaculture and Fisheries Group, WU Animal Sciences, Wageningen University, 6700AH Wageningen, The Netherlands
| | - J M Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - M C M de Jong
- Quantitative Veterinary Epidemiology Group, WU Animal sciences, Wageningen University, Radix Building, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
135
|
Sindhupriya M, Saravanan P, Otta SK, Amarnath CB, Arulraj R, Bhuvaneswari T, Praveena PE, Jithendran KP, Ponniah AG. White spot syndrome virus (WSSV) genome stability maintained over six passages through three different penaeid shrimp species. DISEASES OF AQUATIC ORGANISMS 2014; 111:23-29. [PMID: 25144114 DOI: 10.3354/dao02786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
White spot syndrome virus (WSSV) replicates rapidly, can be extremely pathogenic and is a common cause of mass mortality in cultured shrimp. Variable number tandem repeat (VNTR) sequences present in the open reading frame (ORF)94, ORF125 and ORF75 regions of the WSSV genome have been used widely as genetic markers in epidemiological studies. However, reports that VNTRs might evolve rapidly following even a single transmission through penaeid shrimp or other crustacean hosts have created confusion as to how VNTR data is interpreted. To examine VNTR stability again, 2 WSSV strains (PmTN4RU and LvAP11RU) with differing ORF94 tandem repeat numbers and slight differences in apparent virulence were passaged sequentially 6 times through black tiger shrimp Penaeus monodon, Indian white shrimp Feneropenaeus indicus or Pacific white leg shrimp Litopenaeus vannamei. PCR analyses to genotype the ORF94, ORF125 and ORF75 VNTRs did not identify any differences from either of the 2 parental WSSV strains after multiple passages through any of the shrimp species. These data were confirmed by sequence analysis and indicate that the stability of the genome regions containing these VNTRs is quite high at least for the WSSV strains, hosts and number of passages examined and that the VNTR sequences thus represent useful genetic markers for studying WSSV epidemiology.
Collapse
Affiliation(s)
- M Sindhupriya
- Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai-600 028, India
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Valdez A, Yepiz-Plascencia G, Ricca E, Olmos J. First Litopenaeus vannamei
WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis
spores surface. J Appl Microbiol 2014; 117:347-57. [DOI: 10.1111/jam.12550] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/22/2014] [Accepted: 05/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. Valdez
- Molecular Microbiology Laboratory; Centro de Investigación Científica y de Educación Superior de Ensenada; Ensenada México
| | - G. Yepiz-Plascencia
- Laboratorio de Biología Molecular de Organismos Acuáticos; Centro de Investigación en Alimentación y Desarrollo; Hermosillo México
| | - E. Ricca
- Department of Structural and Functional Biology; Federico II University; Naples Italy
| | - J. Olmos
- Molecular Microbiology Laboratory; Centro de Investigación Científica y de Educación Superior de Ensenada; Ensenada México
| |
Collapse
|
137
|
Kulkarni AD, Kiron V, Rombout JHWM, Brinchmann MF, Fernandes JMO, Sudheer NS, Singh BIS. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus. Proteomics 2014; 14:1660-73. [PMID: 24782450 DOI: 10.1002/pmic.201300405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/23/2014] [Accepted: 04/25/2014] [Indexed: 11/12/2022]
Abstract
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Amod D Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | | | | | | | | | | |
Collapse
|
138
|
Wen R, Li F, Li S, Xiang J. Function of shrimp STAT during WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2014; 38:354-360. [PMID: 24727196 DOI: 10.1016/j.fsi.2014.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
JAK/STAT signaling pathway plays key roles in the antiviral immunity of mammals, fish and insect. However, limited knowledge is known about the function of JAK/STAT signaling pathway in the antiviral immunity of shrimp although virus disease has caused severe mortality in shrimp aquaculture. In order to understand the function of JAK/STAT signaling pathway in the antiviral immunity of shrimp, dsRNA interfering technique was used to silence the expression of STAT gene in Litopenaeus vannamei, and the mortality of shrimp was detected after WSSV infection. Furthermore, the expressions of some potential target genes regulated by STAT or genes related to RNA interfering pathway were detected in STAT silenced shrimp during WSSV infection. The WSSV copy number in STAT silenced shrimp was 10(2)-10(3) copies/ng DNA which was much lower than that in the control. The mortality in STAT silenced shrimp caused by WSSV infection decreased very significantly compared to their controls. The function of STAT was verified in vitro cultured cells of hematopoietic tissue of crayfish Cherax quadricarinatus by adding specific inhibitor of STAT3(S3I-201), and the cultured cells treated with S3I-201 showed much less WSSV copy number than their controls, which further suggested that STAT might be helpful for the replication of WSSV. Expression analysis on the potential STAT target genes and genes in RNA interfering pathway provide important information for understanding the functional mechanism of STAT in antiviral immunity of shrimp.
Collapse
Affiliation(s)
- Rong Wen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
139
|
Bioinformatic prediction of WSSV-host protein-protein interaction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:416543. [PMID: 24982879 PMCID: PMC4055298 DOI: 10.1155/2014/416543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022]
Abstract
WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1) and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP) encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA), two integrin beta (ITGB), and one syndecan (SDC). Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.
Collapse
|
140
|
Hijacking of host calreticulin is required for the white spot syndrome virus replication cycle. J Virol 2014; 88:8116-28. [PMID: 24807724 DOI: 10.1128/jvi.01014-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have previously shown that multifunctional calreticulin (CRT), which resides in the endoplasmic reticulum (ER) and is involved in ER-associated protein processing, responds to infection with white spot syndrome virus (WSSV) by increasing mRNA and protein expression and by forming a complex with gC1qR and thereby delaying apoptosis. Here, we show that CRT can directly interact with WSSV structural proteins, including VP15 and VP28, during an early stage of virus infection. The binding of VP28 with CRT does not promote WSSV entry, and CRT-VP15 interaction was detected in the viral genome in virally infected host cells and thus may have an effect on WSSV replication. Moreover, CRT was detected in the viral envelope of purified WSSV virions. CRT was also found to be of high importance for proper oligomerization of the viral structural proteins VP26 and VP28, and when CRT glycosylation was blocked with tunicamycin, a significant decrease in both viral replication and assembly was detected. Together, these findings suggest that CRT confers several advantages to WSSV, from the initial steps of WSSV infection to the assembly of virions. Therefore, CRT is required as a "vital factor" and is hijacked by WSSV for its replication cycle. Importance: White spot syndrome virus (WSSV) is a double-stranded DNA virus and the cause of a serious disease in a wide range of crustaceans that often leads to high mortality rates. We have previously shown that the protein calreticulin (CRT), which resides in the endoplasmic reticulum (ER) of the cell, is important in the host response to the virus. In this report, we show that the virus uses this host protein to enter the cell and to make the host produce new viral structural proteins. Through its interaction with two viral proteins, the virus "hijacks" host calreticulin and uses it for its own needs. These findings provide new insight into the interaction between a large DNA virus and the host protein CRT and may help in understanding the viral infection process in general.
Collapse
|
141
|
Carrasco-Miranda JS, Lopez-Zavala AA, Arvizu-Flores AA, Garcia-Orozco KD, Stojanoff V, Rudiño-Piñera E, Brieba LG, Sotelo-Mundo RR. Crystal structure of the shrimp proliferating cell nuclear antigen: structural complementarity with WSSV DNA polymerase PIP-box. PLoS One 2014; 9:e94369. [PMID: 24728082 PMCID: PMC3984155 DOI: 10.1371/journal.pone.0094369] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/14/2014] [Indexed: 12/23/2022] Open
Abstract
DNA replication requires processivity factors that allow replicative DNA polymerases to extend long stretches of DNA. Some DNA viruses encode their own replicative DNA polymerase, such as the white spot syndrome virus (WSSV) that infects decapod crustaceans but still require host replication accessory factors. We have determined by X-ray diffraction the three-dimensional structure of the Pacific white leg shrimp Litopenaeus vannamei Proliferating Cell Nuclear Antigen (LvPCNA). This protein is a member of the sliding clamp family of proteins, that binds DNA replication and DNA repair proteins through a motif called PIP-box (PCNA-Interacting Protein). The crystal structure of LvPCNA was refined to a resolution of 3 Å, and allowed us to determine the trimeric protein assembly and details of the interactions between PCNA and the DNA. To address the possible interaction between LvPCNA and the viral DNA polymerase, we docked a theoretical model of a PIP-box peptide from the WSSV DNA polymerase within LvPCNA crystal structure. The theoretical model depicts a feasible model of interaction between both proteins. The crystal structure of shrimp PCNA allows us to further understand the mechanisms of DNA replication processivity factors in non-model systems.
Collapse
Affiliation(s)
| | | | - Aldo A. Arvizu-Flores
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | | | - Vivian Stojanoff
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y Estudios Avanzados, Irapuato, Guanajuato, México
| | | |
Collapse
|
142
|
|
143
|
White spot syndrome virus VP12 interacts with adenine nucleotide translocase of Litopenaeus vannamei. J Invertebr Pathol 2014; 118:28-33. [PMID: 24607653 DOI: 10.1016/j.jip.2014.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 11/22/2022]
Abstract
White spot syndrome virus VP12 contains cell attachment motif RGD which is considered to be critical for host cell binding. Until now, the function of this protein remains undefined. In this study, we explored the interaction of VP12 with host cells. A new shrimp protein (adenine nucleotide translocase of Litopenaeus vannamei, LvANT) is selected by far-western overlay assay. Tissue distribution of adenine nucleotide translocase mRNA showed that it was commonly spread in all the tissues detected. Cellular localization of LvANT in shrimp hemocytes showed that it was primarily located in the cytoplasm of hemocytes and colocalized with mitochondria. ELISA and far-western blot assay confirmed that VP12 interacted with LvANT. In vivo neutralization assay showed that anti-LvANT antibody can significantly reduce the mortality of shrimp challenged by WSSV at 48h post-treatment. Our results collectively showed that VP12 is involved in host cell binding via interaction with adenine nucleotide translocase.
Collapse
|
144
|
Sun Y, Li F, Sun Z, Zhang X, Li S, Zhang C, Xiang J. Transcriptome analysis of the initial stage of acute WSSV infection caused by temperature change. PLoS One 2014; 9:e90732. [PMID: 24595043 PMCID: PMC3942461 DOI: 10.1371/journal.pone.0090732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
White spot syndrome virus (WSSV) is the most devastating virosis threatening the shrimp culture industry worldwide. Variations of environmental factors in shrimp culture ponds usually lead to the outbreak of white spot syndrome (WSS). In order to know the molecular mechanisms of WSS outbreak induced by temperature variation and the biological changes of the host at the initial stage of WSSV acute infection, RNA-Seq technology was used to analyze the differentially expressed genes (DEGs) in shrimp with a certain amount of WSSV cultured at 18°C and shrimp whose culture temperature were raised to 25°C. To analyze whether the expression changes of the DEGs were due to temperature rising or WSSV proliferation, the expression of selected DEGs was analyzed by real-time PCR with another shrimp group, namely Group T, as control. Group T didn't suffer WSSV infection but was subjected to temperature rising in parallel. At the initial stage of WSSV acute infection, DEGs related to energy production were up-regulated, whereas most DEGs related to cell cycle and positive regulation of cell death and were down-regulated. Triose phosphate isomerase, enolase and alcohol dehydrogenase involved in glycosis were up-regulated, while pyruvate dehydrogenase, citrate synthase and isocitrate dehydrogenase with NAD as the coenzyme involved in TCA pathway were down-regulated. Also genes involved in host DNA replication, including DNA primase, DNA topoisomerase and DNA polymerase showed down-regulated expression. Several interesting genes including crustin genes, acting binding or inhibiting protein genes, a disintegrin and metalloproteinase domain-containing protein 9 (ADAM9) gene and a GRP 78 gene were also analyzed. Understanding the interactions between hosts and WSSV at the initial stage of acute infection will not only help to get a deep insight into the pathogenesis of WSSV but also provide clues for therapies.
Collapse
Affiliation(s)
- Yumiao Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chengsong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
145
|
Yingvilasprasert W, Supungul P, Tassanakajon A. PmTBC1D20, a Rab GTPase-activating protein from the black tiger shrimp, Penaeus monodon, is involved in white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:302-310. [PMID: 24076066 DOI: 10.1016/j.dci.2013.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
TBC (TRE2/BUB2/CDC16) domain proteins contain an ≈ 200-amino-acid motif and function as Rab GTPase-activating proteins that are required for regulating the activity of Rab proteins, and so, in turn, endocytic membrane trafficking in cells. TBC domain family member 20 (TBC1D20) has recently been reported to mediate Hepatitis C virus replication. Herein, PmTBC1D20 identified from the black tiger shrimp, Penaeus monodon, was characterized and evaluated for its role in white spot syndrome virus (WSSV) infection. The full-length cDNA sequence of PmTBC1D20 contains 2003 bp with a predicted 1443 bp open reading frame encoding a deduced 480 amino acid protein. Its transcript levels were significantly up-regulated at 24 and 48 h by ≈ 2.3- and 2.1-fold, respectively, after systemic infection with WSSV. In addition, depletion of PmTBC1D20 transcript in shrimps by double stranded RNA interference led to a decrease in the level of transcripts of three WSSV genes (VP28, ie1 and wsv477). This suggests the importance of PmTBC1D20 in WSSV infection. This is the first report of TBC1D20 in a crustacean and reveals the possible mechanism used by WSSV to modulate the activity of the host protein, PmTBC1D20, for its benefit in viral trafficking and replication.
Collapse
Affiliation(s)
- Wanchart Yingvilasprasert
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
146
|
Ahanger S, Sandaka S, Ananad D, Mani MK, Kondadhasula R, Reddy CS, Marappan M, Valappil RK, Majumdar KC, Mishra RK. Protection of shrimp Penaeus monodon from WSSV infection using antisense constructs. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:63-73. [PMID: 23907649 DOI: 10.1007/s10126-013-9529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
White spot syndrome caused by white spot syndrome virus (WSSV) is one of the most threatening diseases of shrimp culture industry. Previous studies have successfully demonstrated the use of DNA- and RNA-based vaccines to protect WSSV infection in shrimp. In the present study, we have explored the protective efficacy of antisense constructs directed against WSSV proteins, VP24, and VP28, thymidylate synthase (TS), and ribonucleotide reductase-2 (RR2) under the control of endogenous shrimp histone-3 (H3) or penaedin (Pn) promoter. Several antisense constructs were generated by inserting VP24 (pH3-VP24, pPn-VP24), VP28 (pH3-VP28, pPn-VP28), TS (pH3-TS, pPn-TS), and RR2 (pH3-RR2) in antisense orientation. These constructs were tested for their protective potential in WSSV infected cell cultures, and their effect on reduction of the viral load was assessed. A robust reduction in WSSV copy number was observed upon transfection of antisense constructs in hemocyte cultures derived from Penaeus monodon and Scylla serrata. When tested in vivo, antisense constructs offered a strong protection in WSSV challenged P. monodon. Constructs expressing antisense VP24 and VP28 provided the best protection (up to 90 % survivability) with a corresponding decrease in the viral load. Our work demonstrates that shrimp treated with antisense constructs present an efficient control strategy for combating WSSV infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Sajad Ahanger
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), E405-East Wing 3rd Floor, CCMB, Uppal Road, Hyderabad, 500007, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Ma FF, Liu QH, Guan GK, Li C, Huang J. Arginine kinase of Litopenaeus vannamei involved in white spot syndrome virus infection. Gene 2014; 539:99-106. [PMID: 24486504 DOI: 10.1016/j.gene.2014.01.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/11/2014] [Accepted: 01/16/2014] [Indexed: 11/19/2022]
Abstract
Virus-host interaction is important for virus infection. White spot syndrome virus VP14 contains transmembrane and signal peptides domain, which is considered to be important for virus infection. Until now, the function of this protein remains undefined. In this study, we explored the interaction of VP14 with host cell. A new shrimp protein (arginine kinase of Litopenaeus vannamei, LvAK) is selected and its localization in shrimp cells is also confirmed. Cellular localization of LvAK protein in shrimp hemocytes showed that LvAK was primarily located at the periphery of hemocytes and was scarcely detectable in the nucleus. Tissue distribution indicated that arginine kinase gene was spread commonly in the tissues and was highly present in shrimp muscle tissue. The expression of LvAK mRNA in muscle was significantly up-regulated after WSSV stimulation. Indirect immunofluorescence assay showed that LvAK interacted with VP14 in WSSV-infected shrimp. Injection of LvAK protein enhanced the mortality of shrimp infected with white spot syndrome virus (WSSV). These results showed that LvAK is involved in WSSV infection. Future research on this topic will help to reveal the molecular mechanism of WSSV infection.
Collapse
Affiliation(s)
- Fang-fang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Shanghai Ocean University, Shanghai, PR China
| | - Qing-hui Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China.
| | - Guang-kuo Guan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Shanghai Ocean University, Shanghai, PR China
| | - Chen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| |
Collapse
|
148
|
Li Q, Liu QH, Huang J. VP292 of White spot syndrome virus Interacts with VP26. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2014; 24:54-8. [PMID: 24426258 DOI: 10.1007/s13337-012-0111-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Interactions between virus structural proteins are suggested to be crucial for virus assembly. Many steps in the process of white spot syndrome virus (WSSV) assembly and maturation remain unclear. In this paper, we discovered a new interaction of WSSV VP292. Temporal-transcription analysis showed that VP292 is expressed in the late stage of WSSV infection. Western blot and matrix-assisted laser desorption ionization MS assays showed that VP292 interacts with VP26, a major envelope protein. Far-western blot provided further evidence for interaction between VP292 and VP26. These results collectively demonstrated that VP292 anchors to the envelope through interaction with VP26.
Collapse
Affiliation(s)
- Qian Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China ; Shanghai Ocean University, Shanghai, China
| | - Qing-Hui Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| |
Collapse
|
149
|
Li X, Meng X, Kong J, Luo K, Luan S, Cao B, Liu N, Pang J, Shi X. Identification, cloning and characterization of an extracellular signal-regulated kinase (ERK) from Chinese shrimp, Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1882-1890. [PMID: 24084041 DOI: 10.1016/j.fsi.2013.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
Extracellular signal-regulated kinase (ERK) is a serine/threonine-specific protein kinase, which participates in signaling transduction pathways that control intracellular events, including resumption of meiosis, embryogenesis, cell differentiation, cell proliferation, cell death and response to radiation. Some virus species evolved the ability to hijack the host cell ERK signaling transduction pathway for viral replications and gene expressions. To obtain a better understanding of ERK, we cloned a cDNA encoding ERK from the muscle of Fenneropenaeus chinensis (FcERK). The FcERK contained a 1098 bp open reading frame (ORF) encoding a protein of 365 amino acid residues with a conserved phosphorylation motif TEY in the kinase activation loop. Pair-wise and multiple sequence alignment revealed that ERK is highly conserved across taxa. The FcERK gene expressions in the hepatopancreas and gill were noticeably higher than the expression observed in the muscle. A challenge test was performed to reveal the responses of FcERK in different tissues to white spot syndrome virus (WSSV) infection. Post WSSV challenge, the FcERK expression in the gill significantly increased during the early stage of the viral infection, the FcERK expression in the muscle increased later than that in the gill, and the FcERK expression in the hepatopancreas significantly decreased. The FcERK gene expression profile accorded with the results that the virus primarily infects tissues originating from the ectoderm, with less infection of the tissues originating from the mesoderm, and hardly any infection in the tissues originating from the entoderm. Two single nucleotide polymorphisms (SNPs) were identified in the FcERK gene, involving C/T transition. The SNP genotypes of two groups of shrimps, respectively comprising 96 WSSV-resistant shrimps and 96 WSSV-susceptible shrimps were obtained using a high-resolution melting (HRM) method. In the two groups, the MAFs of both sites were greater than 0.05, and no site departed significantly (P < 0.05) from HWE. The genotype distributions of both mutation sites between the two groups were not significantly different. These results lead to a better understanding of the molecular mechanisms of the host-virus interaction and provide useful information for disease control.
Collapse
Affiliation(s)
- Xupeng Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Li X, Meng X, Kong J, Luo K, Luan S, Cao B, Liu N, Pang J, Shi X. Molecular cloning and characterization of a cathepsin B gene from the Chinese shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1604-1612. [PMID: 24041842 DOI: 10.1016/j.fsi.2013.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/24/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Cathepsin B is a unique member of the cathepsin superfamily, which acts as both an endopeptidase and peptidyl-dipeptidase. To obtain a better understanding of this enzyme, we cloned a cDNA encoding cathepsin B from the muscle of Fenneropenaeus chinensis (FcCB). FcCB contained a 996-bp open reading frame (ORF) encoding a protein of 331 amino acid residues with a putative signal peptide and a propeptide_C1 at the N-terminal, a glutamine oxyanion hole and active site cysteine, histidine and asparagine residues. A region from residue 79 to 327 conferred the peptidase activity of FcCB. Pair-wise and multiple sequence alignment with 17 other organisms, including ten different vertebrate species, five different invertebrate species and two different plant species, indicated that the signal peptide and the propeptide_C1 at the N-terminal of FcCB were less conserved than the mature protein, except when compared with Penaeus monodon, Litopenaeus vannamei and Marsupenaeus japonicas, all of which belong to the genus Penaeus. The expression of FcCB in the hepatopancreas was higher than that in the gill. The expression of FcCB in the gill was higher than that in the muscle. A challenge test was performed to reveal the responses of FcCB in different tissues to white spot syndrome virus (WSSV) infection, which causes serious economic losses in the shrimp farming industry. The FcCB gene expressions in the ectoderm, mesoderm and entoderm were not the same prior to WSSV infection, but at 6 h after WSSV challenge, the FcCB expression in the gill, hepatopancreas and muscle was up-regulated, suggesting that FcCB might be involved in the immune response to WSSV. Three single nucleotide polymorphisms (SNPs) were identified in the FcCB gene, involving C/T transitions, which are known as mutation hot spots. Notably, the three SNPs constituted a haplotype that can be used as an indicator of the haplotype block. The SNP genotypes of two groups of shrimps, respectively comprising 96 WSSV-resistant shrimps and 96 WSSV-susceptible shrimps, were obtained using a high-resolution melting (HRM) method. Associated factors, including observed heterozygosity (Ho), expected heterozygosity (He), minor allele frequency (MAF) and P-values for the deviation from Hardy-Weinberg equilibrium (HWE), were obtained. For the association analysis with WSSV resistance, the P-values were calculated using Pearson's chi-square test. In the two groups, the MAFs of all sites were greater than 0.05, and no site departed significantly (P < 0.05) from HWE. The genotype distribution of the C-984T mutation site between the two groups was not significantly different. These results lead to a better understanding of the molecular mechanisms of the host-virus interaction and provide useful information for solving the WSSV problem.
Collapse
Affiliation(s)
- Xupeng Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Key Laboratory for Sustainable Utilization of Marine Fisheries Resources of Chinese Department of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|