101
|
Fan XT, Zhao F, Ai Y, Andersen A, Hardy P, Ling F, Gerhardt GA, Zhang Z, Quintero JE. Cortical glutamate levels decrease in a non-human primate model of dopamine deficiency. Brain Res 2014; 1552:34-40. [PMID: 24398457 DOI: 10.1016/j.brainres.2013.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 12/19/2013] [Accepted: 12/29/2013] [Indexed: 11/28/2022]
Abstract
While Parkinson's disease is the result of dopaminergic dysfunction of the nigrostriatal system, the clinical manifestations of Parkinson's disease are brought about by alterations in multiple neural components, including cortical areas. We examined how 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration affected extracellular cortical glutamate levels by comparing glutamate levels in normal and MPTP-lesioned nonhuman primates (Macaca mulatta). Extracellular glutamate levels were measured using glutamate microelectrode biosensors. Unilateral MPTP-administration rendered the animals with hemiparkinsonian symptoms, including dopaminergic deficiencies in the substantia nigra and the premotor and motor cortices, and with statistically significant decreases in basal glutamate levels in the primary motor cortex on the side ipsilateral to the MPTP-lesion. These results suggest that the functional changes of the glutamatergic system, especially in the motor cortex, in models of Parkinson's disease could provide important insights into the mechanisms of this disease.
Collapse
Affiliation(s)
- X T Fan
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China.,Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA
| | - F Zhao
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry Education, Capital Medical University, Beijing 100069 China
| | - Y Ai
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA
| | - A Andersen
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| | - P Hardy
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| | - F Ling
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China
| | - G A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Center for Microelectrode Technology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| | - Z Zhang
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA
| | - J E Quintero
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Center for Microelectrode Technology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| |
Collapse
|
102
|
Thielsen KD, Moser JM, Schmitt-John T, Jensen MS, Jensen K, Holm MM. The Wobbler mouse model of amyotrophic lateral sclerosis (ALS) displays hippocampal hyperexcitability, and reduced number of interneurons, but no presynaptic vesicle release impairments. PLoS One 2013; 8:e82767. [PMID: 24349357 PMCID: PMC3859636 DOI: 10.1371/journal.pone.0082767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. It is a fatal degenerative disease, best recognized for its debilitating neuromuscular effects. ALS however also induces cognitive impairments in as many as 50% of affected individuals. Moreover, many ALS patients demonstrate cortical hyperexcitability, which has been shown to precede the onset of clinical symptoms. The wobbler mouse is a model of ALS, and like ALS patients the wobbler mouse displays cortical hyperexcitability. Here we investigated if the neocortical aberrations of the wobbler mouse also occur in the hippocampus. Consequently, we performed extracellular field excitatory postsynaptic potential recordings in the CA1 region of the hippocampus on acute brain slices from symptomatic (P45-P60) and presymptomatic (P17-P21) wobbler mice. Significant increased excitation of hippocampal synapses was revealed by leftward shifted input/output-curves in both symptomatic and presymptomatic wobbler mice, and substantiated by population spike occurrence analyses, demonstrating that the increased synaptic excitation precedes the onset of visible phenotypic symptoms in the mouse. Synaptic facilitation tested by paired-pulse facilitation and trains in wobbler and control mice showed no differences, suggesting the absence of presynaptic defects. Immunohistochemical staining revealed that symptomatic wobbler mice have a lower number of parvalbumin positive interneurons when compared to controls and presymptomatic mice. This study reveals that the wobbler mouse model of ALS exhibits hippocampal hyperexcitability. We suggest that the hyperexcitability could be caused by increased excitatory synaptic transmission and a concomitant reduced inhibition due to a decreased number of parvalbumin positive interneurons. Thus we substantiate that wobbler brain impairments are not confined to the motor cortex, but extend to the hippocampus. Importantly, we have revealed more details of the early pathophysiology in asymptomatic animals, and studies like the present may facilitate the development of novel treatment strategies for earlier intervention in ALS patients in the future.
Collapse
Affiliation(s)
- Karina D. Thielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob M. Moser
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thomas Schmitt-John
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Kimmo Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mai Marie Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
103
|
Thorns J, Jansma H, Peschel T, Grosskreutz J, Mohammadi B, Dengler R, Münte TF. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness. BMC Neurol 2013; 13:148. [PMID: 24138960 PMCID: PMC3853794 DOI: 10.1186/1471-2377-13-148] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 10/14/2013] [Indexed: 11/21/2022] Open
Abstract
Background Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Methods Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. Results ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Conclusions Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas F Münte
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany.
| |
Collapse
|
104
|
Caiazzo G, Corbo D, Trojsi F, Piccirillo G, Cirillo M, Monsurrò MR, Esposito F, Tedeschi G. Distributed corpus callosum involvement in amyotrophic lateral sclerosis: a deterministic tractography study using q-ball imaging. J Neurol 2013; 261:27-36. [DOI: 10.1007/s00415-013-7144-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022]
|
105
|
Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry 2013; 84:1161-70. [PMID: 23264687 PMCID: PMC3786661 DOI: 10.1136/jnnp-2012-304019] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the motor neurons in the motor cortex, brainstem and spinal cord. A combination of upper and lower motor neuron dysfunction comprises the clinical ALS phenotype. Although the ALS phenotype was first observed by Charcot over 100 years ago, the site of ALS onset and the pathophysiological mechanisms underlying the development of motor neuron degeneration remain to be elucidated. Transcranial magnetic stimulation (TMS) enables non-invasive assessment of the functional integrity of the motor cortex and its corticomotoneuronal projections. To date, TMS studies have established motor cortical and corticospinal dysfunction in ALS, with cortical hyperexcitability being an early feature in sporadic forms of ALS and preceding the clinical onset of familial ALS. Taken together, a central origin of ALS is supported by TMS studies, with an anterograde transsynaptic mechanism implicated in ALS pathogenesis. Of further relevance, TMS techniques reliably distinguish ALS from mimic disorders, despite a compatible peripheral disease burden, thereby suggesting a potential diagnostic utility of TMS in ALS. This review will focus on the mechanisms underlying the generation of TMS measures used in assessment of cortical excitability, the contribution of TMS in enhancing the understanding of ALS pathophysiology and the potential diagnostic utility of TMS techniques in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
106
|
Williams KL, Fifita JA, Vucic S, Durnall JC, Kiernan MC, Blair IP, Nicholson GA. Pathophysiological insights into ALS with C9ORF72 expansions. J Neurol Neurosurg Psychiatry 2013; 84:931-5. [PMID: 23463871 DOI: 10.1136/jnnp-2012-304529] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Expansions of a hexanucleotide repeat in C9ORF72 are a common cause of familial amyotrophic lateral sclerosis (ALS) and a small proportion of sporadic ALS cases. We sought to examine clinical and neurophysiological features of familial and sporadic ALS with C9ORF72 expansions. METHODS C9ORF72 was screened for expansions in familial and sporadic ALS. Clinical features of expansion positive cases are described. Cortical excitability studies used novel threshold tracking transcranal magnetic stimulation techniques with motor evoked responses recorded over the abductor pollicis brevis. RESULTS AND CONCLUSIONS Analysis of large clinical cohorts identified C9ORF72 expansions in 38.5% (72/187) of ALS families and 3.5% (21/606) of sporadic ALS cases. Two expansion positive families were known to carry reported ANG mutations, possibly implicating an oligogenic model of ALS. 6% of familial ALS cases with C9ORF72 expansions were also diagnosed with dementia. The penetrance of ALS was 50% at age 58 years in male subjects and 63 years in female subjects. 100% penetrance of ALS was observed in male subjects by 86 years, while 6% of female subjects remained asymptomatic at age 82 years. Gender specific differences in age of onset were evident, with male subjects significantly more likely to develop ALS at a younger age. Importantly, features of cortical hyperexcitability were apparent in C9ORF72-linked familial ALS as demonstrated by significant reduction in short interval intracortical inhibition and cortical silent period duration along with an increase in intracortical facilitation and motor evoked potential amplitude, indicating that cortical hyperexcitability is an intrinsic process in C9ORF72-linked ALS.
Collapse
Affiliation(s)
- Kelly L Williams
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
107
|
Sankaranarayani R, Raghavan M, Nalini A, Laxmi TR, Raju TR. Reach task-associated excitatory overdrive of motor cortical neurons following infusion with ALS-CSF. J Neural Transm (Vienna) 2013; 121:49-58. [PMID: 23900732 DOI: 10.1007/s00702-013-1071-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/16/2013] [Indexed: 12/12/2022]
Abstract
Converging evidence from transgenic animal models of amyotrophic lateral sclerosis (ALS) and human studies suggest alterations in excitability of the motor neurons in ALS. Specifically, in studies on human subjects with ALS the motor cortex was reported to be hyperexcitable. The present study was designed to test the hypothesis that infusion of cerebrospinal fluid from patients with sporadic ALS (ALS-CSF) into the rat brain ventricle can induce hyperexcitability and structural changes in the motor cortex leading to motor dysfunction. A robust model of sporadic ALS was developed experimentally by infusing ALS-CSF into the rat ventricle. The effects of ALS-CSF at the single neuron level were examined by recording extracellular single unit activity from the motor cortex while rats were performing a reach to grasp task. We observed an increase in the firing rate of the neurons of the motor cortex in rats infused with ALS-CSF compared to control groups. This was associated with impairment in a specific component of reach with alterations in the morphological characteristics of the motor cortex. It is likely that the increased cortical excitability observed in the present study could be the result of changes in the intrinsic properties of motor cortical neurons, a dysfunctional inhibitory mechanism and/or an underlying structural change culminating in a behavioral deficit.
Collapse
Affiliation(s)
- R Sankaranarayani
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Post Box No: 2900, Hosur Road, Bangalore, 560 029, Karnataka, India
| | | | | | | | | |
Collapse
|
108
|
Cosottini M, Cecchi P, Piazza S, Pesaresi I, Fabbri S, Diciotti S, Mascalchi M, Siciliano G, Bonuccelli U. Mapping cortical degeneration in ALS with magnetization transfer ratio and voxel-based morphometry. PLoS One 2013; 8:e68279. [PMID: 23874570 PMCID: PMC3706610 DOI: 10.1371/journal.pone.0068279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/27/2013] [Indexed: 12/02/2022] Open
Abstract
Pathological and imaging data indicate that amyotrophic lateral sclerosis (ALS) is a multisystem disease involving several cerebral cortical areas. Advanced quantitative magnetic resonance imaging (MRI) techniques enable to explore in vivo the volume and microstructure of the cerebral cortex in ALS. We studied with a combined voxel-based morphometry (VBM) and magnetization transfer (MT) imaging approach the capability of MRI to identify the cortical areas affected by neurodegeneration in ALS patients. Eighteen ALS patients and 18 age-matched healthy controls were examined on a 1.5T scanner using a high-resolution 3D T1 weighted spoiled gradient recalled sequence with and without MT saturation pulse. A voxel-based analysis (VBA) was adopted in order to automatically compute the regional atrophy and MT ratio (MTr) changes of the entire cerebral cortex. By using a multimodal image analysis MTr was adjusted for local gray matter (GM) atrophy to investigate if MTr changes can be independent of atrophy of the cerebral cortex. VBA revealed several clusters of combined GM atrophy and MTr decrease in motor-related areas and extra-motor frontotemporal cortex. The multimodal image analysis identified areas of isolated MTr decrease in premotor and extra-motor frontotemporal areas. VBM and MTr are capable to detect the distribution of neurodegenerative alterations in the cortical GM of ALS patients, supporting the hypothesis of a multi-systemic involvement in ALS. MT imaging changes exist beyond volume loss in frontotemporal cortices.
Collapse
Affiliation(s)
- Mirco Cosottini
- Department of Neuroscience, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Vucic S, Lin CSY, Cheah BC, Murray J, Menon P, Krishnan AV, Kiernan MC. Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2013; 136:1361-70. [PMID: 23616585 DOI: 10.1093/brain/awt085] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Riluzole, a benzothiazole derivative, has been shown to be effective in prolonging survival in amyotrophic lateral sclerosis. The mechanisms by which riluzole exerts neuroprotective effects in amyotrophic lateral sclerosis remains to be fully elucidated, although inhibition of glutamatergic transmission and modulation of Na+ channel function have been proposed. In an attempt to determine the mechanisms by which riluzole exerts neuroprotective effects, in particular to dissect the relative contributions of inhibition of glutamatergic transmission and Na+ channel modulation, the present study utilized a combination of cortical and peripheral axonal excitability approaches to monitor changes in excitability and function in patients with amyotrophic lateral sclerosis. Cortical assessment was undertaken by utilising the threshold tracking transcranial magnetic stimulation (TMS) technique and combined with peripheral axonal excitability studies in 25 patients with amyotrophic lateral sclerosis. Studies were performed at baseline and repeated when patients were receiving riluzole 100 mg/day. At the time of second testing all patients were tolerating the medication well. Motor evoked potential and compound muscle action potential responses were recorded over the abductor pollicis brevis muscle. At baseline, features of cortical hyperexcitability were evident in patients with amyotrophic lateral sclerosis, indicated by marked reduction in short interval intracortical inhibition (P < 0.001) and cortical silent period duration (P < 0.001), as well as an increase in the motor evoked potential amplitude (P < 0.01). Riluzole therapy partially normalized cortical excitability by significantly increasing short interval intracortical inhibition (short interval intracortical inhibitionbaseline 0.5 ± 1.8%; short interval intracortical inhibitionON riluzole 7.9 ± 1.7%, P < 0.01). In contrast, riluzole did not exert any modulating effect on cortical silent period duration (P = 0.45) or motor evoked potential amplitude (P = 0.31). In terms of peripheral nerve function, axonal excitability studies established that, relative to control subjects, patients with amyotrophic lateral sclerosis had significant increases in depolarizing threshold electrotonus [amyotrophic lateral sclerosisbaseline TEd (90-100 ms) 49.1 ± 1.8%; controlsTEd (90-100 ms) 45.2 ± 0.6%, P < 0.01] and superexcitability (amyotrophic lateral sclerosisbaseline 30.1 ± 2.3%; control subjects 23.4 ± 1.0%, P < 0.01) at baseline. Following institution of riluzole therapy there was a significant reduction in superexcitability (amyotrophic lateral sclerosisbaseline 30.1 ± 2.3%; amyotrophic lateral sclerosisON riluzole 27.3 ± 2.3%, P < 0.05) and refractoriness at 2 ms (amyotrophic lateral sclerosisbaseline 98.7 ± 10.7%; amyotrophic lateral sclerosisON riluzole 67.8 ± 9.3%, P < 0.001). In conclusion, the present study has established that riluzole exerts effects on both central and peripheral nerve function, interpreted as partial normalization of cortical hyperexcitability and reduction of transient Na+ conductances. Taken together, these findings suggest that the neuroprotective effects of riluzole in amyotrophic lateral sclerosis are complex, with evidence of independent effects across both compartments of the nervous system.
Collapse
Affiliation(s)
- Steve Vucic
- Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW 2031, Australia
| | | | | | | | | | | | | |
Collapse
|
110
|
Wang H, Siddharthan V, Kesler KK, Hall JO, Motter NE, Julander JG, Morrey JD. Fatal neurological respiratory insufficiency is common among viral encephalitides. J Infect Dis 2013; 208:573-83. [PMID: 23641019 PMCID: PMC3719899 DOI: 10.1093/infdis/jit186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background. Neurological respiratory insufficiency strongly correlates with mortality among rodents infected with West Nile virus (WNV), which suggests that this is a primary mechanism of death in rodents and possibly fatal West Nile neurological disease in human patients. Methods. To explore the possibility that neurological respiratory insufficiency is a broad mechanism of death in cases of viral encephalitis, plethysmography was evaluated in mice infected with 3 flaviviruses and 2 alphaviruses. Pathology was investigated by challenging the diaphragm, using electromyography with hypercapnia and optogenetic photoactivation. Results. Among infections due to all but 1 alphavirus, death was strongly associated with a suppressed minute volume. Virally infected mice with a very low minute volume did not neurologically respond to hypercapnia or optogenetic photoactivation of the C4 cervical cord. Neurons with the orexin 1 receptor protein in the ventral C3–5 cervical cord were statistically diminished in WNV-infected mice with a low minute volume as compared to WNV-infected or sham-infected mice without respiratory insufficiency. Also, WNV-infected cells were adjacent to neurons with respiratory functions in the medulla. Conclusions. Detection of a common neurological mechanism of death among viral encephalitides creates opportunities to create broad-spectrum therapies that target relevant neurological cells in patients with types of viral encephalitis that have not been treatable in the past.
Collapse
Affiliation(s)
- Hong Wang
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322-4700, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Bae JS, Simon NG, Menon P, Vucic S, Kiernan MC. The puzzling case of hyperexcitability in amyotrophic lateral sclerosis. J Clin Neurol 2013; 9:65-74. [PMID: 23626643 PMCID: PMC3633193 DOI: 10.3988/jcn.2013.9.2.65] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 12/11/2022] Open
Abstract
The development of hyperexcitability in amyotrophic lateral sclerosis (ALS) is a well-known phenomenon. Despite controversy as to the underlying mechanisms, cortical hyperexcitability appears to be closely related to the interplay between excitatory corticomotoneurons and inhibitory interneurons. Hyperexcitability is not a static phenomenon but rather shows a pattern of progression in a spatiotemporal aspect. Cortical hyperexcitability may serve as a trigger to the development of anterior horn cell degeneration through a 'dying forward' process. Hyperexcitability appears to develop during the early disease stages and gradually disappears in the advanced stages of the disease, linked to the destruction of corticomotorneuronal pathways. As such, a more precise interpretation of these unique processes may provide new insight regarding the pathophysiology of ALS and its clinical features. Recently developed technologies such as threshold tracking transcranial magnetic stimulation and automated nerve excitability tests have provided some clues about underlying pathophysiological processes linked to hyperexcitability. Additionally, these novel techniques have enabled clinicians to use the specific finding of hyperexcitability as a useful diagnostic biomarker, enabling clarification of various ALS-mimic syndromes, and the prediction of disease development in pre-symptomatic carriers of familial ALS. In terms of nerve excitability tests for peripheral nerves, an increase in persistent Na+ conductances has been identified as a major determinant of peripheral hyperexcitability in ALS, inversely correlated with the survival in ALS. As such, the present Review will focus primarily on the puzzling theory of hyperexcitability in ALS and summarize clinical and pathophysiological implications for current and future ALS research.
Collapse
Affiliation(s)
- Jong Seok Bae
- Department of Neurology, College of Medicine, Inje University, Busan, Korea. ; Neuroscience Research Australia, Sydney, Australia
| | | | | | | | | |
Collapse
|
112
|
Abstract
Corticostriatal projections are essential components of forebrain circuits and are widely involved in motivated behaviour. These axonal projections are formed by two distinct classes of cortical neurons, intratelencephalic (IT) and pyramidal tract (PT) neurons. Convergent evidence points to IT versus PT differentiation of the corticostriatal system at all levels of functional organization, from cellular signalling mechanisms to circuit topology. There is also growing evidence for IT/PT imbalance as an aetiological factor in neurodevelopmental, neuropsychiatric and movement disorders - autism, amyotrophic lateral sclerosis, obsessive-compulsive disorder, schizophrenia, Huntington's and Parkinson's diseases and major depression are highlighted here.
Collapse
Affiliation(s)
- Gordon M. G. Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
113
|
Vucic S, Kiernan MC. Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:561-575. [PMID: 24112924 DOI: 10.1016/b978-0-444-53497-2.00045-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the motor neurons in the motor cortex, brainstem, and spinal cord. The clinical phenotype of ALS is underscored by a combination of upper and lower motor neuron dysfunction. Although this phenotype was observed over 100 years ago, the site of ALS onset and the pathophysiological mechanisms underlying the development of motor neuron degeneration remain to be elucidated. Transcranial magnetic stimulation (TMS) enables noninvasive assessment of the functional integrity of the motor cortex and its corticomotoneuronal projections. To date, TMS studies have established cortical dysfunction in ALS, with cortical hyperexcitability being an early feature in sporadic forms of ALS and preceding the clinical onset of familial ALS. Taken together, a central origin of ALS is supported by TMS studies, with an anterograde dying-forward mechanism implicated in ALS pathogenesis. Of further relevance, TMS techniques reliably distinguish ALS from mimic disorders, despite a compatible peripheral disease burden, thereby suggesting a potential diagnostic utility of TMS in ALS. This chapter reviews the mechanisms underlying the generation of TMS parameters utilized in assessment of cortical excitability, the contribution of TMS in enhancing the understanding of ALS pathophysiology, and the potential diagnostic utility of TMS techniques in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia
| | | |
Collapse
|
114
|
Brockington A, Ning K, Heath PR, Wood E, Kirby J, Fusi N, Lawrence N, Wharton SB, Ince PG, Shaw PJ. Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol 2013; 125:95-109. [PMID: 23143228 PMCID: PMC3535376 DOI: 10.1007/s00401-012-1058-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022]
Abstract
A consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements and the function of external sphincters, with corresponding preservation of motor neurons in the brainstem oculomotor nuclei, and of Onuf’s nucleus in the sacral spinal cord. Studying the differences in properties of neurons that are vulnerable and resistant to the disease process in ALS may provide insights into the mechanisms of neuronal degeneration, and identify targets for therapeutic manipulation. We used microarray analysis to determine the differences in gene expression between oculomotor and spinal motor neurons, isolated by laser capture microdissection from the midbrain and spinal cord of neurologically normal human controls. We compared these to transcriptional profiles of oculomotor nuclei and spinal cord from rat and mouse, obtained from the GEO omnibus database. We show that oculomotor neurons have a distinct transcriptional profile, with significant differential expression of 1,757 named genes (q < 0.001). Differentially expressed genes are enriched for the functional categories of synaptic transmission, ubiquitin-dependent proteolysis, mitochondrial function, transcriptional regulation, immune system functions, and the extracellular matrix. Marked differences are seen, across the three species, in genes with a function in synaptic transmission, including several glutamate and GABA receptor subunits. Using patch clamp recording in acute spinal and brainstem slices, we show that resistant oculomotor neurons show a reduced AMPA-mediated inward calcium current, and a higher GABA-mediated chloride current, than vulnerable spinal motor neurons. The findings suggest that reduced susceptibility to excitotoxicity, mediated in part through enhanced GABAergic transmission, is an important determinant of the relative resistance of oculomotor neurons to degeneration in ALS.
Collapse
Affiliation(s)
- Alice Brockington
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Ke Ning
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Paul R. Heath
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Elizabeth Wood
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Janine Kirby
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Nicolò Fusi
- Computational Biology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Neil Lawrence
- Computational Biology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Stephen B. Wharton
- Academic Neuropathology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Paul G. Ince
- Academic Neuropathology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Pamela J. Shaw
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| |
Collapse
|
115
|
AAV2 mediated retrograde transduction of corticospinal motor neurons reveals initial and selective apical dendrite degeneration in ALS. Neurobiol Dis 2012; 47:174-83. [PMID: 22521461 DOI: 10.1016/j.nbd.2012.03.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/26/2012] [Accepted: 03/31/2012] [Indexed: 12/13/2022] Open
Abstract
Corticospinal motor neurons (CSMN) are the cortical component of motor neuron circuitry, which controls voluntary movement and degenerates in diseases such as amyotrophic lateral sclerosis, primary lateral sclerosis and hereditary spastic paraplegia. By using dual labeling combined with molecular marker analysis, we identified AAV2-2 mediated retrograde transduction as an effective approach to selectively target CSMN without affecting other neuron populations both in wild-type and hSOD1(G93A) transgenic ALS mice. This approach reveals very precise details of cytoarchitectural defects within vulnerable neurons in vivo. We report that CSMN vulnerability is marked by selective degeneration of apical dendrites especially in layer II/III of the hSOD1(G93A) mouse motor cortex, where cortical input to CSMN function is vastly modulated. While our findings confirm the presence of astrogliosis and microglia activation, they do not lend support to their direct role for the initiation of CSMN vulnerability. This study enables development of targeted gene replacement strategies to CSMN in the cerebral cortex, and reveals CSMN cortical modulation defects as a potential cause of neuronal vulnerability in ALS.
Collapse
|
116
|
Turner MR, Kiernan MC. Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis? ACTA ACUST UNITED AC 2012; 13:245-50. [PMID: 22424125 DOI: 10.3109/17482968.2011.636050] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is typically regarded as a sporadic neurodegenerative disorder that results in a catastrophic failure of the motor system, with characteristically variable involvement of upper and lower motor neuronal populations. A wide range of evidence from clinical, histological, genetic, neurophysiological, neuroimaging and neuropsychological studies, suggests that a loss of central nervous system inhibitory neuronal influence is a contributing factor in ALS pathogenesis. This loss of inhibitory function points intuitively to an 'interneuronopathy', with natural differences in cortical and spinal inhibitory networks reflected in the hitherto unexplained variable compartmentalization of pathology within upper and lower motor neuron populations. An excitotoxic final common pathway might then result from unopposed glutamatergic activity. If correct, therapies aimed specifically at supporting interneuronal function may provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Martin R Turner
- Oxford University Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
117
|
Lingor P, Koch JC, Tönges L, Bähr M. Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res 2012; 349:289-311. [PMID: 22392734 PMCID: PMC3375418 DOI: 10.1007/s00441-012-1362-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022]
Abstract
Degeneration of the axon is an important step in the pathomechanism of traumatic, inflammatory and degenerative neurological diseases. Increasing evidence suggests that axonal degeneration occurs early in the course of these diseases and therefore represents a promising target for future therapeutic strategies. We review the evidence for axonal destruction from pathological findings and animal models with particular emphasis on neurodegenerative and neurotraumatic disorders. We discuss the basic morphological and temporal modalities of axonal degeneration (acute, chronic and focal axonal degeneration and Wallerian degeneration). Based on the mechanistic concepts, we then delineate in detail the major molecular mechanisms that underlie the degenerative cascade, such as calcium influx, axonal transport, protein aggregation and autophagy. We finally concentrate on putative therapeutic targets based on the mechanistic prerequisites.
Collapse
Affiliation(s)
- Paul Lingor
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
118
|
Solomon JA, Gianforcaro A, Hamadeh MJ. Vitamin D3 deficiency differentially affects functional and disease outcomes in the G93A mouse model of amyotrophic lateral sclerosis. PLoS One 2011; 6:e29354. [PMID: 22216257 PMCID: PMC3246470 DOI: 10.1371/journal.pone.0029354] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/27/2011] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by motor neuron death in the central nervous system. Vitamin D supplementation increases antioxidant activity, reduces inflammation and improves motor neuron survival. We have previously demonstrated that vitamin D(3) supplementation at 10× the adequate intake improves functional outcomes in a mouse model of ALS. OBJECTIVE To determine whether vitamin D deficiency influences functional and disease outcomes in a mouse model of ALS. METHODS At age 25 d, 102 G93A mice (56 M, 46 F) were divided into two vitamin D(3) groups: 1) adequate (AI; 1 IU D(3)/g feed) and 2) deficient (DEF; 0.025 IU D(3)/g feed). At age 113 d, tibialis anterior (TA), quadriceps (quads) and brain were harvested from 42 mice (22 M and 20 F), whereas the remaining 60 mice (34 M and 26 F) were followed to endpoint. RESULTS During disease progression, DEF mice had 25% (P=0.022) lower paw grip endurance AUC and 19% (P=0.017) lower motor performance AUC vs. AI mice. Prior to disease onset (CS 2), DEF mice had 36% (P=0.016) lower clinical score (CS) vs. AI mice. DEF mice reached CS 2 six days later vs. AI mice (P=0.004), confirmed by a logrank test which revealed that DEF mice reached CS 2 at a 43% slower rate vs. AI mice (HR= .57; 95% CI: 0.38, 1.74; P=0.002). Body weight-adjusted TA (AI: r=0.662, P=0.001; DEF: r=0.622, P=0.006) and quads (AI: r=0.661, P=0.001; DEF: r=0.768; P<0.001) weights were strongly correlated with age at CS 2. CONCLUSION Vitamin D(3) deficiency improves early disease severity and delays disease onset, but reduces performance in functional outcomes following disease onset, in the high-copy G93A mouse.
Collapse
Affiliation(s)
- Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Alexandro Gianforcaro
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
119
|
Proportional neuronal loss between the primary motor and sensory cortex in amyotrophic lateral sclerosis. Neurosci Lett 2011; 503:73-5. [PMID: 21871950 DOI: 10.1016/j.neulet.2011.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/27/2011] [Accepted: 08/07/2011] [Indexed: 12/13/2022]
Abstract
The number of neurons in the primary motor cortex (MI) and the primary somatosensory cortex (SI) were estimated in the same locations of brains from sporadic amyotrophic lateral sclerosis (ALS) cases and controls. The number of MI and SI neurons and Betz cells were significantly decreased in the ALS cases as compared to the controls. The number of neurons in MI and SI was independent of age at death or duration of disease. Moreover, the number of neurons in MI and SI was significantly correlated, suggesting that the neurons in both sites might be interdependent and might decrease proportionally.
Collapse
|
120
|
Vucic S, Cheah BC, Kiernan MC. Maladaptation of cortical circuits underlies fatigue and weakness in ALS. ACTA ACUST UNITED AC 2011; 12:414-20. [PMID: 21830989 DOI: 10.3109/17482968.2011.597403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although fatigue is frequently reported in amyotrophic lateral sclerosis (ALS), the underlying mechanisms remain to be elucidated. Cortical excitability studies were utilized to determine the contribution of central mechanisms to development of fatigue and weakness in ALS. Threshold-tracking transcranial magnetic stimulation (TMS) studies were undertaken in 16 ALS patients and 22 normal controls using a 90-mm circular coil. TMS studies were performed at baseline, immediately after a voluntary contraction (VC) period of 120 s duration (three VC periods), and at 5, 10 and 20 min after last VC. At baseline, there was a significant reduction of short-interval intracortical inhibition (SICI) at interstimulus interval of 1 ms (ALS 2.3 ± 2.3%; controls 9.5 ± 2.5%, p < 0.01) and 3 ms (ALS5.1 ± 3.4%; controls 16.8 ± 1.7%, p < 0.01) in ALS patients. Although there was a significant reduction of SICI post-VC in controls at ISI 1 ms (p < 0.05) and ISI 3 ms (p < 0.05), there was no significant change in ALS patients at ISI 1 ms (p = 0.15) or 3 ms (p = 0.31). The changes in cortical excitability correlated with fatigue (R = 0.59, p < 0.05). In conclusion, maladaptation of cortical processes related to degeneration of inhibitory GABAergic intracortical circuits, is a feature of ALS that significantly correlates with development of fatigue and weakness.
Collapse
Affiliation(s)
- Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
121
|
Mohammadi B, Kollewe K, Samii A, Dengler R, Münte TF. Functional neuroimaging at different disease stages reveals distinct phases of neuroplastic changes in amyotrophic lateral sclerosis. Hum Brain Mapp 2011; 32:750-8. [PMID: 20836159 DOI: 10.1002/hbm.21064] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Some previous functional magnetic resonance imaging (fMRI) studies have revealed increased activation in amyotrophic lateral sclerosis (ALS) patients but longitudinal data on such activation changes are lacking. To assess the time course of changes in fMRI patterns and their potential contribution to the understanding of ALS pathophysiology, we, therefore, investigated a total of 22 patients with ALS and matched control participants while they performed a blocked motor task. Patients were assigned to three groups according to whether they had no (MRC grade 5), mild (MRC 4), or marked (MRC 3) weakness of the examined right hand. Significant activations were seen in primary motor and premotor cortex, somatosensory cortex, supplementary motor area and subcortical areas in all groups. The size of the activated area in the contralateral sensorimotor cortex was increased to a similar degree in all three ALS groups compared to control participants irrespective of weakness on clinical examination. Whereas movement related signal change and beta weights extracted from the activated cluster were unchanged relative to controls in ALS patients with no weakness, a marked decrease of these parameters was seen in patients with weakness. Two distinct stages of neuroplastic changes could be identified in ALS (first: increase of the activated area in contralateral sensorimotor cortex; second: reduction of signal change and beta weights with increasing weakness). We interpret the increase of the activated area as a result of decreased intracortical inhibition and the reduction of movement related signal change and beta weights as a consequence of loss of upper motor neurons.
Collapse
Affiliation(s)
- Bahram Mohammadi
- Deparment of Neuropsychology, Otto-von-Guericke-Universität, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
122
|
Abstract
Multiple sclerosis is a debilitating disease of the central nervous system that has been characteristically classified as an immune-mediated destruction of myelin, the protective coating on nerve fibers. Although the mechanisms responsible for the immune attack to central nervous system myelin have been the subject of intense investigation, more recent studies have focused on the neurodegenerative component, which is cause of clinical disability in young adults and appears to be only partially controlled by immunomodulatory therapies. Here, we review distinct, but not mutually exclusive, mechanisms of pathogenesis of axonal damage in multiple sclerosis patients that are either consequent to long-term demyelination or independent from it. We propose that the complexity of axonal degeneration and the heterogeneity of the underlying pathogenetic mechanisms should be taken into consideration for the design of targeted therapeutic intervention.
Collapse
Affiliation(s)
- Jeffery D Haines
- Departments of Neuroscience Neurology and Genetics and Genomics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
123
|
Burrell JR, Vucic S, Kiernan MC. Isolated bulbar phenotype of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 12:283-9. [DOI: 10.3109/17482968.2011.551940] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
124
|
Wittstock M, Meister S, Walter U, Benecke R, Wolters A. Mirror movements in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 12:393-7. [PMID: 21554031 DOI: 10.3109/17482968.2011.577223] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor syndrome with clinical evidence of upper and lower motor neuron dysfunction. Mirror movements (MM) in ALS have been reported and attributed to a disturbed transcallosal inhibition (TI). Hence, occurrence of MM in ALS might be explained by involvement of transcallosal projecting fibre tracts into the degenerative process of the motor system. Twenty-six consecutive ALS patients were studied by clinical investigation of MM and by transcranial magnetic stimulation testing of TI using evaluation of the ipsilateral silent period. MM were observed in 39% of ALS patients. There was a significant correlation between the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) and occurrence of MM (correlation coefficient -0.315; p = 0.044). In conclusion, all MM patients had pathological TI at least in one hemisphere, which indicates involvement of transcallosally projecting output neurons in ALS patients, which in turn may be an early feature of the disease process with the potential of a diagnostic biomarker.
Collapse
|
125
|
Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 2011; 17:4-31. [PMID: 20236142 DOI: 10.1111/j.1755-5949.2009.00116.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of adults which preferentially attacks the neuromotor system. Riluzole has been used as the only approved treatment for amyotrophic lateral sclerosis since 1995, but its mechanism(s) of action in slowing the progression of this disease remain obscure. Searching PubMed for "riluzole" found 705 articles published between January 1996 and June 2009. A systematic review of this literature found that riluzole had a wide range of effects on factors influencing neural activity in general, and the neuromotor system in particular. These effects occurred over a large dose range (<1 μM to >1 mM). Reported neural effects of riluzole included (in approximate ascending order of dose range): inhibition of persistent Na(+) current = inhibition of repetitive firing < potentiation of calcium-dependent K(+) current < inhibition of neurotransmitter release < inhibition of fast Na(+) current < inhibition of voltage-gated Ca(2+) current = promotion of neuronal survival or growth factors < inhibition of voltage-gated K(+) current = modulation of two-pore K(+) current = modulation of ligand-gated neurotransmitter receptors = potentiation of glutamate transporters. Only the first four of these effects commonly occurred at clinically relevant concentrations of riluzole (plasma levels of 1-2 μM with three- to four-fold higher concentrations in brain tissue). Treatment of human ALS patients or transgenic rodent models of ALS with riluzole most commonly produced a modest but significant extension of lifespan. Riluzole treatment was well tolerated in humans and animals. In animals, despite in vitro evidence that riluzole may inhibit rhythmic motor behaviors, in vivo administration of riluzole produced relatively minor effects on normal respiration parameters, but inhibited hypoxia-induced gasping. This effect may have implications for the management of hypoventilation and sleep-disordered breathing during end-stage ALS in humans.
Collapse
Affiliation(s)
- Mark C Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld. 4072, Australia.
| |
Collapse
|
126
|
Cosottini M, Pesaresi I, Piazza S, Diciotti S, Belmonte G, Battaglini M, Ginestroni A, Siciliano G, De Stefano N, Mascalchi M. Magnetization transfer imaging demonstrates a distributed pattern of microstructural changes of the cerebral cortex in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2011; 32:704-8. [PMID: 21436337 PMCID: PMC7965898 DOI: 10.3174/ajnr.a2356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 08/24/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE To date, damage of the cerebral cortex neurons in ALS was investigated by using conventional MR imaging and proton MR spectroscopy. We explored the capability of MTI to map the microstructural changes in cerebral motor and extramotor cortices of patients with ALS. MATERIALS AND METHODS Twenty patients with ALS and 17 age-matched healthy controls were enrolled. A high-resolution 3D SPGR sequence with and without MT saturation pulses was obtained on a 1.5T scanner to compute MTR values. Using the FMRIB Software Library tools, we automatically computed the MTR of the cerebral cortex GM in 48 regions of the entire cerebral cortex derived from the standard Harvard-Oxford cortical atlas. RESULTS The MTR values were significantly lower in patients with ALS than in healthy controls in the primary motor cortex (precentral gyrus), nonprimary motor areas (superior and middle frontal gyri and superior parietal lobe), and some extramotor areas (frontal pole, planum temporale, and planum polare). No correlation was found between regional MTR values and the severity of clinical deficits or disease duration. CONCLUSIONS MTI analysis can detect the distributed pattern of microstructural changes of the GM in the cerebral cortex of patients with ALS with involvement of both the motor and extramotor areas.
Collapse
Affiliation(s)
- M Cosottini
- Department of Neuroscience, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Kollewe K, Münte TF, Samii A, Dengler R, Petri S, Mohammadi B. Patterns of cortical activity differ in ALS patients with limb and/or bulbar involvement depending on motor tasks. J Neurol 2010; 258:804-10. [DOI: 10.1007/s00415-010-5842-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 11/24/2022]
|
128
|
Nutini M, Frazzini V, Marini C, Spalloni A, Sensi SL, Longone P. Zinc pre-treatment enhances NMDAR-mediated excitotoxicity in cultured cortical neurons from SOD1(G93A) mouse, a model of amyotrophic lateral sclerosis. Neuropharmacology 2010; 60:1200-8. [PMID: 21056589 DOI: 10.1016/j.neuropharm.2010.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 01/23/2023]
Abstract
Zn²+ is co-released at glutamatergic synapses throughout the central nervous system and acts as a neuromodulator for glutamatergic neurotransmission, as a key modulator of NMDA receptor functioning. Zn²+ is also implicated in the neurotoxicity associated with several models of acute brain injury and neurodegeneration. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons in the spinal cord and cortex. In this study, we have investigated the modulatory role exerted by Zn²+ in NMDA-mediated neurotoxicity in either near-pure or mixed cortical cultured neurons obtained from either mice over-expressing the G93A mutant form of Cu/Zn superoxide dismutase (SOD1) human gene, a gene linked to familial ALS, or wild type (WT) mice. To that aim, SOD1(G93A) or WT cultures were exposed to either NMDA by itself or to Zn²+ prior to a toxic challenge with NMDA, and neuronal loss evaluated 24 h later. While we failed to observe any significant difference between NMDA and Zn²+/NMDA-mediated toxicity in mixed SOD1(G93A) or WT cortical cultures, different vulnerability to these toxic paradigms was found in near-pure neuronal cultures. In the WT near-pure neuronal cultures, a brief exposure to sublethal concentrations of Zn²+-enhanced NMDA receptor-mediated cell death, an effect that was far more pronounced in the SOD1(G93A) cultures. This increased excitotoxicity in SOD1(G93A) near-pure neuronal cultures appears to be mediated by a significant increase in NMDA-dependent rises of intraneuronal Ca²+ levels as well as enhanced production of cytosolic reactive oxygen species, while the injurious process seems to be unrelated to activation of nNOS or ERK1/2 pathways. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Michele Nutini
- Molecular Neurobiology Unit, Santa Lucia Foundation, Department of Neuroscience, University of "Tor Vergata", Rome, Italy
| | | | | | | | | | | |
Collapse
|
129
|
Nieto-Gonzalez JL, Moser J, Lauritzen M, Schmitt-John T, Jensen K. Reduced GABAergic Inhibition Explains Cortical Hyperexcitability in the Wobbler Mouse Model of ALS. Cereb Cortex 2010; 21:625-35. [DOI: 10.1093/cercor/bhq134] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
130
|
Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 2009; 73:805-11. [PMID: 19738176 PMCID: PMC2739608 DOI: 10.1212/wnl.0b013e3181b6bbbd] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heterogeneity of motor phenotypes is a clinically well-recognized fundamental aspect of amyotrophic lateral sclerosis (ALS) and is determined by variability of 3 independent primary attributes: body region of onset; relative mix of upper motor neuron (UMN) and lower motor neuron (LMN) deficits; and rate of progression. Motor phenotypes are determined by the anatomy of the underlying neuropathology and the common defining elements underlying their heterogeneity are that motor neuron degeneration is fundamentally a focal process and that it spreads contiguously through the 3-dimensional anatomy of the UMN and LMN levels, thus causing seemingly complex and varied clinical manifestations. This suggests motor neuron degeneration in ALS is in actuality a very orderly and actively propagating process and that fundamental molecular mechanisms may be uniform and their chief properties deduced. This also suggests opportunities for translational research to seek pathobiology directly in the less affected regions of the nervous system.
Collapse
Affiliation(s)
- John M Ravits
- Section of Neurology, Virginia Mason Medical Center, Seattle, WA, USA.
| | | |
Collapse
|
131
|
Vucic S, Cheah BC, Kiernan MC. Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Exp Neurol 2009; 220:177-82. [PMID: 19716820 DOI: 10.1016/j.expneurol.2009.08.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/20/2009] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis [ALS] is a rapidly progressive neurodegenerative disorder of motor neurons, heralded by the development of cortical hyperexcitability. Reduction of short interval intracortical inhibition [SICI] in ALS, a feature linked to the development of cortical hyperexcitability, may be mediated by degeneration of inhibitory circuits or alternatively activation of high threshold excitatory circuits. As such, determining the mechanisms of SICI reduction in ALS has clear diagnostic and therapeutic significance. Consequently, the present study utilized a novel threshold tracking paired-pulse paradigm to determine whether SICI reduction in ALS represented reduced inhibition or excessive excitation. Using a 90 mm circular coil, SICI was assessed at three different conditioning stimulus intensities: 40%, 70% and 90% of resting motor threshold [RMT]. Motor evoked potential responses were recorded over the abductor pollicis brevis muscle. Short interval intracortical inhibition was uniformly reduced across all three levels of conditioning intensities in ALS [40% RMT, ALS -0.6+/-0.7%, controls 2.0+/-0.6%, P<0.01; 70% RMT, ALS 0.6+/-2.7%, controls 12.8+/-2%, P<0.001; 90% RMT, ALS -15.9+/-1.3%, controls 2.2+/-4.1%, P<0.01]. In addition, the resting motor threshold was reduced, while the motor evoked potential amplitude was increased in ALS patients, in keeping with cortical hyperexcitability. These findings establish that SICI reduction in ALS represents degeneration of inhibitory cortical circuits, combined with excessive excitation of high threshold excitatory pathways. Neuroprotective strategies aimed at preserving the integrity of intracortical inhibitory circuits, in addition to antagonizing excitatory cortical circuits, may provide novel therapeutic targets in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Department of Neurology, Westmead Hospital and Western Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
132
|
Agosta F, Gorno-Tempini ML, Pagani E, Sala S, Caputo D, Perini M, Bartolomei I, Fruguglietti ME, Filippi M. Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: A tensor based morphometry study. ACTA ACUST UNITED AC 2009; 10:168-74. [DOI: 10.1080/17482960802603841] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
133
|
Martin LJ, Liu Z, Pipino J, Chestnut B, Landek MA. Molecular regulation of DNA damage-induced apoptosis in neurons of cerebral cortex. Cereb Cortex 2008; 19:1273-93. [PMID: 18820287 DOI: 10.1093/cercor/bhn167] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with alpha-pifithrin protects immature neurons; blocking p53-mitochondrial functions with mu-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA.
| | | | | | | | | |
Collapse
|
134
|
Dementia and motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2008. [PMID: 18631765 DOI: 10.1016/s0072-9752(07)01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
135
|
Sgobio C, Trabalza A, Spalloni A, Zona C, Carunchio I, Longone P, Ammassari-Teule M. Abnormal medial prefrontal cortex connectivity and defective fear extinction in the presymptomatic G93A SOD1 mouse model of ALS. GENES BRAIN AND BEHAVIOR 2008; 7:427-34. [DOI: 10.1111/j.1601-183x.2007.00367.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
136
|
Schmied A, Attarian S. Enhancement of single motor unit inhibitory responses to transcranial magnetic stimulation in amyotrophic lateral sclerosis. Exp Brain Res 2008; 189:229-42. [PMID: 18496679 DOI: 10.1007/s00221-008-1420-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 05/02/2008] [Indexed: 12/11/2022]
Abstract
In healthy human subjects, transcranial magnetic stimulation (TMS) applied to the motor cortex induces concurrent inhibitory and excitatory effects on motoneurone activity. In amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting both cortical and spinal motor neurons, paired-pulse studies based on electromyographic (EMG) recording have revealed a decrease in TMS-induced inhibition. This suggested that inhibition loss may promote excito-toxicity in this disease. Against this hypothesis, an abnormally high incidence of inhibitory responses to TMS has been observed in the peristimulus time histograms (PSTHs) in ALS single motor unit studies. The disappearance of cortico-motoneuronal excitatory inputs might, however, have facilitated the detection of single motor unit inhibitory responses in the PSTHs. This question was addressed here using a new approach, where the strength of the excitatory and inhibitory effects of TMS on motoneurone activity was assessed from the duration of inter-spike intervals (ISIs). This analysis was conducted on single motor unit (MU), tested on healthy subjects and patients with ALS or Kennedy's disease (KD), a motor neuron disease which unlike ALS, spares the cortico-spinal pathway. MUs tested on KD patients behaved like those of healthy subjects unlike those tested on ALS patients. The present data reveal that in ALS, the TMS-induced inhibitory effects are truly enhanced during voluntary contractions and not reduced, as observed in paired-pulse TMS studies under resting conditions. The possible contribution of inhibitory loss to the physiopathology of ALS therefore needs to be reconsidered. The present data do not support the idea that inhibition loss may underlie excito-toxicity in ALS.
Collapse
Affiliation(s)
- Annie Schmied
- Plasticity and Physiopathology of Movement, P3M, UMR 6196, CNRS, University Aix-Marseilles II, 31 Chemin Joseph Aiguier, 13402 Marseilles Cedex 20, France.
| | | |
Collapse
|
137
|
Kiernan MC. Paraspinal muscles and amyotrophic lateral sclerosis - getting to the core? Clin Neurophysiol 2008; 119:1457-8. [PMID: 18468484 DOI: 10.1016/j.clinph.2008.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 12/11/2022]
|
138
|
Vucic S, Nicholson GA, Kiernan MC. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 2008; 131:1540-50. [DOI: 10.1093/brain/awn071] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
139
|
Attarian S, Vedel JP, Pouget J, Schmied A. Progression of cortical and spinal dysfunctions over time in amyotrophic lateral sclerosis. Muscle Nerve 2008; 37:364-75. [PMID: 18080998 DOI: 10.1002/mus.20942] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In view of the conflicting results about the links between lower and upper motor neuron (LMN, UMN) dysfunction in amyotrophic lateral sclerosis (ALS), we undertook this study to correlate their changes over time. Single motor units (MUs) were characterized by their macro-MU potentials, twitch amplitude, and excitatory responses to transcranial magnetic stimulation (TMS). Ten ALS patients were studied 2 to 4 times and their data were subdivided into epochs corresponding to mean disease duration of 12 (58 MUs), 20 (60 MUs), 32 (50 MUs), 43 (40 MUs), and 168 months (55 MUs). The MU size increased and the contractile effectiveness and the excitatory response rates decreased significantly with time. The contractile effectiveness of MUs producing normal excitatory responses decreased with time, whereas a gradual loss of excitatory responses was observed among MUs with normal electromechanical properties. Since no correlation was found between UMN and LMN dysfunction, we conclude that UMN and LMN probably degenerate independently in ALS.
Collapse
Affiliation(s)
- Shahram Attarian
- Department of Neurology and Neuromuscular Diseases CHU La Timone, 264 rue Saint-Pierre, 13385 Marseille, France.
| | | | | | | |
Collapse
|
140
|
Vucic S, Kiernan MC. Cortical excitability testing distinguishes Kennedy's disease from amyotrophic lateral sclerosis. Clin Neurophysiol 2008; 119:1088-96. [PMID: 18313980 DOI: 10.1016/j.clinph.2008.01.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/22/2007] [Accepted: 01/10/2008] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Spinobulbomuscular atrophy, or Kennedy's disease (KD), is an X-linked inherited neurodegenerative disorder that clinically may "mimic" amyotrophic lateral sclerosis (ALS). Although KD is regarded as a pure lower motor neuron disorder, recent studies have reported on the presence of corticomotoneuron dysfunction in KD, similar to ALS. To clarify these discordant findings, the present study applied novel threshold tracking transcranial magnetic stimulation (TMS) techniques to gain further insights into corticomotoneuron function and thereby possible pathophysiological processes underlying neurodegeneration in KD. METHODS Cortical excitability studies were undertaken in 7 KD patients, 55 normal controls, 45 ALS patients and 6 patients with the flail arm variant ALS (FAV), a pure lower motor neuron form of ALS. Motor evoked responses were recorded over abductor pollicis brevis. RESULTS Short-interval intracortical inhibition (SICI) in KD was similar to controls (KD 6.0+/-1.2%; controls 8.4+/-1.1%, P=0.08), but significantly greater when compared to ALS and FAV patients (ALS 0.7+/-0.7%; FAV -0.8+/-0.7%, P<0.0001). The magnetic stimulus-response curve gradient, motor evoked potential amplitude and cortical silent period duration in KD patients were similar to controls. In ALS and FAV patients, the magnetic stimulus-response curve gradient (ALS and FAV, P<0.01) and motor evoked potential amplitude (ALS and FAV, P<0.05) were significantly increased, while the cortical silent period duration was reduced (ALS, P<0.001) when compared to KD patients. CONCLUSIONS Threshold tracking TMS techniques have established normal corticomotoneuron function in KD, clearly differentiating KD from ALS. SIGNIFICANCE The present study has established normal cortical excitability in KD, inferring a lack of significant cortical involvement in this disease.
Collapse
Affiliation(s)
- Steve Vucic
- Prince of Wales Medical Research Institute, Barker Street, Randwick, Sydney, NSW 2031, Australia
| | | |
Collapse
|
141
|
King AE, Dickson TC, Blizzard CA, Foster SS, Chung RS, West AK, Chuah MI, Vickers JC. Excitotoxicity mediated by non-NMDA receptors causes distal axonopathy in long-term cultured spinal motor neurons. Eur J Neurosci 2007; 26:2151-9. [PMID: 17908171 DOI: 10.1111/j.1460-9568.2007.05845.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitotoxicity has been implicated as a potential cause of neuronal degeneration in amyotrophic lateral sclerosis (ALS). It has not been clear how excitotoxic injury leads to the hallmark pathological changes of ALS, such as the abnormal accumulation of filamentous proteins in axons. We have investigated the effects of overactivation of excitatory receptors in rodent neurons maintained in long-term culture. Excitotoxicity, mediated principally via non-N-methyl-D-aspartate (NMDA) receptors, caused axonal swelling and accumulation of cytoskeletal proteins in the distal segments of the axons of cultured spinal, but not cortical, neurons. Axonopathy only occurred in spinal neurons maintained for 3 weeks in vitro, indicating that susceptibility to axonal pathology may be related to relative maturity of the neuron. Excitotoxic axonopathy was associated with the aberrant colocalization of phosphorylated and dephosphorylated neurofilament proteins, indicating that disruption to the regulation of phosphorylation of neurofilaments may lead to their abnormal accumulation. These data provide a strong link between excitotoxicity and the selective pattern of axonopathy of lower motor neurons that underlies neuronal dysfunction in ALS.
Collapse
Affiliation(s)
- A E King
- NeuroRepair Group, Menzies Research Institute, Hobart, Tasmania 7000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Attarian S, Verschueren A, Pouget J. Magnetic stimulation including the triple-stimulation technique in amyotrophic lateral sclerosis. Muscle Nerve 2007; 36:55-61. [PMID: 17443663 DOI: 10.1002/mus.20789] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To study the relative importance of upper motor neuron (UMN) dysfunction in the weakness of amyotrophic lateral sclerosis (ALS) and to compare the sensitivity of several transcranial magnetic stimulation (TMS) parameters as means of assessing UMN impairment in ALS, we used TMS to evaluate one upper limb of 63 patients. The triple-stimulation technique (TST) and silent period (SP) were found to be the most frequently abnormal parameters (55.6% and 47.6%, respectively), without significant difference in their diagnostic sensitivity. The SP was found to be a useful parameter in patients with suspected or possible ALS. A positive correlation was found between weakness and the TST amplitude ratio, indicating that weakness may partly be caused by UMN dysfunction. Thus, the TST provides a quantitative tool for assessing UMN conduction failure. When used in association with the SP, the TST provides a sensitive diagnostic tool for use on ALS patients.
Collapse
Affiliation(s)
- Shahram Attarian
- Department of Neurology and Neuromuscular Diseases, CHU La Timone, 264 rue Saint-Pierre, 13385 Marseille, France.
| | | | | |
Collapse
|
143
|
Quintero JE, Day BK, Zhang Z, Grondin R, Stephens ML, Huettl P, Pomerleau F, Gash DM, Gerhardt GA. Amperometric measures of age-related changes in glutamate regulation in the cortex of rhesus monkeys. Exp Neurol 2007; 208:238-46. [PMID: 17927982 DOI: 10.1016/j.expneurol.2007.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/01/2007] [Accepted: 08/07/2007] [Indexed: 11/17/2022]
Abstract
l-glutamate (glutamate) is the principal excitatory neurotransmitter of the central nervous system and is involved in altered neural function during aging and in neurodegenerative diseases. Relatively little is known about the mechanisms of glutamate signaling in the primate brain, in part, because there is an absence of a method capable of rapidly measuring glutamate in either a non-clinical or a clinical setting. We have addressed this paucity of information by measuring extracellular glutamate at 1 Hz in the pre-motor and motor cortices of young, middle-aged, and aged monkeys using a minimally invasive amperometric recording method. In the motor cortex, mean resting glutamate levels were five times higher in the aged group compared to the young group while the pre-motor cortex showed an increasing trend in resting glutamate levels that was not statistically significant. In addition, we measured rapid, phasic glutamate release after local pressure-ejection of nanoliter volumes of either isotonic 70 mM potassium (to stimulate glutamate release) or 1 mM glutamate (to study glutamate uptake) into the pre-motor and motor cortex. In the pre-motor cortex, we measured reproducible glutamate uptake signals that had a significantly decreased (47%) rate of glutamate uptake in aged animals compared to young animals. However, following a 70 mM potassium delivery, we did not observe any consistent changes in evoked release between young versus aged animals. Using these non-clinical microelectrodes to measure glutamate signaling in the brain, our results support the hypothesis that the glutamatergic system undergoes reorganization with aging of the central nervous system.
Collapse
Affiliation(s)
- Jorge E Quintero
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536-0098, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Vucic S, Kiernan MC. Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2007; 78:849-52. [PMID: 17210625 PMCID: PMC2117729 DOI: 10.1136/jnnp.2006.105056] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND While some regard the flail arm syndrome as a variant of amyotrophic lateral sclerosis (ALS), others have argued that it is a distinct clinical entity. Consequently, the present study applied novel central and peripheral nerve excitability techniques to further explore disease pathophysiology in flail arm syndrome. METHODS Cortical and peripheral nerve excitability studies were undertaken in 11 flail arm patients, defined by muscle weakness limited to the proximal aspects of the upper limbs for at least 24 months. RESULTS Mean age at disease onset (60.3 years) was similar to other ALS phenotypes (58.3 years), with strong male predominance (male:female distribution: flail arm 10:1; ALS 1.5:1; p<0.05) and prolonged disease duration (flail arm 62.5 months; ALS 15.8 months; p<0.05). There was evidence of cortical hyperexcitability in flail arm patients, similar to findings in ALS, with reduction in short interval intracortical inhibition (flail arm 0.8 (0.6)%; ALS 4.1 (1.1)%; controls 8.5 (1.0)%; p<0.0001) and resting motor threshold (flail arm 53.4 (2.8)%; ALS 56.6 (1.8)%; controls 60.7 (1.5)%; p<0.05), along with an increase in motor evoked potential amplitude (flail arm 49.5 (9.0)%; ALS 44.4 (4.9)%; controls 25.8 (2.8)%; p<0.05). Peripheral nerve excitability studies demonstrated changes consistent with upregulation in persistent Na+ currents and reduction of slow K+ conductances, similar to findings in ALS. CONCLUSION This study has demonstrated the presence of cortical hyperexcitability in flail arm syndrome, along with abnormalities in peripheral nerve excitability, findings consistent with previous studies in other ALS phenotypes. By demonstrating the presence of upper motor neuron dysfunction, the present study suggests that the flail arm syndrome is an unusual variant of ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Prince of Wales Medical Research Institute and Prince of Wales Clinical School, University of New South Wales, Australia
| | | |
Collapse
|
145
|
Karandreas N, Papadopoulou M, Kokotis P, Papapostolou A, Tsivgoulis G, Zambelis T. Impaired interhemispheric inhibition in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2007; 8:112-8. [PMID: 17453640 DOI: 10.1080/17482960601030113] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The pathogenesis of sporadic amyotrophic lateral sclerosis (ALS) remains unknown. Neurophysiological studies provide evidence of hyperexcitability of the motor cortex or of impairment of inhibitory intrahemispheric modulation of the corticomotoneuron in ALS. In this paper, we used TMS to elicit transcallosal inhibition of the motor cortex in ALS patients in order to investigate whether interhemispheric inhibitory mechanisms subserved by callosal fibres are also disturbed in ALS. Twenty-five patients with ALS and 18 controls were recruited for the study. Resting Motor Threshold (RMT), Silent Period (SP) and interhemispheric inhibition (IHI) were recorded. No significant difference was detected regarding RMT or the duration of SP between patients and controls. IHI was detected in all controls. IHI was totally absent in eight patients, in another eight patients IHI did not reach a significant level and in the remaining nine patients was normal. The degree of IHI was significantly lower in ALS patients than in controls (p = 0.001). In conclusion, altered IHI in ALS patients is in line with the general pattern of reduced corticomotoneuron inhibition, being thus, one of the factors which may lead to chronic overexcitation of pyramidal cells.
Collapse
Affiliation(s)
- Nikos Karandreas
- Laboratory of Electromyography and Clinical Neurophysiology, Aeginition Hospital, University of Athens, Greece.
| | | | | | | | | | | |
Collapse
|
146
|
Young KC, McGehee DS, Brorson JR. Glutamate receptor expression and chronic glutamate toxicity in rat motor cortex. Neurobiol Dis 2007; 26:78-85. [PMID: 17240155 PMCID: PMC1905496 DOI: 10.1016/j.nbd.2006.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/31/2006] [Accepted: 12/05/2006] [Indexed: 11/19/2022] Open
Abstract
In addition to the loss of spinal motor neurons, amyotrophic lateral sclerosis (ALS) is also associated with degeneration of corticospinal layer V pyramidal neurons and decreased glutamate transport in the cortex. We characterized the glutamate receptors on corticospinal neurons in acutely isolated rat motor cortex slices and found that the synaptic inputs to the corticospinal layer V neurons had a lesser proportional contribution from NMDA receptors relative to AMPA receptors than did layer II/III pyramidal neurons. The synaptic I(AMPA) was also more inwardly rectified, indicating a greater Ca(2+)-permeable component, in layer V. In a cortical organotypic slice culture model, blockade of glutamate transporters elevated glutamate in the media and led to pyramidal neuron loss in both layers. The loss of layer V pyramidal neurons was attenuated by antagonists of AMPA/kainate or Ca(2+)-permeable AMPA receptors, suggesting their therapeutic potential in the protection of the motor cortex in ALS.
Collapse
Affiliation(s)
| | | | - James R. Brorson
- Department of Neurology, University of Chicago
- * Corresponding Author: 5841 S. Maryland Ave, MC2030, Chicago, IL 60637, , Phone: (773) 702-7215, Fax: (773) 702-9076
| |
Collapse
|
147
|
Attarian S, Vedel JP, Pouget J, Schmied A. Cortical versus spinal dysfunction in amyotrophic lateral sclerosis. Muscle Nerve 2006; 33:677-90. [PMID: 16506152 DOI: 10.1002/mus.20519] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Little is known about the possible link between cortical and spinal motor neuron dysfunction in amyotrophic lateral sclerosis (ALS). We correlated the characteristics of the responses to transcranial magnetic stimulation (TMS) with the electromechanical properties and firing pattern of single motor units (MUs) tested in nine ALS patients, three patients with Kennedy's disease, and 15 healthy subjects. In Kennedy's disease, 19 of 22 MUs were markedly enlarged with good electromechanical coupling and discharged with great variability. Their excitatory responses increased with MU size. In ALS, 17 of 34 MUs with excitatory responses behaved as in Kennedy's disease. By contrast, 28 MUs with nonsignificant responses showed poor electromechanical coupling and high firing rates, whereas 28 MUs with inhibitory responses showed moderate functional alterations. This result indicates that in ALS as in Kennedy's disease, sprouting of corticospinal axons may occur on surviving motoneurons. A clear relationship exists between the responsiveness of MUs to TMS and their functional state.
Collapse
Affiliation(s)
- Shahram Attarian
- Department of Neurology and Neuromuscular Diseases, CHU La Timone, 264 rue Saint-Pierre, 13385 Marseille, France. sattarian@@ap-hm.fr
| | | | | | | |
Collapse
|
148
|
Toft MH, Gredal O, Pakkenberg B. The size distribution of neurons in the motor cortex in amyotrophic lateral sclerosis. J Anat 2006; 207:399-407. [PMID: 16191168 PMCID: PMC1571546 DOI: 10.1111/j.1469-7580.2005.00465.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The motor cortex of eight patients with amyotrophic lateral sclerosis (ALS) and nine control subjects was used in the study. Recent stereological tools, the disector and the rotator method, were applied to the motor cortex of patients with ALS and control subjects to obtain estimates of mean perikaryon volume, mean neuronal nuclear volume, total perikaryon volume and total neuronal nuclear volume. No significant differences were found in any of the estimates. In vivo proton magnetic resonance spectroscopy studies show a decrease in the concentration of neuronal markers. We expected to find changes in perikaryon and/or nuclei neuronal volume because the total neuron number is unchanged in ALS compared with control subjects. However, this was not the case; our results suggest that metabolic changes take place in the motor cortex of ALS patients without these concomitant anatomical changes.
Collapse
Affiliation(s)
- Mette Helene Toft
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark.
| | | | | |
Collapse
|
149
|
Attarian S, Pouget J, Schmied A. Covariation of corticospinal efficiency and silent period in motoneuron diseases. Muscle Nerve 2006; 34:178-88. [PMID: 16691593 DOI: 10.1002/mus.20570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For a better understanding of the changes affecting the cortically induced silent period (SP) in motoneuron disease, the excitatory and inhibitory effects of transcranial magnetic stimulation were explored repeatedly in 8 patients with amyotrophic lateral sclerosis (ALS), 3 patients with Kennedy's disease (KD), and 10 healthy subjects. In KD, the background electromyogram (EMG) and the motor evoked potential (MEP) area were both enhanced. However, neither the corticospinal efficiency (MEP gain, the ratio between MEP and background EMG) nor the duration of the SP differed from healthy subjects. In ALS patients, the MEP gain and the SP duration decreased conspicuously with time. We conclude that use of the MEP gain improves detection of corticospinal dysfunction in ALS patients. Part of the SP shortening in ALS seems to reflect the reduced activation of cortical or spinal inhibitory networks by the abnormal corticospinal pathway.
Collapse
Affiliation(s)
- S Attarian
- Department of Neurology and Neuromuscular Diseases, CHU La Timone, 264 rue Saint-Pierre, 13385 Marseille, France.
| | | | | |
Collapse
|
150
|
Holasek SS, Wengenack TM, Kandimalla KK, Montano C, Gregor DM, Curran GL, Poduslo JF. Activation of the stress-activated MAP kinase, p38, but not JNK in cortical motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in transgenic mice. Brain Res 2005; 1045:185-98. [PMID: 15910777 DOI: 10.1016/j.brainres.2005.03.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 03/15/2005] [Accepted: 03/16/2005] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, characterized by the degeneration of upper and lower motor neurons (MNs). Central nervous system features include a loss of Betz cells and other pyramidal cells from sensorimotor cortex. The intrinsic mechanism underlying this selective motor neuron loss has not been identified. A recent in vitro study has provided evidence of a novel programmed cell death (PCD) pathway that is unique to spinal cord MNs and is exacerbated by superoxide dismutase (SOD) mutations. This PCD pathway is triggered through the Fas receptor and involves the apoptosis signal-regulating kinase 1 (ASK1), the p38 MAP kinase, and the neuronal form of nitric oxide synthase (nNOS). Previously, we found significant increases in the numbers of ventral horn MNs immunopositive for these enzymes in the spinal cords of mutant SOD transgenic (G93A) mice as early as 60 days of age, suggesting that this pathway may be active in vivo. Since the upper MNs of ALS patients and G93A mice are also known to degenerate, the purpose of the present study was to investigate the possible activation of this PCD pathway in the MNs of the sensorimotor cortex of G93A transgenic mice. Compared to non-transgenic littermates, the G93A mice showed significant increases in the numbers of MNs immunopositive for the active (phosphorylated) forms of ASK1, p38, MKK3/6 (the known activator of p38), and also active caspase-3, as early as 60 days of age. Another stress-activated protein kinase, c-Jun N-terminal kinase (JNK), commonly activated in other neurodegenerative disorders such as Alzheimer's disease, showed no increases in G93A mice at any age. These results suggest that, not only has a PCD pathway been activated in the cortical MNs, but one that may be unique to ALS. Moreover, these findings suggest that earlier diagnosis and therapeutic intervention may be possible for successful treatment of ALS. Consequently, these enzymes may provide the biochemical markers to enable earlier diagnosis of ALS and molecular targets for the development of new therapeutic compounds.
Collapse
Affiliation(s)
- Silvina S Holasek
- Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience and Biochemistry/Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|