101
|
Kalbe L, Leunda A, Sparre T, Meulemans C, Ahn MT, Orntoft T, Kruhoffer M, Reusens B, Nerup J, Remacle C. Nutritional regulation of proteases involved in fetal rat insulin secretion and islet cell proliferation. Br J Nutr 2007; 93:309-16. [PMID: 15877869 DOI: 10.1079/bjn20041313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological studies have indicated that malnutrition during early life may programme chronic degenerative disease in adulthood. In an animal model of fetal malnutrition, rats received an isoenergetic, low-protein (LP) diet during gestation. This reduced fetal β-cell proliferation and insulin secretion. Supplementation during gestation with taurine prevented these alterations. Since proteases are involved in secretion and proliferation, we investigated which proteases were associated with these alterations and their restoration in fetal LP islets. Insulin secretion and proliferation of fetal control and LP islets exposed to different protease modulators were measured. Lactacystin and calpain inhibitor I, but not isovaleryl-l-carnitine, raised insulin secretion in control islets, indicating that proteasome and cysteinyl cathepsin(s), but not μ-calpain, are involved in fetal insulin secretion. Insulin secretion from LP islets responded normally to lactacystin but was insensitive to calpain inhibitor I, indicating a loss of cysteinyl cathepsin activity. Taurine supplementation prevented this by restoring the response to calpain inhibitor I. Control islet cell proliferation was reduced by calpain inhibitor I and raised by isovaleryl-l-carnitine, indicating an involvement of calpain. Calpain activity appeared to be lost in LP islets and not restored by taurine. Most modifications in the mRNA expression of cysteinyl cathepsins, calpains and calpastatin due to maternal protein restriction were consistent with reduced protease activity and were restored by taurine. Thus, maternal protein restriction affected cysteinyl cathepsins and the calpain–calpastatin system. Taurine normalised fetal LP insulin secretion by protecting cysteinyl cathepsin(s), but the restoration of LP islet cell proliferation by taurine did not implicate calpains.
Collapse
Affiliation(s)
- L Kalbe
- Laboratoire de Biologie Cellulaire, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Obesity and type 2 diabetes are serious health issues in the developed world and are becoming increasingly important on a global scale. Furthermore, the marked increases in both childhood obesity and type 2 diabetes will translate to further increases in adult obesity, diabetes and associated co-morbidities in the near future; as such it has been ranked as a critical public health threat. It is a widely held view that the primary cause of obesity is the development of an obesogenic environment, due to ease of access to highly calorific food and reduced energy expenditure in work and leisure activities. In addition there is strong evidence for a genetic component to human obesity with the identification of a number of genes associated with human obesity. However, on its own the genetic component of this condition cannot account for the dramatic increase in the prevalence of obesity in recent years. Of relevance and as highlighted by epidemiological and experimental studies, is the relationship between the periconceptual, fetal and early infant phases of life and the subsequent development of adult obesity. The terms “developmental programming” and the “Developmental Origins of Adult Health and Disease” are preferentially used to describe these relationships. Despite initial controversy when these relationships were first suggested, both prospective clinical and experimental studies have clearly shown that the propensity to develop abnormalities of cardiovascular, endocrine and metabolic homeostasis in adulthood are increased when fetal development has been adversely affected. This pathogenesis is not based on genetic defects but on altered gene expression seen as a result of fetal adaptation to an adverse intrauterine environment. The relative role of genetic versus environmental factors and the mechanisms underlying developmental programming remain speculative. It is generally argued that in response to an adverse intrauterine environment, the fetus adapts its physiological development to maximise its immediate chances for survival. Owing to the plasticity of the fetus, these adaptations may include resetting of metabolic homeostasis and endocrine systems and the down-regulation of growth, commonly reflected in an altered birth phenotype. It is thought that whilst these changes in fetal physiology (i.e. the prenatal environment) may be beneficial for short term survivalin uterothey may be maladaptive in postnatal life, contributing to poor health outcomes when offspring are exposed to catch-up growth, diet-induced obesity and other factors. The “predictive adaptive response” hypothesis proposes that the degree of mismatch between the pre- and postnatal environments is a major determinant of subsequent disease. This review will address recent work in animal models and observations in the clinical and epidemiological settings onin uteroadaptations and subsequent development of obesity and type 2 diabetes.
Collapse
|
103
|
Abstract
PURPOSE OF REVIEW Taurine, a free amino acid, is found in millimolar concentrations in most mammalian tissues. Mammals are able to synthesize taurine endogenously, but some species such as humans are more dependent on dietary sources of taurine. A growing body of evidence suggests that taurine plays a preponderant role in many physiological processes, which will be summarized in this review. RECENT FINDINGS Evidence for the requirement of taurine in the human diet has been obtained in many studies involving animal models and a few clinical trials. Recent and past studies suggested that taurine might be a pertinent candidate for use as a nutritional supplement to protect against oxidative stress, neurodegenerative diseases or atherosclerosis. Taurine has demonstrated promising actions in vitro, and as a result clinical trials have begun to investigate its effects on various diseases. SUMMARY Taurine appears to have multiple functions and plays an important role in many physiological processes, such as osmoregulation, immunomodulation and bile salt formation. Taurine analogues/derivatives have recently been reported to have a marked activity on various disorders. Taken together, these observations actualize the old story of taurine.
Collapse
Affiliation(s)
- Thomas Bouckenooghe
- Laboratoire de Biologie Cellulaire, Institut des Sciences de la Vie, Université Catholique de Louvain, Bâtiment Carnoy Place, Croix du Sud 5, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
104
|
El Khattabi I, Remacle C, Reusens B. The regulation of IGFs and IGFBPs by prolactin in primary culture of fetal rat hepatocytes is influenced by maternal malnutrition. Am J Physiol Endocrinol Metab 2006; 291:E835-42. [PMID: 16720626 DOI: 10.1152/ajpendo.00509.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During perinatal development, the regulation of IGF system appears to be growth hormone (GH) independent. By using highly purified primary fetal hepatocytes, we investigated the role of prolactin (PRL) in the regulation of IGF system and hepatocyte proliferation. We also analyzed the consequence of a maternal low-protein (LP) diet on the regulation of IGF, IGF-binding protein (IGFBP), and hepatocyte proliferation by prolactin. Pregnant Wistar rats were fed a control (C) diet (20% protein) or isocaloric (LP; 8%) diet throughout gestation. On day 21.5, fetal hepatocytes were cultured for 4 days and incubated with rat prolactin. In the C hepatocytes, PRL at 100 ng/ml decreased the abundance of IGFBP-1 and IGFBP-2 by 50 (P < 0.05) and 60% (P < 0.01), respectively. It also reduced by 70% the level of IGF-II mRNA (P < 0.01). By contrast, PRL failed to modulate IGFBP-1 and IGFBP-2 production by LP hepatocytes, and this was associated with reduced abundance of the short form of PRL receptor (P < 0.05). PRL had no effect on either the proliferation or the IGF-I production by C and LP hepatocytes, although it reduced the expression of IGF-II. These results suggest that prolactin influences hepatocyte proliferation in vitro by inhibiting IGFBP-1, IGFBP-2, and IGF-II levels, which may coincide with the decline of IGF-II observed in rodents during late gestation in vivo. On the other hand, maternal LP diet induces a resistance of fetal hepatocytes to PRL.
Collapse
Affiliation(s)
- Ilham El Khattabi
- Laboratoire de Biologie Cellulaire, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | | |
Collapse
|
105
|
|
106
|
Reusens B, Remacle C. Programming of the endocrine pancreas by the early nutritional environment. Int J Biochem Cell Biol 2005; 38:913-22. [PMID: 16337425 DOI: 10.1016/j.biocel.2005.10.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 10/17/2005] [Accepted: 10/18/2005] [Indexed: 11/16/2022]
Abstract
A substantial body of evidence now suggests that poor intrauterine milieu elicited by maternal nutritional disturbance or placental insufficiency may programme susceptibility in the foetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. Further data showing the developmental programming of the metabolic syndrome are now available thanks to animal studies in which the foetal environment has been manipulated. This review examines the developmental programming of glucose intolerance by disturbed intrauterine metabolic condition in rats. It focuses on the alteration of the endocrine pancreas at birth. Long-term consequences, deterioration of glucose tolerance and even transgenerational effects are reported. Maternal protein, caloric restriction and diabetes during gestation/lactation lead to altered beta-cell mass. This review also tempts to identify cellular and molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Brigitte Reusens
- Laboratoire de Biologie Cellulaire, Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
107
|
Masiello P. Animal models of type 2 diabetes with reduced pancreatic beta-cell mass. Int J Biochem Cell Biol 2005; 38:873-93. [PMID: 16253543 DOI: 10.1016/j.biocel.2005.09.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Revised: 09/02/2005] [Accepted: 09/08/2005] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes is increasingly viewed as a disease of insulin deficiency due not only to intrinsic pancreatic beta-cell dysfunction but also to reduction of beta-cell mass. It is likely that, in diabetes-prone subjects, the regulated beta-cell turnover that adapts cell mass to body's insulin requirements is impaired, presumably on a genetic basis. We still have a limited knowledge of how and when this derangement occurs and what might be the most effective therapeutic strategy to preserve beta-cell mass. The animal models of type 2 diabetes with reduced beta-cell mass described in this review can be extremely helpful (a) to have insight into the mechanisms underlying the defective growth or accelerated loss of beta-cells leading to the beta-cell mass reduction; (b) to investigate in prospective studies the mechanisms of compensatory adaptation and subsequent failure of a reduced beta-cell mass. Furthermore, these models are of invaluable importance to test the effectiveness of potential therapeutic agents that either stimulate beta-cell growth or inhibit beta-cell death.
Collapse
Affiliation(s)
- Pellegrino Masiello
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, University of Pisa, Scuola Medica, Italy.
| |
Collapse
|
108
|
Aerts L, Van Assche FA. Animal evidence for the transgenerational development of diabetes mellitus. Int J Biochem Cell Biol 2005; 38:894-903. [PMID: 16118061 DOI: 10.1016/j.biocel.2005.07.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/15/2005] [Accepted: 07/15/2005] [Indexed: 12/15/2022]
Abstract
The mammalian fetus develops inside the uterus of its mother and is completely dependent on the nutrients supplied by its mother. Disturbances in the maternal metabolism that alter this nutrient supply from mother to fetus can induce structural and functional adaptations during fetal development, with lasting consequences for growth and metabolism of the offspring throughout life. This effect has been investigated, by several research groups, in different experimental models where the maternal metabolism during pregnancy was experimentally manipulated (maternal diabetes and maternal malnutrition) and the effect on the offspring was investigated. The altered maternal/fetal metabolism appears to be associated with a diabetogenic effect in the adult offspring, including gestational diabetes. This diabetic pregnancy in the offspring again induces a diabetogenic effect into the next generation, via adaptations during fetal development. These experimental data in laboratory animals are confirmed by epidemiological studies on infants of mothers suffering from diabetes or malnutrition during pregnancy. It can be concluded that fetal development in an abnormal intra-uterine milieu can induce alterations in the fetal metabolism, with lasting consequences for the glucose tolerance of the offspring in adult life. The most marked effect is the development of gestational diabetes, thereby transmitting the diabetogenic tendency to the next generation again. The concept of fetal origin of adult diabetes therefore is of major significance for public health in the immediate and the far future.
Collapse
Affiliation(s)
- L Aerts
- Department of Developmental Biology, UZ Gasthuisberg, KULeuven, Belgium.
| | | |
Collapse
|
109
|
Affiliation(s)
- David J Hill
- Lawson Health Research Institute, St. Joseph's Health Care, 268 Grosvenor Street, London, Ontario.
| |
Collapse
|
110
|
McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005; 85:571-633. [PMID: 15788706 DOI: 10.1152/physrev.00053.2003] [Citation(s) in RCA: 1311] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The "fetal" or "early" origins of adult disease hypothesis was originally put forward by David Barker and colleagues and stated that environmental factors, particularly nutrition, act in early life to program the risks for adverse health outcomes in adult life. This hypothesis has been supported by a worldwide series of epidemiological studies that have provided evidence for the association between the perturbation of the early nutritional environment and the major risk factors (hypertension, insulin resistance, and obesity) for cardiovascular disease, diabetes, and the metabolic syndrome in adult life. It is also clear from experimental studies that a range of molecular, cellular, metabolic, neuroendocrine, and physiological adaptations to changes in the early nutritional environment result in a permanent alteration of the developmental pattern of cellular proliferation and differentiation in key tissue and organ systems that result in pathological consequences in adult life. This review focuses on those experimental studies that have investigated the critical windows during which perturbations of the intrauterine environment have major effects, the nature of the epigenetic, structural, and functional adaptive responses which result in a permanent programming of cardiovascular and metabolic function, and the role of the interaction between the pre- and postnatal environment in determining final health outcomes.
Collapse
Affiliation(s)
- I Caroline McMillen
- Discipline of Physiology, School of Molecular and Biomeducal Sciences, and Department of Obstetrics and Gynaecology, University of Adelaide, Australia.
| | | |
Collapse
|
111
|
Sparre T, Larsen MR, Heding PE, Karlsen AE, Jensen ON, Pociot F. Unraveling the Pathogenesis of Type 1 Diabetes with Proteomics: Present And Future Directions. Mol Cell Proteomics 2005; 4:441-57. [PMID: 15699484 DOI: 10.1074/mcp.r500002-mcp200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 1 diabetes (T1D) is the result of selective destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. T1D is due to a complex interplay between the beta-cell, the immune system, and the environment in genetically susceptible individuals. The initiating mechanism(s) behind the development of T1D are largely unknown, and no genes or proteins are specific for most T1D cases. Different pro-apoptotic cytokines, IL-1 beta in particular, are present in the islets during beta-cell destruction and are able to modulate beta-cell function and induce beta-cell death. In beta-cells exposed to IL-1 beta, a race between destructive and protective events are initiated and in susceptible individuals the deleterious events prevail. Proteins are involved in most cellular processes, and it is thus expected that their cumulative expression profile reflects the specific activity of cells. Proteomics may be useful in describing the protein expression profile and thus the diabetic phenotype. Relatively few studies using proteomics technologies to investigate the T1D pathogenesis have been published to date despite the defined target organ, the beta-cell. Proteomics has been applied in studies of differentiating beta-cells, cytokine exposed islets, dietary manipulated islets, and in transplanted islets. Although that the studies have revealed a complex and detailed picture of the protein expression profiles many functional implications remain to be answered. In conclusion, a rather detailed picture of protein expression in beta-cell lines, islets, and transplanted islets both in vitro and in vivo have been described. The data indicate that the beta-cell is an active participant in its own destruction during diabetes development. No single protein alone seems to be responsible for the development of diabetes. Rather the cumulative pattern of changes seems to be what favors a transition from dynamic stability in the unperturbed beta-cell to dynamic instability and eventually to beta-cell destruction.
Collapse
|
112
|
Abstract
BACKGROUND There is evidence that malnutrition in early life induces a growth retardation leading, in adult life, to manifest components of the metabolic syndrome. However, the impact on obesity seems less clearly established. OBJECTIVE To review the effects of foetal and postnatal malnutrition on the programming of obesity in the context of the metabolic syndrome, as well as the link between central obesity and cardiovascular diseases. METHODS Included in the review were recent papers exploring the mechanisms linking maternal nutrition with impaired foetal growth and later obesity, cardiovascular disease, hypertension and diabetes in humans and animals. RESULTS The programming of obesity during foetal and early postnatal life depends of the timing of maternal malnutrition as well as the postnatal environment. Obesity arises principally in offspring submitted to malnutrition during early stages of gestation and which presented early catch-up growth. The programming may involve the dysregulation of appetite control or the hormonal environment leading to a context favourable to obesity development (hypersecretion of corticosteroids, hyperinsulinaemia and hyperleptinaemia and anomalies in the IGF axis). Adipose tissue secretes actively several factors implicated in inflammation, blood pressure, coagulation and fibrinolysis. The programmed development of intra-abdominal obesity after early growth restriction may thus favour higher prevalence of hypertension and cardiovascular diseases. CONCLUSIONS Abdominal obesity appears in malnourished offspring and is aggravated by early catch-up growth. Higher rates of intra-abdominal obesity observed after growth restriction may participate to hypertension and create atherothrombotic conditions leading to the development of cardiovascular diseases.
Collapse
Affiliation(s)
- C Remacle
- Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, Louvain-la-Neuve B 1348, Belgium.
| | | | | |
Collapse
|
113
|
Han J, Bae JH, Kim SY, Lee HY, Jang BC, Lee IK, Cho CH, Lim JG, Suh SI, Kwon TK, Park JW, Ryu SY, Ho WK, Earm YE, Song DK. Taurine increases glucose sensitivity of UCP2-overexpressing beta-cells by ameliorating mitochondrial metabolism. Am J Physiol Endocrinol Metab 2004; 287:E1008-18. [PMID: 15265758 DOI: 10.1152/ajpendo.00008.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A low-taurine diet during fetal or early postnatal life causes abnormal pancreatic beta-cell development. Tissue and plasma taurine concentrations can also be low in diabetic patients. We examined the effect of taurine on impaired glucose responses in diabetic rat beta-cells adenovirally overexpressing uncoupling protein (UCP)2, which is upregulated in obesity-related type 2 diabetes. We found that taurine pretreatment restored the ATP-to-ADP (ATP/ADP) ratio and glucose-stimulated insulin secretion in UCP2-infected islets. ATP-sensitive K(+) channel sensitivity to dihydroxyacetone, another insulin secretagogue, was similar in both UCP2-infected and control beta-cells. In freshly isolated mitochondria from UCP2-overexpressing insulin-secreting (INS)-1 beta-cells, methyl pyruvate-mediated mitochondrial Ca(2+) increase was significantly ameliorated by taurine. A mitochondrial Ca(2+) uniporter blocker, ruthenium red, inhibited the action of taurine. This study suggests that taurine enhances the glucose sensitivity of UCP2-overexpressing beta-cells, probably by increasing mitochondrial Ca(2+) influx through the Ca(2+) uniporter, thereby enhancing mitochondrial metabolic function and increasing the ATP/ADP ratio.
Collapse
Affiliation(s)
- Jin Han
- Dept. of Physiology, Keimyung University School of Medicine, 194, Dongsan-Dong, Jung-Gu, Daegu 700-712, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Arany E, Strutt B, Romanus P, Remacle C, Reusens B, Hill DJ. Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia 2004; 47:1831-7. [PMID: 15502919 DOI: 10.1007/s00125-004-1535-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 07/12/2004] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS We hypothesised that nutritional taurine, which is important for the development of the endocrine pancreas and reduces cytokine-induced apoptosis in pancreatic beta cells, would prevent or delay the onset of autoimmune diabetes, if given early in life to the non-obese diabetic (NOD) mouse. METHODS Pregnant NOD mice received a diet supplemented with taurine throughout gestation or until weaning, and the pancreas of the offspring was examined using immunohistochemistry. This was done at postnatal day 14 and after 8 weeks (assessment of insulitis). The animals were also monitored until they became diabetic. RESULTS At 14 days, pancreatic islet mass was significantly greater in animals treated with taurine than in controls. This finding was associated with a greater incidence of islet cell proliferation and a lower incidence of apoptosis. At age 8 weeks the number of islets manifesting insulitis was reduced by more than half, and the area of insulitis was reduced by 90%. Taurine treatment delayed the mean onset time of diabetes from 18 to 30 weeks in females, and from 30 to 38 weeks in males, while 20% of treated females remained free of diabetes after one year. CONCLUSIONS/INTERPRETATION Taurine supplementation in early life altered islet development, reduced insulitis and delayed the onset of diabetes in NOD mice.
Collapse
Affiliation(s)
- E Arany
- Lawson Health Research Institute, St. Joseph's Health Care, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
115
|
Franconi F, Di Leo MAS, Bennardini F, Ghirlanda G. Is taurine beneficial in reducing risk factors for diabetes mellitus? Neurochem Res 2004; 29:143-50. [PMID: 14992273 DOI: 10.1023/b:nere.0000010443.05899.2f] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Taurine is a semiessential amino acid, and its deficiency is involved in retinal and cardiac degenerations. In recent years, it was found that diabetes mellitus (DM) is associated with taurine, and many in vivo experimental studies showed that taurine administration is able to reduce the alterations induced by DM in the retina, lens, and peripheral nerve, although its effects on diabetic kidney are dubious. Interestingly, long-term taurine supplementation reduces the mortality rate in diabetic rats. The mechanisms by which taurine exerts beneficial effects in DM are discussed below. Recently, it has been suggested that taurine deficiency may alter the endocrine pancreas "fetal programming," increasing the risk of insulin resistance in adult life. The bulk of experimental data suggests that taurine administration could be useful in the treatment of type 1 DM and in the prevention of insulin resistance.
Collapse
Affiliation(s)
- Flavia Franconi
- Department of Pharmacology and Center for Biotechnology Development and Biodiversity Research, University of Sassari, Italy.
| | | | | | | |
Collapse
|
116
|
Abstract
Fetal development is dependent on maternal supply of fuels and building blocks. Disturbed maternal metabolism or inappropriate maternal nutrition confronts the fetus with an unfavourable intra-uterine milieu. Structural and functional adaptations occur during development and maturation of organs. Consequences of these fetal alterations persist postnatally and may result in metabolic alterations throughout life. Gestational diabetes can occur in these offspring and transmit the effect to the next generation. These alterations in fetal development can be associated with fetal macrosomia (maternal diabetes) or fetal growth-restriction (maternal/fetal malnutrition). The relation between birth weight and later metabolic disease therefore is U-shaped. Adult metabolic condition is thus to a considerable extent programmed in utero, fetal and neonatal weight being symptoms of disturbed fetal development. This concept of intra-uterine programming of disease is illustrated with a review of epidemiological human studies and experimental animal studies.
Collapse
Affiliation(s)
- L Aerts
- Department of Obstetrics and Gynaecology, U.Z. Gasthuisberg, K.U. Leuven Heerestraat 49 B-3000 Leuven, Belgium.
| | | |
Collapse
|
117
|
Bieswal F, Hay SM, McKinnon C, Reusens B, Cuignet M, Rees WD, Remacle C. Prenatal protein restriction does not affect the proliferation and differentiation of rat preadipocytes. J Nutr 2004; 134:1493-9. [PMID: 15173417 DOI: 10.1093/jn/134.6.1493] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Poor development in utero may favor the development of obesity in adulthood. Animal studies showed that embryo manipulation in vitro or nutritional insults during the embryonic and fetal stages of development may lead to obesity in adult life. We studied the in vitro proliferation and differentiation of adipocytes to investigate whether early protein restriction may program cell growth and development. In a series of experiments, 2 different low-protein diet protocols were compared. In both cases, pregnant rats were fed a diet with a high (18-20%) or low (8-9%) protein content during gestation and/or lactation. Preadipocytes were isolated from the fetuses, neonates, and weanling offspring. Moderate protein restriction, imposed during either gestation and/or lactation, did not affect the capacity of preadipose cells to divide or store fat. Because previous studies showed that early protein restriction alters the metabolism of sulfur amino acids, we also investigated the effects of methionine, taurine, and homocysteine on proliferation and differentiation of preadipocytes. The supplementation of the diet with methionine or the addition of homocysteine and taurine to the culture media did not influence the development of preadipocytes. We obtained no evidence for the direct reprogramming of the precursor or stem cells and suggest that the subsequent alteration in fat accretion may therefore reflect a change in the neuroendocrine environment.
Collapse
|
118
|
Merezak S, Reusens B, Renard A, Goosse K, Kalbe L, Ahn MT, Tamarit-Rodriguez J, Remacle C. Effect of maternal low-protein diet and taurine on the vulnerability of adult Wistar rat islets to cytokines. Diabetologia 2004; 47:669-75. [PMID: 15298344 DOI: 10.1007/s00125-004-1357-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS A maternal low-protein diet has been shown to induce an increased susceptibility of fetal islets to cytokines, but this effect can be avoided by maternal taurine supplementation. Here, we question whether these effects persist until adulthood in the offspring, despite the animal having a normal diet after weaning. METHODS Pregnant Wistar rats received a diet of either 20% or 8% protein (control [C group] and recuperated [R group] respectively), which was or was not supplemented with taurine (control treated with taurine [CT group] and recuperated treated with taurine [RT group] respectively) during gestation and lactation. When the female offspring reached adulthood, an OGTT was performed. In a second stage, islets were isolated from these offspring, then pretreated or not with taurine, and subsequently treated with cytokines. RESULTS Fasting glycaemia was higher (p<0.05) and insulinaemia was lower (p<0.01) in the R group than in the C group. Taurine supplementation decreased insulinaemia in the CT group and tended to increase it in the RT group. After the OGTT, glycaemia in R animals was not different from that in the C group, despite a blunted insulin response (p<0.05) which was restored by taurine. Supplementation in C-group mothers led to a weak glucose intolerance. In vitro, more apoptotic cells were observed in R islets after cytokines treatment (p<0.01). The addition of taurine to the culture medium in the R and C groups protected the islets from the cytokines (p<0.01). Maternal taurine supplementation decreased the sensitivity of islets in the RT group (p<0.01), but increased sensitivity in the CT group (p<0.01). CONCLUSIONS/INTERPRETATION The increased vulnerability of islets to cytokines due to a restriction of protein during fetal development was still evident when the offspring reached adulthood. The low-protein diet also induced hyperglycaemia in the presence of lower insulinaemia. Taurine supplementation protected adult islets of the R group from cytokine toxicity and restored the insulinaemia. However, unnecessary supplementation of taurine could have detrimental effects.
Collapse
Affiliation(s)
- S Merezak
- Laboratory of Cell Biology, World Health Organization Collaborating Centre for the Biology of Development of the Endocrine Pancreas, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
119
|
El-Khattabi I, Grégoire F, Remacle C, Reusens B. Isocaloric maternal low-protein diet alters IGF-I, IGFBPs, and hepatocyte proliferation in the fetal rat. Am J Physiol Endocrinol Metab 2003; 285:E991-E1000. [PMID: 12902319 DOI: 10.1152/ajpendo.00037.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of an isocaloric maternal low-protein diet during pregnancy in rats on the proliferative capacity of cultured fetal hepatocytes. The potential roles of these changes on the IGF-IGF-binding protein (IGFBP) axis, and the role of insulin and glucocorticoids in liver growth retardation, were also evaluated. Pregnant Wistar rats were fed a control (C) diet (20% protein) or a low-protein (LP) diet (8%) throughout gestation. In primary culture, the DNA synthesis of hepatocytes derived from LP fetuses was decreased by approximately 30% compared with control hepatocytes (P < 0.05). In parallel, in vivo moderate protein restriction in the dam reduced the fetal liver weight and IGF-I level in fetal plasma (P < 0.01) and augmented the abundance of 29- to 32-kDa IGFBPs in fetal plasma (P < 0.01) and fetal liver (P < 0.01). By contrast, the abundance of IGF-II mRNA in liver of LP fetuses was unaffected by the LP diet. In vitro, the LP-derived hepatocytes produced less IGF-I (P < 0.01) and more 29- to 32-kDa IGFBPs (P < 0.01) than hepatocytes derived from control fetuses. These alterations still appeared after 3-4 days of culture, indicating some persistence in programming. Dexamethasone treatment of control-derived hepatocytes decreased cell proliferation (54 +/- 2.3%, P < 0.01) and stimulated 29- to 32-kDa IGFBPs, whereas insulin promoted fetal hepatocyte growth (127 +/- 5.5%, P < 0.01) and inhibited 29- to 32-kDa IGFBPs. These results show that liver growth and cell proliferation in association with IGF-I and IGFBP levels are affected in utero by fetal undernutrition. It also suggests that glucocorticoids and insulin may modulate these effects.
Collapse
Affiliation(s)
- Ilham El-Khattabi
- Laboratoire de Biologie Cellulaire, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
120
|
Sparre T, Reusens B, Cherif H, Larsen MR, Roepstorff P, Fey SJ, Mose Larsen P, Remacle C, Nerup J. Intrauterine programming of fetal islet gene expression in rats--effects of maternal protein restriction during gestation revealed by proteome analysis. Diabetologia 2003; 46:1497-511. [PMID: 13680128 DOI: 10.1007/s00125-003-1208-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2003] [Revised: 07/03/2003] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Fetal undernutrition can result in intrauterine growth restriction and increased incidence of Type 2 diabetes mellitus. Intrauterine malnutrition in form of an isocaloric low-protein diet given to female rats throughout gestation decreases islet-cell proliferation, islet size and pancreatic insulin content, while increasing the apoptotic rate and sensitivity to nitrogen oxide and interleukin-1beta. Hence, the influence of a low-protein diet on the development of beta-cells and islets could also be of interest for the pathogenesis of Type 1 and Type 2 diabetes mellitus. We hypothesise that the effects of a low-protein diet in utero are caused by intrauterine programming of beta-cell gene expression. METHODS Pregnant Wistar rats were fed a low-protein diet (8% protein) or a control diet (20% protein) throughout gestation. At day 21.5 of gestation fetal pancreata were removed, digested and cultured for 7 days. Neoformed islets were collected and analysed by proteome analysis comprising 2-dimensional gel electrophoresis and mass spectrometry. RESULTS A total of 2810 different protein spots were identified, 70 of which were changed due to the low-protein diet. From 45 of the changed protein spots, identification was obtained by mass spectrometry (64% success rate). Proteins induced by the low-protein diet were grouped according to their biological functions, e.g. cell cycle and differentiation, protein synthesis and chaperoning. CONCLUSIONS/INTERPRETATION Our study offers a possible explanation of the alterations induced by a low-protein diet in islets. It shows that in Wistar rats the intrauterine milieu could program islet gene expression in ways unfavourable for the future of the progeny. This could be important for our understanding of the development of Type 1 and Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- T Sparre
- Steno Diabetes Center, Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Boujendar S, Arany E, Hill D, Remacle C, Reusens B. Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J Nutr 2003; 133:2820-5. [PMID: 12949371 DOI: 10.1093/jn/133.9.2820] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In rats, an isoenergetic low protein diet (LP) given throughout gestation perturbs the development of the endocrine pancreas by reducing beta-cell mass and islet vascularization at birth. Taurine, an important amino acid during development, has been found to be low in fetal and maternal plasma. When added to a LP diet, taurine normalizes beta-cell mass. Therefore, we investigated the ability of taurine to correct altered islet vascularization. Rats were given 20% [control (C)] or 8% (LP) protein in the diet with or without supplementation with 25 g/L taurine (T) in drinking water (C+T and LP+T) during gestation and lactation. Immunostaining for vascular endothelial growth factor (VEGF) and fetal liver kinase-1 (Flk-1), a VEGF receptor, was performed on fetal and neonatal pancreatic sections. Blood vessel density and blood vessel number were analyzed morphometrically on semi-thin sections. Taurine supplementation restored a normal volume and numerical density of vessels in fetal islets. The number of cells showing immunoreactivity for VEGF and Flk-1 was reduced by 33 and 45%, respectively, in islet cells from LP fetuses. In 1-mo-old pups, VEGF-positive cells remained decreased by nearly 22%. Both VEGF and Flk-1 were restored in pancreatic endocrine cells of fetuses and pups given taurine. The LP diet induced a threefold overexpression of Flk-1 in ductal cells, which contain precursors of beta cells. However, taurine supplementation was without effect. In conclusion, underexpression of VEGF and Flk-1 is associated with the lower fetal islet vascularization induced by the maternal malnutrition. The addition of taurine to the maternal diet prevents such damage and has a potential role in islet vasculogenesis.
Collapse
Affiliation(s)
- Samira Boujendar
- Laboratoire de Biologie Cellulaire, World Health Collaborating Center for the Development of the Endocrine Pancreas, Université Catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | | | | | | | | |
Collapse
|
122
|
Current literature in diabetes. Diabetes Metab Res Rev 2003; 19:76-83. [PMID: 12592647 DOI: 10.1002/dmrr.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|