101
|
Sharma C, Bhardwaj NK. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109963. [PMID: 31499992 DOI: 10.1016/j.msec.2019.109963] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 06/29/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022]
Abstract
Bacterial nanocellulose (BNC) has emerged as a natural biopolymer of significant importance in diverse technological areas due to its incredible physicochemical and biological characteristics. However, the high capital investments, production cost and lack of well-organized scale-up processes resulting in low BNC production are the major impediments need to be resolved. This review enfolds the three different and important portions of BNC. Firstly, advancement in production technologies of BNC like cell-free extract technology, static intermittent fed batch technology and novel cost-effective substrates that might surmount the barriers associated with BNC production at industrial level. Secondly, as BNC and its composites (with other polymers/nanoparticles) represents the utmost material of preference in current regenerative and diagnostic medicine, therefore recently reported biomedical applications of BNC and functionalized BNC in drug delivery, tissue engineering, antimicrobial wound healing and biosensing are widely been focused here. The third and the most important aspect of this review is an in-depth discussion of various pitfalls associated with BNC production. Recent trends in BNC research to overcome the existing snags that might pave a way for industrial scale production of BNC thereby facilitating its feasible application in various fields are highlighted.
Collapse
Affiliation(s)
- Chhavi Sharma
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar 135001, Haryana, India.
| | - Nishi K Bhardwaj
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar 135001, Haryana, India
| |
Collapse
|
102
|
Dutta SD, Patel DK, Lim KT. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J Biol Eng 2019; 13:55. [PMID: 31249615 PMCID: PMC6585131 DOI: 10.1186/s13036-019-0177-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Cellulose-based hydrogels are immensely important for tissue engineering. In this review, we attempt to document the source, nature, and application of cellulose-based hydrogels as an extracellular matrix for tissue growth and regeneration. Hydrogels can be prepared either from native cellulose, including both bacterial and plant sources or from cellulose derivatives, such as methyl cellulose, carboxymethylcellulose, and hydroxypropylmethylcellulose or even metal ions such as silver. Cellulose-polymer composite (polymers that include natural sources including chitosan, starch, alginates, collagen, hyaluronic acid, and chitin) are an attractive, inexpensive, and advantageous structural material that is easy to use. Cellulose-based scaffolding materials are widely used in the regeneration of various tissues, such as bone, cartilage, heart, blood vessel, nerve, and liver, among others. In this review, we discuss the most important applications of cellulosic hydrogels in tissue engineering based on their structural compositions.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Biorobotics Laboratory, Department of Biosystems Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ki-Taek Lim
- Biorobotics Laboratory, Department of Biosystems Engineering, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
103
|
Roman M, Haring AP, Bertucio TJ. The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
104
|
Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00007] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
105
|
Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:1989-2006. [PMID: 30637497 DOI: 10.1007/s00253-018-09602-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.
Collapse
|
106
|
|
107
|
Fan CY, Liu JX, Shi F, Ran S, Chen B, Zhou J, Liu SH, Song X, Kang J. Facile synthesis of urchin-like CsxWO3 particles with improved transparent thermal insulation using bacterial cellulose as a template. RSC Adv 2019; 9:5804-5814. [PMID: 35515923 PMCID: PMC9060906 DOI: 10.1039/c8ra07626j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 11/30/2022] Open
Abstract
Urchin-like CsxWO3 particles were synthesized using bacterial cellulose (BC) as a template by the hydrothermal method. The effects of the BC addition amount on the morphology, W5+ content and transparent thermal insulation of CsxWO3 were studied. It has been confirmed that abnormal growth of CsxWO3 rods was greatly reduced after introduction of BC into the precursor solution. Moreover, introduction of BC into the precursor solution could significantly improve the transparent thermal insulation properties of the CsxWO3 film. In particular, when the BC amount was appropriate, the prepared CsxWO3 film exhibited better visible transparency, with the visible light transmittance (TVis) more than 60%. In addition, the urchin-like particles could be transformed into small size nanorods after H2 heat-treatment, exhibiting excellent visible light transparency and thermal insulation performance. In particular, it has been proved that the 20BC-HT-CsxWO3 film exhibits excellent thermal insulation performance, and shows broad application prospects in the field of solar heat filters and energy-saving window glass. Urchin-like CsxWO3 particles were synthesized using bacterial cellulose (BC) as a template by the hydrothermal method. The BC could greatly reduce the abnormal growth of CsxWO3 rods and improve the transparent heat-insulation properties of CsxWO3 film.![]()
Collapse
Affiliation(s)
- Chuan-Yan Fan
- Key Laboratory of New Materials and Modification of Liaoning Province
- School of Textile and Materials Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Jing-Xiao Liu
- Key Laboratory of New Materials and Modification of Liaoning Province
- School of Textile and Materials Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Fei Shi
- Key Laboratory of New Materials and Modification of Liaoning Province
- School of Textile and Materials Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Shuai Ran
- Key Laboratory of New Materials and Modification of Liaoning Province
- School of Textile and Materials Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Bin Chen
- Key Laboratory of New Materials and Modification of Liaoning Province
- School of Textile and Materials Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Jing Zhou
- Key Laboratory of New Materials and Modification of Liaoning Province
- School of Textile and Materials Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Su-Hua Liu
- Key Laboratory of New Materials and Modification of Liaoning Province
- School of Textile and Materials Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Xin Song
- Key Laboratory of New Materials and Modification of Liaoning Province
- School of Textile and Materials Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Jiahong Kang
- Key Laboratory of New Materials and Modification of Liaoning Province
- School of Textile and Materials Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| |
Collapse
|
108
|
Anton-Sales I, Beekmann U, Laromaine A, Roig A, Kralisch D. Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Curr Drug Targets 2019; 20:808-822. [PMID: 30488795 PMCID: PMC7046991 DOI: 10.2174/1389450120666181129092144] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
In this mini-review, we highlight the potential of the biopolymer bacterial cellulose to treat damaged epithelial tissues. Epithelial tissues are cell sheets that delimitate both the external body surfaces and the internal cavities and organs. Epithelia serve as physical protection to underlying organs, regulate the diffusion of molecules and ions, secrete substances and filtrate body fluids, among other vital functions. Because of their continuous exposure to environmental stressors, damage to epithelial tissues is highly prevalent. Here, we first compare the properties of bacterial cellulose to the current gold standard, collagen, and then we examine the use of bacterial cellulose patches to heal specific epithelial tissues; the outer skin, the ocular surface, the oral mucosa and other epithelial surfaces. Special emphasis is made on the dermis since, to date, this is the most widespread medical use of bacterial cellulose. It is important to note that some epithelial tissues represent only the outermost layer of more complex structures such as the skin or the cornea. In these situations, depending on the penetration of the lesion, bacterial cellulose might also be involved in the regeneration of, for instance, inner connective tissue.
Collapse
Affiliation(s)
| | | | - Anna Laromaine
- Address correspondence to these authors at the Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalunya, Spain; Tel: +34935801853; E-mails: ;
| | - Anna Roig
- Address correspondence to these authors at the Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalunya, Spain; Tel: +34935801853; E-mails: ;
| | | |
Collapse
|
109
|
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med 2019; 4:96-115. [PMID: 30680322 PMCID: PMC6336672 DOI: 10.1002/btm2.10124] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
Collapse
Affiliation(s)
- Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Soundarapandian Kannan
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Nanomedicine Division, Dept. of ZoologyPeriyar UniversitySalemTamil NaduIndia
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Radiological Sciences, David Geffen School of MedicineUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Chemical and Biomolecular EngineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
110
|
He W, Huang X, Zheng Y, Sun Y, Xie Y, Wang Y, Yue L. In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2137-2153. [PMID: 30280964 DOI: 10.1080/09205063.2018.1528518] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bacterial cellulose (BC), with unique structure and properties, has attracted much attention in the biomedical field, especially in using as wound dressing. However, pure BC lacks the antimicrobial activity, which limits its application in wound healing. To solve this problem, copper nanoparticles (Cu NPs) loaded BC membranes were fabricated by using in situ chemical reduction method. The morphology and chemical composition of the composite membranes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). The results showed that Cu NPs evenly distributed and anchored in the three-dimensional (3-D) nanofiber network of BC through physical bonding. Traces of Cu2O were observed on the membranes probably because the Cu2+ was incompletely reduced. The Cu NPs loaded BC membranes showed efficient long-term antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) even after immersion in deionized water for up to 90 days. The composite membranes kept sustained release of copper ion, which may contribute to the long-term antibacterial activity. Furthermore, with controlled Cu concentration, BC/Cu membranes did not show obvious cytotoxicity to normal human dermal fibroblasts (NHDF). In all, the present results reveal that BC/Cu membranes with efficient antibacterial activity are promising to be used as wound dressings.
Collapse
Affiliation(s)
- Wei He
- a School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing , China
| | - Xiangqi Huang
- a School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing , China
| | - Yudong Zheng
- a School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing , China
| | - Yi Sun
- a School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing , China
| | - Yajie Xie
- a School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing , China
| | - Yansen Wang
- a School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing , China
| | - Lina Yue
- b School of Environmental Engineering , North China Institute of Science and Technology , Yanjiao Beijing , China
| |
Collapse
|
111
|
Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2018.02.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
112
|
Thomas B, Raj MC, B AK, H RM, Joy J, Moores A, Drisko GL, Sanchez C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem Rev 2018; 118:11575-11625. [PMID: 30403346 DOI: 10.1021/acs.chemrev.7b00627] [Citation(s) in RCA: 579] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With increasing environmental and ecological concerns due to the use of petroleum-based chemicals and products, the synthesis of fine chemicals and functional materials from natural resources is of great public value. Nanocellulose may prove to be one of the most promising green materials of modern times due to its intrinsic properties, renewability, and abundance. In this review, we present nanocellulose-based materials from sourcing, synthesis, and surface modification of nanocellulose, to materials formation and applications. Nanocellulose can be sourced from biomass, plants, or bacteria, relying on fairly simple, scalable, and efficient isolation techniques. Mechanical, chemical, and enzymatic treatments, or a combination of these, can be used to extract nanocellulose from natural sources. The properties of nanocellulose are dependent on the source, the isolation technique, and potential subsequent surface transformations. Nanocellulose surface modification techniques are typically used to introduce either charged or hydrophobic moieties, and include amidation, esterification, etherification, silylation, polymerization, urethanization, sulfonation, and phosphorylation. Nanocellulose has excellent strength, high Young's modulus, biocompatibility, and tunable self-assembly, thixotropic, and photonic properties, which are essential for the applications of this material. Nanocellulose participates in the fabrication of a large range of nanomaterials and nanocomposites, including those based on polymers, metals, metal oxides, and carbon. In particular, nanocellulose complements organic-based materials, where it imparts its mechanical properties to the composite. Nanocellulose is a promising material whenever material strength, flexibility, and/or specific nanostructuration are required. Applications include functional paper, optoelectronics, and antibacterial coatings, packaging, mechanically reinforced polymer composites, tissue scaffolds, drug delivery, biosensors, energy storage, catalysis, environmental remediation, and electrochemically controlled separation. Phosphorylated nanocellulose is a particularly interesting material, spanning a surprising set of applications in various dimensions including bone scaffolds, adsorbents, and flame retardants and as a support for the heterogenization of homogeneous catalysts.
Collapse
Affiliation(s)
- Bejoy Thomas
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Midhun C Raj
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Athira K B
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Rubiyah M H
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Jithin Joy
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India.,International and Interuniversity Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University , 686 560 Kottayam , Kerala , India
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Glenna L Drisko
- CNRS, ICMCB, Université de Bordeaux, UMR 5026 , F-33600 Pessac , France
| | - Clément Sanchez
- UPMC Université Paris 06, CNRS, UMR 7574 Laboratoire Chimie de la Matière Condensée de Paris, Collège de France , 11 place, Marcelin Berthelot , F-75005 , Paris , France
| |
Collapse
|
113
|
Göktürk I, Tamahkar E, Yılmaz F, Denizli A. Protein depletion with bacterial cellulose nanofibers. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1099:1-9. [DOI: 10.1016/j.jchromb.2018.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/25/2018] [Accepted: 08/26/2018] [Indexed: 10/28/2022]
|
114
|
Kaminagakura KLN, Sue Sato S, Sugino P, Kataki de Oliveira Veloso L, Dos Santos DC, Padovani CR, Basmaji P, Olyveira G, Schellini SA. Nanoskin® to treat full thickness skin wounds. J Biomed Mater Res B Appl Biomater 2018; 107:724-732. [PMID: 30267636 DOI: 10.1002/jbm.b.34166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/10/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
Abstract
This experimental study evaluated 40 guinea pigs that received Nanoskin®. A full thickness skin rectangle measuring 2x4 cm was removed from the median dorsal region and the wound was covered by a 2X2 cm fragment of uncoated Nanoskin® graft (uncoated group) or Nanoskin® coated with gelatin (coated group) and sutured in the caudal region and a 2x2 cm fragment of autologous skin sutured in the cranial aspect of the surgical wound served a control. The animals were examined daily by ectoscopy and euthanized at 7, 30, 90 and 180 days postoperatively. Immediately after euthanasia, the operated area was shaved, documented with photos and removed, and prepared for morphological, morphometric and ultrastructural exam. It was found that the full thickness skin wound healed in a centripetal pattern. The healing process was similar between groups, with a more pronounced inflammatory reaction initially that gradually decreased over time. The conclusion is that the uncoated Nanoskin® or Nanoskin® coated with gelatin is a good material to treat full thickness skin wound. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res B Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 724-732, 2019.
Collapse
Affiliation(s)
| | - Silvana Sue Sato
- Faculdade de Medicina, Universidade Estadual Paulista, São Paulo, Brazil
| | - Patricia Sugino
- Faculdade de Medicina, Universidade Estadual Paulista, São Paulo, Brazil
| | | | | | | | - Pierre Basmaji
- Faculdade de Medicina, Universidade Estadual Paulista, São Paulo, Brazil
| | - Gabriel Olyveira
- Faculdade de Farmacia, Universidade Estadual Paulista, São Paulo, Brazil
| | | |
Collapse
|
115
|
Volz A, Hack L, Kluger PJ. A cellulose‐based material for vascularized adipose tissue engineering. J Biomed Mater Res B Appl Biomater 2018; 107:1431-1439. [DOI: 10.1002/jbm.b.34235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/19/2018] [Accepted: 08/18/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Ann‐Cathrin Volz
- Reutlingen University Reutlingen Germany
- University of Hohenheim Stuttgart Germany
| | | | - Petra Juliane Kluger
- Reutlingen University Reutlingen Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Stuttgart Germany
| |
Collapse
|
116
|
Ludwicka K, Kolodziejczyk M, Gendaszewska-Darmach E, Chrzanowski M, Jedrzejczak-Krzepkowska M, Rytczak P, Bielecki S. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications. J Biomed Mater Res B Appl Biomater 2018; 107:978-987. [PMID: 30261126 DOI: 10.1002/jbm.b.34191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/16/2018] [Accepted: 06/10/2018] [Indexed: 11/07/2022]
Abstract
The article presents the method of preparation of new, stable bacterial cellulose composites with perforated solid materials for biomedical applications, comprising reconstructive surgery of soft and hard tissues. The composites were obtained in specially designed bioreactors equipped with a set of perforated mesh stripes threaded vertically to the culture medium, ensuring perpendicular growth of bacterial nanocellulose synthesized by Komagataeibacter xylinus E25 in stationary culture. The developed biocomposites have been tested for stability and mechanical strength, as well as for their in vitro inflammatory responses shown as mast cell degranulation with N-acetyl-β-d-hexosaminidase release and mast cell adhesion. The obtained results indicate that the composites components are well integrated after the process of cultivation and purification. Bacterial nanocellulose does not negatively influence mechanical properties of the polypropylene porous mesh, preserving its tensile strength, elasticity, and load. Moreover, application of bacterial cellulose makes the composites less immunogenic as compared to polypropylene itself. Therefore, the composites have the great potential of application in medicine, and depending on the applied porous material, might be used either in hernioplasty (if porous hernia mesh is used), cranioplasty (if perforated metal or polymeric cranial implant is applied), or as a protective barrier in any application that requires biocompatibility or antiadhesive properties improvement. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 978-987, 2019.
Collapse
Affiliation(s)
- Karolina Ludwicka
- Institutte of Technical Biochemistry, Lodz University of Technology, Lodz 90-924, Stefanowskiego 4/10, Poland
| | - Marek Kolodziejczyk
- Institutte of Technical Biochemistry, Lodz University of Technology, Lodz 90-924, Stefanowskiego 4/10, Poland
| | - Edyta Gendaszewska-Darmach
- Institutte of Technical Biochemistry, Lodz University of Technology, Lodz 90-924, Stefanowskiego 4/10, Poland
| | - Michal Chrzanowski
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, Lodz 90-924, Zeromskiego 116, Poland
| | | | - Przemyslaw Rytczak
- Institutte of Technical Biochemistry, Lodz University of Technology, Lodz 90-924, Stefanowskiego 4/10, Poland
| | - Stanislaw Bielecki
- Institutte of Technical Biochemistry, Lodz University of Technology, Lodz 90-924, Stefanowskiego 4/10, Poland
| |
Collapse
|
117
|
Vadaye Kheiry E, Parivar K, Baharara J, Fazly Bazzaz BS, Iranbakhsh A. The osteogenesis of bacterial cellulose scaffold loaded with fisetin. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:965-971. [PMID: 30524698 PMCID: PMC6272066 DOI: 10.22038/ijbms.2018.25465.6296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Bacterial cellulose (BC) has applications in medical science, it is easily synthesized, economic and purer compared to plant cellulose. The present study aimed to evaluate BC, a biocompatible natural polymer, as a scaffold for the bone marrow mesenchymal stem cells (BMSCs) loaded with fisetin, a phytoestrogen. MATERIALS AND METHODS BC hydrogel scaffold was prepared from Gluconaceter xylinus and characterized through scanning electron microscopy (SEM). Biocompatibility of BC was measured by MTT assay, BMSCs were obtained from femur of rat and the osteogenic potential of the BC scaffold cultured with BMSCs and loaded with fisetin, was investigated by measuring the alkaline phosphatase (ALP) activity, alizarin red staining (ARS) and real-time PCR in terms of osteoblast-specific marker, osteocalcin (OCN) and osteopontin (OPN). RESULTS Biocompatibility results did not show any toxic effects of BC scaffold on BMSCs, while it increased cell viability. The data showed that BC loaded fisetin differentiated BMSCs into osteoblasts as demonstrated by ALP activity assays and ARS in vitro. Moreover, results from gene expression assay showed the expression of OCN and OPN genes was increased in cells that were seeded on the BC scaffold loaded with fisetin. CONCLUSION According to the results of the present study, BC loaded with fisetin is an effective strategy to promote osteogenic differentiation and a proper localized delivery system, which could be a potential candidate in bone tissue engineering.
Collapse
Affiliation(s)
- Elahe Vadaye Kheiry
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Baharara
- Research Center for Animal Development and Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
118
|
Puertas-Bartolomé M, Vázquez-Lasa B, San Román J. Bioactive and Bioadhesive Catechol Conjugated Polymers for Tissue Regeneration. Polymers (Basel) 2018; 10:polym10070768. [PMID: 30960693 PMCID: PMC6403640 DOI: 10.3390/polym10070768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023] Open
Abstract
The effective treatment of chronic wounds constitutes one of the most common worldwide healthcare problem due to the presence of high levels of proteases, free radicals and exudates in the wound, which constantly activate the inflammatory system, avoiding tissue regeneration. In this study, we describe a multifunctional bioactive and resorbable membrane with in-built antioxidant agent catechol for the continuous quenching of free radicals as well as to control inflammatory response, helping to promote the wound-healing process. This natural polyphenol (catechol) is the key molecule responsible for the mechanism of adhesion of mussels providing also the functionalized polymer with bioadhesion in the moist environment of the human body. To reach that goal, synthesized statistical copolymers of N-vinylcaprolactam (V) and 2-hydroxyethyl methacrylate (H) have been conjugated with catechol bearing hydrocaffeic acid (HCA) molecules with high yields. The system has demonstrated good biocompatibility, a sustained antioxidant response, an anti-inflammatory effect, an ultraviolet (UV) screen, and bioadhesion to porcine skin, all of these been key features in the wound-healing process. Therefore, these novel mussel-inspired materials have an enormous potential for application and can act very positively, favoring and promoting the healing effect in chronic wounds.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| |
Collapse
|
119
|
Gullo M, La China S, Falcone PM, Giudici P. Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:6885-6898. [PMID: 29926141 DOI: 10.1007/s00253-018-9164-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Bacterial cellulose is an attractive biopolymer for a number of applications including food, biomedical, cosmetics, and engineering fields. In addition to renewability and biodegradability, its unique structure and properties such as chemical purity, nanoscale fibrous 3D network, high water-holding capacity, high degree of polymerization, high crystallinity index, light transparency, biocompatibility, and mechanical features offer several advantages when it is used as native polymer or in composite materials. Structure and properties play a functional role in both the biofilm life cycle and biotechnological applications. Among all the cellulose-producing bacteria, acetic acid bacteria of the Komagataeibacter xylinus species play the most important role because they are considered the highest producers. Bacterial cellulose from acetic acid bacteria is widely investigated as native and modified biopolymer in functionalized materials, as well as in terms of differences arising from the static or submerged production system. In this paper, the huge amount of knowledge on basic and applied aspects of bacterial cellulose is reviewed to the aim to provide a comprehensive viewpoint on the intriguing interplay between the biological machinery of synthesis, the native structure, and the factors determining its nanostructure and applications. Since in acetic acid bacteria biofilm and cellulose production are two main phenotypes with industrial impact, new insights into biofilm production are provided.
Collapse
Affiliation(s)
- Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola, 2, Pad. Besta, 42122, Reggio Emilia, Italy.
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola, 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Pasquale Massimiliano Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 2, Ancona, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola, 2, Pad. Besta, 42122, Reggio Emilia, Italy
| |
Collapse
|
120
|
Smith CJ, Gehrke S, Hollóczki O, Wagle DV, Heitz MP, Baker GA. NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels. J Chem Phys 2018; 148:193845. [PMID: 30307178 DOI: 10.1063/1.5016337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chip J. Smith
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, Bonn 53115, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Muelheim an der Ruhr 45470, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, Bonn 53115, Germany
| | - Durgesh V. Wagle
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Mark P. Heitz
- Department of Chemistry and Biochemistry, The College at Brockport SUNY, Brockport, New York 14420, USA
| | - Gary A. Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| |
Collapse
|
121
|
Silva MDA, Leite YKDC, de Carvalho CES, Feitosa MLT, Alves MMDM, Carvalho FADA, Neto BCV, Miglino MA, Jozala AF, de Carvalho MAM. Behavior and biocompatibility of rabbit bone marrow mesenchymal stem cells with bacterial cellulose membrane. PeerJ 2018; 6:e4656. [PMID: 29736332 PMCID: PMC5933324 DOI: 10.7717/peerj.4656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. METHODS Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. RESULTS The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs' bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. CONCLUSION The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering.
Collapse
Affiliation(s)
- Marcello de Alencar Silva
- Integrated Nucleus of Morphology and Stem Cell Research, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Matheus Levi Tajra Feitosa
- Integrated Nucleus of Morphology and Stem Cell Research, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Bartolomeu Cruz Viana Neto
- Department of Physics/Advanced Microscopy Multiuser Laboratory/Laboratory of Physics Material, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Maria Angélica Miglino
- Departament of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Angela Faustino Jozala
- Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | | |
Collapse
|
122
|
Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M. Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 2018; 49 Suppl 1:151-159. [PMID: 29703527 PMCID: PMC6328854 DOI: 10.1016/j.bjm.2017.12.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/23/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022] Open
Abstract
To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19 g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14 g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45 g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer.
Collapse
Affiliation(s)
- Victor Revin
- National Research Mordovia State University, Faculty of Biotechnology and Biology, Department of Biotechnology, Bioengineering and Biochemistry, Saransk, Russian Federation
| | - Elena Liyaskina
- National Research Mordovia State University, Faculty of Biotechnology and Biology, Department of Biotechnology, Bioengineering and Biochemistry, Saransk, Russian Federation.
| | - Maria Nazarkina
- National Research Mordovia State University, Faculty of Biotechnology and Biology, Department of Biotechnology, Bioengineering and Biochemistry, Saransk, Russian Federation
| | - Alena Bogatyreva
- National Research Mordovia State University, Faculty of Biotechnology and Biology, Department of Biotechnology, Bioengineering and Biochemistry, Saransk, Russian Federation
| | - Mikhail Shchankin
- National Research Mordovia State University, Faculty of Biotechnology and Biology, Department of Biotechnology, Bioengineering and Biochemistry, Saransk, Russian Federation
| |
Collapse
|
123
|
|
124
|
Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Mohd Amin MCI. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci Rep 2018; 8:2875. [PMID: 29440678 PMCID: PMC5811544 DOI: 10.1038/s41598-018-21174-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound dressing for partial-thickness burn wound. It is also a promising biomaterial cell carrier because it bears some resemblance to the natural soft tissue. This study assessed its ability to deliver human epidermal keratinocytes (EK) and dermal fibroblasts (DF) for the treatment of full-thickness skin lesions. In vitro studies demonstrated that BC/AA hydrogel had excellent cell attachment, maintained cell viability with limited migration, and allowed cell transfer. In vivo wound closure, histological, immunohistochemistry, and transmission electron microscopy evaluation revealed that hydrogel alone (HA) and hydrogel with cells (HC) accelerated wound healing compared to the untreated controls. Gross appearance and Masson's trichrome staining indicated that HC was better than HA. This study suggests the potential application of BC/AA hydrogel with dual functions, as a cell carrier and wound dressing, to promote full-thickness wound healing.
Collapse
Affiliation(s)
- Evelyn Yun Xi Loh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Najwa Mohamad
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
- Faculty of Pharmacy, Cyberjaya University College of Medical Sciences, 3410, Jalan Teknokrat 3, Cyber 4, Cyberjaya, Selangor, 63000, Malaysia
| | - Mh Busra Fauzi
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Shiow Fern Ng
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia.
| |
Collapse
|
125
|
Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Mater Res A 2018; 106:1288-1298. [DOI: 10.1002/jbm.a.36330] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yuanjing Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei Province; Wuhan University of Technology; Wuhan 430070 China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei Province; Wuhan University of Technology; Wuhan 430070 China
| | - Jing Yang
- School of Foreign Languages; Wuhan University of Technology; Wuhan 430070 China
| | - Rong Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei Province; Wuhan University of Technology; Wuhan 430070 China
| | - Zongrui Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei Province; Wuhan University of Technology; Wuhan 430070 China
| | - Yi Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom; Kowloon Hong Kong China
| |
Collapse
|
126
|
“Deceived” Concentrated Immobilized Cells as Biocatalyst for Intensive Bacterial Cellulose Production from Various Sources. Catalysts 2018. [DOI: 10.3390/catal8010033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A new biocatalyst in the form of Komagataeibacter xylinum B-12429 cells immobilized in poly(vinyl alcohol) cryogel for production of bacterial cellulose was demonstrated. Normally, the increased bacteria concentration causes an enlarged bacterial cellulose synthesis while cells push the polysaccharide out to pack themselves into this polymer and go into a stasis. Immobilization of cells into the poly(vinyl alcohol) cryogel allowed “deceiving” them: bacteria producing cellulose pushed it out, which further passed through the pores of cryogel matrix and was accumulated in the medium while not covering the cells; hence, the latter were deprived of a possible transition to inactivity and worked on the synthesis of bacterial cellulose even more actively. The repeated use of immobilized cells retaining 100% of their metabolic activity for at least 10 working cycles (60 days) was performed. The immobilized cells produce bacterial cellulose with crystallinity and porosity similar to polysaccharide of free cells, but having improved stiffness and tensile strength. Various media containing sugars and glycerol, based on hydrolysates of renewable biomass sources (aspen, Jerusalem artichoke, rice straw, microalgae) were successfully applied for bacterial cellulose production by immobilized cells, and the level of polysaccharide accumulation was 1.3–1.8-times greater than suspended cells could produce.
Collapse
|
127
|
Gomes RJ, Borges MDF, Rosa MDF, Castro-Gómez RJH, Spinosa WA. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technol Biotechnol 2018; 56:139-151. [PMID: 30228790 DOI: 10.17113/ftb.56.02.18.5593] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The group of Gram-negative bacteria capable of oxidising ethanol to acetic acid is called acetic acid bacteria (AAB). They are widespread in nature and play an important role in the production of food and beverages, such as vinegar and kombucha. The ability to oxidise ethanol to acetic acid also allows the unwanted growth of AAB in other fermented beverages, such as wine, cider, beer and functional and soft beverages, causing an undesirable sour taste. These bacteria are also used in the production of other metabolic products, for example, gluconic acid, l-sorbose and bacterial cellulose, with potential applications in the food and biomedical industries. The classification of AAB into distinct genera has undergone several modifications over the last years, based on morphological, physiological and genetic characteristics. Therefore, this review focuses on the history of taxonomy, biochemical aspects and methods of isolation, identification and quantification of AAB, mainly related to those with important biotechnological applications.
Collapse
Affiliation(s)
- Rodrigo José Gomes
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
| | - Maria de Fatima Borges
- Embrapa Tropical Agroindustry, 2270 Dra. Sara Mesquita Road, 60511-110 Fortaleza, CE, Brazil
| | | | - Raúl Jorge Hernan Castro-Gómez
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
| | - Wilma Aparecida Spinosa
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
128
|
Bayón B, Berti IR, Gagneten AM, Castro GR. Biopolymers from Wastes to High-Value Products in Biomedicine. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7431-8_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
129
|
Fuller ME, Andaya C, McClay K. Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. J Microbiol Methods 2018; 144:145-151. [DOI: 10.1016/j.mimet.2017.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
|
130
|
Prospects of Natural Polymeric Scaffolds in Peripheral Nerve Tissue-Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:501-525. [DOI: 10.1007/978-981-13-0947-2_27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
131
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017; 6. [PMID: 28892296 DOI: 10.1002/adhm.201700258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Approaches to increase the efficiency in developing drugs and diagnostics tools, including new drug delivery and diagnostic technologies, are needed for improved diagnosis and treatment of major diseases and health problems such as cancer, inflammatory diseases, chronic wounds, and antibiotic resistance. Development within several areas of research ranging from computational sciences, material sciences, bioengineering to biomedical sciences and bioimaging is needed to realize innovative drug development and diagnostic (DDD) approaches. Here, an overview of recent progresses within key areas that can provide customizable solutions to improve processes and the approaches taken within DDD is provided. Due to the broadness of the area, unfortunately all relevant aspects such as pharmacokinetics of bioactive molecules and delivery systems cannot be covered. Tailored approaches within (i) bioinformatics and computer-aided drug design, (ii) nanotechnology, (iii) novel materials and technologies for drug delivery and diagnostic systems, and (iv) disease models to predict safety and efficacy of medicines under development are focused on. Current developments and challenges ahead are discussed. The broad scope reflects the multidisciplinary nature of the field of DDD and aims to highlight the convergence of biological, pharmaceutical, and medical disciplines needed to meet the societal challenges of the 21st century.
Collapse
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
132
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017. [DOI: 10.1002/adhm.201700258 10.1002/adhm.201700258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
133
|
Abba M, Abdullahi M, Md Nor MH, Chong CS, Ibrahim Z. Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp. with nanocellulose producing potentials. IET Nanobiotechnol 2017; 12:52-56. [PMCID: PMC8676414 DOI: 10.1049/iet-nbt.2017.0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 08/28/2017] [Accepted: 09/17/2017] [Indexed: 08/15/2023] Open
Abstract
Recently, attention has been given to nanocellulose produced by bacteria due to its unique properties and environmentally friendly nature when compared with plant cellulose. Bacterial nanocellulose (BNC) producing isolate was successfully isolated from rotten fruits via dilution and spread plates method. Based on the biochemical characterisation and molecular analysis of the 16S rDNA gene, the isolate was identified as Gluconacetobacter xylinus BCMZ sp. Nanocellulose productivity was confirmed by the formation of the white gelatinous layer between air/liquid surfaces when the culture was cultivated under a stationary condition at 30°C. Successful purification of nanocellulose was achieved using alkaline treatment method. The Fourier transformed infrared spectrum showed a characteristics band signature of pure nanocellulose, by displaying strong absorption peaks at 3335.36 and 2901.40 cm−1 representing carbonyl and carbon–hydrogen bonding, respectively. Morphological characteristics of the BNC were determined by scanning electron microscopy (SEM). Elemental analysis of BNC was determined by energy dispersive X‐ray (SEM/EDX) analysis. The isolates BCZM showed significant nanocellulose production ability with a high degree of purity when compared with plant nanocellulose. BNC purification using 1 M NaOH solution is effective and eco‐friendly with no indication of recalcitrant formation as commonly found in plant nanocellulose purification steps.
Collapse
Affiliation(s)
- Mustapha Abba
- Department of Biosciences and Health SciencesFaculty of Biosciences and Medical EngineeringUniversiti Teknologi Malaysia81310SkudaiJohorMalaysia
- Department of MicrobiologyFaculty of ScienceBauchi State UniversityGadau PMB 65Bauchi StateNigeria
| | - Mohammed Abdullahi
- Department of MicrobiologyFaculty of ScienceIbrahim Badamasi Babangida UniversityPMB 11LapaiNiger StateNigeria
| | - Muhamad Hanif Md Nor
- Department of Biosciences and Health SciencesFaculty of Biosciences and Medical EngineeringUniversiti Teknologi Malaysia81310SkudaiJohorMalaysia
| | - Chun Shiong Chong
- Department of Biotechnology and Medical EngineeringFaculty of Biosciences and Medical EngineeringUniversiti Teknologi Malaysia81310Skudai JohorMalaysia
| | - Zaharah Ibrahim
- Department of Biosciences and Health SciencesFaculty of Biosciences and Medical EngineeringUniversiti Teknologi Malaysia81310SkudaiJohorMalaysia
| |
Collapse
|
134
|
An SJ, Lee SH, Huh JB, Jeong SI, Park JS, Gwon HJ, Kang ES, Jeong CM, Lim YM. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration. Int J Mol Sci 2017; 18:ijms18112236. [PMID: 29068426 PMCID: PMC5713206 DOI: 10.3390/ijms18112236] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022] Open
Abstract
Bacterial cellulose (BC) is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR) using an irradiation technique for applications in the dental field. Electron beam irradiation (EI) increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs) were evaluated by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), and using wet tensile strength measurements. In addition, in vitro cell studies were conducted in order to confirm the cytocompatibility of EI-BCMs. Cell viabilities of NIH3T3 cells on 100k and 300k EI-BCMs (100 kGy and 300 kGy irradiated BC membranes) were significantly greater than on NI-BCMs after 3 and 7 days (p < 0.05). Bone regeneration by EI-BCMs and their biodegradabilities were also evaluated using in vivo rat calvarial defect models for 4 and 8 weeks. Histometric results showed 100k EI-BCMs exhibited significantly larger new bone area (NBA; %) than 300k EI-BCMs at 8 weeks after implantation (p < 0.05). Mechanical, chemical, and biological analyses showed EI-BCMs effectively interacted with cells and promoted bone regeneration.
Collapse
Affiliation(s)
- Sung-Jun An
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - So-Hyoun Lee
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Sung In Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Jong-Seok Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Hui-Jeong Gwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Eun-Sook Kang
- Department of Prosthodontics, In-Je University Haeundae Paik Hospital, Busan 48108, Korea.
| | - Chang-Mo Jeong
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| |
Collapse
|
135
|
Araújo IMS, Silva RR, Pacheco G, Lustri WR, Tercjak A, Gutierrez J, Júnior JRS, Azevedo FHC, Figuêredo GS, Vega ML, Ribeiro SJL, Barud HS. Hydrothermal synthesis of bacterial cellulose-copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr Polym 2017; 179:341-349. [PMID: 29111060 DOI: 10.1016/j.carbpol.2017.09.081] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023]
Abstract
In this work, for the first time bacterial cellulose (BC) hydrogel membranes were used for the fabrication of antimicrobial cellulosic nanocomposites by hydrothermal deposition of Cu derivative nanoparticles (i.e.Cu(0) and CuxOy species). BC-Cu nanocomposites were characterized by FTIR, SEM, AFM, XRD and TGA, to study the effect of hydrothermal processing time on the final physicochemical properties of final products. XRD result show that depending on heating time (3-48h), different CuxOy phases were achieved. SEM and AFM analyses unveil the presence of the Cu(0) and copper CuxOy nanoparticles over BC fibrils while the surface of 3D network became more compact and smother for longer heating times. Furthermore, the increase of heating time placed deleterious effect on the structure of BC network leading to decrease of BC crystallinity as well as of the on-set degradation temperature. Notwithstanding, BC-Cu nanocomposites showed excellent antimicrobial activity against E. coli, S. aureus and Salmonella bacteria suggesting potential applications as bactericidal films.
Collapse
Affiliation(s)
- Inês M S Araújo
- Universidade Federal do Piauí, Departamento de Química, Campus Ministro Petrônio Portela, Uninga, 64049-550,Teresina, PI, Brazil.
| | - Robson R Silva
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Química de Araraquara, Departamento de Química Geral e Inorgânica, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14.800-060, Araraquara, SP, Brazil; Instituto de Física de São Carlos, Universidade São Paulo, 13560-970, São Carlos, SP, Brazil..
| | - Guilherme Pacheco
- Universidade de Araraquara, Uniara, Laboratório de Biopolímeros e Biomateriais (BIOPOLMAT), Rua. Carlos Gomes, 1217, 14.801-320, Araraquara, SP, Brazil.
| | - Wilton R Lustri
- Universidade de Araraquara, Uniara, Laboratório de Biopolímeros e Biomateriais (BIOPOLMAT), Rua. Carlos Gomes, 1217, 14.801-320, Araraquara, SP, Brazil.
| | - Agnieszka Tercjak
- University of the Basque Country (UPV/EHU), Dpto. Ingeniería Química y del Medio Ambiente, Escuela Politécnica Donostia-San Sebastián, Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Junkal Gutierrez
- University of the Basque Country (UPV/EHU), Dpto. Ingeniería Química y del Medio Ambiente, Escuela Politécnica Donostia-San Sebastián, Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - José R S Júnior
- Universidade Federal do Piauí, Departamento de Química, Campus Ministro Petrônio Portela, Uninga, 64049-550,Teresina, PI, Brazil.
| | - Francisco H C Azevedo
- Universidade Luterana do Brasil, Programa de Pós Graduação Em Genética e Toxicologia Aplicada, Av. Farroupilha, 8001, Prédio 01, São Luís, 92.450-900, Canoas, RS, Brazil.
| | - Girlene S Figuêredo
- Universidade Federal do Piauí, Departamento de Química, Campus Ministro Petrônio Portela, Uninga, 64049-550,Teresina, PI, Brazil.
| | - Maria L Vega
- Universidade Federal do Piauí, Departamento de Química, Campus Ministro Petrônio Portela, Uninga, 64049-550,Teresina, PI, Brazil.
| | - Sidney J L Ribeiro
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Química de Araraquara, Departamento de Química Geral e Inorgânica, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14.800-060, Araraquara, SP, Brazil.
| | - Hernane S Barud
- Universidade de Araraquara, Uniara, Laboratório de Biopolímeros e Biomateriais (BIOPOLMAT), Rua. Carlos Gomes, 1217, 14.801-320, Araraquara, SP, Brazil.
| |
Collapse
|
136
|
Lee SH, An SJ, Lim YM, Huh JB. The Efficacy of Electron Beam Irradiated Bacterial Cellulose Membranes as Compared with Collagen Membranes on Guided Bone Regeneration in Peri-Implant Bone Defects. MATERIALS 2017; 10:ma10091018. [PMID: 28862689 PMCID: PMC5615673 DOI: 10.3390/ma10091018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Bacterial cellulose (BC) is a natural polysaccharide produced by some bacteria, and consists of a linear polymer linked by β-(1,4) glycosidic bonds. BC has been developed as a material for tissue regeneration purposes. This study was conducted to evaluate the efficacy of resorbable electron beam irradiated BC membranes (EI-BCMs) for guided bone regeneration (GBR). The electron beam irradiation (EI) was introduced to control the biodegradability of BC for dental applications. EI-BCMs had higher porosity than collagen membranes (CMs), and had similar wet tensile strengths to CMs. NIH3T3 cell adhesion and proliferation on EI-BCMs were not significantly different from those on CMs (p > 0.05). Micro-computed tomography (μCT) and histometric analysis in peri-implant dehiscence defects of beagle dogs showed that EI-BCMs were non-significantly different from CMs in terms of new bone area (NBA; %), remaining bone substitute volume (RBA; %) and bone-to-implant contact (BIC; %) (p > 0.05). These results suggest resorbable EI-BCMs can be used as an alternative biomaterial for bone tissue regeneration.
Collapse
Affiliation(s)
- So-Hyoun Lee
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Sung-Jun An
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
137
|
Kumbhar JV, Jadhav SH, Bodas DS, Barhanpurkar-Naik A, Wani MR, Paknikar KM, Rajwade JM. In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. Int J Nanomedicine 2017; 12:6437-6459. [PMID: 28919746 PMCID: PMC5590766 DOI: 10.2147/ijn.s137361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacterial cellulose (BC) is a naturally occurring nanofibrous biomaterial which exhibits unique physical properties and is amenable to chemical modifications. To explore whether this versatile material can be used in the treatment of osteochondral defects (OCD), we developed and characterized novel BC-based nanocomposite scaffolds, for example, BC-hydroxyapatite (BC-HA) and BC-glycosaminoglycans (BC-GAG) that mimic bone and cartilage, respectively. In vitro biocompatibility of BC-HA and BC-GAG scaffolds was established using osteosarcoma cells, human articular chondrocytes, and human adipose-derived mesenchymal stem cells. On subcutaneous implantation, the scaffolds allowed tissue ingrowth and induced no adverse immunological reactions suggesting excellent in vivo biocompatibility. Implantation of acellular bilayered scaffolds in OCD created in rat knees induced progressive regeneration of cartilage tissue, deposition of extracellular matrix, and regeneration of subchondral bone by the host cells. The results of micro-CT revealed that bone mineral density and ratio of bone volume to tissue volume were significantly higher in animals receiving bilayered scaffold as compared to the control animals. To the best of our knowledge, this study proves for the first time, the functional performance of acellular BC-based bilayered scaffolds. Thus, this strategy has great potential for clinical translation and can be used in repair of OCD.
Collapse
Affiliation(s)
| | | | | | | | - Mohan R Wani
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | | | | |
Collapse
|
138
|
Chang Y, Zhou L, Xiao Z, Liang J, Kong D, Li Z, Zhang X, Li X, Zhi L. Embedding Reduced Graphene Oxide in Bacterial Cellulose-Derived Carbon Nanofibril Networks for Supercapacitors. ChemElectroChem 2017. [DOI: 10.1002/celc.201700625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yanhong Chang
- Department of Environmental Engineering; University of Science and Technology of Beijing; Beijing 100083 China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants; Beijing 100083 P. R. China
| | - Lu Zhou
- Department of Environmental Engineering; University of Science and Technology of Beijing; Beijing 100083 China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Zhichang Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Jiaxu Liang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Zihao Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Xinghao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Xianglong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| |
Collapse
|
139
|
Jang WD, Hwang JH, Kim HU, Ryu JY, Lee SY. Bacterial cellulose as an example product for sustainable production and consumption. Microb Biotechnol 2017; 10:1181-1185. [PMID: 28695653 PMCID: PMC5609267 DOI: 10.1111/1751-7915.12744] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022] Open
Abstract
Life cycle of bacterial cellulose. Sustainable production and consumption of bio-based products are showcased using bacterial cellulose as an example.
Collapse
Affiliation(s)
- Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji Hyeon Hwang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae Yong Ryu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.,BioProcess Engineering Research Center, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
140
|
Feil G, Horres R, Schulte J, Mack AF, Petzoldt S, Arnold C, Meng C, Jost L, Boxleitner J, Kiessling-Wolf N, Serbest E, Helm D, Kuster B, Hartmann I, Korff T, Hahne H. Bacterial Cellulose Shifts Transcriptome and Proteome of Cultured Endothelial Cells Towards Native Differentiation. Mol Cell Proteomics 2017. [PMID: 28637836 DOI: 10.1074/mcp.ra117.000001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preserving the native phenotype of primary cells in vitro is a complex challenge. Recently, hydrogel-based cellular matrices have evolved as alternatives to conventional cell culture techniques. We developed a bacterial cellulose-based aqueous gel-like biomaterial, dubbed Xellulin, which mimics a cellular microenvironment and seems to maintain the native phenotype of cultured and primary cells. When applied to human umbilical vein endothelial cells (HUVEC), it allowed the continuous cultivation of cell monolayers for more than one year without degradation or dedifferentiation. To investigate the impact of Xellulin on the endothelial cell phenotype in detail, we applied quantitative transcriptomics and proteomics and compared the molecular makeup of native HUVEC, HUVEC on collagen-coated Xellulin and collagen-coated cell culture plastic (polystyrene).Statistical analysis of 12,475 transcripts and 7831 proteins unveiled massive quantitative differences of the compared transcriptomes and proteomes. K-means clustering followed by network analysis showed that HUVEC on plastic upregulate transcripts and proteins controlling proliferation, cell cycle and protein biosynthesis. In contrast, HUVEC on Xellulin maintained, by and large, the expression levels of genes supporting their native biological functions and signaling networks such as integrin, receptor tyrosine kinase MAP/ERK and PI3K signaling pathways, while decreasing the expression of proliferation associated proteins. Moreover, CD34-an endothelial cell differentiation marker usually lost early during cell culture - was re-expressed within 2 weeks on Xellulin but not on plastic. And HUVEC on Xellulin showed a significantly stronger functional responsiveness to a prototypic pro-inflammatory stimulus than HUVEC on plastic.Taken together, this is one of the most comprehensive transcriptomic and proteomic studies of native and propagated HUVEC, which underscores the importance of the morphology of the cellular microenvironment to regulate cellular differentiation, and demonstrates, for the first time, the potential of Xellulin as versatile tool promoting an in vivo-like phenotype in primary and propagated cell culture.
Collapse
Affiliation(s)
- Gerhard Feil
- From the ‡Xellutec GmbH, Eichenstraβe 15, 82061 Neuried, Germany
| | - Ralf Horres
- §GenXPro GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Julia Schulte
- From the ‡Xellutec GmbH, Eichenstraβe 15, 82061 Neuried, Germany
| | - Andreas F Mack
- ¶Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstraβe 3, 72074 Tübingen, Germany
| | - Svenja Petzoldt
- ‖OmicScouts GmbH, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Caroline Arnold
- **Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Chen Meng
- ‡‡Chair of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Lukas Jost
- §GenXPro GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | | | | | - Ender Serbest
- From the ‡Xellutec GmbH, Eichenstraβe 15, 82061 Neuried, Germany
| | - Dominic Helm
- ‖OmicScouts GmbH, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Bernhard Kuster
- ‡‡Chair of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.,§§Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Isabel Hartmann
- From the ‡Xellutec GmbH, Eichenstraβe 15, 82061 Neuried, Germany
| | - Thomas Korff
- §§Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Hannes Hahne
- ‖OmicScouts GmbH, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany;
| |
Collapse
|
141
|
|
142
|
Gutiérrez-Hernández JM, Escobar-García DM, Escalante A, Flores H, González FJ, Gatenholm P, Toriz G. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:445-453. [DOI: 10.1016/j.msec.2017.02.074] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/09/2016] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
|
143
|
The Effect of Thickness of Resorbable Bacterial Cellulose Membrane on Guided Bone Regeneration. MATERIALS 2017; 10:ma10030320. [PMID: 28772680 PMCID: PMC5503340 DOI: 10.3390/ma10030320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022]
Abstract
This study introduces the effect of the thickness of a bacterial cellulose membrane by comparing the bone regeneration effect on rat skulls when using a collagen membrane and different thicknesses of resorbable bacterial cellulose membranes for guided bone regeneration. Barrier membranes of 0.10 mm, 0.15 mm, and 0.20 mm in thickness were made using bacterial cellulose produced as microbial fermentation metabolites. Mechanical strength was investigated, and new bone formation was evaluated through animal experimental studies. Experimental animals were sacrificed after having 2 weeks and 8 weeks of recovery, and specimens were processed for histologic and histomorphometric analyses measuring the area of bone regeneration (%) using an image analysis program. In 2 weeks, bone-like materials and fibrous connective tissues were observed in histologic analysis. In 8 weeks, all experimental groups showed the arrangement of osteoblasts surrounding the supporting body on the margin and center of the bone defect region. However, the amount of new bone formation was significantly higher (p < 0.05) in bacterial cellulose membrane with 0.10 mm in thickness compared to the other experimental groups. Within the limitations of this study, a bacterial cellulose membrane with 0.10 mm thickness induced the most effective bone regeneration.
Collapse
|
144
|
Huang Y, Wang J, Yang F, Shao Y, Zhang X, Dai K. Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1034-1041. [PMID: 28415386 DOI: 10.1016/j.msec.2017.02.174] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), & Shanghai Jiao Tong University School of Medicine (SJTUSM), 320 Yueyang Road, Shanghai 200031, China
| | - Jing Wang
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Institute of Textile Composite, Tianjin Polytechnic University, Tianjin 300387, China
| | - Fei Yang
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yingnan Shao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), & Shanghai Jiao Tong University School of Medicine (SJTUSM), 320 Yueyang Road, Shanghai 200031, China
| | - Xiaoling Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), & Shanghai Jiao Tong University School of Medicine (SJTUSM), 320 Yueyang Road, Shanghai 200031, China.
| | - Kerong Dai
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), & Shanghai Jiao Tong University School of Medicine (SJTUSM), 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
145
|
Liyaskina E, Revin V, Paramonova E, Nazarkina M, Pestov N, Revina N, Kolesnikova S. Nanomaterials from bacterial cellulose for antimicrobial wound dressing. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/784/1/012034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
146
|
de Oliveira SA, da Silva BC, Riegel-Vidotti IC, Urbano A, de Sousa Faria-Tischer PC, Tischer CA. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. Int J Biol Macromol 2017; 97:642-653. [PMID: 28109811 DOI: 10.1016/j.ijbiomac.2017.01.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Sabrina Alves de Oliveira
- Departament of Biochemistry and Biotechnology, Londrina State University-UEL, CEP 86051-980, Londrina, PR, Brazil
| | - Bruno Campos da Silva
- Departament of Chemistry, Federal University of Parana-UFPR, CEP 81531-980, Curitiba, PR, Brazil
| | | | - Alexandre Urbano
- Departamento of Physics, Londrina State University-UEL, CEP 86051-980, Londrina, PR, Brazil
| | | | - Cesar Augusto Tischer
- Departament of Biochemistry and Biotechnology, Londrina State University-UEL, CEP 86051-980, Londrina, PR, Brazil.
| |
Collapse
|
147
|
Khalid A, Ullah H, Ul-Islam M, Khan R, Khan S, Ahmad F, Khan T, Wahid F. Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv 2017. [DOI: 10.1039/c7ra06699f] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of novel cutaneous wound treatments particularly for burns is of paramount importance due to complex pathophysiology, prevalent infection and clinical complexities associated with burn care.
Collapse
Affiliation(s)
- Ayesha Khalid
- Biotechnology Program
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Hanif Ullah
- Department of Pharmacy
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering
- College of Engineering
- Dhofar University
- Salalah
- Oman
| | - Romana Khan
- Department of Environmental Sciences
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Shaukat Khan
- Department of Chemical Engineering
- Kyungpook National University
- Daegu
- Korea
| | - Fiaz Ahmad
- Department of Pathology
- Ayub Medical College
- Abbottabad
- Pakistan
| | - Taous Khan
- Department of Pharmacy
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Fazli Wahid
- Biotechnology Program
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| |
Collapse
|
148
|
Ebrahimi E, Babaeipour V, Meftahi A, Alibakhshi S. Effects of Bio-Production Process Parameters on Bacterial Cellulose Mechanical Properties. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.15we301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ehsan Ebrahimi
- Biotechnology Group, Faculty of Chemical Engineering, University of Isfahan
| | - Valiollah Babaeipour
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology
| | - Amin Meftahi
- Department of Textile Engineering, South Tehran Branch, Islamic Azad University
| | | |
Collapse
|
149
|
Yu J, Huang TR, Lim ZH, Luo R, Pasula RR, Liao LD, Lim S, Chen CH. Production of Hollow Bacterial Cellulose Microspheres Using Microfluidics to Form an Injectable Porous Scaffold for Wound Healing. Adv Healthc Mater 2016; 5:2983-2992. [PMID: 27805793 DOI: 10.1002/adhm.201600898] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/15/2016] [Indexed: 12/20/2022]
Abstract
Bacterial cellulose (BC) is a biocompatible material with high purity and robust mechanical strength used to fabricate desirable scaffolds for 3D cell culture and wound healing. However, the chemical resistance of BC and its insolubility in the majority of solutions make it difficult to manipulate using standard chemical methods. In this study, a microfluidic process is developed to produce hollow BC microspheres with desirable internal structures and morphology. Microfluidics is used to generate a core-shell structured microparticle with an alginate core and agarose shell as a template to encapsulate Gluconacetobacter xylinus for long-term static culture. G. xylinus then secretes BC, which becomes entangled within the shell of the structured hydrogel microparticles and forms BC microspheres. The removal of the hydrogel template via thermal-chemical treatments yields robust BC microspheres exhibiting a hollow morphology. These hollow microspheres spontaneously assemble as functional units to form a novel injectable scaffold. In vitro, a highly porous scaffold is created to enable effective 3D cell culture with a high cell proliferation rate and better depth distribution. In vivo, this injectable scaffold facilitates tissue regeneration, resulting in rapid wound-healing in a Sprague Dawley rat skin model.
Collapse
Affiliation(s)
- Jiaqing Yu
- Department of Biomedical Engineering; National University of Singapore; 9 Engineering Drive 1 117575 Singapore
| | - Tzu-Rung Huang
- Singapore Institute for Neurotechnology; 28 Medical Drive, #05-COR 117456 Singapore
| | - Zhen Han Lim
- Department of Biomedical Engineering; National University of Singapore; 9 Engineering Drive 1 117575 Singapore
| | - Rongcong Luo
- Department of Biomedical Engineering; National University of Singapore; 9 Engineering Drive 1 117575 Singapore
| | - Rupali Reddy Pasula
- Division of Bioengineering; School of Chemical and Biomedical Engineering; College of Engineering; Nanyang Technological University; 62 Nanyang Drive 637459 Singapore
| | - Lun-De Liao
- Singapore Institute for Neurotechnology; 28 Medical Drive, #05-COR 117456 Singapore
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes; 35 Keyan Road, Zhunan Town, Miaoli County 35053 Taiwan
| | - Sierin Lim
- Division of Bioengineering; School of Chemical and Biomedical Engineering; College of Engineering; Nanyang Technological University; 62 Nanyang Drive 637459 Singapore
| | - Chia-Hung Chen
- Department of Biomedical Engineering; National University of Singapore; 9 Engineering Drive 1 117575 Singapore
- Singapore Institute for Neurotechnology; 28 Medical Drive, #05-COR 117456 Singapore
| |
Collapse
|
150
|
Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites. Int J Biol Macromol 2016; 91:1062-72. [DOI: 10.1016/j.ijbiomac.2016.06.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 11/19/2022]
|